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A virtual representation of a physical procedure or product is called digital twin which can enhance efficiency
and reduce costs in manufacturing process. Utilizing the digital twin, production teams can examine various
data sources and reduce the number of defective items to enhance production efficiency and decrease industrial
downtime. Digital Twin can be utilized to visualize the asset, track changes, understand and optimize asset per-
formance throughout the analysis of the product lifecycle. Also, the collected data from digital twin can provide
the complete lifecycle of products and processes to optimize workflows of part production, manage supply chain,
and manage product quality. The application of digital twin in smart manufacturing can reduce time to market
by designing and evaluating the manufacturing processes in virtual environments before manufacture. Compre-
hensive simulation platforms can be presented using digital twins to simulate and evaluate product performances
in terms of analysis and modification of produced parts. Commissioning time of a factory can also be significantly
reduced by developing and optimizing the factory layout using the digital twin. Also, the productivity of part
manufacturing can be enhanced by providing the predictive maintenance and data-driven root-cause analysis
during part production process. In this paper, application of digital twin in smart manufacturing systems is re-
viewed to analyze and discuss the advantages and challenges of part production modification using the digital
twin. So, the research field can advance by reading and evaluating previous papers in order to propose fresh
concepts and approaches by using digital twins in smart manufacturing systems.

Introduction

A digital twin is a virtual representation of a physical system or pro-
cess that allows for real-time monitoring, analysis, and optimization. In
the context of smart manufacturing, a digital twin can be used to simu-
late and optimize the production process, predict and prevent equipment
failures, and improve efficiency and quality of part production [1,2].
The digital twin can provide a detailed, accurate representation of the
physical object or system, including its behavior, performance, and in-
teractions with the environment [3]. Digital twins use machine learning,
data analytics, and multi-physics simulation in order simulate and ana-
lyze different working conditions and other factors affect a system [4].
The creation of the digital twin is a critical component of future technol-
ogy that will have an impact on several global sectors [5]. By analyzing
data from the physical object, the Digital Twin can provide real-time
feedback, monitor its performance, and identify potential issues before
they occur [6]. A digital twin can be used in order to optimize the op-
eration of a physical system, by simulating its behavior and identifying
areas where improvements can be made. [7]. Furthermore, companies
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can utilize digital twins to model, anticipate, and improve products and
manufacturing processes in different industries, including automotive,
green energy, and aviation before organizations invest in actual proto-
types and assets, [8]. As a result, digital twins can help businesses and
manufacturing process in order to make better decisions, reduce costs,
and improve performance across a range of industries and applications.

By creating a digital twin, engineers and designers can test various
scenarios and make improvements, reducing the time and costs associ-
ated with physical testing and prototyping [9]. The use of digital twin
technology is essential for product manufacturers in order to improve
the productivity of their manufacturing processes and shorten time-to-
market [10]. Digital twins in smart manufacturing are created by com-
bining real-time data from physical sensors with computer-aided design
(CAD) models and other simulation tools. This allows manufacturers to
monitor and analyze the performance of equipment and processes in
real time, identify potential issues before they occur, and make data-
driven decisions to optimize production. [11]. By creating a digital twin
of a part, engineers can analyze its performance under different condi-
tions, such as changes in temperature, pressure, and load. This allows
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them to predict how the part will perform in real-world situations, iden-
tify potential issues or failures, and optimize its design to improve its
performance [12]. The digital twin provides several benefits to smart
manufacturing. For one, it enables real-time monitoring of manufac-
turing processes, allowing for quick identification and resolution of is-
sues. Additionally, it allows for the testing and optimization of products
and processes before they are physically produced, which can save time
and resources [13]. Moreover, production digital twins are employed to
verify the effectiveness of a manufacturing process prior to component
manufacture. A digital twin can be used to monitor the performance of
individual machines or production lines, detect potential issues before
they occur, and optimize the system’s operations to minimize down-
time and maximize output. It can also be used to simulate and test new
production processes or equipment before they are implemented in the
physical system in order to reduce the risk of costly errors or failures
[3]. Performance digital twins enable the manufacturing managers to
enhance models and system performance while generating new com-
mercial prospects [14]. A digital twin, which spans the full engineering
lifecycle, makes it possible to test and apply continuous improvements
at any point in the manufacturing process in a digital setting that is far
less expensive to run than the real world. Some businesses utilize digital
twins to simulate whole manufacturing lines and identify more effective
ways in order to enhance productivity in part production process [15].

Smart manufacturing is a manufacturing approach that incorporates
advanced technologies such as artificial intelligence, the Internet of
Things (IoT), robotics, and big data analytics to optimize production
processes and increase efficiency. The complexity of the production en-
vironment is rising, and the tasks involved in manufacturing are get-
ting more customized [16]. As a result, the production system requires
a high degree of cognitive and learning skills in terms of analysis and
modification of manufacturing process. Smart manufacturing also pro-
vides opportunities for product customization and personalization, as
well as real-time supply chain management. It enables manufacturers
to respond quickly to changes in demand, market trends, and customer
preferences, and to create products that are tailored to individual cus-
tomers’ needs [17]. It involves the use of connected devices, automa-
tion, and real-time data to improve efficiency, productivity, and quality
in manufacturing operations [18]. Smart manufacturing aims to create
a more agile, flexible, and responsive manufacturing environment that
can quickly adapt to changing market demands and provide high-quality
products at lower costs. [19]. Thus, it uses and integrates digital soft-
ware tools and data throughout the product lifecycle. In a smart man-
ufacturing process, every resource is digitalized in order to be nalyzed
and modified in virtual environments [20]. The transition from conven-
tional MSD to digital twins-based SMSD approach is shown in the Fig. 1
[21].

Status monitoring, simulation, and visualization make up the major-
ity of the present uses of digital twins in smart manufacturing. Machines
are continually monitored utilizing internet of things for status monitor-
ing, and the most recent state of a machine may be evaluated by query-
ing its digital twin [22]. Also, digital twins of physical assets (such as
machines) are generated in order to analyze and modify the mechanism
and process of machines in part production [23]. Digital twins of prod-
ucts, systems, and equipment are developed for simulation in order to
simulate actual working environments. Using the proposed digital twins,
new products and processes can be designed, developed, and modified
using virtual simulation before being implemented on genuine physical
assets in order to enhance the performances of products and production
process [24]. Real-time dashboards and alarm systems can be integrated
into digital twins for display in order to track and troubleshoot an op-
erational environment [25]. Digital twins are now only thought of as
an identical clone of physical assets without any value-added services
placed on top that would allow physical assets to become autonomous
intelligent agents [26].

Digital twins in predictive maintenance can increase productivity,
identify issues early, and continue to provide fresh perspectives in ad-
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dition to process optimization [27]. The company can identify the main
source of the issue with the aid of a contextual model of your machines
created by the digital twin during the production process [28]. Addi-
tionally, testing operating conditions and receiving anticipated results
digitally, identifying new revenue streams, cutting down on waste, costs,
and energy use, performing predictive maintenance on manufacturing
processes, improving quality and customer satisfaction, tracking each
product from production to finish, enabling new business models, cut-
ting down on time to market, and finally enhancing productivity of part
manufacturing are all important [29]. A big advantage of this upgraded
digital twin design is the potential to give much more than just a per-
fect duplicate in order to provide value-added services on top of digital
twins which are not accessible on physical assets [30]. Fig. 2 depicts the
architecture of the Digital Twin for digital production [31].

The use of digital twins in a manufacturing system could be catego-
rized into three phases. In the system design phase, digital twin could
be used to conduct validation and test that can quickly locate the in-
efficiency reason, and test the practicability of physical manufacturing
solution in execution. In this phase, a digital twin can be used to monitor
and analyze the performance of manufacturing system in real-time. This
can help in order to identify issues before they become critical, predict
failures, and optimize the operation of system [20,32].

In the system configuration/reconfiguration phase, the digital twin-
based configuration is supposed to enable the validating of manufac-
turing system performance in a semi-physical simulation manner. This
phase typically involves designing the digital twin based on the phys-
ical system’s specifications, such as its geometry, material properties,
and operating conditions. Once the digital twin is created, it can be
used to simulate the behavior of system under various conditions, such
as changes to the input parameters or the introduction of new compo-
nents. During this phase, the digital twin can also be used to identify
potential failures and vulnerabilities in the physical system before they
occur [33].

In the system operation, how to update the online parallel control-
ling in the cyber model and feedback on the adjustment instructions to
the physical manufacturing system is a key enabling technology. In this
phase, digital twins can be used to monitor and optimize the perfor-
mance of manufacturing systems in real-time. This can help manufac-
turers to identify and resolve issues before they cause downtime, reduce
waste, and improve efficiency of part production [34,35].

The benefit of a digital twin is that it can provide a virtual replica of
a physical system, allowing for testing and analysis without disrupting
the actual system. A digital twin for smart manufacturing can provide
significant benefits in terms of efficiency, cost reduction, and product
quality. As manufacturing becomes increasingly complex and intercon-
nected, digital twins are likely to become an essential tool for manufac-
turers looking to stay competitive in the global marketplace. However,
the disadvantage is that creating and maintaining a digital twin can
be expensive and time-consuming, and may require specialized knowl-
edge and expertise. To develop a digital twin in the modern production
systems, there are significant obstacles, nevertheless. Low-quality data
collected during part manufacture can reduce a digital twin’s ability to
modify a manufacturing process. All of these endpoints contribute to a
massive amount of data collection, and each one is a potential security
vulnerability. Therefore, firms should examine and update current se-
curity procedures before deploying digital twin technology. Advanced
Internet of Things (IoT) algorithms should be developed in terms of
analysis and adjustment of component manufacture to manage a huge
amount of data that are acquired from the sensors in the machines. Dig-
ital twin models are powered by data from hundreds of remote sensors
connected via shaky networks. Businesses who want to deploy digital
twin technology need to be able to manage data stream gaps and elimi-
nate inaccurate data. Building digital twins also requires real-time data
communication. Because for digital twins to be effective, they must ac-
curately mirror the condition of real devices. Privacy and security of
data is also another challenge of part manufacturing modification using
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digital twin. Moreover, the lack of stable and sustainable technologies
stands in developing a concrete end-to-end collaborative digital twin
system for smart distributed manufacturing.

To improve the green performance of smart manufacturing systems,
Li et al. [36]developed the concept of the digital twin. Lu et al. [37] de-
scribed the status and development of digital twin-driven smart man-
ufacturing in order to create applications for this technology. Lattanzi
et al. [38] presented a review of concepts for a practical industrial im-
plementation of the twin in smart manufacturing in order to assess and
modify the current state-of-the-art on Digital Twin concepts and to draw
their most recent state for use and deployment in actual industrial pro-
cesses. To improve the impact of the digital twin on the energy consump-
tion of component production, Wang et al. [39] provide an overview of
digital twin approaches in smart manufacturing and management of en-
ergy applications.

Regrading the presented review papers in application of digital twin
in part manufacturing process [19,36-40], more published papers in dif-
ferent topics of part manufacturing such as continues improvement and
production monitoring system, optimization of part production process,
quality enhancement of produced part, safety enhancement of working
conditions, virtual commissioning, and predictive maintenance of pro-
duction machines are discussed. Moreover, application of digital twin in
different industries such as automotive industry, aeronautical industry,
renewable energy industry and telecom industry are studied in order to
enhance the performances of digital twin in productivity enhancement
of part production.

Soori et al. suggested virtual machining techniques to evaluate and
enhance CNC machining in virtual environments [41-44]. To investi-
gate and enhance performance in the component production process
employing welding procedures, Soori et al. [45] suggested an overview
of current developments in friction stir welding techniques. Soori and
Asamel [46] examined the implementation of virtual machining tech-
nology to minimize residual stress and displacement error throughout
turbine blade five-axis milling procedures. Soori and Asmael [47] ex-
plored applications of virtualized machining techniques to assess and re-
duce the cutting temperature throughout milling operations of difficult-
to-cut objects. Soori et al. [48] indicated an advanced virtual machin-
ing approach to improve surface characteristics throughout five-axis
milling procedures for turbine blades. Soori and Asmael [49] created vir-
tual milling processes to reduce displacement error throughout five-axis
milling operations of impeller blades. In order to analyze and develop
the process of part production in virtual environments, virtual product
development is presented by Soori [50]. Soori and Asmael [51] pro-
posed an overview of current advancements from published research to
review and enhance the parameter technique for machining process op-
timization. In order to improve the efficiency of energy consumption,
the quality and availability of data across the supply chain, and the
accuracy and dependability of component manufacture, Dastres et al.
[52] proposed a review of RFID-based wireless manufacturing systems.
Soori et al. [53] explored machine learning and artificial intelligence
in CNC machine tools to boost productivity and improve profitability
in production processes of component employing CNC machining op-
erations. To improve the performance of machined components, Soori
and Arezoo [54] reviewed the topic of measuring and reducing residual
stress in machining operations. To improve surface integrity and de-
crease residual stress during Inconel 718 grinding operations, Soori and
Arezoo [55] proposed the optimum machining parameters employing
the Taguchi optimization method. In order to increase the life of cut-
ting tools during machining operations, Soori and Arezoo [56] examined
different method of tool wear prediction algorithms. Soori and Asmael
[57] investigated computer assisted process planning to boost produc-
tivity in the part manufacturing procedure. Dastres and Soori [58] ad-
dressed improvements in web-based decision support systems to give
solutions for data warehouse management using decision-making assis-
tance. Dastres and Soori [59] reviewed applications of artificial neural
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networks in different sections, such as analysis systems of risk, drone
navigation, evaluation of welding, and evaluation of computer simula-
tion quality, to explore the execution of artificial neural networks for
improving the effectiveness of products. Dastres and Soori [60] pro-
posed employing communication system in environmental concerns to
minimize the negative effects of technological advancement on natu-
ral catastrophes. To enhance network and data online security, Das-
tres and Soori [61] suggested the secure socket layer. Dastres and Soori
[62] studied the developments in web-based decision support systems
to develop the methodology of decision support systems by evaluating
and suggesting the gaps between proposed approaches. To strengthen
network security measures, Dastres and Soori [63] discussed an analy-
sis of recent advancements in network threats. To increase the potential
of image processing systems in several applications, Dastres and Soori
[64] evaluated image processing and analysis systems. Dimensional, ge-
ometrical, tool deflection, and thermal defects have been modified by
Soori and Arezoo [65] to improve accuracy in 5-axis CNC milling pro-
cesses. Recent developments in published articles are examined by Soori
et al. [66] in order to assess and improve the impacts of artificial intelli-
gence, machine learning, and deep learning in advanced robotics. Soori
and Arezoo [67] developed a virtual machining system application to
examine whether cutting parameters affect tool life and cutting tem-
perature during milling operations. Soori and Arezoo [68] studied the
impact of coolant on the cutting temperature, roughness of the surface,
and tool wear during turning operations with Ti6Al4V alloy. Recent de-
velopments from published papers are reviewed by Soori [69] in order
to examine and alter composite materials and structures. Soori et al.
[70] examined the Internet of things application for smart factories in
industry 4.0 to increase quality control and optimize part manufactur-
ing processes To minimize cutting tool wear during drilling operations,
Soori and Arezoo [71] designed a virtual machining system. Soori and
Arezoo [72] decreased residual stress and surface roughness to improve
the quality of items produced utilizing abrasive water jet machining.

In order to provide the most recent developments from the published
papers in the analysis and modification of smart manufacturing systems,
a review of recent developments in smart manufacturing by intelligent
digital twin is presented in the study work. The review paper is novel
as new aspects of application of digital twin in smart manufacturing
such as continuous improvement of manufacturing systems, process and
product performance optimization using the digital twin, downtime re-
duction in process of part production, virtual commissioning and as-
sembly simulation are studied and recent achievement from published
papers are also discussed. Moreover, the implementation of digital twins
in a variety of industries, including the automotive, aerospace, renew-
able energy, and telecom sectors, has also been investigated in order
to improve their productivity enhancement of part manufacturing. As a
result, the gaps between the proposed ideas and methodologies are ob-
tained by analyzing the previous published papers in the research field
and ideas and directions of future research works are also presented.
So, the productivity of the production process can be increased, modern
smart manufacturing methodologies can be introduced.

Applications of digital twin in smart manufacturing

The performance of a product can be analyzed and modified using
the applications of digital twin in part manufacturing. A digital twin can
be used to model the entire manufacturing process, from raw materials
to finished products. It can be used to simulate different scenarios and
predict how the system will behave under different conditions. This al-
lows manufacturers to identify potential issues and optimize the system
for better performance [73]. In smart manufacturing, the digital twin
can be connected to real-world sensors and other devices, allowing it
to be updated in real-time based on the data collected from the man-
ufacturing process. This allows manufacturers to monitor and control
the system more effectively, and to make adjustments to optimize per-
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formance [74]. A digital twin can simulate the actual performances of
produced parts regarding to the different working conditions in virtual
environments. Testing is a critical step of designing component in or-
der to evaluate the performance targets of produced parts in working
conditions and industry compliances. By creating a digital twin and us-
ing the digital simulation and analysis, the need for developing physical
prototypes can be removed [75]. This leads to a shorter development
period and better final quality of product or process. The use of digital
twins at a manufacturing site can also be used to monitor and enhance a
whole production line or even the complete manufacturing process from
product conception and development to production [76]. By using the
digital twins in analysis and modification of parts, optimization process
of part designing can be enhanced. As a consequence, companies can use
this technology to evaluate product design in a virtual environments in
order to enhance accuracy and quality of produced parts [77].

Digital twin for continuous improvement of manufacturing systems

Digital twins offer a powerful tool for continuous improvement of
manufacturing systems, enabling manufacturers to reduce costs, im-
prove quality, and increase productivity [78]. In the context of continu-
ous improvement of manufacturing systems, a digital twin can be used
to simulate and optimize the performance of the actual system. Manu-
facturers can now track machine performance in real time and compare
it to expectations thanks to the usage of digital twins. After then, the
knowledge may be used to improve machine performance and extend
its usable life. Hitachi, a pioneer in the industry, is helping to advance
things. This allows manufacturers to identify and address potential is-
sues before they occur, reducing downtime and improving overall ef-
ficiency [79]. In addition to simulation and optimization, digital twins
can also be used for monitoring and analysis of manufacturing systems
in real time. By collecting data from sensors and other sources, manufac-
turers can use digital twins to identify patterns, trends, and anomalies
in their systems. This information can then be used to make data-driven
decisions about how to optimize production and improve overall per-
formance [80]. Digital twins can also be used to test and validate new
manufacturing processes or equipment before they are implemented in
the real world. This can help to reduce the risk of costly errors or fail-
ures, and accelerate the time to market for new products [81]. The uti-
lization of digital twins generates a lot of information on anticipated
performance outcomes, enabling more effective product research and
development. Businesses can utilize this data to get insights that will
help them make the required product adjustments before they start pro-
duction [82].

Part production monitoring and modification using digital twin

The digital-twin strategy can be used to improve quality of prod-
ucts, production methods, or even whole value chains. In the context
of part production, a digital twin can be created for a specific machine
or production line, allowing for real-time monitoring of production pro-
cesses. This includes tracking variables such as temperature, pressure,
and flow rate, which can impact the quality of the final product [83]. By
analyzing data from the digital twin, manufacturers can identify areas
where production processes can be optimized or modified to improve
efficiency and product quality. For example, if the digital twin detects
that a certain machine is producing parts with higher defect rates than
others, adjustments can be made to the production process to improve
quality [84]. Digital twins can also be used to track energy consump-
tion in process of part manufacturing and find areas where money can
be saved. Continuous Improvement at manufacturing sites can also im-
plemented by using digital twins [85]. Manufacturers can now track ma-
chine performance in real time and compare it to expectations thanks
to the usage of digital twins [86]. A hypothetical shop floor for a digital
twin is shown in Fig. 3 [87].
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Process and product performance optimization using digital twin

Industrial processes can be optimized by using digital twins without
losing time or resources. To increase productivity in the part produc-
tion process, manufacturing industry operations can be optimized using
a digital twin [40]. The use of digital twins can help companies to op-
timize the performance of their processes and products by providing a
virtual replica that can be used for simulation and analysis. By leverag-
ing the power of advanced analytics and machine learning, companies
can make data-driven decisions to improve their performance, reduce
costs, and increase efficiency [88]. For manufacturers in all industries,
the process can be very valuable, from forecasting quality in real time
to doing away with the need for costly physical testing [89]. By using
sophisticated simulations based on actual data collected by Internet of
Things sensors, digital twins can contribute to the improvement of cur-
rent industrial processes [90]. A digital twin of a production line can be
used to simulate how changes in the manufacturing process, such as ad-
justing machine settings or modifying the assembly line layout, would
affect production output and efficiency. This can help companies iden-
tify the most effective process changes before implementing them in the
real world, saving time and money [91]. Utilizing the digital twin, pro-
duction teams may examine various data sources and reduce the number
of defective items to increase efficiency and save money in process of
part production. Industries are able to boost production and decrease
industrial downtime. The concept is also used to predict maintenance
concerns more quickly [92].

Smart manufacturers can predict the final product’s quality by utiliz-
ing a digital twin in order to enable them to make more informed deci-
sions about things like material and process changes [93]. Digital twins
can be used in industrial manufacturing to ensure consistency during
mass production [94]. Fig. 4 illustrates a digital twin mapping strategy
through model update and optimization procedure [31].

Downtime reduction in process of part production using digital twin

To reduce downtime in the process of part production, the digital
twin can be used to simulate different scenarios and identify potential
problems before they occur [95]. The digital twin can be used to sim-
ulate the effects of changing the parameters of the production process,
such as the speed of the machines or the temperature of the environ-
ment. By simulating these conditions, it is possible to identify potential
issues and make adjustments to the process to prevent downtime [96].
Another way that a digital twin can help reduce downtime is by provid-
ing real-time monitoring of the production process. By monitoring the
production process in real time, it is possible to identify potential issues
as they arise and take corrective action before they lead to downtime
[97]. By connecting the digital twin to sensors in the real production en-
vironment, it is possible to monitor the process in real-time and identify
any issues that may lead to downtime. This allows for quick corrective
action to be taken before downtime occurs [98]. By connecting the dig-
ital twin to sensors in the real production environment, it is possible
to monitor the process in real-time and identify any issues that may
lead to downtime. This allows for quick corrective action to be taken
before downtime occurs [99]. The digital twin can be used to train op-
erators and test different scenarios before they are implemented in the
real world. This can help to reduce human error and improve the effi-
ciency of the production process, ultimately leading to less downtime
[100]. The digital twin can also be used to simulate different produc-
tion methods and identify the most efficient process for producing the
part. By optimizing the production process, it is possible to reduce the
risk of downtime caused by process inefficiencies [101]. By analyzing
sensor data and other information from the digital twin, it is possible
to identify patterns and trends that may indicate potential issues with
equipment. This can allow maintenance teams to schedule repairs or re-
placements before a breakdown occurs, reducing the risk of downtime
[102]. Overall, the use of a digital twin in the process of part produc-
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tion can be an effective way to reduce downtime. By simulating different
failure conditions and providing real-time monitoring, it is possible to
identify potential risk and make adjustments to the process to prevent
downtime [103].

Safety enhancement by identifying hazards and risks of manufacturing
process

Identifying hazards and risks is a critical step in enhancing safety in
the manufacturing process. By recognizing dangers and risks through
preventative maintenance, digital twins can increase safety in prat pro-
duction process. Machine health and operational conditions are evalu-
ated using digital twin data [104]. In the context of a manufacturing
process, a digital twin can be used to identify hazards and risks and en-
hance safety [105]. A digital twin can be used to identify hazards in the
manufacturing process by simulating the behavior of the system under
different conditions. Once hazards have been identified, a digital twin
can be used to assess the risks associated with them. This can be done by
simulating the consequences of a hazard under different scenarios and

quantifying the likelihood and severity of those consequences [106].
Based on the results of hazard identification and risk assessment, a dig-
ital twin can be used to optimize safety measures. A digital twin can
also be used for training and education purposes in process of part pro-
duction. By simulating hazardous scenarios, workers can be trained on
how to respond to them in a safe and effective manner. Additionally,
preventative maintenance using digital twins cuts down on time spent
in the field, which lessens the danger of mishaps and injuries. Instead
of doing actual testing, it is safer and less expensive to train and val-
idate algorithms using digital twins [107]. Overall, a digital twin can
be a valuable tool for enhancing the safety of a manufacturing process
by identifying hazards, assessing risks, optimizing safety measures, and
providing training and education.

Digital twin in predictive maintenance

Predictive maintenance is an approach that uses data analysis tools
and techniques to monitor equipment and predict when maintenance is
required, with the goal of minimizing downtime and reducing mainte-
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nance costs. Digital twin technology is an approach that involves creat-
ing a virtual model of a physical asset or system, which can be used
for simulations and testing [108]. Early problem identification aids
in avoiding failures that might lower production quality. Manufactur-
ers can forecast when problems will arise and address maintenance is-
sues before they stop production by utilizing digital twins to examine
the internal workings of their complicated machines [109]. In predic-
tive maintenance, digital twins can increase productivity, identify is-
sues early on, and keep providing fresh perspectives [110]. Understand-
ing the core cause of the problems can be aided by using a contextual
model of machining processes through the digital twin in the produc-
tion process. A proactive method of equipment maintenance is predic-
tive maintenance [111]. It enables real-time monitoring of equipment
performance and failure prediction. This forecast aids in preventing cir-
cumstances where a machine malfunction can result in production halts.
Early defect analysis and identification also aid in upholding safety stan-
dards and regulations in an industrial setting. Condition monitoring is
one of the key components of predictive maintenance [112]. Addition-
ally, predictive maintenance aids in the early identification of faults
that may later develop into more serious ones. Real-time equipment
monitoring should lead to better decision-making for executives in the
manufacturing industry [113]. Additionally, the equipment will operate
more effectively overall and last longer. The success that manufacturing
companies have had is one of the factors contributing to the increased
success of predictive maintenance. A part of manufacturing’s predictive
analytics is predictive maintenance [114]. Manufacturers need predic-
tive maintenance solutions because they may improve product quality,
optimize preventive or corrective measures taken on assets, eliminate
production delays caused by unscheduled machine downtime, and ulti-
mately keep company expenses low [115]. Fig. 5 depicts a defect diag-
nostic framework with a digital twin [31].

Reduction of product time to market using the digital twin

Digital twin technology can help reduce the time to market for a
product by providing a virtual model of the product that can be tested
and optimized before the physical product is built. This can help to iden-
tify potential problems early on in the design process and make neces-
sary changes before production begins [116]. In addition, By creating
a digital twin of the product, designers can test different configurations

and optimize the design for performance and efficiency. This can help
to reduce the number of physical prototypes needed and speed up the
design process [117]. Operators can accelerate all phases of the manu-
facturing process, including design, development, testing, and mainte-
nance, as a result of the removal of the delays associated with physical
goods in terms of hardware, labor, and materials [118]. Digital twins
can be used to simulate the product in a virtual environment, allowing
for testing and validation of different scenarios. This can help to iden-
tify potential problems and make necessary changes before the physi-
cal product is built [119]. Digital twins can be shared among different
teams and stakeholders, allowing for better collaboration and commu-
nication throughout the product development process. This can help to
speed up decision-making and reduce the time to market [120]. Digital
twins can be also used to monitor the performance of the product in
real-time, allowing for early detection of potential problems and main-
tenance needs. This process can help to reduce downtime and improve
overall product reliability. Overall, digital twin technology can help to
reduce the time to market for a product by providing a virtual model
that can be optimized and tested before the physical product is built,
as well as by enabling better collaboration and communication among
different teams and stakeholders.

Digital twin in virtual commissioning

A digital twin can be used as a tool for virtual commissioning, as it
allows engineers and technicians to simulate and test the control system
and automation system in a virtual environment, before it is installed
in the real world. Early system design validation through virtual com-
missioning enables the prediction and resolution of problems and errors
that arise during the first integration of equipment and processes [121].
By using a digital twin, it is possible to identify and resolve potential
issues and problems in the control system or automation system, before
it is deployed in the field. This can help reduce the time and cost of
commissioning, as well as improve the performance and reliability of
the system. Contrary to physical commissioning, virtual commissioning
has the substantial benefit that no one has to wait for the arrival of all
hardware before beginning [122].

The use of a digital twin for virtual commissioning is becoming in-
creasingly common in industries such as manufacturing, aerospace, and
automotive, where complex automation systems and control systems are
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used [123]. Manufacturers can save time, money, decrease risk, and pro-
mote concurrent engineering by predicting the expensive future prob-
lems in process of part production. Virtual commissioning is perhaps the
most crucial step in the simulation process because it creates a risk-free
testing environment [124]. It is also advantageous to system builders
and integrators since it can accelerate project timelines. The digital twin
can be integrated with other simulation tools, such as finite element
analysis and computational fluid dynamics, to provide a comprehensive
virtual testing environment for the system [125].

A virtual commissioning digital twin provides a platform for engi-
neers to design, test, and optimize systems and processes in a digital
environment, reducing the risks and costs associated with physical com-
missioning. [126]. It is increasingly being used in a range of industries,
including manufacturing, energy, and transportation, to improve effi-
ciency, reduce costs, and enhance performance [127].

Collaboration improvement between teams using digital twins for
manufacturing

Digital twins are virtual replicas of physical assets or processes that
can be used to simulate and optimize performance. They can be par-
ticularly useful in manufacturing, where they can help teams collabo-
rate more effectively and improve efficiency [128]. Digital twins can
strengthen engineering specialties and product design teams in addi-
tion to enhancing cooperation and workflow among various production
teams [129]. Here are some ways that digital twins can be used to im-
prove collaboration between teams in manufacturing:

1 Shared understanding: Digital twins can provide a shared under-
standing of the manufacturing process, allowing teams to work to-
gether more effectively. By creating a digital twin of a machine or
process, teams can collaborate on a single model and avoid misun-
derstandings or miscommunications. This shared understanding can
also help teams identify potential issues and make improvements
more quickly.

2 Real-time monitoring: Digital twins can be used to monitor the per-
formance of machines or processes in real-time. This can help teams
identify issues as they arise and make adjustments quickly. By shar-
ing this real-time data with other teams, such as maintenance or
quality control, teams can collaborate more effectively and avoid
downtime.

3 Simulation and optimization: Digital twins can be used to simulate
different scenarios and optimize performance. By running simula-
tions, teams can identify potential issues and test solutions before
implementing them in the real world. This can help teams collabo-
rate more effectively by giving them a common platform to test ideas
and make decisions.

4 Remote collaboration: Digital twins can be accessed from anywhere,
allowing teams to collaborate remotely. This can be particularly use-
ful for global teams or teams that are working from home. By using
digital twins, teams can collaborate in real-time, even if they are in
different locations.

Fig. 6 illustrates a digital twin in production.

Overall, digital twins can be a powerful tool for improving collabo-
ration between teams in manufacturing. By providing a shared under-
standing, real-time monitoring, simulation and optimization, and re-
mote collaboration, digital twins can help teams work together more
effectively and improve efficiency.

Assembly simulation using digital twin

Assembly simulation using a digital twin is a powerful tool for op-
timizing the manufacturing process. A digital twin is a virtual replica
of a physical object or system that can be used to simulate and analyze
its behavior in real-time. In the case of assembly simulation, a digital
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twin can be used to model the assembly process and identify poten-
tial issues before they occur in the physical world. It is useful for digi-
tal prototyping in order to design and analyze new ideas and concepts
in utilizing the new devices and methods [131]. A Digital Twin of the
manufacturing and assembly system can visualize the entire process,
and enable the assembly line designers in order to identify bottlenecks
and throughput before the operation phase. Performance and flexibil-
ity analysis and verification for decision-making is another application
of digital twin in the assembly of manufacturing process [132]. More-
over, assembly simulation using a digital twin can help reduce costs and
improve efficiency by identifying potential issues before they occur in
the physical world. It can also help reduce the time and resources re-
quired for physical prototyping and testing, as the digital twin can be
used to test various scenarios and identify the optimal assembly process
[133]. Fig. 7 illustrates the operation of the virtual environment for the
creation of a smart assembly process based on DT [131].

Overall, assembly simulation using a digital twin is a powerful tool
for optimizing the manufacturing process and improving product qual-
ity. It can help reduce costs, improve efficiency, and ensure that products
are manufactured to the highest standards.

Applications of digital twin in the different industries

There are different applications for the digital twin in the different
industries such as aeronautical industries, automotive industry, power-
generation equipment and the telecom industry. In this section, applica-
tions of digital twin in the different industries is reviewed and discussed.

Aeronautical industries

The application of digital twins in aeronautical industries can lead
to improved safety, efficiency, and sustainability, as well as cost savings
and increased innovation. Digital twins provide a variety of advantages
to businesses in the aerospace industry, including the capacity to extend
the life of machinery and parts and use data to improve next versions
[134]. Aerospace businesses can utilize digital twins in R&D to enhance
the engineering of new parts by simulating their performance under a
wide range of circumstances. A digital twin can be used to simulate
and analyze the behavior of aircraft and their components, from design
and manufacturing to maintenance and operations [135]. By creating a
virtual model of an aircraft or its components, engineers can simulate
different scenarios and test various design options before committing to
a physical prototype. This can reduce the time and cost associated with
traditional design and testing methods [136]. Moreover, digital twins
can be used to monitor and optimize the performance of aircraft in real-
time. By integrating data from sensors and other sources, operators can
detect and diagnose potential issues before they become critical, and
make informed decisions about maintenance and repairs. Fig. 8 displays
a mapping diagram between digital twin models and the manufacturing
entity of a jet engine fan blade [137].

Overall, the use of digital twins in aeronautical industries can lead
to improved safety, efficiency, and sustainability, as well as cost savings
and increased innovation.

Automotive industry

In the automotive industry, digital twins are used to simulate and
test various aspects of a vehicle, from design and development to man-
ufacturing and maintenance [138]. By creating a digital twin of a
car, engineers and designers can analyze its performance and behav-
ior in various scenarios, identify potential issues, and optimize its de-
sign and features before the actual production begins. This can save
time and costs while improving quality and safety of car production
process [139]. Digital twins are also used in predictive maintenance,
where they can monitor the condition of a vehicle in real-time and de-
tect potential problems before they become critical. This process can
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help to reduce downtime, prevent breakdowns, and extend the lifes-
pan of the vehicle [140]. Access to real-time data of part produc-
tion can also speed up car manufacturing by reducing data processing
time and enhancing communication between automotive development
teams [141]. By establishing a clever link between the automaker and
the driver, this technology can help Maintenance Repair Operations
(MROs) [142]. Fig. 9 illustrates the MRO’s incorporated Digital Twin
technology [138].

In the system design phase, digital twins in the automotive sector can
be used to a variety of things, including automobiles and robotic arms.
Digital twins make vehicle design and development more dependable

from a vehicle standpoint [143]. By accelerating simulations and exe-
cuting them concurrently, it is possible to create thousands of hours of
driving while retaining a realistic simulation environment with applied
gravity, weight, and physical collision prediction [144]. A digital twin of
an EV could be used to simulate various scenarios, such as different driv-
ing conditions, battery usage, and charging patterns. This can help the
manufacturer optimize the design of the EV for maximum efficiency and
performance, as well as identify potential issues before they arise [145].
Overall, digital twins have the potential to revolutionize the automotive
industry by enabling more efficient and effective design, development,
manufacturing, and maintenance processes.
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The renewable energy industry

The market for renewable energy is expanding in light of the present
climate change situation. Owners of renewable energy companies must
increase the effectiveness of their power grids and cut costs in order
to maintain growth in a fiercely competitive industry [146]. In the re-
newable energy industry, digital twins can be used to model and simu-
late various components and systems, such as wind turbines, solar pan-
els, batteries, and power grids [147]. Additionally, the digital twin aids
in life cycle management and behavior prediction for the solar power
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plant’s system. Digital twins can also be used to monitor and predict
the performance of renewable energy systems in real-time. By combin-
ing data from sensors, weather forecasts, and other sources, a digital
twin can provide accurate predictions of power generation, maintenance
needs, and potential failures. By creating a digital twin of a renewable
energy system, engineers and operators can examine and optimize dif-
ferent designing procedures, identify potential problems, and improve
performance and efficiency of final produced parts. For example, a digi-
tal twin of a wind turbine can simulate different wind speeds and direc-
tions to determine the optimal angle of the blades and the most efficient



M. Soori, B. Arezoo and R. Dastres

Industrial Site

Effectors

.

Site Inputs i

>

Sustainable Manufacturing and Service Economics 2 (2023) 100017

=1 Government Regulations

v

°
!‘.! | Business Owner
n

>

Digital Manager

Goals: e.g., minimise lifecycle cost, 100% rene@
energy, minimise energy demand

Digital Shadow

Digital Model

Looks-like attribute

Behaves-like
attribute

/_‘-\«\e

\Y
,.n‘@/‘ﬁ,ﬂ
c© : -‘ga
509\\(“

Fig. 10. A framework for utilizing Energy Digital Twin technologies in the process and energy sectors, encompassing Digital Model, Digital Shadow, and Digital

Manager [149].

power output [148]. Fig. 10 depicts a framework for applying Energy
Digital Twin technology to the process and energy sectors. This technol-
ogy includes Digital Model, Digital Shadow, and Digital Manager [149].
Overall, the application of digital twins in the renewable energy in-
dustry is expected to grow as renewable energy sources become more
prevalent and complex. With the help of advanced analytics and ma-
chine learning algorithms, digital twins can help to maximize the value
of renewable energy systems, reduce costs, and minimize downtime.

The telecom industry

The telecom industry digital twin is used to improve the efficiency,
reliability, and performance of telecom networks by providing a plat-
form for testing and optimizing new technologies, identifying potential
problems before they occur, and improving overall network operations.
By removing the silos, digital twins can provide a comprehensive end-
to-end network picture that offers accurate real-time data and allows
quick anomaly detection [150]. It can also be used to train network en-
gineers and technicians, as well as to provide insights to customers on
network performance. Telcos can guarantee flawless network operation
and immediately alert customers of impending maintenance tasks. Dig-
ital twin technology is used by Neural Technologies to identify those
who would be impacted by rising network latency [151]. Some poten-
tial applications of the telecom industry digital twin include:

1 Predictive Maintenance: By analyzing real-time data from sensors
and other sources, the digital twin can predict when a piece of net-
work equipment may fail, allowing for proactive maintenance to pre-
vent downtime [152].

Network Optimization: The digital twin can be used to test and op-
timize new network configurations, such as routing protocols or
equipment upgrades, before they are implemented in the physical
network.

Performance Monitoring: By simulating the behavior of the physical
network, the digital twin can provide real-time insights into network
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performance, allowing for quick identification and resolution of is-
sues [153].

4 Customer Insights: The digital twin can be used to provide customers
with insights into network performance, allowing them to better un-
derstand the quality of service they are receiving and to make in-
formed decisions about their telecom services [154].

Fig. 11 illustrates the justification for commissioning a system con-
trolled by digital twins [155].

Overall, the telecom industry digital twin is a powerful tool for im-
proving the efficiency, reliability, and performance of telecom networks,
and is likely to play an increasingly important role as the telecom indus-
try continues to evolve and expand.

Conclusion and future research work directions

A digital twin for smart manufacturing typically involves the use of
sensors and other data collection tools to gather real-time data about the
physical system or process, such as machine performance, temperature,
pressure, and other parameters. This data is then fed into a digital model,
which simulates the behavior of the physical system and allows manu-
facturers to visualize and analyze their operations in real-time. Digital
twin is a virtual simulation of a physical system or process, which is used
to monitor, control, and optimize its real-world counterpart. In the con-
text of smart manufacturing, a digital twin can be used to create a virtual
representation of a factory or production line, allowing manufacturers
to simulate and optimize their manufacturing processes, identify poten-
tial problems and opportunities for improvement, and make informed
decisions about production planning and resource allocation. The im-
plementation of digital twins can significantly boost a company’s added
value by improving time and cost efficiency, ensuring seamless product
or process functioning, and encouraging operational excellence. Digi-
tal twins can aid organizations in achieving improved efficiency, better
decision-making, and operational optimization by utilizing data and so-
phisticated analytics. They can assist in detecting product problems be-
fore they cause damages and failure to the process of part production.
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So, manufacturers can extend the life of their physical assets and ma-
chines using the application of digital twin in predicting and analyzing
the problems and errors of manufacturing process and products. The ap-
plication of digital twin can also be applied to streamline of production
procedures and save downtime in terms of productivity enhancement of
part production. Some benefits of using digital twins in smart manufac-
turing include:

1 Improved productivity and efficiency: By simulating manufacturing
processes and identifying potential bottlenecks and inefficiencies,
manufacturers can optimize their operations to increase productivity
and reduce waste.

2 Predictive maintenance: Digital twins can be used to monitor ma-
chine performance and detect potential problems before they lead
to downtime or costly repairs, enabling manufacturers to schedule
maintenance activities proactively.

3 Enhanced quality control: By monitoring the performance of ma-
chines and production processes in real-time, manufacturers can de-
tect defects and anomalies early in the production process, reducing
the likelihood of defects in finished products.

4 Reduced costs: By identifying opportunities for optimization and re-
ducing waste, manufacturers can save money on materials, energy,
and labor costs.

Overall, the use of digital twins in smart manufacturing can help
manufacturers achieve greater efficiency, reduce costs, and improve the
quality of their products. The potential of digital twins in smart manu-
facturing is limitless since more and more cognitive resources are con-
tinuously being allocated to their exploitation. Since digital twins are
always learning new skills, they can keep producing the insights needed
to improve products and expedite processes. Digital twin technology
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is increasingly being adopted in smart manufacturing to improve effi-
ciency, reduce costs, and enhance product quality. Here are some areas
for future research in digital twin technology for smart manufacturing:

1 Integration with the Internet of Things (IoT): The IoT is a network
of physical devices that are embedded with sensors, software, and
connectivity to enable data exchange. The integration of digital twin
technology with IoT can enable real-time monitoring, analysis, and
control of manufacturing processes.

2 Integration with Industry 4.0 technologies: The integration of dig-

ital twin technology with other Industry 4.0 technologies such as

the Internet of Things (IoT), artificial intelligence (AI), and machine
learning can enhance the functionality and effectiveness of digital
twins for smart manufacturing.

Multi-scale digital twins: Multi-scale digital twins can provide a more

comprehensive and detailed understanding of the manufacturing

process by incorporating multiple levels of detail, from the micro-
scopic to the macroscopic. This approach can help identify and solve
problems at different scales, leading to better process optimization.

4 Integration with advanced analytics: Digital twin technology can
provide a wealth of data on manufacturing processes and equipment
performance. By integrating digital twin technology with advanced
analytics tools such as machine learning and artificial intelligence,
manufacturers can gain deeper insights into their operations and
make more informed decisions

5 Machine learning and artificial intelligence: Digital twin technology
can be enhanced with machine learning and artificial intelligence al-
gorithms to enable predictive maintenance, real-time optimization,
and anomaly detection. This can help to reduce downtime and in-
crease efficiency.

w
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Real-time optimization: Real-time optimization using digital twins
can enable manufacturers to quickly adjust their processes to chang-
ing conditions, such as fluctuations in demand or supply chain dis-
ruptions. This can improve process efficiency, reduce downtime, and
increase overall productivity.

Collaboration and communication: Digital twins can facilitate col-
laboration and communication between different stakeholders in the
manufacturing process, including designers, engineers, operators,
and managers. Future research can focus on developing tools and
platforms that enable seamless communication and collaboration.
Optimization of supply chain processes: Digital twin technology can
be used to create virtual representations of supply chain networks,
enabling manufacturers to optimize their logistics and inventory
management processes. Future research could focus on developing
more sophisticated models for supply chain optimization using dig-
ital twin technology.

Human-machine collaboration: As manufacturing processes become
increasingly automated, it will be important to consider the role of
human workers in these environments. Future research could ex-
plore ways to integrate digital twin technology with human-machine
interfaces to improve collaboration and decision-making.
Cybersecurity: With the increasing use of digital twins in manufac-
turing, it is important to ensure that these virtual replicas are secure
from cyber attacks. Future research can focus on developing cyber-
security protocols and technologies to protect digital twins from ma-
licious attacks.

Scalability: As concerns about environmental sustainability become
more pressing, manufacturers are looking for ways to reduce their
carbon footprint and minimize waste. Digital twin technology can be
used to model the environmental impact of manufacturing processes
and identify opportunities for improvement. Digital twin technology
is being used in various industries, including aerospace, automotive,
and healthcare. Future research can focus on developing scalable
digital twin solutions that can be easily customized and deployed
across different manufacturing environments.

Overall, digital twin technology has the potential to revolutionize

smart manufacturing by enabling real-time monitoring, optimization,
and collaboration. Future research can focus on addressing the chal-
lenges and limitations of digital twin technology to realize its full po-
tential in smart manufacturing.
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