

Marine life as a source for breast cancer treatment: A comprehensive review

Amjad Hussain, Marie-Lise Bourguet-Kondracki, Maryam Majeed, Muhammad Ibrahim, Muhammad Imran, Xian-Wen Yang, Ishtiaq Ahmed, Ataf Ali Altaf, Anees Ahmed Khalil, Abdur Rauf, et al.

▶ To cite this version:

Amjad Hussain, Marie-Lise Bourguet-Kondracki, Maryam Majeed, Muhammad Ibrahim, Muhammad Imran, et al.. Marine life as a source for breast cancer treatment: A comprehensive review. Biomedicine and Pharmacotherapy, 2023, 159, pp.114165. 10.1016/j.biopha.2022.114165. hal-04337880

HAL Id: hal-04337880 https://hal.science/hal-04337880v1

Submitted on 22 Feb 2024 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Review

Contents lists available at ScienceDirect

Biomedicine & Pharmacotherapy

journal homepage: www.elsevier.com/locate/biopha

Marine life as a source for breast cancer treatment: A comprehensive review

Amjad Hussain^{a,b,*,1}, Marie-Lise Bourguet-Kondracki^b, Maryam Majeed^c, Muhammad Ibrahim^c, Muhammad Imran^d, Xian-Wen Yang^e, Ishtiaq Ahmed^f, Ataf Ali Altaf^a, Anees Ahmed Khalil^g, Abdur Rauf^h, Polrat Wilairatana^{i,**,1}, Hassan A. Hemeg^o, Riaz Ullah^j,

Ivan R. Green^k, Iftikhar Ali¹, Syed Tasadaque A. Shah^m, Hidavat Hussainⁿ,

^a Department of Chemistry University of Okara, Okara, Pakistan

b Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France

^d Department of chemistry, Faculty of Science, Research center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

key Laboratory of Marine Biogentic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China

^f Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK

^g University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan

^h Department of Chemistry, University of Swabi Khyber Pukhtanukha, Pakistan

ⁱ Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand

^j Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

^k Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa

¹ Department of Chemistry, Karakoram International University, Gilgit 15100, Pakistan

^m Department of Education, Sukkur IBA University, Sukkur 65200, Sindh, Pakistan

ⁿ Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle (Saale), Germany

o Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia

ARTICLE INFO

Keywords: Breast cancer Marine natural products Sponges Cyanobacteria Fungi Algae Tunicates Actinomycetes Ascidians

ABSTRACT

Breast cancer, one of the most significant tumors among all cancer cells, still has deficiencies for effective treatment. Moreover, substitute treatments employing natural products as bioactive metabolites has been seriously considered. The source of bioactive metabolites are not only the most numerous but also represent the richest source. A unique source is from the oceans or marine species which demonstrated intriguing chemical and biological diversity which represents an astonishing reserve for discovering novel anticancer drugs. Notably, marine sponges produce the largest amount of diverse bioactive peptides, alkaloids, terpenoids, polyketides along with many secondary metabolites whose potential is mostly therapeutic. In this review, our main focus is on the marine derived secondary metabolites which demonstrated cytotoxic effects towards numerous breast cancer cells and have been isolated from the marine sources such as marine sponges, cyanobacteria, fungi, algae, tunicates, actinomycetes, ascidians, and other sources of marine organisms.

1. Introduction

The development of modern pharmaceuticals represents one of the major challenges of this century. Drugs like penicillin, streptomycin, and vincristine, among others, have largely contributed to the control of human disease since their discovery early in the 20th century. Novel treatments have enhanced the life expendency of people and improved their standard of living. Society has become increasingly dependent on the availability of effective and safe pharmaceutical drugs for this improved societal development. Almost 50% of the drugs are either

https://doi.org/10.1016/j.biopha.2022.114165

Received 23 March 2022; Received in revised form 27 December 2022; Accepted 28 December 2022 Available online 10 January 2023

0753-3322/© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Department of Applied Chemistry, Government College University, Faisalabad, Pakistan

^{*} Corresponding author at: Department of Chemistry University of Okara, Okara, Pakistan.

^{**} Corresponding authors.

E-mail addresses: amjadhussain@uo.edu.pk (A. Hussain), polrat.wil@mahidol.ac.th (P. Wilairatana), Hussainchem3@gmail.com, Hidayat.Hussain@ipb-halle.de (H. Hussain).

¹ Equally contributed.

Fig. 1. Structures of guanidine alkaloids 1-5.

Fig. 2. Structures of guanidine alkaloids 6-17.

extracted from natural sources or manufactured by employing natural products as scaffolds or initiative materials. These natural products have a remarkable chemical variety that has progressed over thousands of years, resulting in a marvellous diversity in their pharmacological processes and drug-like qualities [1–3].

The marine environment has become a rich target for discovering

natural drugs due to the comparatively undiscovered biodiversity compared to terrestrial environments. The Ocean's world, with its 70% coverage of the global surface makes 95% of the total biosphere to potentially provide a great source of bioactive natural compounds [3,4]. Marine organisms are a tremendouce resource of marine natural products (MNPs) which can be employed to treat life-threatening diseases

Fig. 3. Structures of alkaloids 18-24.

such as cancer [3,4]. So far, over 30,000 marine natural products have been isolated from the marine world [5]. Due to this exceptional diversity in varied chemical skeletons/scaffolds produced by marine organisms and microorganisms, the marine biosphere field is considered as the largest potential reservoir of bioactive natural products, able to offer a huge variety of active drugs [3,4].

There are some examples of approved anticancer therapeutic agents which can be considered analogs of MNPs. The anticancer drugs cytarabine (ara-C), and ecteinascidin 743 which were isolated from tunicate *Ecteinascidia turbinate*. Another example is eribulin mesylate which is a synthetic analog of the MNP halichondrin B. Another approved anticancer drug is brentuximab vedotin an antibody–drug conjugate (ADC), comprising of a tumor-specific antibody and the dolastatin 10 derivatives named monomethyl auristatin E [4]. Breast cancer is one of the most serious causes of death in women worldwide, especially in developed countries, and its occurrence is increasing. Breast cancer is a very common type of cancer and ~2–2.5 million cases are detected globally in women each year. An interesting statistic is that ~627,000 women died in 2018 due to breast cancer [6].

Regarding actual clinical trials, more than 50% of drugs are obtained directly from nature or are derivatives of natural products. To date, nature has provided almost 60% of approved drugs for cancer treatment or management. The marine world, more recently explored, is a most challenging source for investigations, offering new pathways of promising molecule development with anti-mammary activities. Quite recently Ahmed et al. [7] published a review about marine peptides used for the treatment of breast cancer and in 2014 Kalimuthu et al. [8] in their review covered only around thirty marine derived natural products which illustrated anticancer effects towards breast and prostate cancer cells. This current review deals with an overview of potential secondary metabolites which demonstrate cytotoxity towards numerous breast cancer cells and which are isolated from marine sources such as marine sponges, marine seaweeds, tunicates, marine bacteria, and fungi covering a reasonable period up to December 2021.

2. Marine sponges

2.1. Alkaloids

2.1.1. Guanidine alkaloids

Monanchomycalin C (1) and the previously identified ptilomycalin (2) (Fig. 1) are both pentacyclic guanidine alkaloids obtained from the far-eastern sponge *Monanchora pulchra*. Compounds 1 and 2 possessed cytotoxic effects towards the MDA-MB-231 with IC₅₀: of 8.2 μ M and 4.3 μ M, respectively [9]. Netamines C (3) and D (4) are also guanidine alkaloids which were produced by marine sponge *Biemna laboutei* and these compounds revealed cytotoxicity against the human breast MDA-MB-231 cell line with GI₅₀ values of 2.6 μ M and 6.3 μ M, respectively [10].

Crambescidin 800 (5) belongs to the chemical class of guanidine alkaloids produced by the marine-derived sponge *Monanchora Viridis*. This compound 5 illustrated potent cytotoxic effects towards various triple negative breast cancer cells. Notably, 5 showed potent effects towards T11 and SUM159PT cells with IC₅₀ values: 0.07 and 0.59 μ M (72 h), respectively. Interestingly, the cytotoxic effects of this alkaloid was higher (against T11 cells) than the standard cisplatin (IC₅₀: 0.70 μ M) and 5-Fluorouracil (IC₅₀: 0.87 μ M) [11].

2.1.2. Indole alkaloids

Damirine A (6) (Fig. 2) was produced by sponge *Damiria* sp. and demonstrated significant cytotoxicity towards MDA-MB-468 with $GI_{50} = 2.0 \ \mu$ M) [12]. 3,3'-BIEA (7) was isolated from sponge *Gellius* sp. and possessed cytotoxic effects towards MCF-7, MDA-MB-231 and VERO cells with IC₅₀: 3.4, 3.4, and 3.8 μ M respectively [13]. Dragmacidins A (8), B (9), I (10) and J (11) were produced by sponge *Dragmacidon* sp. Compounds 8, 10, 11 showed significant cytotoxic effects towards MDA-MB-231 with IC₅₀: 3.8, 4.7, and 7.5 μ M respectively while the IC₅₀ of 16 was 28.0 μ M [14]. Capon et al. [15] reported trachycladindoles A–F (12–17) from marine sponge *Trachycladus laevispirulifer*. Interesting all compounds (except alkaloid 14) possessed significant cytotoxic effects towards MDA-MB-231 with GI₅₀ < 3 μ M.

Table 1

Jame	Organism	Cell line	Cytotoxicity	Ref.
Aonanchomycalin C (1)	Monanchora pulchra	MDA-MB-231	IC50: 8.2 uM	[9]
Ptilomycalin (2)	Monanchora pulchra	MDA-MB-231	IC_{50} : 4.3 μM	[9]
Netamine C (3)	Biemna laboutei	MDA-MB-231	GI ₅₀ : 2.6 µM	[10]
Vetamine D (4)	Biemna laboutei	MDA-MB-231	GI ₅₀ : 6.3 µM	[10]
Crambescidin 800 (5)	Monanchora Viridis	T11	IC ₅₀ : 0.07 μM	[11]
		SUM159PT	IC ₅₀ : 0.59 µM	
Damirine A (6)	Damiria sp.	MDA-MB-231	GI ₅₀ : 2.0 μM	[12]
3.3'-BIEA (7)	Gellius sp.	MCF-7	IC50: 3.4 µM	[13]
	comm of c	MDA-MB-231	IC50: 3.4 µM	
		VERO cells	IC_{E0} : 3.8 μM	
Dragmacidin A (8)	Dragmacidon sp.	MDA-MB-231	IC ₅₀ : 3.8 uM	[14]
Dragmacidin B (9)	Dragmacidon sp.	MDA-MB-231	IC _{E0} : 28.0 µM	[14]
Dragmacidin I (10)	Dragmacidon sp.	MDA-MB-231	IC _{E0} : 4.7 µM	[14]
Dragmacidin J (11)	Dragmacidon sp	MDA-MB-231	IC ₅₀ : 7.5 µM	[14]
Trachycladindoles A (12)	Trachycladus laevisnirulifer	MDA-MB-231	GIzo: 1.2 µM	[15]
Trachycladindoles B (12)	Trachycladus laevispirulifer	MDA-MB-231	GI ₅₀ : 2.7 µM	[15]
Trachycladindoles D (13)	Trachycladus laevispirulifer	MDA-MB-231	GI_0: 2.7 µW	[15]
Trachycladindoles C (14)	Trachycladus lagyispirulifer	MDA MR 221	G_{150} . 12.2 µW	[15]
Tachycladiidoles D (13)	Trachycladus laevispirulijer	MDA-MB-231	GI_{50} . 2.4 µW	[15]
Frachycladindoles E (16)	Trachycladus laevispirulijer	MDA-MB-231	GI_{50} : 1.1 µM	[15]
rachycladindoles F (17)	Trachycladus laevispirulifer	MDA-MB-231	GI ₅₀ : 2.3 μM	[15]
Cuanoniamines A (18)	Oceanapia Sagittaria	MCF-7	GI_{50} : 0.81 μ M;	[16]
		MDA-MB-231	GI ₅₀ : 10.23 μM	
Kuanoniamine C (19)	Oceanapia Sagittaria	MCF-7	GI ₅₀ : 0.12 μ M;	[16]
		MDA-MB-231	GI ₅₀ : 0.73 μM	
'-Hydroxyneolamellarin A (20)	Dendrilla nigra	Human T-47D	IC ₅₀ : 1.9 μM	[17]
Neopetrosiamine A (21)	Neopetrosia proxima	MCF-7	IC ₅₀ : 3.5 μM	[18]
Renieramycin M (22)	Xestospongia sp.	MDA-MB-231	IC ₅₀ : 3.8 nM	[19,20
Debromohymenialdisine (DBH) (23)	Stylissa flabeliformis	MCF-7	IC ₅₀ : 25 mM	[21]
2,3-Dihydro-2,3-dioxo aaptamine (24)	Aaptos aaptos	MCF-7	IC ₅₀ : 40.7 μM	[22]
Aicrocionamides A (25)	Clathria (Thalysias) abietina	MCF-7	IC ₅₀ : 125 nM	[23]
		SKBR-3	IC ₅₀ : 98 nM	
Aicrocionamides B (26)	Clathria (Thalysias) abietina	MCF-7	IC ₅₀ :177 nM	[23]
		SKBR-3	IC ₅₀ : 172 nM	
Pembamide (27)	Cribrochalina sp.	MDA-MB-231	GI₅o: 3.35 µM	[24]
Pinecolidensin A (28)	Homophymia lamellose	MDA-MB-231	$GI_{ro}: 0.7 \mu M$	[25]
Pipecolidepsin B (29)	Homophymia lamellose	MDA-MB-231	$GI_{=0}$: 0.2 μ M	[25]
Stylopentide 2 (30)	Stylotella sp	BT-549	Inhibition: 2.3%	[26]
Stylopeptide 2 (30)	Stylotella sp	HS 578 T	Inhibition: 44%	[26]
Jemiasterlin A (21)	Combastela sp.	MCE 7	$ED \rightarrow 0.089 \text{ mg/mJ}$	[20]
Joministerlin R (31)	Cymbastela sp.	MCE 7	ED ₅₀ . 0.069 μ g/mL	[27]
Telillasterilli B (32)	Cymbastela sp.	MCF-7	ED ₅₀ . 0.000 μ g/IIIL	[27]
Latanade B (33)	Cymbastela sp.	MCF-7	ED_{50} : 0.8 μ g/IIIL	[27]
Motuporin (34)	Theonella swinnoel	MCF-7	IC_{50} : 12.4 μ g/mL	[28]
Geodiamolides A (35), B (36), and H (37)	Geodia sp.	MCF-7, 147D	ED ₅₀ : 9.82–620 nM	[29]
Cyclo(L-leucyl-L-prolyl) (CLP) (38)	Rhaphisia pallida	MDA-MB-231 MDA-MB-468	IC ₅₀ : 73.4 μ M IC ₅₀ : 67.4 μ M	[32]
stylissatin B (39)	Stylissa massa	MCF-7	IC ₅₀ : 4.8 μM	[33]
cleritodermin A (40)	Scleritoderma nodosum	SKBR3	IC ₅₀ : 0.670 μM	[34]
Compounds 41–44	Lendenfeldia sp.	MCF-7, MDA-MB-231, and T47D	IC ₅₀ : 0.2–29 μM	[35]
Thorectandrol A (45)	Thorectandra sp	MCF-7	IC ₅₀ : 40.0 μg/mL	[36,37
Thorectandrol B (46)	Thorectandra sp	MCF-7	IC ₅₀ : 30.0 μg/mL	[36,37
palauolol (47)	Thorectandra sp	MCF-7	IC ₅₀ : 14.0 μg/mL	[36,37
Sesterterpenoids 48–59	Dysidea sp.	MDA-MB-231	IC ₅₀ : 4.2–72.4 μM	[38]
Sipholane A (60)	Callyspongia siphonella	MDA-MB-231	IC ₅₀ : 37.5 μM	[39]
Sipholenone A (61)	Callyspongia siphonella	MDA-MB-231	IC ₅₀ : 28.1 μM	[39]
B-epi-sodwanone K 3-acetate (63)	Axinella sp.	T47D	IC ₅₀ : 22 μM	[41]
Sodwanones V (64)	Axinella sp.	MDA-MB-231	IC ₅₀ : 23 μM	[41]
Dolabellane diterpene, 6.10.18-triacetoxy-2E,7E-dolabelladien (65)	Luffariella variabilis	MDA-MB-231	IC ₅₀ : 11.5 µM	[42]
Aetachromin II (66)	Thorecta reticulate	MCF-7	GL _c : 29 µM	[43]
Aetachromin V (67)	Thorecta reticulate	MCF-7	GLat 3.2 µM	[43]
Aetachromin W (68)	Thorecta reticulate	MCE-7	GI_{-1} : 107 μ M	[43]
R ² Aminoavarone (69)	Dycidea cp	MCE 7 MR 221	$IC \rightarrow 2.0 \text{ µg/mI}$	[43]
inhagel (70)	Aka corallinhaga	MDA 469	$1C_{50}$. 2.0 µg/mL	[44]
apilagai (70)	Aka coraliphaga	MCE 7	$1C_{50}$. 1.56 μ WI	[43,40
Aphysanine-2 (71)	Pseudoceratina purpurea	MCF-7	$1C_{50}$: 25.7 µW	[47]
(12)-rsaniniapini A (12)	Denariua iacunose	WDA MD 221	$1050: 0.019 \mu M$	[48]
(sammaplin E (73)	Denariua iacunose	WDA-WB-231	10_{50} : 0.257 μ M	[48]
t,E)-Psammaplin K (74)	Dendrilla lacunose	MDA-MB-231	1C ₅₀ : 0.038 μM	[48]
E,E)-Psammaplin A (75)	Dendrilla lacunose	MDA-MB-231	IC ₅₀ : 0.037 μM	[48]
Bisaprasin (76)	Dendrilla lacunose	MDA-MB-231	IC ₅₀ : 0.948 μM	[48]
Aragusterol A (YTA0040) (77)	Xestospongia	MCF-7	IC ₅₀ : 0.28 nM	[49]
Dictyostatin-1 (78)	Spongia sp.	MCF-7	IC ₅₀ : 1.5 nM	[50]
Peloruside A (79)	Mycale hentscheli	MDA-MB-231	IC ₅₀ : 3.8 nM	[51]
Hemimycalins C (80)	Hemimycale sp.	MDA-MB-231	IC ₅₀ : 28.5, μM	[52]
	Hominu and an	MDA MP 221	IC 1217M	[[[]]]
Jemimycalins D (81)	Hemimycaie SD			102.1
Hemimycalins D (81) Hemimycalins E (82)	Hemimycale sp. Hemimycale sp	MDA-MB-231 MDA-MB-231	IC ₅₀ : 21.5 µM	[52]

(continued on next page)

Table 1 (continued)

Name	Organism	Cell line	Cytotoxicity	Ref.
Furospinulosin-1 (84)	Hippospongia fistulosa	MCF-7	IC ₅₀ : 86.9 μM	[53]
13-Apoastaxanthinone (85)	Clathria reinwardti	MCF-7	IC ₅₀ : 79.2 μM	[54]
9-apoastaxanthinone (86)	Clathria reinwardti	MCF-7	IC ₅₀ : 84.4 μM	[54]
2,3-Dehydro-4-oxo-β-Ionone (87),	Clathria reinwardti	MCF-7	IC ₅₀ : 75.7 μM	[54]
9 4-(2',3',4'-Trimethylphenyl)-but-3(E)-en-2-one (88)	Clathria reinwardti	MCF-7	IC50: 33.1 µM	[54]
22,23-dihydro-24-nordankasterone A (89)	Luffariella variabilis	MDA-MB-231	IC ₅₀ : 7.4 μM	[45]
Steroid 90	Phyllospongia sp.	MCF-7	IC ₅₀ : 8.8 μM	[55]
Steroid 91	Phyllospongia sp.	MCF-7	IC ₅₀ : 10.3 μM	[55]
Steroid 92	Phyllospongia sp.	MCF-7	IC ₅₀ : 36.5 μM	[55]
Steroid 93	Phyllospongia sp.	MCF-7	IC ₅₀ : 47.1 μM	[55]
Steroid 94	Phyllospongia sp.	MCF-7	IC ₅₀ : 3.9 μM	[55]

Fig. 4. Structures of peptides 25-30.

2.1.3. Micellaneous alkaloids

Kuanoniamines A (18) and C (19) (Fig. 3) represent pyridoacridine alkaloids that were isolated marine sponge *Oceanapia Sagittaria* (Sollas). Kuanoniamine A (18) revealed inhibitory activity against the growth of MCF-7 and MDA-MB-231 cell lines with GI₅₀: 0.81 ± 0.11 and $10.23 \pm 3.35 \,\mu$ M, respectively. Kuanoniamine C (19), although less effective, showed a higher selectivity against the MCF-7 and MDA-MB-231 cells with GI₅₀: 0.12 ± 0.07 and $0.73 \pm 0.27 \,\mu$ M, respectively [16]. 7-Hydroxyneolamellarin A (20) is a lamellarin-like phenolic pyrrole purified from the marine sponge *Dendrilla nigra* and was shown to prevent hypoxia-induced HIF-1 stimulation and hypoxia-induced vascular endothelial growth factor (VEGF) initiation in the human T47D cell line with an IC₅₀: $1.9 \,\mu$ M [17]. Neopetrosiamine A (21) is another tetracyclic

bis-piperidine alkaloid produced by sponge *Neopetrosia proxima*, collected from the western side of the beach Puerto Rico. Compound **8** possesses resilient inhibitory activity against MCF-7 with an IC₅₀: $3.5 \ \mu$ M [18].

Renieramycin M (22) (Fig. 3) is a tetrahydroisoquinoline reported from the blue sponge *Xestospongia* sp. [19]. Compound 22 displayed cytotoxic activity against human MDA-MB-231 cell lines with an IC₅₀ value of 3.8 nM [20]. Debromohymenialdisine (DBH) (23) was produced by the marine sponge *Stylissa flabeliformis*, collected from Motupore Island in Papua New Guinea. DBH also showed moderate cytotoxicity towards MCF-7 cancer cell lines with an IC₅₀ value of 25 mM. In association with radiotherapy, DBH at a non-cytotoxic concentration of 3 μ M was shown to reduce pCHK1/2 expression and

Fig. 5. Structures of peptides 31–37.

Fig. 6. Structures of peptides 38-40.

proliferation in MCF-7 breast cancer cells. It also decreased the growth rates of stem cell cancer in a time-dependent manner [21]. On the other hand, 2,3-dihydro-2,3-dioxo aaptamine (24) showed activity against MCF-7 with IC₅₀: 40.7 μ M (Table 1) and this compound was produce by Sponge *Aaptos aaptos* [22].

2.2. Peptides

The two linear peptides microcionamides A (25) and B (26) (Fig. 4), were produced by sponge *Clathria (Thalysias) abietina* reported from the coastline of the Philippines. These geometric isomeric peptides 25 and 26 displayed potential cytotoxicity towards MCF-7 with IC₅₀: 125 and 177 nM, respectively. In addition peptides 25 and 26 demonstrated significant effects against SKBR-3 with IC₅₀: 98 and 172 nM, respectively. Notally, the effects of these peptides towards MCF-7 were higher than standard doxorubicin (IC₅₀: 257 nM) [23]. Pembamide (27) is produced by the marine sponge *Cribrochalina* sp. and possesses potent cytotoxicity against MDA-MB-231 with a GI₅₀: 3.35 μ M [24]. In another report, pipecolidepsin A (**28**) and B (**29**) were described as being isolated from the marine sponge *Homophymia lamellose* and displayed potent cytotoxic effects against MDA-MB-231 with a GI₅₀: 0.7 and 0.2 μ M, respectively [25]. The cycloheptapeptide, stylopeptide 2 (**30**) was isolated from the marine sponge *Stylotella* sp. and illustrated cytotoxicity against BT-549 and HS 578 T with growth inhibition of 77% and 56%, respectively [26].

Hemiasterlin A (**31**), B (**32**), and criamide B (**33**) (Fig. 5) were produced by the marine sponge *Cymbastela* sp. Notably, peptides **31–33** displayed potent cytotoxicity against MCF-7 with the ED₅₀: values of 0.089, 0.066, and 6.8 μ g/mL respectively [27]. Motuporin (**34**), a cytotoxin was produced by sponge *Theonella swinhoei* and exhibited cytotoxicity towards MCF-7 with IC₅₀: 12.4 μ g/mL [28]. Another series of cyclic depsipeptides known as geodiamolides A (**35**), B (**36**), and H (**37**) were isolated from the Caribbean sponges *Geodia* sp. All these peptides were significantly active towards T47D and MCF-7 with EC₅₀ ranging from 9.82 to 620 nM. Compounds **35** and **37** were active against T47D cells with EC₅₀ values of 18.82 and 38.36 nM, respectively. In addition, peptides **35** and **37** revealed a strong activity against MCF-7 cancer cell lines with EC₅₀ values of 17.83 and 9.82 nM, respectively [29]. In another study, geodiamolide H (**37**) was also shown to be active against MDA-MB-231/ATCC with TGI:4.33 × 10⁻⁷ M [30].

Cyclo(*L*-leucyl-*L*-prolyl) (CLP, **38**) (Fig. 6) is a homo-detic cyclic peptide, isolated from the marine sponge *Rhaphisia pallida* [31] and exhibited an anti-propagative cytotoxic effect towards human the triple-negative breast cancers MDA-MB-231 and MDA-MB-468 with IC₅₀ values of 73.4 and 67.4 μ M, respectively [32]. It has confirmed that **38** induced cell cycle arrest with the result of reducing the expression of cyclins D₁, CDK₄, PAK, Rac₁, and p27kip₁, suggesting a mechanism of action through EGFR and CD151 signaling pathways [32]. Stylissatin B (**39**) is a heptapeptide produced by marine sponge *Stylissa massa*, which

Fig. 7. Structures of Sesterterpenes 41-59.

demonstrated inhibitory effects towards MCF-7 with an IC₅₀ value of 4.8 μ M [33]. Scleritodermin A (40) is a cyclic peptide isolated from the lithistid sponge *Scleritoderma nodosum*, was highly cytotoxic against the human breast SKBR3 cancer cell line with an IC₅₀ value of 0.670 μ M [34].

2.3. Terpenes

2.3.1. Sesterterpenes

Furospongolide (41) (Fig. 7), a furanolipid-type terpene, together with the sesterterpenes 22-hydroxy-24-methyl- 12α -hydroxy-24-

oxoscalar-16-en-25-al (**42**), 24-methyl-12,24,25-trioxoscalar-16-en-22oate (**43**) and 22-hydroxy-24-methyl-12,24-dioxoscalar-16-en-25-al (**44**) were isolated from the marine sponge *Lendenfeldia* sp., collected off the islands of the State of the Northern Mariana [35]. These compounds were evaluated for their hypoxia-inducible factor-1 (HIF-1) inhibitory activity and tumor cell lines cytotoxicity. The HIF-1 transcription factor is a heterodimer constituted of two sub-units HIF-1α and ARNT1/HIF-1β. Terpenes **41–44** were tested towards the MCF-7, MDA-MB-231, and T47D cells proliferation in normoxic hypoxic (Hyp, 1% O₂) and normal (95% air) conditions and revealed IC₅₀ values ranging from 0.2 to 29 μM [35].

Fig. 8. Structures of Diterpenes and triterpenes 60-65.

Fig. 9. Structures of Meroterpenoids 66-70.

Thorectandrols A (**45**), B (**46**), and palauolol (**47**), sesterterpenoids containing a bicarbocyclic frame, were identified from a marine Palauan sponge *Thorectandra* sp. Thorectandrols A (**45**) and B (**46**) displayed good cytotoxicity towards the MCF-7 cell line with IC₅₀: 40.0 and 30.0 µg/mL, respectively. It is interesting to note that compound **47** displayed better effects than metabolites **45** and **46** with an IC₅₀ value of 14.0 µg/mL [36,37]. Sesterterpenoids 48–59, were produced by sponge *Dysidea* sp. and possessed cytotoxity towards MDA-MB-231 with IC₅₀ ranging from 4.2 and 72.4 µM respectively. Notably compound **65** was the most potent against MDA-MB-231 with IC₅₀: 4.2 µM [38].

2.3.2. Diterpenes and triterpenes

Sipholane A (60) and sipholenone A (61) are unusual cyclized triterpenes isolated from the Red Sea sponge *Callyspongia siphonella* (Fig. 8). Compounds 60 and 61 showed mild cytotoxicity against the metastatic human breast MDA-MB-231 cancer cell line, demonstrating IC₅₀ values of 37.5 and 28.1 μ M, respectively [39]. Flabellatene A (**62**), a diterpene isolated from the marine sponge *Lissodendoryx flabellate*, illustrated anti-proliferative effects against MCF-7 in a dose-dependent manner [40]. The marine sponge *Axinella sp.* produced sodwanone triterpenes named 3-*epi*-sodwanone K 3-acetate (**63**) and sodwanones V (**64**). Triterpene **63** displayed cytotoxic effects towards T47D cell with IC₅₀: 22 μ M while **64** showed inhibited MDA-MB-231 with an IC₅₀: 23 μ M [41]. Dolabellane diterpene, 6,10,18-triacetoxy-2E,7E-dolabelladien (**65**) was produced by sponge *Luffariella variabilis* and demonstrated cytoticity towards MDA-MB-231 with IC₅₀: 11.5 μ M [42].

2.3.3. Meroterpenoids

Metachromins U-W (**66–68**) (Fig. 9) are merosesquiterpenoids isolated from the marine sponge *Thorecta reticulate*. Metachromin V (**67**) illustrated cytotoxicity towards the MCF-7 cell line with a GI₅₀: 3.2μ M, while compounds **66** and **68** showed lower potent activity with GI₅₀:

Fig. 10. Structures of bromotyrosine and psammaplin derivatives 71–76.

Fig. 11. Structures of micellaneous compounds 77-84.

Fig. 12. Structures of micellaneous compounds 85-94.

Fig. 13. Structures of polysaccharides 95-97.

values of 29 and 107 μ M, respectively [43]. Meroterpene, 3'-aminoavarone (69), is produced by the marine sponge *Dysidea* sp. and inhibited the MDA-MB-231 cancer cell with an IC₅₀ of 2 μ g/mL [44]. The meroterpene liphagal (70) was produced by marine sponge *Aka coralliphaga* collected off the Dominican coast [45]. Liphagal (70) showed cytotoxic effects towards the MDA-468 cell line with an IC₅₀: 1.58 μ M [46].

2.4. Bromotyrosine and psammaplin derivatives

The bromotyrosine derivative aplysamine-2 (**71**) (Fig. 10), was produced by marine sponge *Pseudoceratina purpurea*. This compound displayed cytotoxicity against MCF-7 with an IC₅₀ value of 25.7 μ M [47]. Five known compounds viz. (*E*,*Z*)-psammaplin A (**72**), psammaplin E (**73**), (*E*,*E*)-psammaplin K (**74**), (*E*,*E*)-psammaplin A (**75**), and bisaprasin (**76**) were obtained from the marine sponge *Dendrilla lacunose*. Compounds **72–76** illustrated potent activity against the MDA-MB-231-derived organotropic subclones with IC₅₀: 0.019, 0.257, 0.038, 0.037, and 0.948 μ M, respectively [48].

2.5. Miscellaneous

Aragusterol A (YTA0040) (77) (Fig. 11), a steroid obtained from marine sponge *Xestospongia* collected from Okinawan, showed potent potential towards MCF-7 with an IC₅₀: 0.28 nM [49]. Dictyostatin-1 (78) is a macrocyclic lactone from the Republic of the Maldives and was identified from a marine sponge *Spongia* sp. Compound 78 showed effective activity against MCF-7 cell lines with IC₅₀: 1.5 nM [50]. The polyketide peloruside A (79) isolated from the marine sponge *Mycale hentscheli* possesses a non-toxoid and specific binding site. This molecule possessed effects towards MCF-7 cancer cell line, possessing an IC₅₀ value of 3.8 nM and blocking the G₂/M at 25 nM. Compound 79 was shown to reduce the average growth rate and length of the tumor by 24% and 41%, respectively [51]. Hemimycalins C–E (80–82) were produced by sponge *Hemimycale* sp. and demonstrated cytotoxity

Fig. 14. Structures of sesquiterpenes and monoterpenes 98-103.

Fig. 15. Structures of Meroterpenoids and Diterpenes 104-111.

Fig. 16. Structures of Micellaneous compounds 112-116.

towards MDA-MB-231 with IC50: 28.5, 31.7, and 21.5 μ M, respectively [52]. In another study, hippotulosas A (83) and furospinulosin-1 (84) were produced by sponge *Hippospongia fistulosa* and both compounds possessed cytotoxic effects towards MCF-7 as 75.6 and 86.9 μ M, respectively [53].

13-Apoastaxanthinone (**85**), 9-apoastaxanthinone (**86**), 2,3-dehydro-4-oxo-β-Ionone (**87**), and 4-(2',3',4'-trimethylphenyl)-but-3(*E*)-en-2-one (**88**) were reported from Sponge *Clathria reinwardti* and demonstrated cytotoxicity towards MCF-7 with IC₅₀: 79.2, 84.4, 75.7 and 33.1 μ M respectively [54]. Steroid, 22,23-dihydro-24-nordankasterone

Fig. 18. Structures of peptides 120-126.

A (**89**) was produced by sponge *Luffariella variabilis* and demonstrated cytotxicity towards MDA-MB-231 with IC₅₀: 7.4 μ M [45]. Steroids **90–94** were reported from sponge *Phyllospongia* sp. and showed activities towards MCF-7 with IC₅₀: 8.8, 10.3, 36.5, 47.1, and 3.9 μ M respectively [55] (Fig. 12).

3. Marine seaweeds or algae

3.1. Polysaccharides

The polysaccharide 95 (Fig. 13) isolated from the green algae Ulva lactuca, has been proven to possess in vivo and in vitro anti-breast cancer activity. In human MCF-7 cancer cells, compound 95 showed an inhibitory effect with an IC₅₀ value of 224.716 µg/mL. In DMBA cancer cellsinduced rats, compound 95 hindered the breast-histological and carcinogenic lesions when treated for ten weeks. It is also reported that polysaccharides extracted from this seaweed have possible chemopreventive properties against mammary carcinogenesis by increasing apoptosis, reducing oxidative stress, and enhancing the antioxidant defense system [56]. Fucoidan 96 represents a sulfated polysaccharide isolated from different marine brown seaweeds such as Saccharina japonica. At 200 mg/mL, this material showed antitumor activity against T-47D with 46% proliferation inhibition after 48 h [57]. Native carrageenan (κ) (97) was isolated from the red seaweed Kappaphycus alvarezii. Compound 97 showed activity against cell viability in a dose-dependent manner in breast adenocarcinoma MCF-7 cell lines, displaying an IC₅₀ value of 123.8 μ g/mL [58].

3.2. Sesquiterpenes and monoterpenes

The guai-2-en- 10α -ol (98) (Fig. 14) is a guaiane sesquiterpenoid,

reported from the marine green seaweed *Ulva fasciata*. Compound **98** revealed growth inhibition in the triple-negative breast cancer (TNBC) MDA-MB-231 cancer cell line with IC_{50} values of 17.35 ± 1.23 (after 12 h) and $12.98 \pm 1.11 \,\mu$ M (after 24 h), respectively. Compound **98** hindered the cell cycle in the G1 phase of the MDA MB-231 cancer cell line, leading to apoptosis. The downregulation of both PI3K and EGFR proteins was observed and this suggesting its anticancer potential *via* the EGFR/PI3K/Akt pathway [59].

Two eudesmane sesquiterpenes named eudesma-4(15),7-diene-5,11diol (**99**) and chabrolidione B (**101**), along with trinor-sesquiterene, teuhetenone (**100**) were produced by the red alga *Laurencia obtuse*. Compounds **99–101** displayed cytotoxic effects towards MCF-7 with IC₅₀: of 39.5, 22.8, and 63.6 μ M, respectively. Notably, teuhetenone (**100**) displayed a higher activity than cisplatin (IC₅₀: 59 μ M) [60]. RU015 (**102**) and RU008 (**103**) represent polyhalogenated monoterpenes isolated from the marine red algae *Plocamium* sp. Compound **102** showed potential cytotoxicity against three breast cancer cells including MDA-MB-231, MCF-7 and MCF12A with IC₅₀: 6.2, 3.6 and 3.5 μ M, respectively. Similarly, compound **103** illustrated cytotoxicity towards the MDA-MB-231 with an IC₅₀: 82.7 μ M [61].

3.3. Meroterpenoids and diterpenes

Laurenditerpenol (**104**) (Fig. 15), a diterpene isolated from the lipid extract of the marine red alga *Laurencia intricate*, was shown to inhibit Hypoxia-Inducible Factor-1 (HIF-1). This latter is a heterodimer constituted of two subunits: HIF-1 α , which is regulated by cellular oxygen levels, and HIF-1 β that is constitutively expressed and identified as a valuable molecular target for anticancer drug discovery. More precisely, compound **104** inhibited HIF-1 activation in T-47D cell line with an IC₅₀: 0.4 μ M [62]. Sargaquinoic acid (SQA, **105**) and

Table 2

Compounds 95-119 with cytotoxic effects.

Name	Organism	Cell line	Cytotoxicity	Ref.
Polysaccharide (95)	Ulva lactuca	MCF-7	IC ₅₀ : 224.716 μg/ mI	[56]
Fucoidan (96)	Saccharina japonica	T-47D	Inhibition:	[57]
Carrageenan (κ) (97)	Kappaphycus alvarezii	MCF-7	IC ₅₀ : 123.8 μg/mL	[58]
Guai-2-en-10α-ol (98)	Ulva fasciata	MDA- MB-231	IC ₅₀ : 12.98 μM	[59]
Eudesma-4(15),7-diene- 5,11-diol (99)	Laurencia obtuse	MCF-7	IC ₅₀ : 39.5 μM	[60]
Teuhetenone (100)	Laurencia obtuse	MCF-7	IC ₅₀ : 22.8 μM	[60]
chabrolidione B (101)	Laurencia obtuse	MCF-7	IC ₅₀ : 63.6 μM	[60]
RU015 (102)	Plocamium sp.	MDA- MB-231 MCF-7 MCF12A	IC ₅₀ : 6.2 μM IC ₅₀ : 3.6 μM IC ₅₀ :3.5 μM	[61]
RU008 (103)	Plocamium sp.	MDA- MB-231	IC ₅₀ : 82.7 μM	[61]
Laurenditerpenol (104)	Laurencia intricate	T-47D	IC ₅₀ : 0.4 μM	[62]
Sargaquinoic acid (SQA) (105)	Sargassum heterophyllum	MBA- MB-231	IC ₅₀ : 67.4 μM	[61]
Sargahydroquinoic acid (SHQA) (106)	Sargassum heterophyllum	MBA- MB-231	IC ₅₀ : 159.5 μΜ	[61]
tetraprenyltoluquinol derivatives (107–111)	Cystoseira crinite	MCF-7	GI ₅₀ : 0.9–2.5 μg/ mL	[63]
Galaxamide (112)	Galaxaura filamentosa	MCF-7	IC ₅₀ : 14.0 μg/mL	[64]
Fucoxanthin (FXN) (113)	Sargassum heterophyllum	MBA- MB-231	IC ₅₀ : 109.4 μΜ	[61]
Dehydrothyrisferol (114)	Sargassum heterophyllum	T-47D MBA- MB-231	IC ₅₀ : 7.09 μM IC ₅₀ : 14.8 μM	[65]
Violaxanthin (115)	Dunaliella tertiolecta	MCF-7	GI ₅₀ : 56.1 μg/mL	[66]
Curacin A (116)	Lyngbya majuscule	MCF-7	GI ₅₀ : 0.038 μΜ	[69]
2,4- Diacetylphloroglucinol (DAPG) (117)	Ceratodiction spongiosum	MDA MB-231	IC50: 0.08 μM	[70]
Phloroglucinol (118)	marine brown algae	MDA- MB231	IC50: 50 μM	[71]
Dioxinodehydroeckol (119)	Ecklonia cava	MCF-7	Inhibition: 64%	[72]

sargahydroquinoic acid (SHQA, **106**) (Fig. 16) are produced by the marine algae *Sargassum heterophyllum* and illustrated cytotoxicity towards MBA-MB-231 with IC₅₀: 67.4, and 159.5 μ M, respectively [61]. Meroterpenoids, tetraprenyltoluquinol derivatives **107–111** produced by the brown algae *Cystoseira crinite* illustrated significant cytotoxicity towards MCF-7 with GI₅₀ values ranging from 0.9 and 2.5 μ g/mL, respectively. Notably, compounds **109** and **110** bearing the furan ring possessed better effects with GI₅₀: 1.3 and 0.9 μ g/mL, respectively [63].

3.4. Micellaneous

Galaxamide (112), a cyclic pentapeptide produced by *Galaxaura filamentosa*, was shown to possess three leucines and two *N*-methyl leucine moieties. It exhibited cytotoxic effects towards MCF-7 cell lines with an IC₅₀: 14.0 μ g/mL [64]. Fucoxanthin (FXN, 113) (Fig. 16) is produced by the marine algae *Sargassum heterophyllum* and illustrated cytotoxicity towards MBA-MB-231 with IC₅₀: 109.4 μ M [61]. Dehydrothyrisferol (114) is an anti-toxin terpenoid isolated from the marine algae *Laurencin viridis*. Compound 114 exhibited cytotoxicity against T-47D and MBA-MB-231 with IC₅₀: 7.09 and 14.8 μ M, respectively [65]. *Dunaliella tertiolecta* (DT), a green microalgae), produced violaxanthin (115) as the major antiproliferative pigment and induced MCF-7 growth inhibition [66].

Curacin A (**116**), containing a thiazoline moiety, cyclopropane group, and cis-alkenyl group, terminal double bond alkaloid that was discovered by Gerwick and his coworkers from the marine cyanobacterium *Lyngbya majuscule* [67] found in Curaçao. Its absolute configuration was established some years later by comparing degradative fragments with materials produced by enantioselective synthesis [68]. Compound **116** revealed anti-proliferative effects against the MCF-7 human cancer cell line with a GI₅₀ value of 0.038 μ M. It showed to block cell cycle progression by inhibiting the tubulin polymerization due to its high affinity to the colchicine-binding site on tubulin [69].

2,4-Diacetylphloroglucinol (DAPG) (117) (Fig. 18) is a polyketide reported from *Pseudomonas* sp. isolated from the surface of marine red alga *Ceratodiction spongiosum*. Compound **117** inhibited the proliferation of MDA-MB-231 with IC₅₀: 0.08 μ M [70] (Table 2). Phloroglucinol (**118**) is a phlorotannin isolated from marine brown algae and it significantly suppressed the invasive and migratory ability of the cell line MDA-MB231 in a dose-dependent maqner [71]. Dioxinodehydroeckol (**119**), a phloroglucinol derivative, was reported from the edible marine brown alga *Ecklonia cava*. At a concentration at 100 μ M, this compound induced apoptosis in MCF-7 cells at the rate of 64%. Further investigations suggested that apoptosis in MCF-7 cells may be modulated through the NF-kappaB family and NF-kappaB dependent pathway [72] (Fig. 17).

4. Marine bacteria

4.1. Peptides

Cocosamides A (**120**) and B (**121**) along with malyngamide 3 (**122**) were isolated from *Moorea producens* (formerly *Lyngbya majuscula*) (Fig. 18). Compounds **120–122** demonstrated cytotoxicity towards MCF-7 with IC₅₀: 30, 39, and 29 μ M, respectively [73]. Wewakazole B (**123**) is a cytotoxic peptide isolated from the red sea cyanobacteria *Moorea producens*. Compound **123** has shown potent cytotoxicity towards the MCF-7 human mammary cancer cell line with an IC₅₀ value of 0.58 μ M [74]. Hantupeptins A–C (**124–126**) are cyclodepsipeptides produced by cyanobacterium *Lyngbya majuscule* [75]. Compounds **124–126** displayed cytotoxicity against MCF-7 with IC₅₀: 4.0, 0.5, and 1.0 μ M, respectively [76].

Fig. 17. Structures of micellaneous compounds 117-119.

Fig. 19. Structures of peptides 127-139.

Kailuins A–D (**127–130**) (Fig. 19) are cyclic acyldepsipeptides isolated from a liquid culture of the gram-negative bacterium *BH-107*, collected from the beach of Kailua. Compounds **127–130** demonstrated cytotoxicity against MCF-7 with GI₅₀: 3, 2, 4, and 3 μ g/mL, respectively [77]. Laxaphycins B (**131**) is a cytotoxic cyclopeptide obtained from the marine cyanobacteria *Lyngbya majuscula* and it showed inhibition of the MCF-7 proliferation with IC₅₀: 0.5 μ M [78]. Pitiprolamide (**132**) is a cyclic depsipeptide and obtained from the cyanobacterium *Lyngbya majuscula*. Compound **132** showed mild inhibitory effects towards the MCF-7 breast cancer cell line with an IC₅₀ value of 33.0 μ M [79]. Pitipeptolides A-C (**133–135**), and F (**136**) are cyclic depsipeptides obtained from the marine cyanobacterium *Lyngbya majuscula* from the Piti Bomb holes of Guam [**80**,81]. Compounds **133–136** showed cytotoxicity towards the MCF-7 cell line with IC₅₀: 13, 11, 73, and 83 μ M, respectively [81].

Symplostatin 1 (137) is a linear peptide that corresponds to the dolastatin 132. It was taken off from the marine cyanobacteria *Symploca hydnoides*. Compound 137 was shown to inhibit cell propagation of MDA-MB-435 very efficiently, displaying an IC₅₀ value of 0.15 nM [82]. Bacillistatins 1 (138) and 2 (139) are 12-unit cyclic cyclodepsipeptides, taken from cultures of *Bacillus silvestris*, obtained from the Pacific Ocean. Bacillistatin 1 (138) possesses a 2*R*-hydroxy-3*S*-methylvaleric acid. On the other hand, bacilistatin 2 (139) possesses the isomeric 2*R*-hydroxy-4-methylvaleric acid moiety residue. The relative stereochemistry of bacillistatin 1 is confirmed by X-ray crystallographic techniques. Compounds 138 and 139 showed potent cytotoxic activity towards MCF-7

Fig. 20. Structures of peptides 140-145.

owning GI_{50} values of 0.00027 and 0.00053 $\mu g/mL,$ respectively [83].

Coibamide A (**140**) (Fig. 20) is a depsipeptide with antiproliferative properties isolated from the filamentous marine cyanobacterium *Leptolyngbya* sp. This compound was tested against a 60 cell line panel of the NCI (National Cancer Institute) and showed the highest effectiveness to the MDA-MB-231 human breast tumor cell line with a GI₅₀ value of 2.8 nM [84]. Largazole (**141**) is a cyclodespeptide taken from a floridian marine cyanobacterium *Symploca* sp. At high concentration, compound **141** strongly prevented the growth of invasive transformed (MDA-MB-231) human mammary epithelial cells in a well regular manner (GI₅₀ 7.7 nM and LC₅₀ 117 nM). On the other hand, murine mammary epithelial cells that are nontransformed (NMuMG) were less sensitive to compound **141** (GI₅₀ 122 nM, and LC₅₀ 272 nM) [85].

Somocystinamide A (142) is a marine lipopeptide isolated from a cyanobacteria *L. majuscula/Schizothrix*. This disulfide dimer of mixed PKS/NRPS biosynthetic origin is responsible for apoptosis *via* the lipid partition, leading to accumulating the ceramide in treated cells. After that, it follows the colocalization pathway with caspase 8. Compound 142 efficiently showed inhibition of the MCF-7 cell line with an IC₅₀ value of 210 nM [86]. Belamide A (143) isolated from the marine cyanobacterium *Symploca* sp. Pure belamide A (143) possessed cytotoxic effects towards MCF-7 cell line with an IC₅₀: 1.6 μ M [87]. Two depsipeptides, neoantimycins D (144) and E (145) were isolated from

Streptomyces sp. and both compounds possessed cytotoxity towards MCF-7 with an inhibition rate of 91% and 90.5% respectively [88].

4.2. Alkaloids

ZHD-0501, dimeric indole alkaloid (146) (Fig. 21) is a staurosporine derivative reported from the marine actinomycete *Actinomadura sp.* 007. This compound showed the ability to reduce the proliferation of the temperature-sensitive FT210 (*tsFT210*) mouse breast cancer cell line [89]. Streptokordin (147) is a methyl pyridine alkaloid isolated from the *Streptomyces* sp. KORDI-3238, which illustrated cytotoxicity towards MDA-MB-231 with an IC₅₀ value of 7.5 μ g/mL [90]. Diazepinomicin (148) is a dibenzodiazepine alkaloid, obtained from cultures of the marine actinomycete strain *Micromonospora* DPJ12. This compound showed a cytotoxic effect towards the MDA-MB-231 with IC₅₀: 2.1 μ M [91] (Table 3).

Caboxamycin (149) and UK-1 (150) are benzoxazole compounds that were reported from the marine *Streptomyces* species NTK 937, isolated from deep-sea marine sediments in the Canary Basin. Compounds 149 and 150 displayed a growth efficient inhibitory activity against MCF-7 with a GI₅₀: of 7.3 and 0.65 μ M, respectively [92]. Pseudonocardian C (151) was isolated from the marine actinomycete *Pseudonocardia* sp. and showed efficient cytotoxic effects towards MCF-7 with

Fig. 21. Structures of alkaloids 146-151.

IC₅₀: 8.0 µM [93].

Pyridinium **152** (Fig. 22) was isolated and identified from the actinomycete *Amycolatopsis alba* var. nov. DVR D4 strain. It was obtained from sea sediments from the Visakhapatnam coast of the Bengal Bay, India. This compound revealed cytotoxic activity against MCF-7 with percentage inhibition of 60.4% [94]. Iodinin (**153**), 1,6-phenazinediol (**154**), questiomycin (**155**), chandrananimycins A-C (**156–158**) and phenoxazin-3-one (**159**) were obtained from *Actinomadura* sp. M048 isolates from marine sediments collected at Jiaozhou Bay, China. Both compounds **153** and **154** showed antitumor activity against breast cancer MAXF 401NL cells with IC₅₀ < 4.0 µg/mL. On the other hand compounds **155–159** were found to be active against MCF-7 with IC₅₀ values down to 1.4 µg/mL [95].

Aminophenoxazinones **160–162** (Fig. 23) were isolated from *Halomonas* sp. and exhibited cytotoxic effects towards MCF-7, having GI_{50} values of 0.13, 1.6, and 2.0 μ g/mL, respectively [96]. Aqabamycin E (**163**) and vibrindole A (**164**) were isolated from certain bacteria Vibrio species and showed moderate cytotoxicity towards MDA-MB-231 and MCF-7 cell lines with IC₅₀ values of 25 and 20 μ g/mL and 30 and 50 μ g/mL, respectively [97].

4.3. Quinones

Isoquinolinequinones, mansouramycins A-C (**165–167**) along with 3-methyl-7-(methylamino)– 5,8-isoquinolinedione (**168**) (Fig. 24) were obtained from cultures of the *Streptomyces* sp. Compounds **165–168** possess cytotoxic effects towards MCF-7 and 401NL with an IC₅₀: ranging from 0.012 to 47.7 μ M. Notably compounds **165, 167, & 168** were significantly more active towards MCF-7 with IC₅₀: 2.3, 0.012 and 1.1 μ M, respectively [98]. Pseudonocardians A (**169**) and B (**170**) were isolated from the marine actinomycete *Pseudonocardia* sp. strain SCSIO 02199 collected from deep-sea sediments off the South China Sea. Compounds **169** and **170** showed efficient cytotoxic effects towards MCF-7 with IC₅₀ values of 0.027, and 0.021 μ M, respectively [93].

Parimycin (2,3-dihydro-1, 4-anthraquinone) (171) was isolated from cultures of the marine *Streptomyces* sp. strain B8652 and possess good

effects towards MCF-7 [99]. Marmycins A (172) and B (173) are anthraquinones of the angucycline class produced by the *Streptomyces* strain CNH990. Compound 172 showed cytotoxicity towards breast cancer displaying IC₅₀: < 0.03 μ M while marmycin B (173) proved to be less potent than 172 (IC₅₀: < 0.5 μ M) [100].

Grincamycins B–F (174–178) and grincamycin (179) (Fig. 25) are classified as the *C*-glycoside angucycline-type metabolites. Compounds 174–179 were obtained from the fermentation of the marine actinobacteria *Streptomyces lusitanus* SCSIO LR32, collected in the South China Sea. All the compounds (174–179) demonstrated cytotoxicity towards MCF-7 with IC₅₀ values of 12, 11, 6.1, 8.7, 19, and 2.1 μ M, respectively [101]. Chinikomycin B (180) was also isolated from the *Streptomyces* sp. and showed good antitumor activity towards MAXF 401NL with IC₅₀: 3.04 μ g/mL [102]. Kosinostatin (181) is a cytotoxic compound, reported from the *Micromonopora* strain TP-A0468, which showed efficient cytotoxicity in HBC-5, MCF-7, HBC-4, BSY-1, and MDA-MB-231 breast cancer cells with IC₅₀ values of 0.10, 0.05, 0.02, 0.06, and 0.21 μ M, respectively [103]. 2-hydroxyethyl-3-methyl-1,4-naphthoquinone 182 was isolated from *Actinoalloteichus cyanogriseus* and possessed cytoxic effect towards MDA-MB-435 with IC₅₀ 10.5 μ M [104].

4.4. Micellaneous

Chinikomycin A (183) (Fig. 26) was isolated from the *Streptomyces* sp. and showed good antitumor activity towards MAXF 401NL with IC₅₀: 2.41 µg/mL [102]. Arisostatin A (184) is an antibiotic belonging to the tetrocarcin class and was isolated from cultures of *Micromonospora* sp. This compound, 184, displayed cytotoxic activity against HBC-4 and HBC-5 with IC₅₀: 0.26 and 0.059, μ M, respectively [105]. Chromomycins A₅A₈ (185–188) were isolated from the marine bacteria, *Streptomyces* sp., collected from marine Zoanthid *Palythoa caribaeorum*. Compounds 185–188 reduced the viability of human MCF-7 tumor cells with IC₅₀ values of 3.7, 14.7, 133.0, and 10.5 nM, respectively [106]. Desertomycin G (189) is a member of the amino polyol polyketides containing a macrolactone ring produced by the marine-derived cyanobacteria *Streptomyces althioticus* MSM3 on the surface of the marine

Table 3

Compounds 120–210 ha	ving anti-breast ca	ancer prope	rties			
Name	Organism	Cell line	Cutotovicity	Pof	Name	Or
Name	Organishi	Cell lille	Cytotoxicity	Kei.	Chandrananimycin B	Ac
Cocosamide A (120)	Moorea	MCF-7	IC ₅₀ : 30 µM	[73]	(157)	M
	producens			5703	Chandrananimycin C	Ac
Cocosamide B (121)	Moorea	MCF-7	IC ₅₀ : 39 μ M	[73]	(158) Dhonovorin 2 ono	
Malungamida 2 (199)	producens	MCE 7	IC + 20 //M	[79]	(159)	M
Maryingainitue 5 (122)	producens	MGF-7	10_{50} . 29 μ IVI	[/3]	Aminophenoxazinone	Ho
Wewakazole B (123)	Moorea	MCE-7	IC	[74]	160	
	producens	mor /	1050. 0.00 µm	L7 13	Aminophenoxazinone	Ha
Hantupeptin A (124)	Moorea	MCF-7	IC50: 4.0 µM	[75,	161	
	producens		,	76]	Aminophenoxazinones	Ha
Hantupeptin B (125)	Moorea	MCF-7	IC ₅₀ : 0.5 μM	[75,	162	
	producens			76]	Aqabamycin E (163)	Vil
Hantupeptins A-C	Moorea	MCF-7	IC ₅₀ : 1.0 µM	[75,		
(126)	producens			76]		
Kailuin A (127)	BH-107	MCF-7	GI ₅₀ : 3 μg/mL	[77]	MCF-7	IC
Kailuin B (128)	BH-107	MCF-7	GI ₅₀ : 2 µg/mL	[77]		
Kailuin C (129)	BH-107	MCF-7	GI ₅₀ : 4 μg/mL	[77]	IC_{50} : 30 μ g/mL	[9]
Kailuin D (130)	BH-107	MCF-7	GI ₅₀ : 3 μg/mL	[77]	Vibrindole A (164)	Vil
Laxaphycins B (131)	Lyngbya	MCF-7	IC ₅₀ : 0.5 μM	[78]		
Divit 1 11 (100)	majuscula	MOD 5	10 00 0 M	1701	MCE 7	IC
Pitiprolamide (132)	Lyngbya	MCF-7	IC ₅₀ : 33.0 μ M	[79]	MCF-7	IC:
Ditia antali da A (100)	majuscula	MOD 7	10 10 M	500	$IC \rightarrow 50 \mu g/mI$	ΓO
Pitipeptolide A (133)	Lyngbyd	MCF-7	IC ₅₀ : 13 µM	[80, 011	Mansouramycins Δ	Str
Ditipentolide B (134)	Inajuscula	MCE 7	IC . 11M	[10	(165)	50
Phipeptolide B (134)	majuscula	MCF-7	1C ₅₀ . 11 µm	200, 211	Mansouramycins B	Str
Pitipeptolide ((135)	Ivrahva	MCE-7	IC: 73 uM	[80	(166)	00
r hipeptonde e (100)	majuscula	MGI-7	1050. 75 µm	811	Mansouramycins C	Str
Pitipeptolides F (136)	I vnohva	MCF-7	IC to: 83 uM	[80	(167)	
(100)	maiuscula	inter ,	10301 00 µm	811	3-Methyl-7-	Str
Symplostatin 1 (137)	Symploca	MDA-	IC50: 0.15 nM	[82]	(methylamino)- 5,8-	
.,	hydnoides	MB-435	-50		isoquinolinedione	
Bacillistatin 1 (138)	Bacillus silvestris	MCF-7	GI ₅₀ :	[83]	(168)	
			0.00027 μg/		Pseudonocardian A	Pse
			mL		(169)	sp.
Bacillistatin 2 (139)	Bacillus silvestris	MCF-7	GI ₅₀ :	[83]	Pseudonocardian B	Pse
			0.00053 µg∕		(170)	sp.
			mL		Parimycin (2, 3-dihy-	
Coibamide A (140)	Leptolyngbya sp.	MDA-	GI ₅₀ : 2.8 nM	[84]	dro-1, 4-	
		MB-231			anthraquinone)	
Largazole (141)	Symploca sp.	MDA-	GI ₅₀ : 7.7 nM	[85]	(171)	_
		MB-231			Marmycins A (172)	Str
Somocystinamide A	L. majuscula/	MCF-7	IC ₅₀ : 210 nM	[86]	N	str
(142)	Schizothrix				Marmycins B (173)	St
Belamide A (143)	Symploca sp.	MCF- 7	IC ₅₀ : 1.6 μ M	[87]	Crincomycine P (174)	SUL
Neoantimycins D (144)	Streptomyces sp.	MCF- /	Innibition	[88]	Grincaniyenis D (174)	50 110
Necentinucine E (14E)	Characteria and an	MCE 7	Tale: 91%	1001	Grincomycins ((175)	Str
Neoantimycins E (145)	Streptomyces sp.	MCF- /		[88]	Grincaniyenis C (173)	50 110
7HD 0501 (146)	Actinomadura sp	teFT210	Inhibition	[00]	Grincamycins D (176)	Str
2110-0301 (140)	007	131 1210	rate: 28.3%	[00]		his
Streptokordin (147)	Streptomyces sp	MDA-	ICro: 7.5 //g/	[90]	Grincamycins E (177)	Str
····		MB-231	mL			lus
Diazepinomicin (148)	Micromonospora	MDA-	IC50: 2.1 µM	[91]	Grincamycins F (178)	Str
1	DPJ12	MB-231	,			lus
Caboxamycin (149)	Streptomyces	MCF-7	GI ₅₀ : 7.3 µM	[92]		LR
•	species		,		Grincamycin (179)	Str
UK-1 (150)	Streptomyces	MCF-7	GI ₅₀ : 0.65 µM	[92]		lus
	species				Chinikomycin B (180)	Str
Pseudonocardian C	Pseudonocardia	MCF-7	IC ₅₀ : 8.0 µM	[93]		
(151)	sp.				Kosinostatin (181)	Mi
Pyridinium (152)	Amycolatopsis	MCF-7	Inhibition:	[94]		str
	alba		60.4%			
Iodinin (153)	Actinomadura sp.	MAXF	IC ₅₀ :	[95]		
	M048	401NL	$<$ 4.0 μ g/mL			
		cells				
1,6-phenazinediol	Actinomadura sp.	MAXF	IC ₅₀ :	[95]		
(154)	M048	401NL	< 4.0 µg/mL		2. Hudrovusthvil 2	٨
Outpationnais (155)	A stin and - I	cells	10	1053	2-iiyuluxyeulyl-3- methyl 1 A	AC
Questiomycin (155)	Actinomadura sp. M048	MCF-7	$1C_{50}$:	[95]	nanhthoauinone	cy
Chandrananimucin A	Actinomadura sp	MCE-7	< 1.4 μg/IIIL IC-α'	[05]	(18 2)	
(156)	M048	1101-7	< 1.4 µσ/mI	[20]	Chinikomycin A (183)	Str
(100)		MCF-7	< μδ/	[95]		00
				C201		

able 3 (continued)				
Name	Organism	Cell line	Cytotoxicity	Ref.
Chandrananimycin B (157)	Actinomadura sp. M048		IC ₅₀ : < 1.4 μg/mL	
Chandrananimycin C (158)	Actinomadura sp. M048	MCF-7	IC ₅₀ : < 1.4 μg/mL	[95]
Phenoxazin-3-one (159)	Actinomadura sp. M048	MCF-7	IC ₅₀ : < 1.4 μg/mL	[95]
Aminophenoxazinone 160	Halomonas sp.	MCF-7	GI ₅₀ : 0.13 μg/ mL	[96]
Aminophenoxazinone 161	Halomonas sp.	MCF-7	GI ₅₀ : 1.6 μg/ mL	[96]
Aminophenoxazinones 162	Halomonas sp.	MCF-7	GI ₅₀ : 2.0 μg/ mL	[96]
Aqabamycin E (163)	Vibrio species	MDA- MB-231		
MCF-7	IC ₅₀ : 25 μ g/mL			
IC ₅₀ : 30 µg/mL	[97]			
Vibrindole A (164)	Vibrio species	MDA- MB-231		
MCF-7	IC ₅₀ : 20 µg/mL			
IC ₅₀ : 50 µg/mL Mansouramycins A	[97] Streptomyces sp.	MCF-7	IC ₅₀ : 2.3 μM	[98]
(103) Mansouramycins B (166)	Streptomyces sp.	401NL	IC ₅₀ : 3.5 μM	[98]
Mansouramycins C (167)	Streptomyces sp.	MCF-7	IC ₅₀ : 0.012 μM	[98]
3-Methyl-7- (methylamino) – 5.8-	Streptomyces sp.	MCF-7	IC ₅₀ : 1.1 μM	[98]
isoquinolinedione (168)				
Pseudonocardian A (169)	Pseudonocardia sp.	MCF-7	IC ₅₀ : 0.027 μM	[93]
Pseudonocardian B (170)	Pseudonocardia sp.	MCF-7	IC ₅₀ : 0.021 μM	[93]
Parimycin (2, 3-dihy- dro-1, 4- anthraquinone)	-		IC ₇₀ : 0.9–6.7 μg/ mL	[99]
(171)				
Marmycins A (172)	Streptomyces strain CNH990	MCF-7	IC ₅₀ : < 0.03 μM	[100]
Marmycins B (173)	Streptomyces strain CNH990	MCF-7	IC ₅₀ : < 0.5 μM	[100]
Grincamycins B (174)	Streptomyces lusitanus	MCF-7	IC ₅₀ : 12 μM	[101]
Grincamycins C (175)	Streptomyces lusitanus	MCF-7	IC ₅₀ : 11 μM	[101]
Grincamycins D (176)	Streptomyces lusitanus	MCF-7	IC ₅₀ : 6.1 μM	[101]
Grincamycins E (177)	Streptomyces lusitanus	MCF-7	IC ₅₀ : 8.7 μ M	[101]
Grincaniyenis F (178)	lusitanus SCSIO LR32	MCF-7	IC ₅₀ : 19 μW	[101]
Grincamycin (179)	Streptomyces lusitanus	MCF-7	IC ₅₀ : 2.1 μM	[101]
Chinikomycin B (180)	Streptomyces sp.	MAXF 401NL	IC ₅₀ : 3.04 μg/ mL	[102]
Kosinostatin (181)	Micromonopora strain TP-A0468	HBC-5; MCF-7;	IC ₅₀ : 0.1 μM; IC ₅₀ :	[103]
		BSY-1:	0.03 μwi, IC ₅₀ :	
		MDA-	0.02 μM;	
		MB-231	IC ₅₀ : 0.06 μM;	
ow 1 - d 1 c	4 11		IC ₅₀ : 0.21 μM	51.0.12
2-Hydroxyethyl-3- methyl-1,4- naphthoquinone	Actinoalloteichus cyanogriseus	MDA- MB-435	IC ₅₀ : 10.5 μM	[104]
(182) Chinikomycin A (183)	Streptomyces sp.	MAXF	IC ₅₀ : 2.41 μg/ mI	[102]
Arisostatin A (184)		TUITOF	11111	[105]

(continued on next page)

Table 3 (continued)

Name	Organism	Cell line	Cytotoxicity	Ref.
	Micromonospora sp.	HBC-4 and HBC-5	IC ₅₀ : 0.26 and 0.059 μM	
Chromomycins A ₅ (185)	Streptomyces sp.	MCF-7	IC ₅₀ : 3.7 μM	[106]
Chromomycins A ₆ (186)	Streptomyces sp.	MCF-7	IC ₅₀ : 14.7 μM	[106]
Chromomycins A ₇ (187)	Streptomyces sp.	MCF-7	IC ₅₀ : 133.0 μM	[106]
Chromomycins A ₈ (188)	Streptomyces sp.	MCF-7	IC ₅₀ : 10.5 μM	[106]
Desertomycin G (189)	Streptomyces althioticus	MCF-7	IC ₅₀ : 3.8 μM	[107]
Tartrolon D (190)	Streptomyces sp.	MDA- MB-231	GI ₅₀ : 0.79 μM	[108]
7-Deoxyechinosporin (191)	Streptomyces albogriseolus A2002	MCF-7	GI ₅₀ : 0.4 μM	[109]
Echinosporin (192)	Streptomyces albogriseolus	MCF-7	GI ₅₀ : 6.4 μM	[109]
Trioxacarcins A (193)	<i>Streptomyces</i> sp. strain B8652	MCF-7	IC ₅₀ : < 0.0003 µg∕ mL	[110]
Trioxacarcins B (194)	<i>Streptomyces</i> sp. strain B8652	MCF-7	IC ₅₀ : 1.134 μg/mL	[110]
Trioxacarcins C (195)	Streptomyces sp.	MCF-7	IC ₅₀ : 0.002 μg/mL	[110]
Trioxacarcins D (196)	Streptomyces sp.	MCF-7	IC ₅₀ : 0.066 μg/mL	[110]
Proximicins A (197)	Verrucosispora	MCF-7	GC ₅₀ : 24.6 μM	[111]
Proximicins B (198)	Verrucosispora	MCF-7	GC ₅₀ : 12.1 μM	[111]
Proximicins C (199)	Verrucosispora	MCF-7	GC ₅₀ : 20.6 μM	[111]
PM100117 (200)	Streptomyces caniferus	MDA- MB-231	GI ₅₀ : 1.5 μM	[112]
PM100118 (201)	Streptomyces caniferus	MDA- MB-231	GI ₅₀ : 1.7 μM	[112]
Streptomyceamide C (202)	Streptomyces sp. H74–21	MCF-7	IC ₅₀ : 27.0 μg/ mL	[113]
Chromophore-V C- 1027 (203)	<i>Streptomyces</i> strain	MDA- MB231	IC ₅₀ : 0.9 μM	[114]
ULDF4 (204)	Streptomyces sp.	MCF-7	IC ₅₀ : 0.0139 mg/ mL	[115]
ULDF5 (205)	Streptomyces sp.	MCF-7	IC ₅₀ : 2.176 mg/mL	[115]
Sesbanimide A (206)	Stappia indica	MDA- MB-23	GI ₅₀ : 6.4E-07	[116]
Sesbanimides C-F (207–210)	Labrenzia aggregata	MDA- MB-23	GI ₅₀ : 1.6E- 07–8. 6E-09	[116]

algal (*Ulva* sp.) colony which was collected from the sediment of the North Atlantic Ocean. This compound, **189**, showed a powerful reduction in the feasibility of MCF-7 cells displaying an IC₅₀: 3.8 μ M after 96 h [107].

Tartrolon D (**190**) (Fig. 27) is a macrodiolide isolated from marine sediments of the actinomycete *Streptomyces* sp. This compound showed potent cytotoxicity towards MDA-MB-231 with GI₅₀: 0.79 μ M [108]. 7-Deoxyechinosporin (**191**) and echinosporin (**192**) are lactones that were extracted from the microbes *Streptomyces albogriseolus* A2002 collected from sea sediment in Jiaozhou Bay, China. Compounds **191** and **192** indicated antiproliferative properties towards MCF-7 with GI₅₀: 0.4 and 6.4 μ M, respectively [109]. Trioxacarcins A-D (**193–196**) were obtained from marine *Streptomyces* sp. strain B8652 and exhibited excellent cytotoxicity towards MCF-7 with IC₅₀: < 0.0003, 1.134, 0.002, and 0.066 μ g/mL, respectively [110].

Proximicins A-C (197–199) (Fig. 28) are three furan derivatives of netropsin, isolated from the actinomycete *Verrucosispora*. These compounds differ from the previously reported heterocyclic antibiotics, such as netropsin and distamycin, by the presence of the γ -amino acid 4-aminofuran-2-carboxylic acid group. Compounds 197–199 have efficient cytotoxic effects against the human MCF-7 mammary tumor cell lines showing GI₅₀ values of 24.6, 12.1, and 20.6 μ M, respectively. Preliminary investigations on their mechanism of action suggested that proximicins arrest cells in the G₀/G₁ phase [111].

PM100117 (200) and PM100118 (201) (Fig. 29) are the polyhydroxy macrolide lactones discovered from the broth cultures of the marine-derived *Streptomyces caniferus* which was obtained from the Guadeloupe Island in the Pacific Ocean. Their skeleton comprises of a 36-membered macrolide, possessing a side chain with 3 deoxy sugars and an important 1, 4-naphthoquinone chromophore. Both compounds **200** and **201** have efficient antitumor effects on MDA-MB-231 with GI₅₀: 1.5 and 1.7 μ M, respectively [112]. Streptomyceamide C (202) was isolated from the *Streptomyces* sp. H74–21 isolate which in turn was derived from marine sediments present in tropical mangrove sites. Compound **202** showed anti-proliferative effects towards MCF-7 with an IC₅₀ value of 27.0 μ g/mL [113].

Chromophore-V C-1027 (203) belongs to the family of benzoxazine metabolites isolated from the Arctic marine actinomycete *Streptomyces* strain and showed significant cytotoxicity against MDA-MB231 cells exhibiting an IC₅₀ value of $0.9 \,\mu$ M [114]. ULDF4 (204) and ULDF5 (205) resemble the chemical class of polycyclic xanthones, were isolated from 12 diverse deposit collections of marine-derived actinomycete named as *Streptomyces bingchenggensis* ULS14. Compounds 204 and 205 showed cytotoxicity against human MCF-7 mammary adenocarcinoma cells with IC₅₀ values of 0.0139 and 2.176 mg/mL, respectively [115]. Polyketides named sesbanimide A (206), and sesbanimides C-F (207–210) were produced bacteria *Stappia indica* and *Labrenzia aggregata*. Moreover

Fig. 22. Structures of alkaloids 152-159.

Fig. 24. Structures of quinones 165-173.

these metabolites demonstrated cytotoxic effects towards MDA-MB-231 with GI₅₀: 1.6E-07–8. 6E-09 [116].

5. Marine fungi

5.1. Sesquiterpenes and sesterterpenes

Coriolin B (211) (Fig. 30) is a cyclic chlorinated sesquiterpene obtained from the marine sponge known as Jaspis aff. Johnstoni. This compound demonstrated cytotoxicity towards the T-47D cell lines with an IC₅₀ value of 0.7 μ M [117]. Neomangicols A (212) and B (213) are sesterterpenes isolated from the derived marine fungal strain Fusarium equiseti CNC-477 collected from the mangroves in the Bahamas. Compounds 212 and 213 showed cytotoxicity towards MCF-7 with IC₅₀: 4.9 and 27 μ M, respectively [118]. Ophiobolin O (214) is a sesterterpene that was derived from the Aspergillus ustus fungal strain 094102, isolated from the Mediterranean sponge Suberites domuncula. Ophiobolin O showed IC50 values of 17.8 µM towards MCF-7 cells and to arrest cell cycle progression in the G1 phase, through interaction with AKT/GSK3^β/cyclin D1 signaling pathway [119]. The sesquiterpenoid 9α,14-dihydroxy-6β-p-ninitrobenzoyl ester derivative. trobenzoylcinnamolide (215) was identified from the algicolous fungus mycelia Aspergillus versicolor CNC 327 found on the external surface of the green calcareous alga Penicillus capitatus from the Bahamas Islands.

This compound showed inhibitory activity against the BT-549 line, an invasive ductal tumor, with an LC_{50} value of 0.27 µg/mL [120].

5.2. Alkaloids

Avrainvillamide (**216**) (Fig. 31) was produced by *Aspergillus* sp. CNC358 isolate, in turn isolated from the green alga *Avrainvillea* sp. collected from an island of the Bahamas. Compound **216** exhibited inhibitory activity towards β T-549 and T-47D with IC₅₀ values of 34 and 72 nM, respectively [121]. Acetylapoaranotin (**217**), acetylaranotin (**218**), and deoxyapoaranotin (**219**) were isolated from a derived-marine fungus *Aspergillus* sp. and illustrated cytotoxicity towards MCF-7 with IC₅₀ values of 10, 36, and 31 μ M, respectively [122]. Gliotoxin (**220**), another member of the sulfur-containing diketopiperazine class, was isolated from the sea-derived fungus *Aspergillus* sp. strain YL-06. Compound **220** illustrated potent cytotoxicity towards MCF-7, T47D, BT-474, ZR75–1, MDA-MB231, and MDA-MB435, with IC₅₀ value of 985, 365, 102, 158, 138, and 87, respectively [123] (Table 4).

Alkaloid fumigaclavine C (**221**)was obtained from *Aspergillus fumigatus* isolate, and it showed cytotoxicity against the MCF-7 mammary tumor cell line. At a concentration of 20 μ M, this alkaloid demonstrated 93% and 89% ability of reducing the proliferation of these cancer cells after 24 and 36 h, respectively. Compound **221** has also been proven to

Fig. 25. Structures of quinones 174-182.

block the migration and invasion of the cancer cells by modulating the apoptotic protein expressions. Furthermore, fumigaclavine C (**221**) was revealed to down-regulate the NF-kappa-B cell survival pathway [124]. Tryprostatins A (**222**) and B (**223**) were discovered in the fermentation extract of the isolate *Aspergillus fumigatus* BM939, obtained from deep-sea sediment and demonstrated an inhibitory growth towards the mouse thermo-sensitive tsFT210 cell line [125]. In another study, alkaloid **222** revealed an ability to be a BCRP inhibitor agent. It also revealed inhibition of the human MCF-7 with an IC₅₀ value of 0.013 \pm 0.006 μ M [126].

Cui and his coworkers isolated the pentacyclic-type 2, 5-diketopiperazines named cyclotryprostatins A-D (**224–227**) (Fig. 32) from the marine isolate *Aspergillus fumigatus* BM939. Compounds **224–227** showed inhibition of the cell cycle progression towards mouse tsFT210 cells in the G₂/M phase with IC₅₀ values of 5.6, 19.5, 23.4, and 25.3 μ M, respectively [127]. Luteoalbusins A (**228**) and B (**229**), T988A (**230**), along with gliocladines C (**231**) and D (**232**) were isolated from the deep-sea marine fungus *Acrostalagmus luteoalbus* SCSIO F457. Alkaloids **228–232** showed cytotoxic effects towards MCF-7 exhibiting IC₅₀ values ranging from 0.91 to 0.25 μ M [128]. *Arthrinium* sp., produced pyridone alkaloid arthpyrone L (**233**) and displayed cytotoxic effects towards MCF-7 and MDA-MB-231 with IC₅₀: 14.0 and 21.3 μ M respectively [129]. Penochalasin I (**234**), penochalasin J (**235**), chaetoglobosins A (**236**), C (**237**), F (**238**), G (**239**), and cytoglobosin C (**240**) were produced by *Penicillium chrysogenum* and possessed cytotoxic effects towards MDA-MB-435 with IC₅₀ ranging from 7.5 to 38.7 μ M respectively [130].

5.3. Quinones

2-Methoxyjuglone (241) and penithoketone (242) (Fig. 33) were isolated from *Penicillium thomii* and illustrated cytotoxic effects against MCF-7 with IC₅₀: 11 and 21 μ M, respectively. In addition, quinones 241 and 242 were active against and MDA-MB-468 with IC₅₀: 15 and 4.9 μ M, respectively [131]. Alterporriol K (243) and L (244) are bian-thraquinones, isolated from the marine-derived fungus *Alternaria* sp. and both natural products possessed cytotoxic effects against MDA-MB-435 and MCF-7 with IC₅₀: ranging from 13.1 to 29.1 μ M [132]. SZ-685 C (245) is an anthraquinone obtained from the endophytic fungus No. 1403 found in deep-sea mangroves. This compound showed inhibition of the proliferation of MCF-7 and MDA-MB-435 with IC₅₀: 7.5 and 3.0 μ M respectively [133].

5.4. Meroterpenes

Epoxyphomalins A (246) and B (247) (Fig. 34) are meroterpenoids, produced by marine-derived fungus *Phoma* sp. They displayed cytotoxicity against 401NL and MCF-7 cell lines with IC₅₀ values of 0.010 and 0.116 μ g/mL and 0.501 and 0.398 μ g/mL, respectively [134]. Aszonapyrone A (248) and sartorypyrone B (249) were obtained from the

Fig. 26. Structures of compounds 183-189.

Fig. 27. Structures of compounds 190-196.

5.5. Micellaneous

derived- marine fungus *Neosartorya laciniosa*. Both compounds revealed *in vitro* inhibitory effects towards MCF-7 with a GI₅₀: of 13.6 and 17.8 µM, respectively [135]. Purpurogemutantin (**250**) and purpurogemutantidin (**251**) are additional meroterpenoids that were reported from the marine-derived fungal strain *Penicillium purpurogenum* G59 isolated from the soil sample from Bohay Bay, Tianjin, China. Compounds **250** and **251** were active against the MCF-7 with IC₅₀: 29.3 and 26.3 µM, respectively [136]. Acremochlorin A (**252**), E-G (**253–255**), K-M (**256–258**), and meroterpenoids **259–269** were produced by fungus *Acremonium sclerotigenum*. All compounds demonstrated cytotoxicity towards MDA-MB-231 and MDA-MB-468 with IC₅₀ ranging from 0.65 to 57.0 µM. Notably compound **252** possesed potent effects towards both cancer cells with IC₅₀ < 1 µM [137].

Isosclerone (**270**) (Fig. 35) is a pentaketide metabolite, that was obtained from the marine-derived *Aspergillus fumigatus*. At a concentration of 60 μ M, compound **270** showed significant cytotoxic activity against the human breast malignancy MCF-7 cells after 24 h incubation and subsequently leading to apoptosis. Investigating its mechanism of action revealed that this compound blocked the MAPK pathway, inhibiting ERK, JNK, and P38 phosphorylation. It has also proven to be responsible for down-regulation of CDK and cyclin proteins and up-regulating the p53 at transcriptional level [138].

Monacolin X (271) is a polyketide isolated from the marine-derived fungus *Monascus* sp. NMK7 spores accumulated on the surface of (*Clathria frondifera*) sponge. This compound exhibited magnificent

Fig. 28. Structures of compounds 197–199.

cytotoxicity effect towards MCF-7, T47D, MDA-MB-231, and MDA-MB-468 cells, displaying IC₅₀ values of 42.8, 33.9, 48.7 and 26.3 μ M, respectively [139]. Pericosine A (**272**) is a shikimate derivative obtained from the marine fungal strain *Periconia byssoides*. Compound **272** showed potent growth inhibition towards HBC-5 with log GI₅₀: 5.2 [140]. Terrein (**273**) was isolated from the diverse marine fungus *Aspergillus terreus* [141] and illustrated cytotoxity towards MCF-7 with an IC₅₀ value of 1.1 nM [142].

Marthiapeptide (274) is a cyclic peptide, containing a sequential tristhiazole-thiazoline segment, obtained from a strain of the marine fungus Marinactinospora thermotolerance SCSIO 00652. Compound 274 efficiently reduced the growth of MCF-7 with an IC_{50} value of 0.38 μ M [143]. Varitriol (275), isolated from the marine fungus strain Emericella variecolor collected in Venezuelan waters of the Caribbean Sea, displayed a great potency towards the T-47D breast cancer cell line showing a GI₅₀ value of 2.10×10^{-7} M [144]. Monalbidins C and D (276 and 277), monacolin K methyl ester (278), dehydromonacolin L (279), dehydromonacolin K (280), and O-acetylmonacolin K (283) which were reported from marine derived fungus Monascus albidus, possesed moderate cytotoxicity towards MDA-MB-231 with IC₅₀: 9.3–41.6 μ M. On the other hand monacolin K (282) showed better effects with 9.3–3.7 μ M [145]. In another study, ganodermasides A (284), B (285) were isolated from fungus Pseudogymnoascus sp. and possessed cytotoxicity towards MDA-MB-231 with IC₅₀: 30.0 and 27.0 μ M respectively [146]. Moreover, 5 R,6 S,16 R, 3E)- 5,6-dihydroxy-16-methyloxacyclohexadec-3-en-2-one (286) and bekeleylactone E (287) were produced by fungus Aspergillus flocculosus and showed cytotoxity towards MDA-MB-231 with GI₅₀: 2.4 and 3.1 μ M respectively [147].

Polyketide, RF-3192 C (**288**) was reported from *Aspergillus niger* and showed cytotoxic effect towards MCF-7 with IC50: 47 μ M [148]. Tersaphilones B (**289**), D (**290**), E (**291**), luteusin A (**292**), luteusin C (**293**) and RP-1551–5 (**294**) (Fig. 36) were isolated from fungus *Phomopsis tersa* and compounds **290–292** and **294** possessed good cytotoxicity towards MCF-7 with IC₅₀ < 10 μ M. On the other hand compounds **289** and **293** showed moderate and weak effects with IC50: 13 and 25.5 μ M respectively [149]. Pensulfonamide (**295**) was produced by fungus *Penicillium aculeatum* and displayed significant cytotoxicity towards MCF-7 with IC₅₀: 2.18 μ M [150]. Three pairs of new salicylaldehyde derivative enantiomers, euroticins F (**296**), I (**297**), and eurotirumin (**298**) were reported from fungus *Eurotium* sp. and demonstrated cytotoxity towards MCF-7 with IC₅₀ ranging from 20.5 to 55.5 μ M [151].

6. Soft coral

Pseudopterosin (**299**) (Fig. 37) is a glycosidic terpene isolated from the marine-derived soft coral *Pseudopterogorgia elisabethae*, collected from the Caribbean ocean [152]. It exerts its activity by hindering cytokine discharge in triple-negative breast cancer (TNBC), resulting in a delay of the NF-κB signal. Compound **299** revealed cytotoxicity against MDA-MB-231 with an IC₅₀ value of 24.4 μ M [153]. Cembrane diterpenes **300** and **301** were isolated from the soft coral *Sarcophyton ehrenbergi* while the cembrane analog **302** was isolated from another soft coral *Nephthea* sp. Compounds **300–302** demonstrated cytotoxicity effects MCF-7 with GI₅₀: 6.1, 1.7, and 0.15 μ g/mL, respectively [154].

Sarcocrassocolides A–D (**303–306**) [155] and crassocolides A, B and D-F (**307–311**) along with lobophytolide (**312**) [156] (Fig. 38) are cembranoid diterpenes isolated from the marine soft coral *Sarcophyton crassocaule* collected off Taiwan. Diterpenes **303–306** exhibited cytotoxicity towards MCF-7 with ED₅₀ values of 4.2, 3.2, 2.0, and 4.1 μ g/mL, respectively [155]. Compounds **307–311**, which possesses a *trans*-fused α -methylene γ -lactone moiety, displayed moderate cytotoxicity towards MCF-7 and MDA-MB-231 with IC₅₀ ranging from 2.0 to 15.3 μ g/mL [156]. Lobophytolide (**312**) was the most active compound against MDA-MB-231 and MCF-7 with IC₅₀: 2.0 and 2.3 μ g/mL, respectively [156].

Sardigitolide B (**313**) (Fig. 39) represents a new biscembranoidal metabolite isolated from the culture broth of the marine soft coral *Sarcophyton digitatum*. This metabolite illustrated cytotoxicities toward MDA-MB-231 and MCF-7 with the IC₅₀: 14.8 and 9.6 μ g/mL, respectively [157]. Protoxenicins A (**314**) and B (**315**) are new xenicanes (bicyclic diterpenoids featuring a cyclononane) that were isolated from the soft coral *Protodendron repens*, collected off the coast of Okuza. Compounds **314** and **315** displayed cytotoxic activities against MDAMB-231 with GI₅₀ value of 2.1 and 6.3 μ M, respectively [158].

Sarcodictyins A (**316**) and sarcodictyin B (**317**) [159] are diterpenoids, isolated from the soft coral *Eleutherobia aurea* while eleutherobin (**318**), a glycoside analog was isolated from the soft coral *Eleutherobia* species [160]. This latter compound has proven to be more effective against MCF-7 with an IC₅₀ value of 10 nM which is greater than compounds **316** and **317** which displayed IC₅₀ values of 400 and 300 nM, respectively [161]. Waixenicin A (**319**) is a diterpenoid (aTRPM7 Inhibitor) isolated from the marine soft coral *Sarcothelia edmondsoni*, collected off the Hawaiian coast. It showed cytotoxicity towards MCF-7 cells, with an IC₅₀ value of 4.6 μ M [162].

Fig. 29. Structures of compounds 200-210.

Fig. 30. Structures of sesquiterpenes and sesterterpenes 211-215.

Fig. 31. Structures of alkaloids 216-223.

Three sesquiterpenes, aromadendrene (**320**), palustrol (**321**), viridiflorol (**322**), two diterpenes, xeniolide I (**323**), xeniolide O (**324**), and two steroids, 23,24-dimethylcholest-16-ene- 3β , 5α , 6β ,20(R)-tertrol 3-monoacetate (**325**), and gorgst- 3β , 5α , 6β , 11α ,20(S)-pentol-3-monoacetate (**326**) were reported from soft coral *Xenia umbellata*. All these compounds showed cytotoxity towards MCF-7 with IC₅₀ ranging from 1.5 to 19.1 µg/mL. Notably compounds 1 and 6 possessed significant cytoxicity with IC₅₀: 1.7 and 1.5 µg/mL respectively [163] (Table 5).

7. Sea cucumbers

Argusides B-E (**327–330**) (Fig. 40) are holostane-type triterpene glycosides, isolated from the sea cucumber *Bohadschia argus* [**164**,**165**]. Compounds **327** and **328** showed potent cytotoxicity against the MCF-7 with IC₅₀: 1.64 and 1.55 μ M, respectively [**164**] while argusides **329** and **330** exhibited good cytotoxicity against MCF-7 with IC₅₀: 7.7, and 7.5 μ M (Table 6), respectively [**165**]. Scabraside D (**331**), fuscocineroside C (**332**) and 24-dehydroechinoside A (**333**) are also holostane-type triterpenoid glycosides isolated from the sea cucumber *Holothuria scabra*. All three compounds **331–333** showed cytotoxicity towards the

MCF-7 with IC₅₀ values of 1.80, 2.60, and 1.79 μ M, respectively [166]. Frondoside A (**334**) is triterpenoid a glycoside, found in the sea cucumber *Cucumaria frondose* and illustrated anticancer towards the MDA-MB-231 and MCF10-A, MDA-MB-435, MCF-7 with an IC₅₀ value of 1.2, 5.0, 2.5, and 2.0 μ M, respectively [167]. Holospiniferoside (**335**), a ceramide was produced by ea Cucumber *Holothuria spinifera* and this molecules displayed cytotoxity towards MCF-7 with IC₅₀: 20.6 μ M [168].

8. Mollusks

Prosobranch mollusks of the genus *Lamellaria* yielded a family of pyrrole alkaloids named lamellarin D (**336**) (Fig. 41) which displayed cytotoxicity towards MCF-7 cells with an IC₅₀ value of 100 nM [169]. Pterocellins A (**337**) and B (**338**) are alkaloids isolated from the marine bryozoan *Pterocella vesiculosa*. Compound **337** possessed cytotoxity towards MDA-MB-231 and MCF-7 with GI₅₀: 2.6 and 1.5 μ M μ M, respectively. Similarly compound **338** inhibited the proliferation of MCF-7, and MDA-MB-231 cells with GI₅₀: 1.0 and 3.3 μ M, respectively [170].

Kahalalide F (339) (Fig. 42) is a natural depsipeptide, isolated from

Table 4

	Organism	Cell line	Cytotoxicity	Ref.
oriolin B (211)	Jaspis aff Johnstoni	T-47D	IC _{co} : 0.7 µM	[117]
leomangicols A (212)	Fusarium equiseti CNC-477	MCE-7	IC: 4 9 µM	[118]
loomangicols A (212)	Fusarium equiseti CNC 477	MCF-7	$1050.4.9 \mu \text{M}$	[110]
eomangicols B (213)	Fusarium equiseti CNC-477	MCF-7	$1C_{50}$: 27 μ M	[118]
phiobolin O (214)	Aspergillus ustus fungal	MCF-7	IC ₅₀ : 17.8 μM	[119]
α,14-Dihydroxy-6β- <i>p</i> -nitrobenzoylcinnamolide (215)	Aspergillus versicolor CNC 327	BT-549	LC ₅₀ : 0.27 μg/mL	[120]
vrainvillamide (216)	Avrainvillea sp.	βT-549	IC ₅₀ : 34 nM	[121]
	*	T-47D	IC=0: 72 nM	
cetulapoaranotin (217)	Asparaillus sp	MCE 7	$IC : 10 \mu M$	[199]
ectylapolialiolii (217)	Aspergulus sp.	MOD 7	10_{50} . 10 μ M	[122]
cetylaranotin (218)	Asperguius sp.	MCF-7	$1C_{50}$: 36 μ M	[122]
eoxyapoaranotin (219)	Aspergillus sp.	MCF-7	IC ₅₀ : 31 μ M	[122]
liotoxin (220)	Aspergillus sp. strain YL-06	MCF-7	IC ₅₀ : 985 nM	[123]
		T47D	IC ₅₀ : 365 nM	
		BT-474	IC ₅₀ : 102 nM	
		7R75_1	IC 158 nM	
		MDA MP221 MDA	IC : 128 mM	
		WIDA-WIB231 WIDA-	IC ₅₀ . 138 IIW	
		MB435	IC ₅₀ : 87 nM	
umigaclavine C (221)	Aspergillus fumigatus	MCF-7	Inhibition: 93%	[124]
ryprostatins A (222)	Aspergillus fumigatus BM939	MCF-7	IC ₅₀ : 0.013 µM	[126]
ryprostatins B (223)	Aspergillus fumigatus BM939	tsFT210	IC ₅₀ : 12.5 µg/mL	[125]
$v_{\rm clotry prostatin A} (224)$	Asperaillus fumigatus BM030	tsFT210	IC: 5.6 µM	[107]
yciou yprosiatiii A (227)	Amanaillan funite the DM000	(31°1210	1050. J.O µIVI	[12/]
yciotryprostatin B (225)	Asperguius jumigatus BM939	tsf1210	1C ₅₀ : 19.5 μM	[127]
yclotryprostatin C (226)	Aspergillus fumigatus BM939	tsFT210	IC ₅₀ : 23.4 μM	[127]
yclotryprostatin D (227)	Aspergillus fumigatus BM939	tsFT210	IC ₅₀ : 25.3 μM	[127]
uteoalbusins A (228) and B (229), T988A (230), gliocladines C (231)	Acrostalaemus luteoalbus SCSIO F457	MCF-7	IC=0: 0.91-0.25 µM	[128]
and D (232)			10301 0191 0120 µm	[120]
allu D (232)	A	MOD 7	10 140 14	[100]
rtnpyrone L (233)	Arthrinium sp.	MCF-7	IC ₅₀ : 14.0 μM	[129]
		MDA-MB-231	IC ₅₀ : 21.3 μM	
enochalasin I (234)	Penicillium chrysogenum	MDA-MB-231	IC ₅₀ : 7.5 μM	[130]
enochalasin J (235)	Penicillium chrysogenum	MDA-MB-231	IC50: 36.6 uM	[130]
haetoglobosin A (236)	Penicillium chrysogenum	MD4-MB-231	IC: 37 5 µM	[130]
hactogloboshi A (230)	Demi-illing shares sources	MDA MD 201	1050. 57.5 µM	[100]
naetogiodosin C (237)	Peniculium chrysogenum	MDA-MB-231	IC ₅₀ : 19.9 μM	[130]
haetoglobosin F (238)	Penicillium chrysogenum	MDA-MB-231	IC ₅₀ : 37.7 μM	[130]
haetoglobosin G (239)	Penicillium chrysogenum	MDA-MB-231	IC ₅₀ : 38.7 μM	[130]
vtoglobosin C (240)	Penicillium chrysogenum	MDA-MB-231	IC ₅₀ : 12.5 μM	[130]
-Methoxyiuglone (241)	Penicillium thomii	MCF-7	IC - of 11 µM	[131]
-MethoxyJugione (241)	1 chichlight thomas	MDA MD 469	IC . 10M	[101]
		MDA-MB-468	IC ₅₀ : 4.9 μM	
enithoketone (242)	Penicillium thomii	MCF-7	IC ₅₀ : 21 μ M	[131]
		MDA-MB-468	IC ₅₀ : 15 µM	
lterporriol K (243)	Alternaria sp.	MCF-7 and MDA-MB-	IC ₅₀ : 13.1–29.1 μM	[132]
-	-	435		
Iternorriol I. (244)	Alternaria sp	MCF-7 and MDA-MB-	IC-o: 13 1-29 1 uM	[132]
	niterna ta sp.	425	1050. 10.1 29.1 µm	[102]
	E 14 4 400	433		54.0.03
Z-685 C (245)	Fungus No. 1403	MCF-7	IC ₅₀ : 7.5 μ M	[133]
		MDA-MB-435	IC ₅₀ : 3 μM	
poxyphomalins A (246)	Phoma sp.	MCF-7	IC ₅₀ : 0.116µg/mL	[134]
poxyphomalins B (247)	Phoma sp.	MCF-7	$IC_{=0}$: 0.398 µg/mL	[134]
(200)	Noosattomia laciniosa	MCE 7	CL + 12.6 mM	[10]
Szonapytone A (248)		MCF-7	G1 ₅₀ . 15.0 µM	[155]
artorypyrone B (249)	Neosartorya laciniosa	MCF-7	GI ₅₀ : 17.8 μM	[135]
urpurogemutantin (250)	Penicillium purpurogenum G59	MCF-7	IC ₅₀ : 29.3 μM	[136]
urpurogemutantidin (251)	Penicillium purpurogenum G59	MCF-7	IC ₅₀ : 26.3 μM	[136]
cremochlorin A (252)	Acremonium sclerotigenum	MDA-MB-231	IC=0: 0.65 µM	[137
	Ter emonant octor ougonant	MDA-MB-468	IC: 0.48 µM	[107]
11		MDA-MD-408	1C50. 0.48 µM	51.07
cremochlorin E (253)	Acremonium sclerotigenum	MDA-MB-231	IC ₅₀ : 45 μM	[137]
		MDA-MB-468	IC ₅₀ : 34 μM	
	Acremonium sclerotigenum	MDA-MB-231	IC ₅₀ : 41 μM	[137]
cremochlorin F (254)			IC₅o: 15 µM	
cremochlorin F (254)		MDA-MB-468	-30	
cremochlorin F (254)	Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231	IC-s: 25 uM	[137]
cremochlorin F (254) cremochlorin G (255)	Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231	IC ₅₀ : 25 μM	[137]
cremochlorin F (254) cremochlorin G (255)	Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231 MDA-MB-468	IC ₅₀ : 25 μM IC ₅₀ : 26 μM	[137]
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256)	Acremonium sclerotigenum Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231	IC ₅₀ : 25 μM IC ₅₀ : 26 μM IC ₅₀ : 3.3 μM IC ₅₀ :	[137]
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256)	Acremonium sclerotigenum Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468	IC ₅₀ : 25 μM IC ₅₀ : 26 μM IC ₅₀ : 3.3 μM IC ₅₀ : 1.7 μM	[137]
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231	IC ₅₀ : 25 μΜ IC ₅₀ : 26 μΜ IC ₅₀ : 3.3 μΜ IC ₅₀ : 1.7 μΜ IC ₅₀ : 12 μΜ:	[137] [137]
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-231	IC ₅₀ : 25 μM IC ₅₀ : 26 μM IC ₅₀ : 3.3 μM IC ₅₀ : 1.7 μM IC ₅₀ : 12 μM; IC ₅₀ : 7.5 μM	[137] [137] [137]
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-231	$\begin{array}{l} IC_{50}; 25 \ \mu M \\ IC_{50}; 26 \ \mu M \\ IC_{50}; 3.3 \ \mu M \ IC_{50}; \\ 1.7 \ \mu M \\ IC_{50}; 12 \ \mu M; \\ IC_{50}; 7.5 \ \mu M \end{array}$	[137] [137] [137]
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257) cremochlorin M (258)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231	$\begin{array}{l} IC_{50}; 25 \ \mu M \\ IC_{50}; 26 \ \mu M \\ IC_{50}; 3.3 \ \mu M \ IC_{50}; \\ 1.7 \ \mu M \\ IC_{50}; 12 \ \mu M; \\ IC_{50}; 7.5 \ \mu M \\ IC_{50}; 7.4 \ \mu M \ IC_{50}; \end{array}$	[137] [137] [137] [137]
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257) cremochlorin M (258)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-231	$\begin{array}{l} IC_{50}: 25 \ \mu M \\ IC_{50}: 26 \ \mu M \\ IC_{50}: 3.3 \ \mu M \ IC_{50}: \\ 1.7 \ \mu M \\ IC_{50}: 12 \ \mu M; \\ IC_{50}: 7.5 \ \mu M \\ IC_{50}: 7.4 \ \mu M \ IC_{50}: \\ 6 \ \mu M \end{array}$	[137 [137 [137 [137
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257) cremochlorin M (258) leroterpenoids (259–269)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231	$\begin{array}{l} IC_{50}: 25 \ \mu M \\ IC_{50}: 26 \ \mu M \\ IC_{50}: 3.3 \ \mu M \ IC_{50}: \\ 1.7 \ \mu M \\ IC_{50}: 12 \ \mu M; \\ IC_{50}: 7.5 \ \mu M \\ IC_{50}: 7.4 \ \mu M \ IC_{50}: \\ 6 \ \mu M \\ IC_{50}: 0.65 - 57.0 \ \mu M \end{array}$	[137 [137 [137 [137 [137
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257) cremochlorin M (258) eroterpenoids (259–269)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-231	$\begin{array}{l} IC_{50}; 25 \ \mu M \\ IC_{50}; 26 \ \mu M \\ IC_{50}; 3.3 \ \mu M \ IC_{50}; \\ 1.7 \ \mu M \\ IC_{50}; 12 \ \mu M; \\ IC_{50}; 7.5 \ \mu M \\ IC_{50}; 7.4 \ \mu M \ IC_{50}; \\ 6 \ \mu M \\ IC_{50}; 0.65 - 57.0 \ \mu M \end{array}$	[137 [137 [137 [137 [137
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257) cremochlorin M (258) eroterpenoids (259–269)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum	MDA-MB-468 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MCA-7	$IC_{50}: 25 \mu M$ $IC_{50}: 26 \mu M$ $IC_{50}: 3.3 \mu M IC_{50}:$ $1.7 \mu M$ $IC_{50}: 12 \mu M;$ $IC_{50}: 7.5 \mu M$ $IC_{50}: 7.5 \mu M$ $IC_{50}: 7.4 \mu M IC_{50}:$ $6 \mu M$ $IC_{50}: 0.65-57.0 \mu M$	[137 [137 [137 [137 [137
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257) cremochlorin M (258) eroterpenoids (259–269) osclerone (270)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Aspergillus fumigatus	MDA-MB-468 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-231	$IC_{50}: 25 μM$ $IC_{50}: 26 μM$ $IC_{50}: 3.3 μM IC_{50}:$ 1.7 μM $IC_{50}: 12 μM;$ $IC_{50}: 7.5 μM$ $IC_{50}: 7.4 μM IC_{50}:$ 6 μM $IC_{50}: 0.65-57.0 μM$ Inhibition %: 50-97	[137 [137 [137 [137 [137 [137 [138
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257) cremochlorin M (258) feroterpenoids (259–269) osclerone (270) fonacolin X (271)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Aspergillus fumigatus Monascus sp. NMK7	MDA-MB-468 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-468 MCF-7 MCF-7	$\begin{array}{l} \mathrm{IC}_{50}: 25 \ \mu\mathrm{M} \\ \mathrm{IC}_{50}: 26 \ \mu\mathrm{M} \\ \mathrm{IC}_{50}: 3.3 \ \mu\mathrm{M} \ \mathrm{IC}_{50}: \\ 1.7 \ \mu\mathrm{M} \\ \mathrm{IC}_{50}: 12 \ \mu\mathrm{M}; \\ \mathrm{IC}_{50}: 7.5 \ \mu\mathrm{M} \\ \mathrm{IC}_{50}: 7.4 \ \mu\mathrm{M} \ \mathrm{IC}_{50}: \\ 6 \ \mu\mathrm{M} \\ \mathrm{IC}_{50}: 0.65 - 57.0 \ \mu\mathrm{M} \\ \mathrm{Inhibition} \ \%: 50 - 97 \\ \mathrm{IC}_{50}: 42.8 \ \mu\mathrm{M} \end{array}$	[137 [137 [137 [137 [137 [138 [138 [139
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257) cremochlorin M (258) eroterpenoids (259–269) osclerone (270) ionacolin X (271)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Aspergillus fumigatus Monascus sp. NMK7	MDA-MB-468 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-468 MCF-7 MCF-7 T47D	$\begin{split} & IC_{50}: 25 \ \mu\text{M} \\ & IC_{50}: 26 \ \mu\text{M} \\ & IC_{50}: 3.3 \ \mu\text{M} \ IC_{50}: \\ & 1.7 \ \mu\text{M} \\ & IC_{50}: 12 \ \mu\text{M}; \\ & IC_{50}: 12 \ \mu\text{M}; \\ & IC_{50}: 7.5 \ \mu\text{M} \\ & IC_{50}: 7.4 \ \mu\text{M} \ IC_{50}: \\ & 6 \ \mu\text{M} \\ & IC_{50}: 0.65 - 57.0 \ \mu\text{M} \\ \\ & Inhibition \ \%: 50 - 97 \\ & Ic_{50}: 42.8 \ \mu\text{M} \\ & IC_{50}: 33.9 \ \mu\text{M} \end{split}$	[137 [137 [137 [137 [137 [138 [139
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257) cremochlorin M (258) teroterpenoids (259–269) osclerone (270) tonacolin X (271)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Aspergillus fumigatus Monascus sp. NMK7	MDA-MB-468 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-468 MCF-7 MCF-7 T47D MDA-MB-231	$\begin{split} & IC_{50}: 25 \ \mu\text{M} \\ & IC_{50}: 26 \ \mu\text{M} \\ & IC_{50}: 3.3 \ \mu\text{M} \ IC_{50}: \\ & 1.7 \ \mu\text{M} \\ & IC_{50}: 12 \ \mu\text{M}; \\ & IC_{50}: 7.5 \ \mu\text{M} \\ & IC_{50}: 7.4 \ \mu\text{M} \ IC_{50}: \\ & 6 \ \mu\text{M} \\ & IC_{50}: 0.65 - 57.0 \ \mu\text{M} \\ & Inhibition \ \%: 50 - 97 \\ & IC_{50}: 3.3.9 \ \mu\text{M} \\ & IC_{50}: 3.3.9 \ \mu\text{M} \\ & IC_{50}: 3.4 \ \pi \ \mu\text{M} \end{split}$	[137 [137 [137 [137 [137 [138 [139]
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257) cremochlorin M (258) teroterpenoids (259–269) osclerone (270) tonacolin X (271)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Aspergillus fumigatus Monascus sp. NMK7	MDA-MB-468 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MCF-7 MCF-7 T47D MDA-MB-231 MDA-MB-231 MDA-MB-231	IC_{50} : 25 μM IC_{50} : 26 μM IC_{50} : 3.3 μM IC_{50} : 1.7 μM IC_{50} : 12 μM; IC_{50} : 7.5 μM IC_{50} : 7.4 μM IC_{50} : 6 μM IC_{50} : 0.65–57.0 μM Inhibition %: 50–97 IC_{50} : 42.8 μM IC_{50} : 33.9 μM IC_{50} : 48.7 μM	[137 [137 [137 [137 [137 [138 [139
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257) cremochlorin M (258) leroterpenoids (259–269) osclerone (270) lonacolin X (271)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Aspergillus fumigatus Monascus sp. NMK7	MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MCF-7 T47D MDA-MB-231 MDA-MB-231 MDA-MB-468	$\begin{split} & IC_{50}: 25 \ \mu\text{M} \\ & IC_{50}: 26 \ \mu\text{M} \\ & IC_{50}: 3.3 \ \mu\text{M} \ IC_{50}: \\ & 1.7 \ \mu\text{M} \\ & IC_{50}: 12 \ \mu\text{M}; \\ & IC_{50}: 12 \ \mu\text{M}; \\ & IC_{50}: 7.5 \ \mu\text{M} \\ & IC_{50}: 7.4 \ \mu\text{M} \ IC_{50}: \\ & 6 \ \mu\text{M} \\ & IC_{50}: 0.65 - 57.0 \ \mu\text{M} \\ \\ & Inhibition \ \%: 50 - 97 \\ & IC_{50}: 42.8 \ \mu\text{M} \\ & IC_{50}: 33.9 \ \mu\text{M} \\ & IC_{50}: 26.3 \ \mu\text{M} \\ & IC_{50}: 26.3 \ \mu\text{M} \\ \\ \hline \end{split}$	[137 [137 [137 [137 [137 [138 [139
cremochlorin F (254) cremochlorin G (255) cremochlorin K (256) cremochlorin L (257) cremochlorin M (258) leroterpenoids (259–269) cosclerone (270) lonacolin X (271) ericosine A (272)	Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Acremonium sclerotigenum Aspergillus fumigatus Monascus sp. NMK7 Periconia byssoides	MDA-MB-468 MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-468 MDA-MB-231 MDA-MB-468 MDA-MB-468 MDA-MB-231 MDA-MB-468 MCF-7 MCF-7 T47D MDA-MB-231 MDA-MB-231 MDA-MB-231 MDA-MB-231	$\begin{split} & IC_{50}: 25 \ \mu\text{M} \\ & IC_{50}: 26 \ \mu\text{M} \\ & IC_{50}: 3.3 \ \mu\text{M} \ IC_{50}: \\ & 1.7 \ \mu\text{M} \\ & IC_{50}: 12 \ \mu\text{M}; \\ & IC_{50}: 7.5 \ \mu\text{M} \\ & IC_{50}: 7.4 \ \mu\text{M} \ IC_{50}: \\ & 6 \ \mu\text{M} \\ & IC_{50}: 0.65 - 57.0 \ \mu\text{M} \\ & Inhibition \ \%: 50 - 97 \\ & IC_{50}: 42.8 \ \mu\text{M} \\ & IC_{50}: 33.9 \ \mu\text{M} \\ & IC_{50}: 26.3 \ \mu\text{M} \\ & IC_{50}: 26.3 \ \mu\text{M} \\ & IC_{50}: 5.2 \ \mu\text{M} \\ \end{split}$	[137] [137] [137] [137] [137] [137] [138] [139]

(continued on next page)

A. Hussain et al.

Table 4 (continued)

Name	Organism	Cell line	Cytotoxicity	Ref.
Marthiapeptide (274)	Marinactinospora thermotolerance SCSIO 00652	MCF-7	IC ₅₀ : 0.38 μM	[143]
Varitriol (275)	Emericella variecolor	T-47D	${ m GI}_{50}$: 2.10 $ imes$ 10 ⁻⁷ M	[144]
Compounds 276–283	Monascus albidus	MDA-MB-231	IC ₅₀ : 9.3–41.6 μM	[145]
Ganodermaside A (284)	Pseudogymnoascus sp.	MDA-MB-231	IC ₅₀ : 30.0 μM	[146]
Ganodermaside B (285)	Pseudogymnoascus sp.	MDA-MB-231	IC ₅₀ : 27.0 μM	[146]
5 R,6 S,16 R,3E)- 5,6-Dihydroxy-16-methyloxacyclohexadec-3-en-2- one (286)	Aspergillus flocculosus	MDA-MB-231	GI ₅₀ : 2.4 μM	[147]
Bekeleylactone E (287)	Aspergillus flocculosus	MDA-MB-231	GI50: 2.4 3.1 μM	[147]
RF-3192 C (288)	Aspergillus niger	MCF-7	IC50: 47 μM	[148]
Tersaphilone B (289)	Phomopsis tersa	MCF-7	IC50: 13 μM	[149]
Tersaphilone D (290)	Phomopsis tersa	MCF-7	IC50: 7.8 μM	[149]
Tersaphilone E (291)	Phomopsis tersa	MCF-7	IC50: 5.4 μM	[149]
luteusin A (292)	Phomopsis tersa	MCF-7	IC50: 2.8 μM	[149]
luteusin C (293)	Phomopsis tersa	MCF-7	IC50: 25.5 μM	[149]
RP-1551–5 (294)	Phomopsis tersa	MCF-7	IC50: 3.1 μM	[149]
Pensulfonamide (295)	Penicillium aculeatum	MCF-7	IC50: 2.18 μM	[150]
(+)-Euroticin F (296)	Eurotium sp.	MCF-7	IC50: 27.1 μM	[151]
(-)-Euroticin F (296)	Eurotium sp.	MCF-7	IC50: 28 μM	[151]
(+)-Euroticin I (297)	Eurotium sp.	MCF-7	IC50: 20.5 μM	[151]
(-)-Euroticin I (297)	Eurotium sp.	MCF-7	IC50: 23.5 μM	[151]
(+)-Eurotirumin (298)	Eurotium sp.	MCF-7	IC50: 55.5 μM	[151]
(-)-Eurotirumin (298)	Eurotium sp.	MCF-7	IC50: 50.6 μM	[151]

Fig. 32. Structures of alkaloids 224-240.

Fig. 33. Structures of quinones 241-245.

246:R = CH₂OH 247:R = Me

ЮH

Ŕ2

OH

ċı

262

269

ЮH

ċ

Fig. 34. Structures of meroterpenoids 246–269.

Fig. 35. Structures of compounds 270-287.

Fig. 36. Structures of compounds 288–298.

Fig. 37. Structures of compounds 299-302.

Fig. 38. Structures of compounds 303-312.

Fig. 39. Structures of compounds 313-326.

Table 5

Metabolites **299–326** having anti-breast cancer properties.

Name	Organism	Cell line	Cytotoxicity	Ref.
Pseudopterosin (299)	Pseudopterogorgia elisabethae	MDA-MB-231	IC ₅₀ : 24.4 μM	[153]
Diterpene 300	Sarcophyton ehrenbergi	MCF-7	GI ₅₀ : 6.1 µg/mL	[154]
Diterpenes 301	Sarcophyton ehrenbergi	MCF-7	GI ₅₀ : 1.7 μg/mL	[154]
Cembrane diterpene 302	Nephthea sp	MCF-7	GI50: 0.15 μg/mL	[154]
Sarcocrassocolide A (303)	Sarcophyton crassocaule	MCF-7	ED ₅₀ : 4.2 μg/mL	[155]
Sarcocrassocolide B (304)	Sarcophyton crassocaule	MCF-7	ED ₅₀ : 3.2 μg/mL	[155]
Sarcocrassocolide C (305)	Sarcophyton crassocaule	MCF-7	ED ₅₀ : 2.0 μg/mL	[155]
Sarcocrassocolide D (306)	Sarcophyton crassocaule	MCF-7	ED ₅₀ : 4.1 μg/mL	[155]
Crassocolides A, B, D-F (307-311)	Sarcophyton crassocaule	MCF-7	IC ₅₀ : 2.0–15.3 μg/mL	[156]
		MDA-MB-231		
Lobophytolide (312)	Sarcophyton crassocaule	MDA-MB-231	IC ₅₀ : 2.0 μg/mL	[156]
		MCF-7	IC ₅₀ : 2.3 μg/mL	
Sardigitolide B (313)	Sarcophyton digitatum	MCF-7	IC ₅₀ : 9.6 μg/mL	[157]
		MDA-MB-231	IC ₅₀ : 14.8 μg/mL	
Protoxenicin A (314)	Protodendron repens	MDAMB-231	GI ₅₀ : 2.1 µM	[158]
Protoxenicin B (315)	Protodendron repens	MDAMB-231	GI 50: 6.3 µM	[158]
Sarcodictyin A (316)	Eleutherobia aurea	MCF-7	IC ₅₀ : 400 nM	[160,161]
Sarcodictyins B (317)	Eleutherobia aurea	MCF-7	IC ₅₀ : 300 nM	[160,161]
Eleutherobin (318)	Eleutherobia species	MCF-7	IC ₅₀ : 10 nM	[160,161]
Waixenicin A (319)	Sarcothelia edmondsoni	MCF-7	IC ₅₀ : 4.6 μM	[162]
Aromadendrene (320)	Xenia umbellata	MCF-7: IC ₅₀ : 1.7 μg/mL		[163]
Palustrol (321)	Xenia umbellata	MCF-7: IC ₅₀ : 7.5 μg/mL		[163]
Viridiflorol (322)	Xenia umbellata	MCF-7: IC50: 2.4 µg/mL		[163]
Xeniolide I (323)	Xenia umbellata	MCF-7: IC ₅₀ : 18.2 μg/mL		[163]
Xeniolide O (324)	Xenia umbellata	MCF-7: IC ₅₀ : 23.2 µg/mL		[163]
23,24-Dimethylcholest-16-ene-3β,5α,6β,20(R)-tertrol 3-monoacetate (325)	Xenia umbellata	MCF-7: IC ₅₀ : 1.5 μg/mL		[163]
Gorgst-3β,5α,6β,11α,20(S)-pentol-3-monoacetate (326)	Xenia umbellata	MCF-7: IC ₅₀ : 19.1 µg/mL		[163]

the Hawaiian marine mollusk *Elysia rufescens* [171] and illustrated potent cytotoxicity against SKBR-3, BT474 & MCF-7 cell lines with IC₅₀ values of 0.23, 0.26 and 0.28 μ M, respectively [172]. Dolastatin 19 (**340**) is a macrocyclic lactone isolated from the marine mollusk *Dolabella auricularia* collected from the Gulf of California. Compound **340** inhibited the proliferation of MCF-7 with Gl₅₀: 0.72 μ g/mL [173].

9. Tunicates and Sea pen

Lissoclinotoxins E (341) and F (342) (Fig. 43) are dimeric polysulfide alkaloids isolated from a didemnid ascidian of the genus *Lissoclinum* collected from Philippines. Compounds 341 and 342 showed cytotoxic effects towards MDA-MB-468, with IC₅₀: 2.3 and 1.5 μ g/mL, respectively [174]. Indolocarbazole alkaloids 343 and 344 were obtained from marine ascidian *Cystodytes solitus*. Both alkaloids 343 and 344 reduced the proliferation of the MDA-MB-231 with GI₅₀ 28.4 and 32.1 nM, respectively [175]. Aplidine (345) is a cyclic depsipeptide which was reported from the *Aplidium albicans* and is now in phase II clinical trials. This interesting compound displayed efficient activity towards the MDA-MB-231 human mammary cell line with an IC₅₀ value of 5 nM [176]. Metabolites 346–348 were isolated from the marine-derived Sea pen, *Virgularia gustaviana* and showed an anti-proliferative effect against MDA-MB-231 with IC₅₀ values of 0.093, 0.42, and 0.024 mg/mL, respectively [177].

Aplicyanins B (**349**), bromoindole alkaloids, D-F (**350–352**) were produced by tunicate *Aplidium cyaneum* and all compounds (except compound **351**) demonstrated potent cytotoxicities towards MDA-MD-231 with IC₅₀: 0.42, 0.41, and 0.81 μ M, respectively [178]. Jimenez et al. [179] reported 2-hydroxy-7-oxostaurosporine (**353**) and 3-hydroxy-7-oxostaurosporine (**354**) from tunicate *Eudistoma vannamei* and mixture of these compounds possessed potent cytotoxic effects towards MDA-MB-435 with IC₅₀: 28.6 nM.

10. Starfish

Triterpene glycosides, pacificusosides B (**355**), C (**356**), cucumariosides C1 (**357**), C2 (**358**), and A10 (**359**) (Fig. 44), were reported from starfish *Solaster pacificus*. Compounds **356–359** possessed significant effects towards MDA-MB-231 with IC₅₀ of 6.4, 3.6, 4.4, and 5.5 μ M, respectively. On the other hand, triterpene **355** displayed week effects with IC₅₀ of 21.5 μ M [180].

11. Miscellaneous marine sources

Aplysqualenol A (**360**) (Fig. 45) is a bromotriterpene polyether, that was collected from the Caribbean sea slug *Aplysia dactylomela*, collected off the Puerto Ricon coast. Compound **360** displayed a potent inhibitory activity towards the T-47D cell line, with an IC₅₀: $0.3 \,\mu$ g/mL [181]. Halocynthiaxanthin (**361**) and fucoxanthinol (**362**) are two carotenoids related to fucoxanthin that were isolated from the *Halocynthia roretzi* sea squirt. Both compounds displayed a decrease in the proliferation of the MCF-7 cells and interestingly, exhibited apoptosis inducting effects [182].

12. Conclusion

Bearing in mind that marine world investigations are really in their infancy stages, the present review confirms that a huge diversity of the marine compounds, structurally unique have clearly illustrated their potential as new anti-breast cancer compounds. Currently, the development of new technologies, especially the new "omics" approaches, which are extremely efficient and sensitive methods to study marine secondary metabolites, combined with genome mining, should contribute to the development of new emerging bioactive compounds having a profound impact on human health, particularly in the fight against breast cancer.

Fig. 40. Structures of compounds 327-335.

A. Hussain et al.

Table 6

Metabolites 327-366 having anti-breast cancer properties.

Name	Organism	Cell line	Cytotoxicity	Ref.
Arguside B (327)	Bohadschia argus	MCF-7	IC ₅₀ : 1.64 μM	[164,165]
Arguside C (328)	Bohadschia argus	MCF-7	IC ₅₀ : 1.55 μM	[164,165]
Arguside D (329)	Bohadschia argus	MCF-7	IC ₅₀ : 7.7 μM	[164,165]
Arguside E (330)	Bohadschia argus	MCF-7	IC ₅₀ : 7.5 μM	[164,165]
Scabraside D (331)	Holothuria scabra	MCF-7	IC ₅₀ : 1.8 μM	[166]
Fuscocineroside C (332)	Holothuria scabra	MCF-7	IC ₅₀ : 2.6 µM	[166]
24-Dehydroechinoside A (333)	Holothuria scabra	MCF-7	IC ₅₀ : 1.79 μM	[166]
Frondoside A (334)	Cucumaria frondose	MDA-MB-231 and MCF10-A, MDA-MB-435, MCF-7	IC _{50:} 1.2, 5.0, 2.5, and 2.0 µM	[167]
Holospiniferoside (335)	Holothuria spinifera	MCF-7	IC ₅₀ : 20.6 µM	[168]
lamellarin D (336)	Lamellaria sp.	MCF-7	IC ₅₀ ; 100 nM	[169]
Pterocellin A (337)	Pterocella vesiculosa	MCF-7; MDA-MB-231	GI ₅₀ : 1.5 µM, and 2.6 µM	
Pterocellin B (338)	Pterocella vesiculosa	MCF-7; MDA-MB-231	GI ₅₀ : 1.0 and 3.3 μM	[170]
Kahalalide F (339)	Elysia rufescens	SKBR-3, BT474 & MCF-7	IC _{50:} 0.23, 0.26 and 0.28 µM	[171,172]
Dolastatin 19 (340)	Dolabella auricularia	MCF-7	$GI_{50}: 0.72 \mu g/mL$	[173]
Lissoclinotoxin E (341)	Lissoclinum sp.	MDA-MB-468	IC ₅₀ : 2.3 μM	[174]
Lissoclinotoxin F (342)	Lissoclinum sp.	MDA-MB-468	IC ₅₀ : 1.5 μM	[174]
Alkaloid 343	Cystodytes solitus	MDA-MB-231	GI ₅₀ : 28.4 nM,	[175]
Alkaloid 344	Cystodytes solitus	MDA-MB-231	GI ₅₀ : 32.1 nM	[175]
Aplidine (345)	Aplidium albicans	MDA-MB-231	IC ₅₀ : 5 nM	[176]
Compound 346	Virgularia gustaviana	MDA-MB-231	IC _{50:} 0.093 mg/mL	[177]
Compound 347	Virgularia gustaviana	MDA-MB-231	IC ₅₀ : 0.42, mg/mL	[177]
Compound 348	Virgularia gustaviana	MDA-MB-231	IC _{50:} 0.024 mg/mL	[177]
Aplicyanin B (349)	Aplidium cyaneum	MDA-MD-231	IC ₅₀ : 0.42 μM	[178]
Aplicyanin D (350)	Aplidium cyaneum	MDA-MD-231	IC ₅₀ : 0.41 µM	[178]
Aplicyanin E (351)	Aplidium cyaneum	MDA-MD-231	IC ₅₀ : 7.9 μM	[178]
Aplicyanin F (352)	Aplidium cyaneum	MDA-MD-231	IC ₅₀ : 0.81 μM	[178]
2-Hydroxy-7-oxostaurosporine (353) and	Eudistoma vannamei	MDA-MB-435	Mixture of 353 and 354 : IC ₅₀ : 28.6 nM	[179]
3-Hydroxy-7-oxostaurosporine (354)	Eudistoma vannamei	MDA-MB-435	Mixture of 353 and 354 : IC ₅₀ : 28.6 nM.	[179]
Pacificusoside B (355)	Solaster pacificus	MDA-MB-231	IC ₅₀ : 21.5 µM	[180].
Pacificusoside C (356)	Solaster pacificus	MDA-MB-231	IC ₅₀ : 6.4 µM	[180].
Cucumariosides C1 (357)	Solaster pacificus	MDA-MB-231	IC ₅₀ : 3.6 µM	[180].
Cucumariosides C2 (358)	Solaster pacificus	MDA-MB-231	IC ₅₀ : 4.4 μM	[180].
Cucumariosides A10 (359)	Solaster pacificus	MDA-MB-231	IC ₅₀ : 5.5 μM	[180].
Aplysqualenol A (360)	Aplysia dactylomela	T-47D: IC ₅₀ : 0.3 µM	· · ·	[181]

Fig. 41. Structures of compounds 336–338.

Fig. 42. Structures of compounds 339 and 340.

Fig. 43. Structures of compounds 341-354.

Fig. 44. Structures of compounds 355-359.

Fig. 45. Structures of compounds 360-362.

CRediT authorship contribution statement

Amjad Hussain, Hidayat Hussain, Polrat Wilairatana: Conceptualization. X.X.: Writing – original draft preparation. Amjad Hussain, Marie-Lise Bourguet-Kondracki, Maryam Majeed, Muhammad Ibrahim, Xian-Wen Yang, Ishtiaq Ahmed, Muhammad Ibrahim, Ataf Ali Altaf, Anees Ahmed Khalil, Abdur Rauf, Polrat Wilairatana, Hassan A. Hemeg, Riaz Ullah, Ivan R. Green, Iftikhar Ali, Syed Tasadaque A. Shah Hidayat Hussain: Writing – review & editing. All authors have read and agreed to the published version of the manuscript.

Conflicts of interest statement

The authors declare no conflict of interest.

Acknowledgements

Muhammad Imran (M.I.) extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Group Research Project under grant number 34/43 and M.I. also acknowledges the Research Center for Advanced Materials (RCAMS) at King Khalid University, Saudi Arabia for their valuable technical support.

References

- D.J. Newman, G.M. Cragg, Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, J. Nat. Prod. 83 (2020) 770–803.
- [2] C. Alves, J. Silva, S. Pinteus, H. Gaspar, M.C. Alpoim, L.M. Botana, R. Pedrosa, From marine origin to therapeutics: the antitumor potential of marine algaederived compounds, Front. Pharmacol 9 (2018) 777.
- [3] T.F. Molinski, D.S. Dalisay, S.L. Lievens, J.P. Saludes, Drug development from marine natural products, Nat. Rev. Drug Discov. 8 (2009) 69–85.
- [4] C. Jiménez, Marine natural products in medicinal chemistry, ACS Med. Chem. Lett. 9 (2018) 959–961.
- [5] C. Lyu, T. Chen, B. Qiang, N. Liu, H. Wang, L. Zhang, Z. Liu, CMNPD: a comprehensive marine natural products database towards facilitating drug discovery from the ocean, Nucleic Acids Res 49 (2021) D509–D515.
- [6] V. Jain, H. Kumar, H.V. Anod, P. Chand, N.V. Gupta, S. Dey, S.S. Kesharwani, A review of nanotechnology-based approaches for breast cancer and triplenegative breast cancer, J. Control. Release 326 (2020) 628–647.
- [7] S. Ahmed, H. Mirzaei, M. Aschner, A. Khan, A. Al-Harrasi, H. Khan, Marine peptides in breast cancer: Therapeutic and mechanistic understanding, Biomed. Pharmacother. 142 (2021), 112038.
- [8] S. Kalimuthu, J. Venkatesan, S.K. Kim, Marine derived bioactive compounds for breast and prostate cancer treatment: a review, Curr. Bioact. Compd. 10 (2014) 62–74.

- [9] K.M. Tabakmakher, V.A. Denisenko, A.G. Guzii, P.S. Dmitrenok, S.A. Dyshlovoy, H.-S. Lee, T.N. Makarieva, Monanchomycalin C, a New Pentacyclic Guanidine Alkaloid from the Far-Eastern Marine Sponge *Monanchora pulchra*, Nat. Prod. Commun. 8 (2013) 1399–1402.
- [10] H. Sorek, A. Rudi, S. Gueta, F. Reyes, M.J. Martin, M. Aknin, E. Gaydou, J. Vacelet, Y. Kashman, Netamines A–G: seven new tricyclic guanidine alkaloids from the marine sponge *Bienna laboutei*, Tetrahedron 62 (2006) 8838–8843.
- [11] S. Shrestha, A. Sorolla, J. Fromont, P. Blancafort, G.R. Flematti, Crambescidin 800, Isolated from the Marine Sponge Monanchora viridis, Induces Cell Cycle Arrest and Apoptosis in Triple-Negative Breast Cancer Cells, Mar. Drugs 16 (2018) 53.
- [12] T.D. Tran, L.K. Cartner, H.R. Bokesch, C.J. Henrich, X.W. Wang, C. Mahidol, S. Ruchirawat, P. Kittakoop, B.R. O'Keefe, K.R. Gustafson, NMR characterization of rearranged staurosporine aglycone analogues from the marine sponge *Damiria* sp, Magn. Reson. Chem. 59 (2021) 534–539.
- [13] C. Chantana, U. Sirion, P. Iawsipo, J. Jaratjaroonphong, Short Total Synthesis of (±)-Gelliusine E and 2,3'-Bis(indolyl)ethylamines via PTSA-Catalyzed Transindolylation, J. Org. Chem. 86 (2021) 13360–13370.
- [14] P.G. Cruz, J.F.M. Leal, A.H. Daranas, M. Perez, C. Cuevas, On the Mechanism of Action of Dragmacidins I and J, Two New Representatives of a New Class of Protein Phosphatase 1 and 2A Inhibitors, ACS Omega 3 (2018) 3760–3767.
- [15] R.J. Capon, C. Peng, Cedric Dooms, Trachycladindoles A–G: cytotoxic heterocycles from an Australian marine sponge, *Trachycladus laevispirulifer*, Org. Biomol. Chem. 6 (2008) 2765–2771.
- [16] A. Kijjoa, R. Wattanadilok, W. Herz, N. Campos, M.S.J. Nascimento, M. Pinto, Anticancer Activity Evaluation of Kuanoniamines A and C Isolated from the Marine Sponge Oceanapia sagittaria, Collected from the Gulf of Thailand, Mar. Drugs 5 (2007) 6–22.
- [17] R. Liu, Y. Liu, Y.-D. Zhou, D.G. Nagle, Molecular-Targeted Antitumor Agents. 15. Neolamellarins from the Marine Sponge *Dendrilla nigra* Inhibit Hypoxia-Inducible Factor-1 Activation and Secreted Vascular Endothelial Growth Factor Production in Breast Tumor Cells, J. Nat. Prod. 70 (2007) 1741–1745.
- [18] X. Wei, K. Nieves, A.D. Rodríguez, Neopetrosiamine A, biologically active bispiperidine alkaloid from th Caribbean sea sponge *Neopetrosia proxima*, Bioorg. Med. Chem. Lett. 20 (2010) 5905–5908.
- [19] K. Suwanborirux, S. Amnuoypol, A. Plubrukarn, S. Pummangura, A. Kubo, C. Tanaka, N. Saito, Chemistry of Renieramycins. Part 3.1 Isolation and Structure of Stabilized Renieramycin Type Derivatives Possessing Antitumor Activity from Thai Sponge Xestospongia Species, Pretreated with Potassium Cyanide, J. Nat. Prod. 66 (2003) 1441–1446.
- [20] K. Charupant, N. Daikuhara, E. Saito, S. Amnuoypol, K. Suwanborirux, T. Owa, N. Saito, Chemistry of renieramycins. Part 8: Synthesis and cytotoxicity evaluation of renieramycin M–jorunnamycin A analogues, Bioorg. Med. Chem. 17 (2009) 4548–4558.
- [21] Z.X. Yang, Y.H. Sun, J.G. He, H. Cao, G.Q. Jiang, Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells, Oncol. Let. 10 (2015) 3443–3449.
- [22] D.T. Trang, B.H. Tai, D.T. Hang, P.H. Yen, P.T.T. Huong, N.X. Nhiem, P.V. Kiem, Chemical Constituents of the Marine Sponge Aaptos aaptos (Schmidt, 1864) and Their Cytotoxic Activity, Nat. Prod. Commun. 16 (2021) 1–5.
- [23] R.A. Davis, G.C. Mangalindan, Z.P. Bojo, R.R. Antemano, N.O. Rodriguez, G. P. Concepcion, S.C. Samson, D. De Guzman, L.J. Cruz, D. Tasdemir, Microcionamides A and B, Bioactive Peptides from the Philippine Sponge Clathria (*Thalysias*) abietina, J. Org. Chem. 69 (2004) 4170–4176.
- [24] C. Urda, M. Perez, J. Rodriguez, C. Jiménez, C. Cuevas, R. Fernandez, Pembamide, a N-methylated linear peptide from a sponge *Cribrochalina* sp, Tetrahedron Lett. 57 (2016) 3239–3242.
- [25] L. Coello, F. Reyes, M.A.J.S. Martín, C. Cuevas, R. Fernández, Isolation and Structures of Pipecolidepsins A and B, Cytotoxic Cyclic Depsipeptides from the Madagascan Sponge Homophymia, lamellosa, J. Nat. Prod. 77 (2014) 298–303.
- [26] M.R. Brennan, C.E. Costello, S.D. Maleknia, G.R. Pettit, K.L. Erickson, Stylopeptide 2, a Proline-Rich Cyclodecapeptide from the Sponge Stylotella sp, J. Nat. Prod. 71 (2008) 453–456.
- [27] J.E. Coleman, E.D. de Silva, F. Kong, R.J. Andersen, T.M. Allen, Cytotoxic Peptides from the Marine Sponge Cymbastela sp, Tetrahedron 51 (1995) 10653–10662.
- [28] E.D. De Silva, D.E. Williams, R.J. Andersen, H. Klix, C.F. Holmes, T.M. Allen, Motuporin, A Potent Protein Phosphatase Inhibitor Isolated from the Papua New Guinea Sponge *Theonella swinhoei* Gray, Tetrahedron Lett. 33 (1992) 1561–1564.
- [29] M. Rangel, M.P. Prado, K. Konno, H. Naoki, J.C. Freitas, G.M. Machado-Santelli, Cytoskeleton alterations induced by *Geodia corticostylifera* depsipeptides in breast cancer cells, Peptides 27 (2006) 2047–2057.
- [30] W.F. Tinto, A.J. Lough, S. McLean, W.F. Reynolds, M. Yu, W.R. Chan, Geodiamolides H and I, further cyclodepsipeptides from the marine sponge *Geodia* sp, Tetrahedron 54 (1998) 4451–4458.
- [31] J. Su, Y. Zhong, L. Zeng, H. Wu, X. Shen, K. Ma, A. New, N-Carboxyindole Alkaloid from the Marine Sponge *Rhaphisia pallida*, J. Nat. Prod. 59 (1996) 504–506.
- [32] K. Deepak, S. Kumari, G. Shailender, R.R. Malla, Marine natural compound cyclo (L-leucyl-L-prolyl) peptide inhibits migration of triple negative breast cancer cells by disrupting interaction of CD151 and EGFR signaling, Chem. Biol. Interact. 315 (2020), 108872.
- [33] J. Sun, W. Cheng, N.J. de Voogd, P. Proksch, W. Lin, Stylissatins B–D, cycloheptapeptides from the marine sponge *Stylissa massa*, Tetrahedron Lett. 57 (2016) 4288–4292.

Biomedicine & Pharmacotherapy 159 (2023) 114165

- [34] E.W. Schmidt, C. Raventos-Suarez, M. Bifano, A.T. Menendez, C.R. Fairchild, D. J. Faulkner, Scleritodermin A, a Cytotoxic Cyclic Peptide from the Lithistid Sponge *Scleritoderma nodosum*, J. Nat. Prod. 67 (2004) 475–478.
- [35] Y. Liu, R. Liu, S.-C. Mao, J.B. Morgan, M.B. Jekabsons, Y.-D. Zhou, D.G. Nagle, Molecular-Targeted Antitumor Agents. 19. Furospongolide from a Marine *Lendenfeldia* sp. Sponge Inhibits Hypoxia-Inducible Factor-1 Activation in Breast Tumor Cells, J. Nat. Prod. 71 (2008) 1854–1860.
- [36] R.D. Charan, T.C. McKee, M.R. Boyd, Thorectandrols A and B, new cytotoxic sesterterpenes from the marine spongethorectandra species, J. Nat. Prod. 64 (2001) 661–663.
- [37] R.D. Charan, T.C. McKee, M.R. Boyd, Thorectandrols C, D, and E, new sesterterpenes from the marine sponge *Thorectandra* s, J. Nat. Prod. 65 (2002) 492–495.
- [38] A.-Y. Shin, A. Son, C. Choi, J. Lee, Isolation of Scalarane-Type Sesterterpenoids from the Marine Sponge *Dysidea* sp. and Stereochemical Reassignment of 12-epi-Phyllactone D/E, Mar. Drugs 19 (2021) 627.
- [39] A.I. Foudah, S. Jain, B.A. Busnena, K.A. El, Sayed, Optimization of Marine Triterpene Sipholenols as Inhibitors of Breast Cancer Migration and Invasion, ChemMedChem 8 (2013) 497–510.
- [40] A. Fontana, M.L. Ciavatta, P. Amodeo, G. Cimino, Single solution phase conformation of new antiproliferative cembranes, Tetrahedron 55 (1999) 1143–1152.
- [41] J. Dai, J.A. Fishback, Y.-D. Zhou, D.G. Nagle, Sodwanone, and Yardenone Triterpenes from a South African Species of the Marine Sponge Axinella Inhibit Hypoxia-Inducible Factor-1 (HIF-1) Activation in Both Breast and Prostate Tumor Cells, J. Nat. Prod. 69 (2006) 1715–1720.
- [42] X.C. Luo, Q. Wang, X.L. Tang, P.L. Li, G.Q. Li, One cytotoxic steroid and other two new metabolites from the South China Sea sponge Luffariella variabilis, Tetrahedron Lett. 65 (2021), 152762.
- [43] S.P. Ovenden, J.L. Nielson, C.H. Liptrot, R.H. Willis, D.M. Tapiolas, A.D. Wright, C.A. Motti, Metachromins UW: Cytotoxic Merosesquiterpenoids from an Australian Specimen of the Sponge *Thorecta reticulate*, J. Nat. Prod. 74 (2011) 1335–1338.
- [44] A.R. Diaz-Marrero, P. Austin, R. Van Soest, T. Matainaho, C.D. Roskelley, M. Roberge, R.J. Andersen, Avinosol, A Meroterpenoid-Nucleoside Conjugate with Antiinvasion Activity Isolated from the Marine Sponge *Dysidea* sp, Org. Lett. 8 (2006) 3749–3752.
- [45] F. Marion, D.E. Williams, B.O. Patrick, I. Hollander, R. Mallon, S.C. Kim, D. M. Roll, L. Feldberg, R. Van Soest, R.J. Andersen, Liphagal, a Selective Inhibitor of P13 Kinase α Isolated from the Sponge Aka coralliphaga: Structure Elucidation and Biomimetic Synthesis, Org. Lett. 8 (2006) 321–324.
- [46] E. Alvarez-Manzaneda, R. Chahboun, E. Alvarez, M. José Cano, A. Haidour, R. Alvarez-Manzaneda, Enantioselective Total Synthesis of the Selective PI3 Kinase Inhibitor Liphagal, Org. Lett. 12 (2010) 4450–4453.
- [47] A. Kijjoa, J. Bessa, R. Wattanadilok, P. Sawangwong, M.S.J. Nascimento, M. Pedro, A.M. Silva, G. Eaton, R. van Soest, W. Herz, Dibromotyrosine Derivatives, a Maleimide, Aplysamine-2 and OtherConstituents of the Marine Sponge *Pseudoceratina purpurea*, Z. Naturforsch, B 60 (2005) 904–908.
- [48] Y.-D. Zhou, J. Li, L. Du, F. Mahdi, T.P. Le, W.-L. Chen, S.M. Swanson, K. Watabe, D.G. Nagle, Biochemical and anti-triple negative metastatic breast tumor cell properties of psammaplins, Mar. Drugs 16 (2018) 442.
- [49] K. Fukuoka, T. Yamagishi, T. Ichihara, S. Nakaike, K. Iguchi, Y. Yamada, H. Fukumoto, T. Yoneda, K. Samata, H. Ikeya, Mechanism of action of aragusterol a (YTA0040), a potent anti-tumor marine steroid targeting the G1 phase of the cell cycle, Int. J. Cancer 88 (2000) 810–819.
- [50] R.A. Isbrucker, J. Cummins, S.A. Pomponi, R.E. Longley, A.E. Wright, Tubulin polymerizing activity of dictyostatin-1, a polyketide of marine sponge origin, Biochem. Pharmacol. 66 (2003) 75–82.
- [51] A. Chan, P.M. Andreae, P.T. Northcote, J.H. Miller, Peloruside A inhibits microtubule dynamics in a breast cancer cell line MCF-7, Invest. N. Drugs 29 (2011) 615–626.
- [52] L.A. Shaala, D.T.A. Youssef, Hemimycalins C–E; Cytotoxic and Antimicrobial Alkaloids with Hydantoin and 2-Iminoimidazolidin-4-one Backbones from the Red Sea Marine Sponge *Hemimycale* sp, Mar. Drugs 19 (2021) 691.
- [53] D.T. Hang, D.T. Trang, B.H. Tai, P.H. Yen, V.K. Thu, N.X. Nhiem, P.V. Kiem, Hippotulosas A-D: four new sesterterpenes from marine sponge *Hippospongia fistulosa* Lendenfeld, 1889, Nat. Prod. Res. 36 (2022) 5247–5254.
- [54] B.H. Tai, D.T. Hang, D.T. Trang, P.H. Yen, P.T.T. Huong, N.X. Nhiem, D.C. Thung, D.T. Thao, N.T. Hoai, P.V. Kiem, Conjugated Polyene Ketones From the Marine Sponge *Clathria (Thalysias) Reinwardti* (Vosmaer, 1880) and Their Cytotoxic Activity, Nat. Prod. Commun. 16 (2021) 1–7.
- [55] K. Yong-feng, D. Song, Z. Hong-Jun, G. Jian-Hong, Study on the steroidal constituents of *Phyllospongia* sp. From the South China Sea, Nat. Prod. Res. Dev. 33 (2021) 2053.
- [56] G.-E.F. Abd-Ellatef, O.M. Ahmed, E.S. Abdel-Reheim, A.-H.Z. Abdel-Hamid, Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation, Breast Cancer.: Targets Ther. 9 (2017) 67–83.
- [57] O.S. Vishchuk, S.P. Ermakova, T.N. Zvyagintseva, Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: isolation, structural characteristics, and antitumor activity, Carbohydr. Res. 346 (2011) 2769–2776.
- [58] A.M. Suganya, M. Sanjivkumar, M.N. Chandran, A. Palavesam, G. Immanuel, Pharmacological importance of sulphated polysaccharide carrageenan from red seaweed *Kappaphycus alvarezii* in comparison with commercial carrageenan, Biomed. Pharmacother. 84 (2016) 1300–1312.

- [59] T.P. Lakshmi, S. Vajravijayan, M. Moumita, N. Sakthivel, K. Gunasekaran, R. Krishna, A novel guaiane sesquiterpene derivative, guai-2-en-10α-0, from Ulva fasciata Delile inhibits EGFR/PI3K/Akt signaling and induces cytotoxicity in triple-negative breast cancer cells, Mol. Cell. Biochem. 438 (2018) 123–139.
- [60] W.M. Alarif, K.O. Al-Footy, M.S. Zubair, M. Halid, Ph, M.A. Ghandourah, S.A. Basaif, S.S. Al-Lihaibi, S.E.N. Ayyad, F.A. Badria, The role of new eudesmane-type sesquiterpenoid and knowneudesmane derivatives from the redalga *Laurencia obtusa* as potential antifungal–antitumour agents, Nat. Prod. Res. 30 (2016) 1150–1155.
- [61] J.-A. de la Mare, J.C. Lawson, M.T. Chiwakata, D.R. Beukes, A.L. Edkins, G. L. Blatch, Quinones and halogenated monoterpenes of algal origin show anti-proliferative effects against breast cancer cells in vitro, Invest. N. Drugs 30 (2012) 2187–2200.
- [62] K.A. Mohammed, C.F. Hossain, L. Zhang, R.K. Bruick, Y.D. Zhou, D.G. Nagle, Laurenditerpenol, a New Diterpene from the Tropical Marine Alga *Laurencia intricata* that Potently Inhibits HIF-1 Mediated Hypoxic Signaling in Breast Tumor Cells, J. Nat. Prod. 67 (2004) 2002–2007.
- [63] K.M. Fisch, V. Böhm, A.D. Wright, G.M. König, Antioxidative Meroterpenoids from the Brown Alga Cystoseira crinite, J. Nat. Prod. 66 (2003) 968–975.
- [64] X. Xiao, X. Liao, S. Qiu, Z. Liu, B. Du, S. Xu, Paper Synthesis, Cytotoxicity and Apoptosis Induction in Human Tumor Cells by Galaxamide and Its Analogues, Mar. Drugs 12 (2014) 4521–4538.
- [65] M.K. Pec, A. Aguirre, K. Moser-Thier, J.J. Fernández, M.L. Souto, J. Dorta, F. Diáz-González, J. Villar, Induction of apoptosis in estrogen dependent and independent breast cancer cells by the marine terpenoid dehydrothyrsiferol, Biochem. Pharmacol. 65 (2003) 1451–1461.
- [66] V. Pasquet, P. Morisset, S. Ihammouine, A. Chepied, L. Aumailley, J.-B. Berard, B. Serive, R. Kaas, I. Lanneluc, V. Thiery, Antiproliferative Activity of Violaxanthin Isolated from Bioguided Fractionation of *Dunaliella tertiolecta* Extracts, Mar. Drugs 9 (2011) 819–831.
- [67] W.H. Gerwick, P.J. Proteau, D.G. Nagle, E. Hamel, A. Blokhin, D.L. Slate, Structure of Curacin A, a Novel Antimitotic, Antiproliferative, and Brine Shrimp Toxic Natural Product from the Marine Cyanobacterium Lyngbya majuscula, J. Org. Chem. 59 (1994) 1243–1245.
- [68] J.D. White, T.-S. Kim, M. Nambu, Absolute Configuration and Total Synthesis of (+)-Curacin A, an Antiproliferative Agent from the Cyanobacterium Lyngbya majuscule, J. Am. Chem. Soc. 119 (1997) 103–111.
- [69] Z. Liu, P. Xu, T. Wu, W. Zeng, Microtubule-targeting anticancer agents from marine natural substance, Anticancer Agents Med Chem. 14 (2014) 409–417.
- [70] V.K. Veena, K. Kennedy, P. Lakshmi, R. Krishna, N. Sakthivel, Anti-leukemic, antilung, and anti-breast cancer potential of the microbial polyketide 2, 4-diacetylphloroglucinol (DAPG) and its interaction with the metastatic proteins than the antiapoptotic Bcl-2 proteins, Mol. Cell. Biochem. 414 (2016) 47–56.
- [71] R.K. Kim, Y. Suh, K.C. Yoo, Y.H. Cui, E. Hwang, H.J. Kim, J.S. Kang, M.J. Kim, Y. Y. Lee, S.J. Lee, Phloroglucinol suppresses metastatic ability of breast cancer cells by inhibition of epithelial-mesenchymal cell transition, Cancer Sci. 106 (2015) 94–101.
- [72] C.S. Kong, J.A. Kim, N.Y. Yoon, S.K. Kim, Induction of apoptosis by phloroglucinol derivative from Ecklonia Cavain MCF-7 human breast cancer cells, Food Chem. Toxicol. 47 (2009) 1653–1658.
- [73] S.P. Gunasekera, C.S. Owle, R. Montaser, H. Luesch, V.J. Paul, Malyngamide 3 and Cocosamides A and B from the Marine Cyanobacterium *Lyngbya majuscula* from Cocos Lagoon, Guam, J. Nat, Prod 74 (2011) 871–876.
- [74] J.A.V. Lopez, S.S. Al-Lihaibi, W.M. Alarif, A. Abdel-Lateff, Y. Nogata, K. Washio, M. Morikawa, T. Okino, Wewakazole B, a Cytotoxic Cyanobactin from the Cyanobacterium Moorea producens Collected in the Red Sea, J. Nat. Prod. 79 (2016) 1213–1218.
- [75] A. Tripathi, J. Puddick, M.R. Prinsep, P.P.F. Lee, L.T. Tan, Hantupeptin A, a Cytotoxic Cyclic Depsipeptide from a Singapore Collection of Lyngbya majuscula, J. Nat. Prod. 72 (2009) 29–32.
- [76] L. Liu, K.S. Rein, New Peptides Isolated from Lyngbya Species: A Review, Mar. Drugs 8 (2010) 1817–1837.
- [77] G.G. Harrigan, B.L. Harrigan, B.S. Davidson, A.-D. Kailuins, New Cyclic Acyldepsipeptides from Cultures of a Marine-Derived Bacterium, Tetrahedron 53 (1997) 1577–1582.
- [78] I. Bonnard, M. Rolland, J.M. Salmon, E. Debiton, C. Barthomeuf, B. Banaigs, Total Structure and Inhibition of Tumor Cell Proliferation of Laxaphycins, J. Med. Chem. 50 (2007) 1266–1279.
- [79] R. Montaser, K.A. Abboud, V.J. Paul, H. Luesch, Pitiprolamide, a Proline-Rich Dolastatin 16 Analogue from the Marine Cyanobacterium *Lyngbya majuscula* from Guam, J. Nat. Prod. 74 (2010) 109–112.
- [80] H. Luesch, R. Pangilinan, W.Y. Yoshida, R.E. Moore, V.J. Paul, Pitipeptolides A and B, New Cyclodepsipeptides from the MarineCyanobacterium Lyngbya majuscule, J. Nat. Prod. 64 (2001) 304–307.
- [81] R. Montaser, V.J. Paul, H. Luesch, Pitipeptolides C–F, antimycobacterial cyclodepsipeptides from the marine cyanobacterium *Lyngbya majuscula* from Guam, Phytochemistry 72 (2011) 2068–2074.
- [82] S.L. Mooberry, R.M. Leal, T.L. Tinley, H. Luesch, R.E. Moore, T.H. Corbett, The molecular pharmacology of symplostatin 1: A new antimitotic dolastatin 10 analog, Int. J. Cancer 104 (2003) 512–521.
- [83] G.R. Pettit, J.C. Knight, D.L. Herald, R.K. Pettit, F. Hogan, V.J. Mukku, J. S. Hamblin, M.J. Dodson, J.C. Chapuis, Antineoplastic Agents. 570. Isolation and Structure Elucidation of Bacillistatins 1 and 2 from aMarine Bacillus silWestris, J. Nat. Prod. 72 (2009) 366–371.
- [84] R.A. Medina, D.E. Goeger, P. Hills, S.L. Mooberry, N. Huang, L.I. Romero, E. Ortega-Barría, W.H. Gerwick, K.L. McPhail, Coibamide A, a Potent

Antiproliferative Cyclic Depsipeptide from the Panamanian Marine

- Cyanobacterium Leptolyngbya sp, J. Am. Chem. Soc. 130 (2008) 6324–6325.
 [85] K. Taori, V.J. Paul, H. Luesch, Structure and Activity of Largazole, a Potent Antiproliferative Agent from the Floridian Marine Cyanobacterium Symploca sp,
- J. Am. Chem. Soc. 130 (2008) 1806–1807.
 [86] W. Wrasidlo, A. Mielgo, V.A. Torres, S. Barbero, K. Stoletov, T.L. Suyama, R. L. Klemke, W.H. Gerwick, D.A. Carson, D.G. Stupack, The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8, Proc. Natl. Acad. Sci. U. S. A 105 (2008) 2313–2318.
- [87] T.L. Simmons, K.L. McPhail, E. Ortega-Barría, S.L. Mooberry, W.H. Gerwick, Belamide A, a new antimitotic tetrapeptide from a Panamanian marine cyanobacterium, Tetrahedron Lett. 47 (2006) 3387–3390.
- [88] Z. Guo, S. Ma, S. Khan, H. Zhu, B. Zhang, S. Zhang, R. Jiao, Zhaoshumycins A and B, Two Unprecedented Antimycin-Type Depsipeptides Produced by the Marine-Derived *Streptomyces* sp. ITBB-ZKa6, Mar. Drugs 19 (2021) 624.
- [89] X.-X. Han, C.-B. Cui, Q.-Q. Gu, W.-M. Zhu, H.-B. Liu, J.-Y. Gu, H. Osada, ZHD-0501, a novel naturally occurring staurosporine analog from *Actinomadura* sp. 007, Tetrahedron Lett. 46 (2005) 6137–6140.
- [90] S.-Y. Jeong, H.J. Shin, T.S. Kim, H.-S. Lee, S.-K. Park, H.M. Kim, Streptokordin, a New Cytotoxic Compound of the Methylpyridine Class from a Marine-derived *Streptomyces* sp. KORDI-3238, J. Antibiot. 59 (2006) 234.
- [91] H. Gourdeau, J.B. McAlpine, M. Ranger, B. Simard, F. Berger, F. Beaudry, P. Falardeau, Identification, characterization and potent antitumor activity of ECO-4601, a novel peripheral benzodiazepine receptor ligand, Cancer Chemother. Pharmacol. 61 (2008) 911–921.
- [92] C. Hohmann, K. Schneider, C. Bruntner, E. Irran, G. Nicholson, A.T. Bull, A. L. Jones, R. Brown, J.E. Stach, M. Goodfellow, Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain *Streptomyces* sp., NTK 937, J. Antibiot. 62 (2009) 99.
- [93] S. Li, X. Tian, S. Niu, W. Zhang, Y. Chen, H. Zhang, X. Yang, W. Zhang, W. Li, S. Zhang, J. Ju, C. Zhang, Pseudonocardians A–C, New Diazaanthraquinone Derivatives from a Deap-Sea Actinomycete *Pseudonocardia* sp., SCSIO 01299, Mar. Drugs 9 (2011) 1428–1439.
- [94] V.R.R.K. Dasari, M.K.K. Muthyala, M.Y. Nikku, S.R.R. Donthireddy, Novel Pyridinium compound from marine actinomycete, *Amycolatopsis alba* var. nov. DVR D4 showing antimicrobial and cytotoxic activities in vitro, Microbiol. Res. 167 (2012) 346–351.
- [95] R.P. Maskey, F.C. Li, S. Qin, H.H. Fiebig, H. Laatsch, Chandrananimycins A-C: Production of Novel Anticancer Antibiotics from a Marine Actinomadura sp., Isolate M048 by Variation of Medium Composition and Growth Conditions, J. Antibiot. 56 (2003) 622–629.
- [96] J. Bitzer, T. Große, L. Wang, S. Lang, W. Beil, A. Zeeck, New Aminophenoxazinones from a Marine Halomonas sp.: Fermentation, Structure Elucidation, and Biological Activity, J. Antibiot. 59 (2006) 86–92.
- [97] W. Al-Zereini, C.B.F.F. Yao, H. Latsch, H. Anke, Aqabamycins A-G: novel nitro maleimides from a marine *Vibrio* species: I. Taxonomy, fermentation, isolation and biological activities, J. Antibiot. 63 (2010) 297.
- [98] U.W. Hawas, M. Shaaban, K.A. Shaaban, M. Speitling, A. Maier, G. Kelter, H. H. Fiebig, M. Meiners, E. Helmke, H. Laatsch, Mansouramycins A-D, Cytotoxic Isoquinolinequinones from a Marine Streptomycete, J. Nat. Prod. 72 (2009) 2120–2124.
- [99] R.P. Maskey, E. Helmke, H.H. Fiebig, H. Laatsch, Parimycin: Isolation and Structure Elucidation of a Novel Cytotoxic 2, 3-Dihydroquinizarin Analogue of γ-Indomycinone from a Marine Streptomycete Isolate, J. Antibiot. 55 (2002) 1031–1035.
- [100] G.D. Martin, L.T. Tan, P.R. Jensen, R.E. Dimayuga, C.R. Fairchild, C. Raventos-Suarez, W. Fenical, Marmycins A and B, Cytotoxic Pentacyclic C-glycosides from a Marine Sediment-Derived Actinomycete Related to the Genus *Streptomyces*, J. Nat. Prod. 70 (2007) 1406–1409.
- [101] H. Huang, T. Yang, X. Ren, J. Liu, Y. Song, A. Sun, J. Ma, B. Wang, Y. Zhang, C. Huang, Cytotoxic Angucycline Class Glycosides from the Deep Sea Actinomycete Streptomyces lusitanus SCSIO LR32, J. Nat. Prod. 75 (2012) 202–208.
- [102] F. Li, R.P. Maskey, S. Qin, I. Sattler, H.H. Fiebig, A. Maier, A. Zeeck, H. Laatsch, Chinikomycins A and B: Isolation, Structure Elucidation, and Biological Activity of Novel Antibiotics from a Marine *Streptomyces* sp., Isolate M045, J. Nat. Prod. 68 (2005) 349–353.
- [103] T. Furumai, Y. Igarashi, H. Higuchi, N. Saito, T. Oki, Kosinostatin, a Quinocycline Antibiotic with Antitumor Activity from *Micromonospora* sp., TP-A0468, J. ANtibiot. 55 (2002) 128–133.
- [104] X. Zhang, C. Song, Y. Bai, J. Hu, H. Pan, Cytotoxic and antimicrobial activities of secondary metabolites isolated from the deep-sea-derived *Actinoalloteichus cyanogriseus* 12A22, Biotech 11 (2021) 283.
- [105] T. Furumai, K. Takagi, Y. Igarashi, N. Saito, T. Oki, Arisostatins A and B, New Members of Tetrocarcin Class of Antibiotics from *Micromonospora* sp. TP-A0316, J. Antibiot. 53 (2000) 227–232.
- [106] F.C. Pinto, E.R. Silveira, A.C.L. Vasconcelos, K.G. Florêncio, F.A. Oliveira, B. B. Sahm, L.V. Costa-Lotufo, A. Bauermeister, N.P. Lopes, D.V. Wilke, Dextrorotatory Chromomycins from the Marine *Streptomyces* sp. Associated to *Palythoa caribaeorum*, J. Braz. Chem. Soc. 31 (2020) 143–152.
- [107] A.F. Braña, A. Sarmiento-Vizcaíno, I. Pérez-Victoria, J. Martín, L. Otero, J. J. Palacios-Gutiérrez, J. Fernández, Y. Mohamedi, T. Fontanil, M. Salmón, Desertomycin G, a New Antibiotic with Activity against Mycobacterium tuberculosis and Human Breast Tumor Cell Lines Produced by *Streptomyces althioticus* MSM3, Isolated from the Cantabrian Sea Intertidal Macroalgae Ulva sp, Mar. Drugs 17 (2019) 114.

Biomedicine & Pharmacotherapy 159 (2023) 114165

- [108] M. Pérez, C. Crespo, C. Schleissner, P. Rodríguez, P. Zúñiga, F. Reyes, Tartrolon D, a Cytotoxic Macrodiolide from the Marine-Derived Actinomycete *Streptomyces* sp. MDG-04-17-069, J. Nat. Prod. 72 (2009) 2192–2194.
- [109] A. Dübeler, P. Krastel, H.G. Floss, A. Zeeck, Biosynthesis of the Antibiotic Echinosporin by a Novel Branch of the Shikimate Pathway, Eur. J. Org. Chem. (2002) 983–987.
- [110] R.P. Maskey, E. Helmke, O. Kayser, H.H. Fiebig, A. Maier, A. Busche, H. Laatsch, Anti-cancer and Antibacterial Trioxacarcins with High Anti-malaria Activity from a Marine Streptomycete and their Absolute Stereochemistry, J. Antibiot. 57 (2004) 771–779.
- [111] K. Schneider, S. Keller, F.E. Wolter, L. Röglin, W. Beil, O. Seitz, G. Nicholson, C. Bruntner, J. Riedlinger, H.P. Fiedler, ProximicinsA, B, and C—Antitumor Furan Analogues of Netropsin from the Marine Actinomycete Verrucosispora Induce Upregulation of p53 and the Cyclin Kinase Inhibitor p21, Angew. Chem. Int. Ed.. 47 (2008) 3258–3261.
- [112] M. Pérez, C. Schleissner, R. Fernández, P. Rodríguez, F. Reyes, P. Zuñiga, F. De, La Calle and C. Cuevas, PM100117 and PM100118, new antitumor macrolides produced by a marine *Streptomyces caniferus* GUA-06-05-006A, J. Antibiot. 69 (2016) 388.
- [113] S. Fu, F. Wang, H. Li, Y. Bao, Y. Yang, H. Shen, B. Lin, G. Zhou, Secondary metabolites from marine-derived Streptomyces antibioticus strain H74-21, Nat. -Prod. Res.. 30 (2016) 2460–2467.
- [114] K. Moon, C.-H. Ahn, Y. Shin, T.H. Won, K. Ko, S.K. Lee, K.-B. Oh, J. Shin, S.-I. Nam, D.-C. Oh, New Benzoxazine Secondary Metabolites from an Arctic Actinomycete, Mar. Drugs 12 (2014) 2526–2538.
- [115] O.F. Davies-Bolorunduro, I.A. Adeleye, M.O. Akinleye, P.G. Wang, Anticancer potential of metabolic compounds from marine actinomycetes isolated from Lagos Lagoon sediment, J. Pharm. Anal. 9 (2019) 201–208.
- [116] D. Kacar, L.M. Cañedo, P. Rodríguez, E.G. Gonzalez, B. Galan, C. Schleissner, S. Leopold-Messer, J. Piel, C. Cuevas, F. de la Calle, J.L. García, Identification of trans-AT polyketide clusters in two marine bacteria reveals cryptic similarities between distinct symbiosis factors, Environ., Microbiol 23 (2021) 2509–2521.
- [117] X.-C. Cheng, M. Varoglu, L. Abrell, P. Crews, E. Lobkovsky, J. Clardy, Chloriolins A-C, Chlorinated Sesquiterpenes Produced by Fungal Cultures Separated from a *Jaspis* Marine Sponge, J. Org. Chem. 59 (1994) 6344–6348.
- [118] M.K. Renner, P.R. Jensen, W. Fenical, Neomangicols: Structures and Absolute Stereochemistries of Unprecedented Halogenated Sesterterpenes from a Marine Fungus of the Genus *Fusarium*, J. Org. Chem. 63 (1998) 8346–8354.
- [119] T. Yang, Z. Lu, L. Meng, S. Wei, K. Hong, W. Zhu, C. Huang, The novel agent ophiobolin O induces apoptosis and cell cycle arrest of MCF-7 cells through activation of MAPK signaling pathways, Bioorg. Med. Chem. Lett. 22 (2012) 579–585.
- [120] G.N. Belofsky, P.R. Jensen, M.K. Renner, W. Fenical, New cytotoxic sesquiterpenoid nitrobenzoyl esters from a marine isolate of the fungus *Aspergillus* versicolor, Tetrahedron 54 (1998) 1715–1724.
- [121] W. Fenical, P.R. Jensen, X.C. Cheng, U.S. (University of California, San Diego, USA). Us 6066635, 2000, 6 pp.
- [122] E. Choi, J.S. Park, Y.J. Kim, J.H. Jung, J. Lee, H. Kwon, H. Yang, Apoptosisinducing effect of diketopiperazine disulfides produced by Aspergillus sp. KMD 901 isolated from marine sediment on HCT116 colon cancer cell lines, J. Appl. Microbiol 110 (2011) 304–313.
- [123] D. Vigushin, N. Mirsaidi, G. Brooke, C. Sun, P. Pace, L. Inman, C. Moody, R. Coombes, Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgranyltransferase i with antitumor activity against breast cancer in vivo, Med. Oncol. 21 (2004) 21–30.
- [124] Y.-X. Li, S. Himaya, P. Dewapriya, C. Zhang, S.-K. Kim, Fumigaclavine C from a Marine-Derived Fungus Aspergillus Fumigatus Induces Apoptosis in MCF-7 Breast Cancer Cells, Mar. Drugs 11 (2013) 5063–5086.
- [125] C.-B. Cui, H. Kakeya, G. Okada, R. Onose, M. Ubukata, I. Takahashi, K. Isono, H. Osada, Tryprostatins A and B, Novel Mammalian Cell Cycle Inhibitors Produced by Aspergillus fumigatus, J. ANtibiot. 48 (1995) 1382–1384.
- [126] H. Woehlecke, H. Osada, A. Herrmann, H. Lage, Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A, Int. J. Cancer 107 (2003) 721–728.
- [127] C.-B. Cui, H. Kakeya, H. Osada, Novel mammalian cell cycle inhibitors, cyclotroprostatins A–D, produced by *Aspergillus fumigatus*, which inhibit mammalian cell cycle at G2/M phase, Tetrahedron 53 (1997) 59–72.
- [128] F.-Z. Wang, Z. Huang, X.-F. Shi, Y.-C. Chen, W.-M. Zhang, X.-P. Tian, J. Li, S. Zhang, Cytotoxic indole diketopiperazines from the deep sea-derived fungus Acrostalagmus luteoalbus SCSIO F457, Bioorg. Med. Chem. Lett. 22 (2012) 7265–7267.
- [129] Y. Zhang, M. Li, Q. Zhang, Z. Wang, X. Li, J. Bao, H. Zhang, Arthpyrone L, a New Pyridone Alkaloid from a Deep-Sea Arthrinium sp., Inhibits proliferation of MG63 Osteosarcoma Cells by Inducing G0/G1 Arrest and Apoptosis, Chem. Biodiver. 18 (2021) e2000639.
- [130] S. Huang, H. Chen, W. Li, X. Zhu, W. Ding, C. Li, Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus *Penicillium chrysogenum*, Mar. Drugs 14 (2016) 172.
- [131] Q. Li, W. Xu, R. Fan, J. Zhang, Y. Li, X. Wang, S. Han, W. Liu, M. Pan, Z. Cheng, Penithoketone and Penithochromones A–L, Polyketides from the Deep-Sea-Derived Fungus Penicillium thomii YPGA3, J. Nat. Prod. 83 (2020) 2679–2685.
- [132] C.-H. Huang, J.-H. Pan, B. Chen, M. Yu, H.-B. Huang, X. Zhu, Y.-J. Lu, Z.-G. She, Y.-C. Lin, Three Bianthraquinone Derivatives from the Mangrove Endophytic Fungus Alternaria sp. ZJ9-6B from the South China Sea, Mar. Drugs 9 (2011) 832–843.

Biomedicine & Pharmacotherapy 159 (2023) 114165

- [133] G. Xie, X. Zhu, Q. Li, M. Gu, Z. He, J. Wu, J. Li, Y. Lin, M. Li, Z. She, SZ-685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway, Br. J. Pharm. 159 (2010) 689–697.
- [134] I.E. Mohamed, H. Gross, A. Pontius, S. Kehraus, A. Krick, G. Kelter, A. Maier, H.-H. Fiebig, G.M. König, Epoxyphomalin A and B, Prenylated Polyketides with Potent Cytotoxicity from the Marine-Derived Fungus *Phoma* sp. Org. Lett. 11 (2009) 5014–5017.
- [135] A. Eamvijarn, N.M. Gomes, T. Dethoup, J. Buaruang, L. Manoch, A. Silva, M. Pedro, I. Marini, V. Roussis, A. Kijjoa, Bioactive meroditerpenes and indole alkaloids from the soil fungus Neosartorya fischeri (KUFC 6344), and the marinederived fungi Neosartorya laciniosa (KUFC 7896) and Neosartorya tsunodae (KUFC 9213), Tetrahedron 69 (2013) 8583–8591.
- [136] S.-M. Fang, C.-B. Cui, C.-W. Li, C.-J. Wu, Z.-J. Zhang, L. Li, X.-J. Huang, W.-C. Ye, Purpurogemutantin and Purpurogemutantidin, New Drimenyl Cyclohexenone Derivatives Produced by a Mutant Obtained by Diethyl Sulfate Mutagenesis of a Marine-Derived *Penicillium purpurogenum* G59, Mar. Drugs 10 (2012) 1266–1287.
- [137] X. Luo, G. Cai, Y. Guo, C. Gao, W. Huang, Z. Zhang, H. Lu, K. Liu, J. Chen, X. Xiong, J. Lei, X. Zhou, J. Wang, Y. Liu, Exploring Marine-Derived Ascochlorins as Novel Human Dihydroorotate Dehydrogenase Inhibitors for Treatment of Triple-Negative Breast Cancer, J. Med. Chem. 64 (2021), 13918–1393.
- [138] Y.-X. Li, K.-H. Kang, H.J. Kim, S.-K. Kim, In vitro induction of apoptosis by isosclerone from marine-derived fungus *Aspergillus fumigatus*, Bioorg. Med. Chem. Lett. 24 (2014) 3923–3927.
- [139] S.N. Nagabhishek, A. Madankumar, A novel apoptosis-inducing metabolite isolated from marine sponge symbiont *Monascus* sp. NMK7 attenuates cell proliferation, migration and ROS stress-mediated apoptosis in breast cancer cells, RSC Adv. 9 (2019) 5878–5890.
- [140] T. Yamada, M. Iritani, H. Ohishi, K. Tanaka, K. Minoura, M. Doi, A. Numata, Pericosines, antitumour metabolites from the sea hare-derived fungus *Periconia byssoides*, Structures and biological activities, Org. Biomol. Chem. 5 (2007) 3979–3986.
- [141] H.Z. Asfour, Z.A. Awan, A.A. Bagalagel, M.A. Elfaky, R.F.A. Abdelhameed, S. S. Elhady, Large-Scale Production of Bioactive Terrein by Aspergillus terreus Strain S020 Isolated from the Saudi Coast of the Red Sea, Biomolecules 9 (2019) 480.
- [142] W.-Y. Liao, C.-N. Shen, L.-H. Lin, Y.-L. Yang, H.-Y. Han, J.-W. Chen, S.-C. Kuo, S.-H. Wu, C.-C. Liaw, Asperjinone, a Nor-Neolignan, and Terrein, a Suppressor of ABCG2- Expressing Breast Cancer Cells, from Thermophilic Aspergillus terreus, J. Nat. Prod. 75 (2012) 630–635.
- [143] X. Zhou, H. Huang, Y. Chen, J. Tan, Y. Song, J. Zou, X. Tian, Y. Hua, J. Ju, Cyclic Heptapeptides, Cordyheptapeptides C–E, from the Marine-Derived Fungus Acremonium persicinum SCSIO 115 and Their Cytotoxic Activities, J. Nat. Prod. 75 (2012) 2251–2255.
- [144] J. Malmstrøm, C. Christophersen, A.F. Barrero, J.E. Oltra, J. Justicia, A. Rosales, ioactive Metabolites from a Marine-Derived Strain of the Fungus *Emericella* variecolor, J. Nat. Prod. 65 (2002) 364–367.
- [145] Q. Guo, W.J. Lan, L.P. Chen, C.K. Lam, G.K. Feng, R. Deng, X.F. Zhu, H.J. Li, A.– E. Monalbidins, Decalins with Potential Cytotoxic Activities from Marine Derived Fungus *Monascus albidus* BB3, Chem. Biodivers. 18 (2021), e2100068.
- [146] T. Shi, X.Q. Li, L. Zheng, Y.H. Zhang, J.J. Dai, E.L. Shang, Y.Y. Yu, Y.T. Zhang, W. P. Hu, D.Y. Shi, Sesquiterpenoids From the Antarctic Fungus *Pseudogymnoascus* sp. HSX2#-11, Front. Microbiol. 12 (2021), 688202.
- [147] C.V. Anh, J.S. Kang, B.K. Choi, H.S. Lee, C.S. Heo, H.J. Shin, Polyketides and Meroterpenes from the Marine-Derived Fungi Aspergillus unguis 158SC-067 and A. flocculosus 01NT-1.1.5 and Their Cytotoxic and Antioxidant Activities, Mar. Drugs 19 (2021) 415.
- [148] M.M. Mahmoud, A.S. Abdel-Razek, A. Hamed, H.S.M. Soliman, L.V. Ponomareva, J.S. Thorson, K.A. Shaaban, M. Shaaban, RF-3192C and other polyketides from the marine endophytic *Aspergillus niger* ASSB4: structure assignment and bioactivity investigation, Med. Chem. Res. 30 (2021) 647–654.
- [149] S. Chen, Z. Liu, Y. Chen, H. Tan, H. Liu, W. Zhang, Tersaphilones A-E, cytotoxic chlorinated azaphilones from the deepsea-derived fungus *Phomopsis tersa* FS441, Tetrahedron 78 (2021), 131806.
- [150] U.W. Hawas, L.T.A. El-Kassem, E.F. Ahmed, R.A. Alghamdi, Bioactive sulfonyl metabolites from the Red Sea endophytic fungus *Penicillium aculeatum*, Nat. Prod. Res. 36 (2022) 2713–2721.
- [151] W.M. Zhong, X.Y. Wei, Y.C. Chen, Q. Zeng, J.F. Wang, X.F. Shi, X.P. Tian, W. M. Zhang, F.Z. Wang, S. Zhang, Structurally Diverse Polycyclic Salicylaldehyde Derivative Enantiomers from a Marine-Derived Fungus Eurotium sp. SCSIO F452, Mar. Drugs 19 (2021) 543.
- [152] A.M. Mayer, P.B. Jacobson, W. Fenical, R.S. Jacobs, K.B. Glaser, Pharmacological characterization of the pseudopterosins: Novel anti-inflammatory natural products isolated from the Caribbean soft coral, *Pseudopterogorgia elisabethae*, Life Sci. 62 (1998) PL401–PL407.
- [153] J. Sperlich, R. Kerr, N. Teusch, The Marine Natural Product Pseudopterosin Blocks Cytokine Release of Triple-Negative Breast Cancer and Monocytic Leukemia Cells by Inhibiting NF-κB Signaling, Mar. Drugs 15 (2017) 262.
- [154] H. Gross, S. Kehraus, M. Nett, G.M. König, W. Beil, A.D. Wright, New cytotoxic cembrane based diterpenes from the soft corals *Sarcophyton cherbonnieri* and *Nephthea* sp, Org. Biomol. Chem. 1 (2003) 944–949.
- [155] W.-Y. Lin, J.-H. Su, Y. Lu, Z.-H. Wen, C.-F. Dai, Y.-H. Kuo, J.-H. Sheu, Cytotoxic and anti-inflammatory cembranoids from the Dongsha Atoll soft coral *Sarcophyton crassocaule*, Bioorg. Med. Chem. 18 (2010) 1936–1941.

- [156] H.-C. Huang, A.F. Ahmed, J.-H. Su, C.-H. Chao, Y.-C. Wu, M.Y. Chiang, J.-H. Sheu, A.-F. Crassocolides, Cembranoids with a trans-Fused Lactone from the Soft Coral Sarcophyton crassocaule, J. Nat. Prod. 69 (2006) 1554–1559.
- [157] T.-Y. Huang, C.-Y. Huang, C.-H. Chao, C.-C. Lin, C.-F. Dai, J.-H. Su, P.-J. Sung, S.-H. Wu, J.-H. Sheu, New Biscembranoids Sardigitolides A–D and Known Cembranoid-Related Compounds from *Sarcophyton digitatum*: Isolation, Structure Elucidation, and Bioactivities, Mar. Drugs 18 (2020) 452.
- [158] C. Urda, R. Fernández, M. Pérez, J. Rodríguez, C. Jiménez, C. Cuevas, Protoxenicins A and B, Cytotoxic Long-Chain Acylated Xenicanes from the Soft Coral Protodendron repens, J. Nat. Prod. 80 (2017) 713–719.
- [159] S. Ketzinel, A. Rudi, M. Schleyer, Y. Benayahu, Y. Kashman, Sarcodictyin A and Two Novel Diterpenoid Glycosides, Eleuthosides A and B, from the Soft Coral *Eleutherobia aurea*, J. Nat. Prod. 59 (1996) 873–875.
- [160] T. Lindel, P.R. Jensen, W. Fenical, B.H. Long, A.M. Casazza, J. Carboni, C. R. Fairchild, Eleutherobin, a New Cytotoxin that Mimics Paclitaxel (Taxol) by Stabilizing Microtubules, J. Am. Chem. Soc. 119 (1997) 8744–8745.
- [161] E. Hamel, D.L. Sackett, D. Vourloumis, K. Nicolaou, The Coral-Derived Natural Products Eleutherobin and Sarcodictyins A and B: Effects on the Assembly of Purified Tubulin with and without Microtubule-Associated Proteins and Binding at the Polymer Taxoid Site, Biochemistry 38 (1999) 5490–5498.
- [162] B.J. Kim, J.H. Nam, Y.K. Kwon, I. So, S.J. Kim, The Role of Waixenicin A as Transient Receptor Potential Melastatin 7 Blocker, Basic Clin. Pharmacol. Toxicol. 112 (2013) 83–89.
- [163] H.I. Althagbi, F. Budiyanto, A. Abdel-Lateff, K.O. Al-Footy, N.O. Bawakid, M. A. Ghandourah, M.Y. Alfaifi, S.E.I. Elbehairi, W.M. Alarif, Antiproliferative Isoprenoid Derivatives from the Red Sea Alcyonacean Xenia umbellate, Molecules 26 (2021) 1311.
- [164] B.S. Liu, Y.H. Yi, L. Li, P. Sun, W.H. Yuan, G.Q. Sun, H. Han, M. Xue, Argusides B and C, Two New Cytotoxic Triterpene Glycosides from the Sea Cucumber *Bohadschia argus* Jaeger, Chem. Biodivers. 5 (2008) 1288–1297.
- [165] B.S. Liu, Y.H. Yi, L. Li, P. Sun, H. Han, G.Q. Sun, X.H. Wang, Z.L. Wang, Argusides D and E, Two New Cytotoxic Triterpene Glycosides from the Sea Cucumber Bohadschia argus Jaeger, Chem. Biodivers. 5 (2008) 1425–1433.
- [166] H. Hua, L. Ling, Y.-H. Yi, X.-H. Wang, M.-X. Pan, Triterpene Glycosides from Sea Cucumber Holothuria scabra with Cytotoxic Activity, Chin. Herb. Med. 4 (2012) 183–188.
- [167] T.E. Adrian, Peter Collin, The Anti-Cancer Effects of Frondoside A, Mar. Drugs 16 (2018) 64.
- [168] E.E. Eltamany, U.R. Abdelmohsen, D.M. Hal, A.K. Ibrahim, H.A. Hassanean, R.F. A. Abdelhameed, T.A. Temraz, D. Hajjar, A.A. Makki, O.M. Hendawy, A. M. AboulMagd, K.A. Youssif, G. Bringmann, S.A. Ahmed, Holospiniferoside: A New Antitumor Cerebroside from The Red Sea Cucumber *Holothuria spinifera*: In Vitro and In Silico Studies, Molecules 26 (2021) 1555.
- [169] M. Facompré, C. Tardy, C. Bal-Mahieu, P. Colson, C. Perez, I. Manzanares, C. Cuevas, C. Bailly, Lamellarin D: A Novel Potent Inhibitor of Topoisomerase I, Cancer Res 63 (2003) 7392–7399.
- [170] B. Yao, M.R. Prinsep, B.K. Nicholson, D.P. Gordon, The Pterocellins, Novel Bioactive Alkaloids from the Marine Bryozoan Pterocella vesiculosa, J. Nat. Prod. 66 (2003) 1074–1077.
- [171] M.T. Hamman, C.S. Otto, P.J. Scheuer, D.C. Dunbar, Kahalalides: Bioactive Peptides from a Marine Mollusk Elysia rufescens and Its Algal Diet Bryopsis sp, J. Org. Chem. 61 (1996) 6594–6600.
- [172] Y. Suárez, L. González, A. Cuadrado, M. Berciano, M. Lafarga, A. Muñoz, Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells, Mol. Cancer Ther. 2 (2003) 863–872.
- [173] G.R. Pettit, J.-P. Xu, D.L. Doubek, J.C. Chapuis, J.M. Schmidt, Antineoplastic Agents. 510.1 Isolation and Structure of Dolastatin 19 from the Gulf of California Sea Hare *Dolabella auricularia*, J. Nat. Prod. 67 (2004) 1252–1255.
- [174] R.A. Davis, I.T. Sandoval, G.P. Concepcion, R.M. Da Rocha, C.M. Ireland, Lissoclinotoxins E and F, novel cytotoxic alkaloids from a Philippine *Didemnid ascidian*, Tetrahedron 59 (2003) 2855–2859.
- [175] F. Reyes, R. Fernández, A. Rodríguez, S. Bueno, C. de Eguilior, A. Francesch, C. Cuevas, Cytotoxic staurosporines from the marine ascidian *Cystodytes solitus*, J. Nat. Prod. 71 (2008) 1046–1048.
- [176] A. Cuadrado, L.F. García-Fernández, L. González, Y. Suárez, A. Losada, V. Alcaide, T. Martínez, J.M. Fernández-Sousa, J.M. Sánchez-Puelles, A. Muñoz, Aplidin™ induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK, J. Biol. Chem. 278 (2003) 241–250.
- [177] S. Sharifi, P.G. Mostafavi, R. Tarasi, A.M. Moradi, M.H. Givianrad, M. M. Farimani, S.N. Ebrahimi, M. Hamburger, H. Niknejad, Purified compounds from marine organism sea pen induce apoptosis in human breast cancer cell MDA-MB-231 and cervical cancer cell Hela, Eur. J. Pharmacol. 877 (2020), 173075.
- [178] F. Reyes, R. Fernández, A. Rodríguez, A. Francesch, S. Taboada, C. Ávila, C. Cuevas, Aplicyanins A–F, new cytotoxic bromoindole derivatives from the marine tunicate Aplidium cyaneum, Tetrahedron 64 (2008) 5119–5123.
- [179] P.C. Jimenez, D.V. Wilke, E.G. Ferreira, R. Takeara, M.O. de Moraes, E.R. Silveira, T.M. da Cruz Lotufo, N.P. Lopes, L.V. Costa-Lotufo, Structure Elucidation and Anticancer Activity of 7-Oxostaurosporine Derivatives from the Brazilian Endemic Tunicate *Eudistoma vannamei*, Mar. Drugs 10 (2012) 1092–1102.
- [180] T.V. Malyarenko, A.A. Kicha, A.I. Kalinovsky, P.S. Dmitrenok, O.S. Malyarenko, A.S. Kuzmich, V.A. Stonik, N.V. Ivanchina, New Triterpene Glycosides from the

A. Hussain et al.

Far Eastern Starfish Solaster pacificus and Their Biological Activity, Biomolecules

- [181] B. Vera, A.D. Rodríguez, E. Avilés, Y. Ishikawa, Aplysqualenols A and B: squalene-derived polyethers with antitumoral and antiviral activity from the caribbean sea slug *Aplysia dactylomela*, Eur. J. Org. Chem. (2009) 5327–5336.
- [182] I. Konishi, M. Hosokawa, T. Sashima, H. Kobayashi, K. Miyashita, Halocynthiaxanthin and fucoxanthinol isolated from *Halocynthia roretzi* induce apoptosis in human leukemia, breast and colon cancer cells, Comp. Biochem. Physiol. 142 (2006) 53–59.