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a b s t r a c t 

A virtual representation of a physical procedure or product is called digital twin which can enhance efficiency 

and reduce costs in manufacturing process. Utilizing the digital twin, production teams can examine various 

data sources and reduce the number of defective items to enhance production efficiency and decrease industrial 

downtime. Digital Twin can be utilized to visualize the asset, track changes, understand and optimize asset per- 

formance throughout the analysis of the product lifecycle. Also, the collected data from digital twin can provide 

the complete lifecycle of products and processes to optimize workflows of part production, manage supply chain, 

and manage product quality. The application of digital twin in smart manufacturing can reduce time to market 

by designing and evaluating the manufacturing processes in virtual environments before manufacture. Compre- 

hensive simulation platforms can be presented using digital twins to simulate and evaluate product performances 

in terms of analysis and modification of produced parts. Commissioning time of a factory can also be significantly 

reduced by developing and optimizing the factory layout using the digital twin. Also, the productivity of part 

manufacturing can be enhanced by providing the predictive maintenance and data-driven root-cause analysis 

during part production process. In this paper, application of digital twin in smart manufacturing systems is re- 

viewed to analyze and discuss the advantages and challenges of part production modification using the digital 

twin. So, the research field can advance by reading and evaluating previous papers in order to propose fresh 

concepts and approaches by using digital twins in smart manufacturing systems. 
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ntroduction 

A digital twin is a virtual representation of a physical system or pro-

ess that allows for real-time monitoring, analysis, and optimization. In

he context of smart manufacturing, a digital twin can be used to simu-

ate and optimize the production process, predict and prevent equipment

ailures, and improve efficiency and quality of part production [ 1 , 2 ].

he digital twin can provide a detailed, accurate representation of the

hysical object or system, including its behavior, performance, and in-

eractions with the environment [3] . Digital twins use machine learning,

ata analytics, and multi-physics simulation in order simulate and ana-

yze different working conditions and other factors affect a system [4] .

he creation of the digital twin is a critical component of future technol-

gy that will have an impact on several global sectors [5] . By analyzing

ata from the physical object, the Digital Twin can provide real-time

eedback, monitor its performance, and identify potential issues before

hey occur [6] . A digital twin can be used in order to optimize the op-

ration of a physical system, by simulating its behavior and identifying

reas where improvements can be made. [7] . Furthermore, companies
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an utilize digital twins to model, anticipate, and improve products and

anufacturing processes in different industries, including automotive,

reen energy, and aviation before organizations invest in actual proto-

ypes and assets, [8] . As a result, digital twins can help businesses and

anufacturing process in order to make better decisions, reduce costs,

nd improve performance across a range of industries and applications.

By creating a digital twin, engineers and designers can test various

cenarios and make improvements, reducing the time and costs associ-

ted with physical testing and prototyping [9] . The use of digital twin

echnology is essential for product manufacturers in order to improve

he productivity of their manufacturing processes and shorten time-to-

arket [10] . Digital twins in smart manufacturing are created by com-

ining real-time data from physical sensors with computer-aided design

CAD) models and other simulation tools. This allows manufacturers to

onitor and analyze the performance of equipment and processes in

eal time, identify potential issues before they occur, and make data-

riven decisions to optimize production. [11] . By creating a digital twin

f a part, engineers can analyze its performance under different condi-

ions, such as changes in temperature, pressure, and load. This allows
rezoo) . 
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hem to predict how the part will perform in real-world situations, iden-

ify potential issues or failures, and optimize its design to improve its

erformance [12] . The digital twin provides several benefits to smart

anufacturing. For one, it enables real-time monitoring of manufac-

uring processes, allowing for quick identification and resolution of is-

ues. Additionally, it allows for the testing and optimization of products

nd processes before they are physically produced, which can save time

nd resources [13] . Moreover, production digital twins are employed to

erify the effectiveness of a manufacturing process prior to component

anufacture. A digital twin can be used to monitor the performance of

ndividual machines or production lines, detect potential issues before

hey occur, and optimize the system’s operations to minimize down-

ime and maximize output. It can also be used to simulate and test new

roduction processes or equipment before they are implemented in the

hysical system in order to reduce the risk of costly errors or failures

3] . Performance digital twins enable the manufacturing managers to

nhance models and system performance while generating new com-

ercial prospects [14] . A digital twin, which spans the full engineering

ifecycle, makes it possible to test and apply continuous improvements

t any point in the manufacturing process in a digital setting that is far

ess expensive to run than the real world. Some businesses utilize digital

wins to simulate whole manufacturing lines and identify more effective

ays in order to enhance productivity in part production process [15] . 

Smart manufacturing is a manufacturing approach that incorporates

dvanced technologies such as artificial intelligence, the Internet of

hings (IoT), robotics, and big data analytics to optimize production

rocesses and increase efficiency. The complexity of the production en-

ironment is rising, and the tasks involved in manufacturing are get-

ing more customized [16] . As a result, the production system requires

 high degree of cognitive and learning skills in terms of analysis and

odification of manufacturing process. Smart manufacturing also pro-

ides opportunities for product customization and personalization, as

ell as real-time supply chain management. It enables manufacturers

o respond quickly to changes in demand, market trends, and customer

references, and to create products that are tailored to individual cus-

omers’ needs [17] . It involves the use of connected devices, automa-

ion, and real-time data to improve efficiency, productivity, and quality

n manufacturing operations [18] . Smart manufacturing aims to create

 more agile, flexible, and responsive manufacturing environment that

an quickly adapt to changing market demands and provide high-quality

roducts at lower costs. [19] . Thus, it uses and integrates digital soft-

are tools and data throughout the product lifecycle. In a smart man-

facturing process, every resource is digitalized in order to be nalyzed

nd modified in virtual environments [20] . The transition from conven-

ional MSD to digital twins-based SMSD approach is shown in the Fig. 1

21] . 

Status monitoring, simulation, and visualization make up the major-

ty of the present uses of digital twins in smart manufacturing. Machines

re continually monitored utilizing internet of things for status monitor-

ng, and the most recent state of a machine may be evaluated by query-

ng its digital twin [22] . Also, digital twins of physical assets (such as

achines) are generated in order to analyze and modify the mechanism

nd process of machines in part production [23] . Digital twins of prod-

cts, systems, and equipment are developed for simulation in order to

imulate actual working environments. Using the proposed digital twins,

ew products and processes can be designed, developed, and modified

sing virtual simulation before being implemented on genuine physical

ssets in order to enhance the performances of products and production

rocess [24] . Real-time dashboards and alarm systems can be integrated

nto digital twins for display in order to track and troubleshoot an op-

rational environment [25] . Digital twins are now only thought of as

n identical clone of physical assets without any value-added services

laced on top that would allow physical assets to become autonomous

ntelligent agents [26] . 

Digital twins in predictive maintenance can increase productivity,

dentify issues early, and continue to provide fresh perspectives in ad-
2 
ition to process optimization [27] . The company can identify the main

ource of the issue with the aid of a contextual model of your machines

reated by the digital twin during the production process [28] . Addi-

ionally, testing operating conditions and receiving anticipated results

igitally, identifying new revenue streams, cutting down on waste, costs,

nd energy use, performing predictive maintenance on manufacturing

rocesses, improving quality and customer satisfaction, tracking each

roduct from production to finish, enabling new business models, cut-

ing down on time to market, and finally enhancing productivity of part

anufacturing are all important [29] . A big advantage of this upgraded

igital twin design is the potential to give much more than just a per-

ect duplicate in order to provide value-added services on top of digital

wins which are not accessible on physical assets [30] . Fig. 2 depicts the

rchitecture of the Digital Twin for digital production [31] . 

The use of digital twins in a manufacturing system could be catego-

ized into three phases. In the system design phase, digital twin could

e used to conduct validation and test that can quickly locate the in-

fficiency reason, and test the practicability of physical manufacturing

olution in execution. In this phase, a digital twin can be used to monitor

nd analyze the performance of manufacturing system in real-time. This

an help in order to identify issues before they become critical, predict

ailures, and optimize the operation of system [ 20 , 32 ]. 

In the system configuration/reconfiguration phase, the digital twin-

ased configuration is supposed to enable the validating of manufac-

uring system performance in a semi-physical simulation manner. This

hase typically involves designing the digital twin based on the phys-

cal system’s specifications, such as its geometry, material properties,

nd operating conditions. Once the digital twin is created, it can be

sed to simulate the behavior of system under various conditions, such

s changes to the input parameters or the introduction of new compo-

ents. During this phase, the digital twin can also be used to identify

otential failures and vulnerabilities in the physical system before they

ccur [33] . 

In the system operation, how to update the online parallel control-

ing in the cyber model and feedback on the adjustment instructions to

he physical manufacturing system is a key enabling technology. In this

hase, digital twins can be used to monitor and optimize the perfor-

ance of manufacturing systems in real-time. This can help manufac-

urers to identify and resolve issues before they cause downtime, reduce

aste, and improve efficiency of part production [ 34 , 35 ]. 

The benefit of a digital twin is that it can provide a virtual replica of

 physical system, allowing for testing and analysis without disrupting

he actual system. A digital twin for smart manufacturing can provide

ignificant benefits in terms of efficiency, cost reduction, and product

uality. As manufacturing becomes increasingly complex and intercon-

ected, digital twins are likely to become an essential tool for manufac-

urers looking to stay competitive in the global marketplace. However,

he disadvantage is that creating and maintaining a digital twin can

e expensive and time-consuming, and may require specialized knowl-

dge and expertise. To develop a digital twin in the modern production

ystems, there are significant obstacles, nevertheless. Low-quality data

ollected during part manufacture can reduce a digital twin’s ability to

odify a manufacturing process. All of these endpoints contribute to a

assive amount of data collection, and each one is a potential security

ulnerability. Therefore, firms should examine and update current se-

urity procedures before deploying digital twin technology. Advanced

nternet of Things (IoT) algorithms should be developed in terms of

nalysis and adjustment of component manufacture to manage a huge

mount of data that are acquired from the sensors in the machines. Dig-

tal twin models are powered by data from hundreds of remote sensors

onnected via shaky networks. Businesses who want to deploy digital

win technology need to be able to manage data stream gaps and elimi-

ate inaccurate data. Building digital twins also requires real-time data

ommunication. Because for digital twins to be effective, they must ac-

urately mirror the condition of real devices. Privacy and security of

ata is also another challenge of part manufacturing modification using
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Fig. 1. The switch from the traditional MSD strategy to the SMSD approach based on digital twins [21] . 

Fig. 2. The design of the digital twin for manufacturing [31] . 
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igital twin. Moreover, the lack of stable and sustainable technologies

tands in developing a concrete end-to-end collaborative digital twin

ystem for smart distributed manufacturing. 

To improve the green performance of smart manufacturing systems,

i et al. [36]developed the concept of the digital twin. Lu et al. [37] de-

cribed the status and development of digital twin-driven smart man-

facturing in order to create applications for this technology. Lattanzi

t al. [38] presented a review of concepts for a practical industrial im-

lementation of the twin in smart manufacturing in order to assess and

odify the current state-of-the-art on Digital Twin concepts and to draw

heir most recent state for use and deployment in actual industrial pro-

esses. To improve the impact of the digital twin on the energy consump-

ion of component production, Wang et al. [39] provide an overview of

igital twin approaches in smart manufacturing and management of en-

rgy applications. 

Regrading the presented review papers in application of digital twin

n part manufacturing process [ 19 , 36-40 ], more published papers in dif-

erent topics of part manufacturing such as continues improvement and

roduction monitoring system, optimization of part production process,

uality enhancement of produced part, safety enhancement of working

onditions, virtual commissioning, and predictive maintenance of pro-

uction machines are discussed. Moreover, application of digital twin in

ifferent industries such as automotive industry, aeronautical industry,

enewable energy industry and telecom industry are studied in order to

nhance the performances of digital twin in productivity enhancement

f part production. 

Soori et al. suggested virtual machining techniques to evaluate and

nhance CNC machining in virtual environments [41–44] . To investi-

ate and enhance performance in the component production process

mploying welding procedures, Soori et al. [45] suggested an overview

f current developments in friction stir welding techniques. Soori and

samel [46] examined the implementation of virtual machining tech-

ology to minimize residual stress and displacement error throughout

urbine blade five-axis milling procedures. Soori and Asmael [47] ex-

lored applications of virtualized machining techniques to assess and re-

uce the cutting temperature throughout milling operations of difficult-

o-cut objects. Soori et al. [48] indicated an advanced virtual machin-

ng approach to improve surface characteristics throughout five-axis

illing procedures for turbine blades. Soori and Asmael [49] created vir-

ual milling processes to reduce displacement error throughout five-axis

illing operations of impeller blades. In order to analyze and develop

he process of part production in virtual environments, virtual product

evelopment is presented by Soori [50] . Soori and Asmael [51] pro-

osed an overview of current advancements from published research to

eview and enhance the parameter technique for machining process op-

imization. In order to improve the efficiency of energy consumption,

he quality and availability of data across the supply chain, and the

ccuracy and dependability of component manufacture, Dastres et al.

52] proposed a review of RFID-based wireless manufacturing systems.

oori et al. [53] explored machine learning and artificial intelligence

n CNC machine tools to boost productivity and improve profitability

n production processes of component employing CNC machining op-

rations. To improve the performance of machined components, Soori

nd Arezoo [54] reviewed the topic of measuring and reducing residual

tress in machining operations. To improve surface integrity and de-

rease residual stress during Inconel 718 grinding operations, Soori and

rezoo [55] proposed the optimum machining parameters employing

he Taguchi optimization method. In order to increase the life of cut-

ing tools during machining operations, Soori and Arezoo [56] examined

ifferent method of tool wear prediction algorithms. Soori and Asmael

57] investigated computer assisted process planning to boost produc-

ivity in the part manufacturing procedure. Dastres and Soori [58] ad-

ressed improvements in web-based decision support systems to give

olutions for data warehouse management using decision-making assis-

ance. Dastres and Soori [59] reviewed applications of artificial neural
4 
etworks in different sections, such as analysis systems of risk, drone

avigation, evaluation of welding, and evaluation of computer simula-

ion quality, to explore the execution of artificial neural networks for

mproving the effectiveness of products. Dastres and Soori [60] pro-

osed employing communication system in environmental concerns to

inimize the negative effects of technological advancement on natu-

al catastrophes. To enhance network and data online security, Das-

res and Soori [61] suggested the secure socket layer. Dastres and Soori

62] studied the developments in web-based decision support systems

o develop the methodology of decision support systems by evaluating

nd suggesting the gaps between proposed approaches. To strengthen

etwork security measures, Dastres and Soori [63] discussed an analy-

is of recent advancements in network threats. To increase the potential

f image processing systems in several applications, Dastres and Soori

64] evaluated image processing and analysis systems. Dimensional, ge-

metrical, tool deflection, and thermal defects have been modified by

oori and Arezoo [65] to improve accuracy in 5-axis CNC milling pro-

esses. Recent developments in published articles are examined by Soori

t al. [66] in order to assess and improve the impacts of artificial intelli-

ence, machine learning, and deep learning in advanced robotics. Soori

nd Arezoo [67] developed a virtual machining system application to

xamine whether cutting parameters affect tool life and cutting tem-

erature during milling operations. Soori and Arezoo [68] studied the

mpact of coolant on the cutting temperature, roughness of the surface,

nd tool wear during turning operations with Ti6Al4V alloy. Recent de-

elopments from published papers are reviewed by Soori [69] in order

o examine and alter composite materials and structures. Soori et al.

70] examined the Internet of things application for smart factories in

ndustry 4.0 to increase quality control and optimize part manufactur-

ng processes To minimize cutting tool wear during drilling operations,

oori and Arezoo [71] designed a virtual machining system. Soori and

rezoo [72] decreased residual stress and surface roughness to improve

he quality of items produced utilizing abrasive water jet machining. 

In order to provide the most recent developments from the published

apers in the analysis and modification of smart manufacturing systems,

 review of recent developments in smart manufacturing by intelligent

igital twin is presented in the study work. The review paper is novel

s new aspects of application of digital twin in smart manufacturing

uch as continuous improvement of manufacturing systems, process and

roduct performance optimization using the digital twin, downtime re-

uction in process of part production, virtual commissioning and as-

embly simulation are studied and recent achievement from published

apers are also discussed. Moreover, the implementation of digital twins

n a variety of industries, including the automotive, aerospace, renew-

ble energy, and telecom sectors, has also been investigated in order

o improve their productivity enhancement of part manufacturing. As a

esult, the gaps between the proposed ideas and methodologies are ob-

ained by analyzing the previous published papers in the research field

nd ideas and directions of future research works are also presented.

o, the productivity of the production process can be increased, modern

mart manufacturing methodologies can be introduced. 

pplications of digital twin in smart manufacturing 

The performance of a product can be analyzed and modified using

he applications of digital twin in part manufacturing. A digital twin can

e used to model the entire manufacturing process, from raw materials

o finished products. It can be used to simulate different scenarios and

redict how the system will behave under different conditions. This al-

ows manufacturers to identify potential issues and optimize the system

or better performance [73] . In smart manufacturing, the digital twin

an be connected to real-world sensors and other devices, allowing it

o be updated in real-time based on the data collected from the man-

facturing process. This allows manufacturers to monitor and control

he system more effectively, and to make adjustments to optimize per-
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ormance [74] . A digital twin can simulate the actual performances of

roduced parts regarding to the different working conditions in virtual

nvironments. Testing is a critical step of designing component in or-

er to evaluate the performance targets of produced parts in working

onditions and industry compliances. By creating a digital twin and us-

ng the digital simulation and analysis, the need for developing physical

rototypes can be removed [75] . This leads to a shorter development

eriod and better final quality of product or process. The use of digital

wins at a manufacturing site can also be used to monitor and enhance a

hole production line or even the complete manufacturing process from

roduct conception and development to production [76] . By using the

igital twins in analysis and modification of parts, optimization process

f part designing can be enhanced. As a consequence, companies can use

his technology to evaluate product design in a virtual environments in

rder to enhance accuracy and quality of produced parts [77] . 

igital twin for continuous improvement of manufacturing systems 

Digital twins offer a powerful tool for continuous improvement of

anufacturing systems, enabling manufacturers to reduce costs, im-

rove quality, and increase productivity [78] . In the context of continu-

us improvement of manufacturing systems, a digital twin can be used

o simulate and optimize the performance of the actual system. Manu-

acturers can now track machine performance in real time and compare

t to expectations thanks to the usage of digital twins. After then, the

nowledge may be used to improve machine performance and extend

ts usable life. Hitachi, a pioneer in the industry, is helping to advance

hings. This allows manufacturers to identify and address potential is-

ues before they occur, reducing downtime and improving overall ef-

ciency [79] . In addition to simulation and optimization, digital twins

an also be used for monitoring and analysis of manufacturing systems

n real time. By collecting data from sensors and other sources, manufac-

urers can use digital twins to identify patterns, trends, and anomalies

n their systems. This information can then be used to make data-driven

ecisions about how to optimize production and improve overall per-

ormance [80] . Digital twins can also be used to test and validate new

anufacturing processes or equipment before they are implemented in

he real world. This can help to reduce the risk of costly errors or fail-

res, and accelerate the time to market for new products [81] . The uti-

ization of digital twins generates a lot of information on anticipated

erformance outcomes, enabling more effective product research and

evelopment. Businesses can utilize this data to get insights that will

elp them make the required product adjustments before they start pro-

uction [82] . 

art production monitoring and modification using digital twin 

The digital-twin strategy can be used to improve quality of prod-

cts, production methods, or even whole value chains. In the context

f part production, a digital twin can be created for a specific machine

r production line, allowing for real-time monitoring of production pro-

esses. This includes tracking variables such as temperature, pressure,

nd flow rate, which can impact the quality of the final product [83] . By

nalyzing data from the digital twin, manufacturers can identify areas

here production processes can be optimized or modified to improve

fficiency and product quality. For example, if the digital twin detects

hat a certain machine is producing parts with higher defect rates than

thers, adjustments can be made to the production process to improve

uality [84] . Digital twins can also be used to track energy consump-

ion in process of part manufacturing and find areas where money can

e saved. Continuous Improvement at manufacturing sites can also im-

lemented by using digital twins [85] . Manufacturers can now track ma-

hine performance in real time and compare it to expectations thanks

o the usage of digital twins [86] . A hypothetical shop floor for a digital

win is shown in Fig. 3 [ 87 ]. 
5 
rocess and product performance optimization using digital twin 

Industrial processes can be optimized by using digital twins without

osing time or resources. To increase productivity in the part produc-

ion process, manufacturing industry operations can be optimized using

 digital twin [40] . The use of digital twins can help companies to op-

imize the performance of their processes and products by providing a

irtual replica that can be used for simulation and analysis. By leverag-

ng the power of advanced analytics and machine learning, companies

an make data-driven decisions to improve their performance, reduce

osts, and increase efficiency [88] . For manufacturers in all industries,

he process can be very valuable, from forecasting quality in real time

o doing away with the need for costly physical testing [89] . By using

ophisticated simulations based on actual data collected by Internet of

hings sensors, digital twins can contribute to the improvement of cur-

ent industrial processes [90] . A digital twin of a production line can be

sed to simulate how changes in the manufacturing process, such as ad-

usting machine settings or modifying the assembly line layout, would

ffect production output and efficiency. This can help companies iden-

ify the most effective process changes before implementing them in the

eal world, saving time and money [91] . Utilizing the digital twin, pro-

uction teams may examine various data sources and reduce the number

f defective items to increase efficiency and save money in process of

art production. Industries are able to boost production and decrease

ndustrial downtime. The concept is also used to predict maintenance

oncerns more quickly [92] . 

Smart manufacturers can predict the final product’s quality by utiliz-

ng a digital twin in order to enable them to make more informed deci-

ions about things like material and process changes [93] . Digital twins

an be used in industrial manufacturing to ensure consistency during

ass production [94] . Fig. 4 illustrates a digital twin mapping strategy

hrough model update and optimization procedure [31] . 

owntime reduction in process of part production using digital twin 

To reduce downtime in the process of part production, the digital

win can be used to simulate different scenarios and identify potential

roblems before they occur [95] . The digital twin can be used to sim-

late the effects of changing the parameters of the production process,

uch as the speed of the machines or the temperature of the environ-

ent. By simulating these conditions, it is possible to identify potential

ssues and make adjustments to the process to prevent downtime [96] .

nother way that a digital twin can help reduce downtime is by provid-

ng real-time monitoring of the production process. By monitoring the

roduction process in real time, it is possible to identify potential issues

s they arise and take corrective action before they lead to downtime

97] . By connecting the digital twin to sensors in the real production en-

ironment, it is possible to monitor the process in real-time and identify

ny issues that may lead to downtime. This allows for quick corrective

ction to be taken before downtime occurs [98] . By connecting the dig-

tal twin to sensors in the real production environment, it is possible

o monitor the process in real-time and identify any issues that may

ead to downtime. This allows for quick corrective action to be taken

efore downtime occurs [99] . The digital twin can be used to train op-

rators and test different scenarios before they are implemented in the

eal world. This can help to reduce human error and improve the effi-

iency of the production process, ultimately leading to less downtime

100] . The digital twin can also be used to simulate different produc-

ion methods and identify the most efficient process for producing the

art. By optimizing the production process, it is possible to reduce the

isk of downtime caused by process inefficiencies [101] . By analyzing

ensor data and other information from the digital twin, it is possible

o identify patterns and trends that may indicate potential issues with

quipment. This can allow maintenance teams to schedule repairs or re-

lacements before a breakdown occurs, reducing the risk of downtime

102] . Overall, the use of a digital twin in the process of part produc-
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Fig. 3. Conceptual model of digital twin shop-floor [87] . 

Fig. 4. Digital Twin mapping scheme by model updating and optimization process [31] . 
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ion can be an effective way to reduce downtime. By simulating different

ailure conditions and providing real-time monitoring, it is possible to

dentify potential risk and make adjustments to the process to prevent

owntime [103] . 

afety enhancement by identifying hazards and risks of manufacturing 

rocess 

Identifying hazards and risks is a critical step in enhancing safety in

he manufacturing process. By recognizing dangers and risks through

reventative maintenance, digital twins can increase safety in prat pro-

uction process. Machine health and operational conditions are evalu-

ted using digital twin data [104] . In the context of a manufacturing

rocess, a digital twin can be used to identify hazards and risks and en-

ance safety [105] . A digital twin can be used to identify hazards in the

anufacturing process by simulating the behavior of the system under

ifferent conditions. Once hazards have been identified, a digital twin

an be used to assess the risks associated with them. This can be done by

imulating the consequences of a hazard under different scenarios and
6 
uantifying the likelihood and severity of those consequences [106] .

ased on the results of hazard identification and risk assessment, a dig-

tal twin can be used to optimize safety measures. A digital twin can

lso be used for training and education purposes in process of part pro-

uction. By simulating hazardous scenarios, workers can be trained on

ow to respond to them in a safe and effective manner. Additionally,

reventative maintenance using digital twins cuts down on time spent

n the field, which lessens the danger of mishaps and injuries. Instead

f doing actual testing, it is safer and less expensive to train and val-

date algorithms using digital twins [107] . Overall, a digital twin can

e a valuable tool for enhancing the safety of a manufacturing process

y identifying hazards, assessing risks, optimizing safety measures, and

roviding training and education. 

igital twin in predictive maintenance 

Predictive maintenance is an approach that uses data analysis tools

nd techniques to monitor equipment and predict when maintenance is

equired, with the goal of minimizing downtime and reducing mainte-



M. Soori, B. Arezoo and R. Dastres Sustainable Manufacturing and Service Economics 2 (2023) 100017 

Fig. 5. Framework for problem diagnostics using Digital Twin [31] . 
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ance costs. Digital twin technology is an approach that involves creat-

ng a virtual model of a physical asset or system, which can be used

or simulations and testing [108] . Early problem identification aids

n avoiding failures that might lower production quality. Manufactur-

rs can forecast when problems will arise and address maintenance is-

ues before they stop production by utilizing digital twins to examine

he internal workings of their complicated machines [109] . In predic-

ive maintenance, digital twins can increase productivity, identify is-

ues early on, and keep providing fresh perspectives [110] . Understand-

ng the core cause of the problems can be aided by using a contextual

odel of machining processes through the digital twin in the produc-

ion process. A proactive method of equipment maintenance is predic-

ive maintenance [111] . It enables real-time monitoring of equipment

erformance and failure prediction. This forecast aids in preventing cir-

umstances where a machine malfunction can result in production halts.

arly defect analysis and identification also aid in upholding safety stan-

ards and regulations in an industrial setting. Condition monitoring is

ne of the key components of predictive maintenance [112] . Addition-

lly, predictive maintenance aids in the early identification of faults

hat may later develop into more serious ones. Real-time equipment

onitoring should lead to better decision-making for executives in the

anufacturing industry [113] . Additionally, the equipment will operate

ore effectively overall and last longer. The success that manufacturing

ompanies have had is one of the factors contributing to the increased

uccess of predictive maintenance. A part of manufacturing’s predictive

nalytics is predictive maintenance [114] . Manufacturers need predic-

ive maintenance solutions because they may improve product quality,

ptimize preventive or corrective measures taken on assets, eliminate

roduction delays caused by unscheduled machine downtime, and ulti-

ately keep company expenses low [115] . Fig. 5 depicts a defect diag-

ostic framework with a digital twin [31] . 

eduction of product time to market using the digital twin 

Digital twin technology can help reduce the time to market for a

roduct by providing a virtual model of the product that can be tested

nd optimized before the physical product is built. This can help to iden-

ify potential problems early on in the design process and make neces-

ary changes before production begins [116] . In addition, By creating

 digital twin of the product, designers can test different configurations
7 
nd optimize the design for performance and efficiency. This can help

o reduce the number of physical prototypes needed and speed up the

esign process [117] . Operators can accelerate all phases of the manu-

acturing process, including design, development, testing, and mainte-

ance, as a result of the removal of the delays associated with physical

oods in terms of hardware, labor, and materials [118] . Digital twins

an be used to simulate the product in a virtual environment, allowing

or testing and validation of different scenarios. This can help to iden-

ify potential problems and make necessary changes before the physi-

al product is built [119] . Digital twins can be shared among different

eams and stakeholders, allowing for better collaboration and commu-

ication throughout the product development process. This can help to

peed up decision-making and reduce the time to market [120] . Digital

wins can be also used to monitor the performance of the product in

eal-time, allowing for early detection of potential problems and main-

enance needs. This process can help to reduce downtime and improve

verall product reliability. Overall, digital twin technology can help to

educe the time to market for a product by providing a virtual model

hat can be optimized and tested before the physical product is built,

s well as by enabling better collaboration and communication among

ifferent teams and stakeholders. 

igital twin in virtual commissioning 

A digital twin can be used as a tool for virtual commissioning, as it

llows engineers and technicians to simulate and test the control system

nd automation system in a virtual environment, before it is installed

n the real world. Early system design validation through virtual com-

issioning enables the prediction and resolution of problems and errors

hat arise during the first integration of equipment and processes [121] .

y using a digital twin, it is possible to identify and resolve potential

ssues and problems in the control system or automation system, before

t is deployed in the field. This can help reduce the time and cost of

ommissioning, as well as improve the performance and reliability of

he system. Contrary to physical commissioning, virtual commissioning

as the substantial benefit that no one has to wait for the arrival of all

ardware before beginning [122] . 

The use of a digital twin for virtual commissioning is becoming in-

reasingly common in industries such as manufacturing, aerospace, and

utomotive, where complex automation systems and control systems are
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sed [123] . Manufacturers can save time, money, decrease risk, and pro-

ote concurrent engineering by predicting the expensive future prob-

ems in process of part production. Virtual commissioning is perhaps the

ost crucial step in the simulation process because it creates a risk-free

esting environment [124] . It is also advantageous to system builders

nd integrators since it can accelerate project timelines. The digital twin

an be integrated with other simulation tools, such as finite element

nalysis and computational fluid dynamics, to provide a comprehensive

irtual testing environment for the system [125] . 

A virtual commissioning digital twin provides a platform for engi-

eers to design, test, and optimize systems and processes in a digital

nvironment, reducing the risks and costs associated with physical com-

issioning. [126] . It is increasingly being used in a range of industries,

ncluding manufacturing, energy, and transportation, to improve effi-

iency, reduce costs, and enhance performance [127] . 

ollaboration improvement between teams using digital twins for 

anufacturing 

Digital twins are virtual replicas of physical assets or processes that

an be used to simulate and optimize performance. They can be par-

icularly useful in manufacturing, where they can help teams collabo-

ate more effectively and improve efficiency [128] . Digital twins can

trengthen engineering specialties and product design teams in addi-

ion to enhancing cooperation and workflow among various production

eams [129] . Here are some ways that digital twins can be used to im-

rove collaboration between teams in manufacturing: 

1 Shared understanding: Digital twins can provide a shared under-

standing of the manufacturing process, allowing teams to work to-

gether more effectively. By creating a digital twin of a machine or

process, teams can collaborate on a single model and avoid misun-

derstandings or miscommunications. This shared understanding can

also help teams identify potential issues and make improvements

more quickly. 

2 Real-time monitoring: Digital twins can be used to monitor the per-

formance of machines or processes in real-time. This can help teams

identify issues as they arise and make adjustments quickly. By shar-

ing this real-time data with other teams, such as maintenance or

quality control, teams can collaborate more effectively and avoid

downtime. 

3 Simulation and optimization: Digital twins can be used to simulate

different scenarios and optimize performance. By running simula-

tions, teams can identify potential issues and test solutions before

implementing them in the real world. This can help teams collabo-

rate more effectively by giving them a common platform to test ideas

and make decisions. 

4 Remote collaboration: Digital twins can be accessed from anywhere,

allowing teams to collaborate remotely. This can be particularly use-

ful for global teams or teams that are working from home. By using

digital twins, teams can collaborate in real-time, even if they are in

different locations. 

Fig. 6 illustrates a digital twin in production. 

Overall, digital twins can be a powerful tool for improving collabo-

ation between teams in manufacturing. By providing a shared under-

tanding, real-time monitoring, simulation and optimization, and re-

ote collaboration, digital twins can help teams work together more

ffectively and improve efficiency. 

ssembly simulation using digital twin 

Assembly simulation using a digital twin is a powerful tool for op-

imizing the manufacturing process. A digital twin is a virtual replica

f a physical object or system that can be used to simulate and analyze

ts behavior in real-time. In the case of assembly simulation, a digital
8 
win can be used to model the assembly process and identify poten-

ial issues before they occur in the physical world. It is useful for digi-

al prototyping in order to design and analyze new ideas and concepts

n utilizing the new devices and methods [131] . A Digital Twin of the

anufacturing and assembly system can visualize the entire process,

nd enable the assembly line designers in order to identify bottlenecks

nd throughput before the operation phase. Performance and flexibil-

ty analysis and verification for decision-making is another application

f digital twin in the assembly of manufacturing process [132] . More-

ver, assembly simulation using a digital twin can help reduce costs and

mprove efficiency by identifying potential issues before they occur in

he physical world. It can also help reduce the time and resources re-

uired for physical prototyping and testing, as the digital twin can be

sed to test various scenarios and identify the optimal assembly process

133] . Fig. 7 illustrates the operation of the virtual environment for the

reation of a smart assembly process based on DT [131] . 

Overall, assembly simulation using a digital twin is a powerful tool

or optimizing the manufacturing process and improving product qual-

ty. It can help reduce costs, improve efficiency, and ensure that products

re manufactured to the highest standards. 

pplications of digital twin in the different industries 

There are different applications for the digital twin in the different

ndustries such as aeronautical industries, automotive industry, power-

eneration equipment and the telecom industry. In this section, applica-

ions of digital twin in the different industries is reviewed and discussed.

eronautical industries 

The application of digital twins in aeronautical industries can lead

o improved safety, efficiency, and sustainability, as well as cost savings

nd increased innovation. Digital twins provide a variety of advantages

o businesses in the aerospace industry, including the capacity to extend

he life of machinery and parts and use data to improve next versions

134] . Aerospace businesses can utilize digital twins in R&D to enhance

he engineering of new parts by simulating their performance under a

ide range of circumstances. A digital twin can be used to simulate

nd analyze the behavior of aircraft and their components, from design

nd manufacturing to maintenance and operations [135] . By creating a

irtual model of an aircraft or its components, engineers can simulate

ifferent scenarios and test various design options before committing to

 physical prototype. This can reduce the time and cost associated with

raditional design and testing methods [136] . Moreover, digital twins

an be used to monitor and optimize the performance of aircraft in real-

ime. By integrating data from sensors and other sources, operators can

etect and diagnose potential issues before they become critical, and

ake informed decisions about maintenance and repairs. Fig. 8 displays

 mapping diagram between digital twin models and the manufacturing

ntity of a jet engine fan blade [137] . 

Overall, the use of digital twins in aeronautical industries can lead

o improved safety, efficiency, and sustainability, as well as cost savings

nd increased innovation. 

utomotive industry 

In the automotive industry, digital twins are used to simulate and

est various aspects of a vehicle, from design and development to man-

facturing and maintenance [138] . By creating a digital twin of a

ar, engineers and designers can analyze its performance and behav-

or in various scenarios, identify potential issues, and optimize its de-

ign and features before the actual production begins. This can save

ime and costs while improving quality and safety of car production

rocess [139] . Digital twins are also used in predictive maintenance,

here they can monitor the condition of a vehicle in real-time and de-

ect potential problems before they become critical. This process can
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Fig. 6. Digital twin in manufacturing [130] . 

Fig. 7. Mechanism of DT-based smart assembly process design in virtual space [131] . 

h  

p  

t  

t  

t  

t  

(  

t

 

b  

D  

f  

c  

d  

g  

a  

i  

m  

p  

O  

i  

m

elp to reduce downtime, prevent breakdowns, and extend the lifes-

an of the vehicle [140] . Access to real-time data of part produc-

ion can also speed up car manufacturing by reducing data processing

ime and enhancing communication between automotive development

eams [141] . By establishing a clever link between the automaker and

he driver, this technology can help Maintenance Repair Operations

MROs) [142] . Fig. 9 illustrates the MRO’s incorporated Digital Twin

echnology [138] . 

In the system design phase, digital twins in the automotive sector can

e used to a variety of things, including automobiles and robotic arms.

igital twins make vehicle design and development more dependable
9 
rom a vehicle standpoint [143] . By accelerating simulations and exe-

uting them concurrently, it is possible to create thousands of hours of

riving while retaining a realistic simulation environment with applied

ravity, weight, and physical collision prediction [144] . A digital twin of

n EV could be used to simulate various scenarios, such as different driv-

ng conditions, battery usage, and charging patterns. This can help the

anufacturer optimize the design of the EV for maximum efficiency and

erformance, as well as identify potential issues before they arise [145] .

verall, digital twins have the potential to revolutionize the automotive

ndustry by enabling more efficient and effective design, development,

anufacturing, and maintenance processes. 
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Fig. 8. Mapping diagram between digital twin models and manufacturing entity of jet engine fan blade [137] . 

Fig. 9. Digital Twin technology embedded within the MRO [138] . 
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he renewable energy industry 

The market for renewable energy is expanding in light of the present

limate change situation. Owners of renewable energy companies must

ncrease the effectiveness of their power grids and cut costs in order

o maintain growth in a fiercely competitive industry [146] . In the re-

ewable energy industry, digital twins can be used to model and simu-

ate various components and systems, such as wind turbines, solar pan-

ls, batteries, and power grids [147] . Additionally, the digital twin aids

n life cycle management and behavior prediction for the solar power
10 
lant’s system. Digital twins can also be used to monitor and predict

he performance of renewable energy systems in real-time. By combin-

ng data from sensors, weather forecasts, and other sources, a digital

win can provide accurate predictions of power generation, maintenance

eeds, and potential failures. By creating a digital twin of a renewable

nergy system, engineers and operators can examine and optimize dif-

erent designing procedures, identify potential problems, and improve

erformance and efficiency of final produced parts. For example, a digi-

al twin of a wind turbine can simulate different wind speeds and direc-

ions to determine the optimal angle of the blades and the most efficient
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Fig. 10. A framework for utilizing Energy Digital Twin technologies in the process and energy sectors, encompassing Digital Model, Digital Shadow, and Digital 

Manager [149] . 
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ower output [148] . Fig. 10 depicts a framework for applying Energy

igital Twin technology to the process and energy sectors. This technol-

gy includes Digital Model, Digital Shadow, and Digital Manager [149] .

Overall, the application of digital twins in the renewable energy in-

ustry is expected to grow as renewable energy sources become more

revalent and complex. With the help of advanced analytics and ma-

hine learning algorithms, digital twins can help to maximize the value

f renewable energy systems, reduce costs, and minimize downtime. 

he telecom industry 

The telecom industry digital twin is used to improve the efficiency,

eliability, and performance of telecom networks by providing a plat-

orm for testing and optimizing new technologies, identifying potential

roblems before they occur, and improving overall network operations.

y removing the silos, digital twins can provide a comprehensive end-

o-end network picture that offers accurate real-time data and allows

uick anomaly detection [150] . It can also be used to train network en-

ineers and technicians, as well as to provide insights to customers on

etwork performance. Telcos can guarantee flawless network operation

nd immediately alert customers of impending maintenance tasks. Dig-

tal twin technology is used by Neural Technologies to identify those

ho would be impacted by rising network latency [151] . Some poten-

ial applications of the telecom industry digital twin include: 

1 Predictive Maintenance: By analyzing real-time data from sensors

and other sources, the digital twin can predict when a piece of net-

work equipment may fail, allowing for proactive maintenance to pre-

vent downtime [152] . 

2 Network Optimization: The digital twin can be used to test and op-

timize new network configurations, such as routing protocols or

equipment upgrades, before they are implemented in the physical

network. 

3 Performance Monitoring: By simulating the behavior of the physical

network, the digital twin can provide real-time insights into network
11 
performance, allowing for quick identification and resolution of is-

sues [153] . 

4 Customer Insights: The digital twin can be used to provide customers

with insights into network performance, allowing them to better un-

derstand the quality of service they are receiving and to make in-

formed decisions about their telecom services [154] . 

Fig. 11 illustrates the justification for commissioning a system con-

rolled by digital twins [155] . 

Overall, the telecom industry digital twin is a powerful tool for im-

roving the efficiency, reliability, and performance of telecom networks,

nd is likely to play an increasingly important role as the telecom indus-

ry continues to evolve and expand. 

onclusion and future research work directions 

A digital twin for smart manufacturing typically involves the use of

ensors and other data collection tools to gather real-time data about the

hysical system or process, such as machine performance, temperature,

ressure, and other parameters. This data is then fed into a digital model,

hich simulates the behavior of the physical system and allows manu-

acturers to visualize and analyze their operations in real-time. Digital

win is a virtual simulation of a physical system or process, which is used

o monitor, control, and optimize its real-world counterpart. In the con-

ext of smart manufacturing, a digital twin can be used to create a virtual

epresentation of a factory or production line, allowing manufacturers

o simulate and optimize their manufacturing processes, identify poten-

ial problems and opportunities for improvement, and make informed

ecisions about production planning and resource allocation. The im-

lementation of digital twins can significantly boost a company’s added

alue by improving time and cost efficiency, ensuring seamless product

r process functioning, and encouraging operational excellence. Digi-

al twins can aid organizations in achieving improved efficiency, better

ecision-making, and operational optimization by utilizing data and so-

histicated analytics. They can assist in detecting product problems be-

ore they cause damages and failure to the process of part production.



M. Soori, B. Arezoo and R. Dastres Sustainable Manufacturing and Service Economics 2 (2023) 100017 

Fig. 11. The purpose of commissioning controls for digital twin-based systems [155] . 
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o, manufacturers can extend the life of their physical assets and ma-

hines using the application of digital twin in predicting and analyzing

he problems and errors of manufacturing process and products. The ap-

lication of digital twin can also be applied to streamline of production

rocedures and save downtime in terms of productivity enhancement of

art production. Some benefits of using digital twins in smart manufac-

uring include: 

1 Improved productivity and efficiency: By simulating manufacturing

processes and identifying potential bottlenecks and inefficiencies,

manufacturers can optimize their operations to increase productivity

and reduce waste. 

2 Predictive maintenance: Digital twins can be used to monitor ma-

chine performance and detect potential problems before they lead

to downtime or costly repairs, enabling manufacturers to schedule

maintenance activities proactively. 

3 Enhanced quality control: By monitoring the performance of ma-

chines and production processes in real-time, manufacturers can de-

tect defects and anomalies early in the production process, reducing

the likelihood of defects in finished products. 

4 Reduced costs: By identifying opportunities for optimization and re-

ducing waste, manufacturers can save money on materials, energy,

and labor costs. 

Overall, the use of digital twins in smart manufacturing can help

anufacturers achieve greater efficiency, reduce costs, and improve the

uality of their products. The potential of digital twins in smart manu-

acturing is limitless since more and more cognitive resources are con-

inuously being allocated to their exploitation. Since digital twins are

lways learning new skills, they can keep producing the insights needed

o improve products and expedite processes. Digital twin technology
12 
s increasingly being adopted in smart manufacturing to improve effi-

iency, reduce costs, and enhance product quality. Here are some areas

or future research in digital twin technology for smart manufacturing: 

1 Integration with the Internet of Things (IoT): The IoT is a network

of physical devices that are embedded with sensors, software, and

connectivity to enable data exchange. The integration of digital twin

technology with IoT can enable real-time monitoring, analysis, and

control of manufacturing processes. 

2 Integration with Industry 4.0 technologies: The integration of dig-

ital twin technology with other Industry 4.0 technologies such as

the Internet of Things (IoT), artificial intelligence (AI), and machine

learning can enhance the functionality and effectiveness of digital

twins for smart manufacturing. 

3 Multi-scale digital twins: Multi-scale digital twins can provide a more

comprehensive and detailed understanding of the manufacturing

process by incorporating multiple levels of detail, from the micro-

scopic to the macroscopic. This approach can help identify and solve

problems at different scales, leading to better process optimization. 

4 Integration with advanced analytics: Digital twin technology can

provide a wealth of data on manufacturing processes and equipment

performance. By integrating digital twin technology with advanced

analytics tools such as machine learning and artificial intelligence,

manufacturers can gain deeper insights into their operations and

make more informed decisions 

5 Machine learning and artificial intelligence: Digital twin technology

can be enhanced with machine learning and artificial intelligence al-

gorithms to enable predictive maintenance, real-time optimization,

and anomaly detection. This can help to reduce downtime and in-

crease efficiency. 
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6 Real-time optimization: Real-time optimization using digital twins

can enable manufacturers to quickly adjust their processes to chang-

ing conditions, such as fluctuations in demand or supply chain dis-

ruptions. This can improve process efficiency, reduce downtime, and

increase overall productivity. 

7 Collaboration and communication: Digital twins can facilitate col-

laboration and communication between different stakeholders in the

manufacturing process, including designers, engineers, operators,

and managers. Future research can focus on developing tools and

platforms that enable seamless communication and collaboration. 

8 Optimization of supply chain processes: Digital twin technology can

be used to create virtual representations of supply chain networks,

enabling manufacturers to optimize their logistics and inventory

management processes. Future research could focus on developing

more sophisticated models for supply chain optimization using dig-

ital twin technology. 

9 Human-machine collaboration: As manufacturing processes become

increasingly automated, it will be important to consider the role of

human workers in these environments. Future research could ex-

plore ways to integrate digital twin technology with human-machine

interfaces to improve collaboration and decision-making. 

0 Cybersecurity: With the increasing use of digital twins in manufac-

turing, it is important to ensure that these virtual replicas are secure

from cyber attacks. Future research can focus on developing cyber-

security protocols and technologies to protect digital twins from ma-

licious attacks. 

1 Scalability: As concerns about environmental sustainability become

more pressing, manufacturers are looking for ways to reduce their

carbon footprint and minimize waste. Digital twin technology can be

used to model the environmental impact of manufacturing processes

and identify opportunities for improvement. Digital twin technology

is being used in various industries, including aerospace, automotive,

and healthcare. Future research can focus on developing scalable

digital twin solutions that can be easily customized and deployed

across different manufacturing environments. 

Overall, digital twin technology has the potential to revolutionize

mart manufacturing by enabling real-time monitoring, optimization,

nd collaboration. Future research can focus on addressing the chal-

enges and limitations of digital twin technology to realize its full po-

ential in smart manufacturing. 
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