
HAL Id: hal-04337856
https://hal.science/hal-04337856

Submitted on 12 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Stochastic Approach for Scheduling AI Training Jobs
in GPU-based Systems

Federica Filippini, Jonatha ANSELMI, Danilo Ardagna, Bruno Gaujal

To cite this version:
Federica Filippini, Jonatha ANSELMI, Danilo Ardagna, Bruno Gaujal. A Stochastic Approach for
Scheduling AI Training Jobs in GPU-based Systems. IEEE Transactions on Cloud Computing, 2024,
12 (1), pp.53-69. �10.1109/TCC.2023.3336540�. �hal-04337856�

https://hal.science/hal-04337856
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

A Stochastic Approach for Scheduling
AI Training Jobs in GPU-based Systems

Federica Filippini, Jonatha Anselmi, Danilo Ardagna, Bruno Gaujal

Abstract—In this work, we optimize the scheduling of Deep
Learning (DL) training jobs from the perspective of a Cloud
Service Provider running a data center, which efficiently selects
resources for the execution of each job to minimize the average
energy consumption while satisfying time constraints. To model
the problem, we first develop a Mixed-Integer Non-Linear
Programming formulation. Unfortunately, the computation of
an optimal solution is prohibitively expensive, and to overcome
this difficulty, we design a heuristic STochastic Scheduler (STS).
Exploiting the probability distribution of early termination, STS
determines how to adapt the resource assignment during the
execution of the jobs to minimize the expected energy cost
while meeting the job due dates. The results of an extensive
experimental evaluation show that STS guarantees significantly
better results than other methods in the literature, effectively
avoiding due date violations and yielding a percentage total cost
reduction between 32% and 80% on average. We also prove the
applicability of our method in real-world scenarios, as obtaining
optimal schedules for systems of up to 100 nodes and 400
concurrent jobs requires less than 5 seconds. Finally, we evaluated
the effectiveness of GPU sharing, i.e., running multiple jobs in a
single GPU. The obtained results demonstrate that depending on
the workload and GPU memory, this further reduces the energy
cost by 17-29% on average.

Index Terms—Deep Learning, GPU cluster, Scheduling, Av-
erage energy consumption minimization, GPU sharing, Job
Tardiness.

I. INTRODUCTION

Nowadays, different classes of problems are tackled with
Deep Learning (DL) algorithms. The adoption of GPUs as
accelerators highly benefits the training process, providing an
execution speedup of about 5-40x with respect to CPUs [1],
and thus extending the set of applications that can be tackled
in reasonable computing time. However, high-performance
GPU-based servers are cost-prohibitive (about 200k USD
for high-end systems like NVIDIA DGX A100 [2]). As a
consequence, the demand for GPU-accelerated cloud servers
increased dramatically in recent years, dictating the necessity
for Cloud Service Providers (CSPs) to exploit effective re-
source management strategies.

This work aims to optimize the resource selection and
scheduling of DL training jobs from the perspective of a CSP
running a data center, efficiently selecting resources for the
execution of each job to minimize the energy consumption
costs while meeting the applications’ due dates. To the best

F. Filippini and D. Ardagna are with Politecnico di Milano. Milan, Italy
Email: {name.lastname}@polimi.it

J. Anselmi and B. Gaujal are with Univ. Grenoble Alpes, Inria, CNRS,
Grenoble INP, LIG, 38000 Grenoble, France.
Email: {name.lastname}@inria.fr

of our knowledge, methods available in the literature tackle
this problem by proposing (i) simple job scheduling mecha-
nisms, such as Earliest-Deadline-First (EDF) or First-in-First-
Out (FIFO) [3]–[6], possibly coupled with effective resource
selection algorithms, or (ii) more elaborate heuristics [7]–[9],
sometimes even coupling the resource selection and scheduling
problem as in our previous works [10], [11]. Albeit achieving
good-quality solutions, these approaches only consider the
worst-case execution times of DL applications in searching for
an optimal schedule. However, DL training jobs usually exploit
termination criteria based not only on a predetermined number
of epochs but also on reaching desired levels of accuracy. The
framework we propose in this work exploits the stochastic
information about the expected training times, designing a
solution that does not optimize only the worst-case execution,
but considers the probability of terminating the training after
a smaller number of epochs.

Our reference scenario includes the CSP cluster, composed
of a set of nodes characterized by different types and numbers
of GPUs, and a list of jobs, each associated with a due date and
a priority for fulfilling it. Jobs are submitted continuously over
time, and there is no information about future arrivals. There-
fore, our framework aims to minimize the energy consumption
costs and the penalties associated to due date violations in an
online setting, determining a new optimal schedule every time
a new job is submitted or terminates its execution. Depending
on the cluster configuration and the characteristics of the jobs
(in terms of due dates, priorities, memory requirements and
expected training times, estimated through suitable Machine
Learning models), our framework selects the best GPU type
to execute each application and determines the amount of
resources it needs. Jobs can be executed alone on a dedicated
node (exploiting one or more GPUs) or concurrently on the
same node, sharing the resources with other jobs. While
resource partitioning inevitably introduces some overheads,
these can usually be neglected when jobs run on dedicated
GPUs in the same machine (see, e.g., [11]–[15]). The interfer-
ence induced by GPU sharing is more significant, nevertheless,
the GPUs available on the market are increasingly performing
and have a large amount of memory, which enables multiple
mini-jobs to be trained simultaneously, optimizing the energy
consumption and resource usage albeit slightly increasing the
execution times [16].

In this work, we propose a novel Mixed-Integer Non-Linear
Programming formulation (MINLP) to model the Resource
Selection and Job Scheduling (RS-JS) problem. Due to the
stochasticity of the parameters and the combinatorial nature
of job scheduling, this problem is NP -hard and it is too

2

demanding to be solved directly. Therefore, we develop a
heuristic method, called STochastic Scheduler (STS). Based
on a stochastic model considering a single DL job, initially
proposed in [17], STS determines a dynamic schedule by
minimizing the expected value of energy costs while meeting
the applications’ due dates. STS optimizes the costs and
resource usage by starting with low-power configurations and
progressively increasing the assigned resources to recover
potential delays. An extensive experimental evaluation based
on simulation proves the effectiveness of this approach, guar-
anteeing an average total cost reduction between 32% and
80% against the EDF and Randomized Greedy (RG) methods
proposed in [11] and a Dynamic Programming-based method
adapted from the literature [4], while completely avoiding
due dates violations in the analyzed scenarios. Furthermore,
we show that exploiting GPU sharing yields an additional
reduction between 17 and 29%. Finally, a scalability analysis
demonstrates how systems with up to 100 nodes and 400
concurrent jobs are tackled in less than 5 seconds, assessing
the applicability of STS to practical scenarios.

Albeit related to the work in [11], this paper cannot be
considered as an extension. The RS-JS problem we tackled
in [11] is similar, but we addressed a different context, while
the MINLP formulation and heuristic algorithm we propose
here are novel. The main contributions of this paper are:

• We tackle the RS-JS problem in a physical system,
focusing on energy cost minimization, while the work
in [11] considered a virtualized environment.

• We propose a novel MINLP formulation to consider GPU
sharing, which was not introduced in [11].

• We consider stochastic models for the jobs training times,
while the previous work assumed deterministic estimates
based on executing a fixed number of epochs (a less
realistic assumption in real-life scenarios).

• We develop an original heuristic method, STS, which
incorporates GPU sharing and leverages the solution
model proposed in [17] to tackle the inherent stochasticity
of the optimal schedule.

• We design a simulator to test the quality of solutions
determined by STS, capable of dealing with training
times stochasticity.

Furthermore, this work extends [17], which was focused on
determining the optimal schedule for a single job in a context
where resource requirements can always be satisfied, using it
as a starting point to determine good-quality heuristic solutions
for the whole RS-JS problem in a more realistic setting.

The rest of the paper is organized as follows: a brief
overview of other literature proposals relevant to our field
is reported in Section II. Section III describes the reference
framework of our work, introducing the parameters used to
characterize the DL training jobs and the system architecture.
The mathematical formulation we propose to tackle our RS-
JS problem is reported in Section IV, while the single-job
stochastic model considered as starting point for STS is
described in Section V. Section VI describes the STS method
we developed in this work, and Section VII outlines the
experimental evaluation and the results we obtained with our

algorithms. Finally, conclusions are drawn in Section VIII.

II. RELATED WORK

The effective management of GPU-accelerated clusters,
which is crucial to exploit at best the available resources,
introduces many challenges. In this section, we provide an
overview of some relevant literature proposals in this field,
addressing resource selection and job scheduling problems
from different perspectives. Among these, note that GPU
sharing is currently gaining remarkable interest, due to the
large capacity of the most recent hardware. In particular, a time
sharing [18] or space sharing [19] pattern can be considered,
related to the fact that jobs either exploit the entire GPU for
a limited time fraction or spatially share the GPU resources
with a limited percentage. While we focus on space sharing
in our work, both strategies are considered in this section.

Hydra [9] is one of the literature proposals closest to our
work. The authors consider heterogeneous GPU clusters and
their solution adopts a quantitative cost-comparison approach
where the cost is defined as the sum between the job com-
pletion times and a dynamic penalty calculated from the total
tardiness. The optimal solution is determined via an optimized
branch&bound algorithm. However, Hydra considers jobs ex-
ecuted on a single GPU, running jobs are never re-evaluated,
a time-sharing pattern is considered, and the scheduling is
performed in batches. Similarly, SchedTune [5] and DASH [8]
are some of the few literature proposals considering hetero-
geneous GPU resources. SchedTune exploits Random Forest-
based models to predict the job memory demand and com-
pletion times when exploiting GPU sharing. DL applications
are executed in FIFO order, and deployed on the nodes that
guarantee lower completion times while satisfying the memory
demand and a co-location threshold to limit the interference
issues. DASH is a GPU cluster scheduler designed to match
different DL workloads and GPU types in multi-generational
GPU environments. It promotes jobs that are likely to observe
large performance improvements, using a checkpoint-restart
mechanism. The system is re-optimized every time a new job
arrives, establishing a protection period to avoid too frequent
promotions/demotions. Note that, while the scheduler switches
between generations, the GPU type and the number of GPUs
assigned to each job are fixed by the user.

Differently, Pollux [7] models how the goodput (a cus-
tom metric encompassing throughput and training efficiency)
changes by adding or removing resources in homogeneous
GPU-based systems. It profiles each job and dynamically tunes
the batch size, learning rate and number of assigned GPUs. It
is relevant to note that, as in our work, the number of GPUs
to be assigned to each job is automatically determined but the
impact of different GPU types is not considered.

HiveD [20] is focused on guaranteeing the affinity require-
ments of jobs sharing resources in a GPU-accelerated cluster:
instead of reserving a GPU quota to a job, corresponding to a
given number of GPUs, users receive cells including affinity
requirements. Since, a job receiving, e.g., 8 nodes with 8 GPUs
experiences better performance than receiving 64 nodes with
one GPU each, HiveD introduces a hierarchical reservation

3

mechanism based on cells where a multi-level structure is
considered to capture the different levels of affinity that a
group of GPUs could satisfy. The proposed cell structure
naturally forms a hierarchy similar to a typical GPU cluster
where GPU assignment follows the underlying system perfor-
mance (e.g., a job is assigned first to multiple GPUs attached
to a PCIe switch, then GPUs connected to a CPU socket,
then additional GPUs in a rack, and so on). HiveD relies on
local GPU schedulers but the proposed reservation mechanism
guarantees more efficient placements. With similar arguments,
ASTRAEA [21] deploys jobs on as few nodes as possible with
the aim of guaranteeing long-term GPU-time fairness both at
the job and at the user level. The fact that deploying jobs on
a few nodes improves their performance, together with the
choice of considering relatively small applications requiring
at most 8 GPUs, strengthened our decision to consider single-
node-only placements.

Scrooge [19] proposes a Mixed-Integer Linear Programming
formulation to find the minimum-cost GPU-accelerated Vir-
tual Machine in the cloud, meeting performance objectives.
Similarly to our work, the problem is solved whenever a new
job leaves or joins. However, Scrooge tackles inference DL
workloads. Igniter [22], focused also on inference jobs, is
an interference-aware resource provisioning framework that
allows spatial GPU sharing and jointly optimizes resource
allocation and scheduling. The authors model the performance
interference analytically, and Igniter determines the optimal
batch size, a lower bound for GPU resources and a greedy
placement minimizing the interference. Note that, differently
from our proposal, the optimization is executed periodically
and the resource assignment is static. Similarly, Nexus [18]
tackles the problem of distributing a Deep Neural Network-
based video analysis tasks workload on a GPU-accelerated
cluster, leveraging bin packing techniques and spatial GPU
sharing to achieve high throughput under latency constraints.

PickyMan [23] and Lucid [24] address the issues related to
preemption overheads. Preemption is allowed by PickyMan,
which minimizes it by predicting the execution times using
network traffic and historical data, and by greedily choosing
the appropriate job to stop, while it is not allowed by Lucid.
This is based on interpretable models and includes a job pro-
filer, an indolent packing strategy, and a resource orchestration
mechanism based on jobs priority.

MISO [6] and DISC [25] consider GPU space and time
sharing. MISO exploits the Multi-Instance GPU capability of
the latest NVIDIA datacenter GPUs (e.g., A100). It monitors
a FIFO queue and schedules jobs on the least-used GPU to
minimize disruptions and help with load balancing. As in our
work, users can specify the memory requirement of each job,
but migrations are not allowed to reduce the problem size
and complexity. DISC is an adaptive and efficient heuristic
algorithm for hyperparameter tuning aiming to improve GPU
utilization and model accuracy. GPU time sharing is modeled
as a fair multi-armed bandit problem using Nash social wel-
fare, while space sharing follows memory usage patterns.

Our previous work in [11] jointly optimizes the resource
selection and scheduling of DL jobs in virtualized clusters,
finding low-cost solutions by applying several heuristics based

on Randomized Greedy and Path Relinking. In this paper, we
rely on the same performance models to estimate job execution
times for a specific GPU assignment. The analysis in [11]
of the performance achieved on real clusters demonstrated
that the difference between the total costs (based on jobs
performance) obtained by our models and the measured costs
on the real system is below 13% (significantly lower than
the savings, in 32-80% range, we achieved with respect to
other methods as it will be demonstrated in Section VII).
Finally, the paper in [17], which serves as the foundation for
the development of our stochastic scheduler, is included in
Section V for comprehensive coverage. This paper presents an
analytical model for the ideal scheduling of individual Deep
Learning jobs within a system based on GPUs.

III. PROBLEM DESCRIPTION

The aim of this work is to tackle the Resource Selection
and Job Scheduling (RS-JS) problem for DL training jobs
from the perspective of a CSP running a data center. The
CSP goal is to minimize the energy consumption costs and
the penalties for due date violations. It is worth noting that
the principles underlying our solution are also applicable to
scenarios involving batch inference jobs when the processing
times are considerable. However, mixed-workloads including
training and inference jobs are left as part of our future work.

The scenario we model includes two main components: the
cluster, identified by a set of nodes N characterized by their
type and number of GPUs, and the queue of submitted jobs J ,
each associated with a due date dj and a priority for fulfilling
it. Each job is trained for a maximum number of epochs
denoted by wmax

j and suitable Machine Learning models can
be used to estimate the corresponding execution time on all the
candidate resources [26]. However, to characterize termination
criteria based on desired levels of accuracy, we introduce
the probability of concluding the training after Wj ≤ wmax

j

epochs. This corresponds to considering stochastic execution
profiles since the training time of job j depends on the number
of epochs it executes, which is defined as a random variable.

The following sections detail the reference framework we
tackle in our work, as well as the GPUs power consumption
model we consider to guide the optimal resource selection.

A. Reference Framework

The RS-JS process is exemplified in Figure 1. In each
scheduling interval, the optimizer combines the information
about the submitted jobs and the system description to (i)
determine the optimal configuration (type and number of
GPUs) for each job, and (ii) appropriately partition the set
of available computational resources. Jobs can run on a single
dedicated node or share the resources (the node or even the
GPU) with other jobs, provided that they are guaranteed at
least the minimum amount of memory mj they need to run.
If the available resources do not allow to execute all jobs
concurrently, some jobs can be postponed to the following
scheduling interval. Note that, while the interference generated
by node partitioning can be neglected (see, e.g., [11]–[15]),
this is not generally true for GPU sharing. Nevertheless, we

4

decided to consider this scenario, which is currently gaining
popularity in the literature [19], [22], since the large memory
of the most recent GPUs usually allows to simultaneously exe-
cute multiple mini-jobs, freeing resources for more demanding
jobs. Moreover, GPU sharing is essential for effectively sup-
porting the training of DL models for edge computing systems,
where the available resources are limited. The DL models
considered in this technology setting are usually small so that
multiple training jobs can fit in memory when adopting high-
end GPUs. To consider the performance degradation, we define
the possible GPU fractions f ∈ F that jobs may be assigned
to and introduce corresponding time-inflation coefficients bf .

Fig. 1: Reference framework. In the example, we consider four
submitted jobs j1, j2, j3, j4. Nodes n1 to nN are equipped with a variable
number of GPUs of possibly different types and have different energy costs.
Jobs j1, j2 and j3 are deployed on n1, running on 1 GPU and 2 GPUs,
respectively. Job j4 is sent back to the queue, and no other nodes are selected.

The RS-JS problem is tackled in an online scenario: no
information is available in advance about new job submissions
and their characteristics. Whenever a job enters the system,
the schedule is re-evaluated, and the resources assigned to
the running applications may change to accommodate the new
one, favoring high-priority jobs to minimize penalty violations.
As in other literature proposals [13], [27], [28], jobs can be
preempted and/or migrated to nodes with a different type
or number of GPUs. Note that the online setting makes it
impossible to find a schedule that optimizes the training of all
jobs over a long time horizon including multiple submissions.
Therefore, as in zero-data problems [29], we are constrained to
find a local minimum in each scheduling interval, reconfigur-
ing the system whenever (i) a job is submitted or (ii) terminates
the training, or (iii) after a fixed time H . Focusing on a single
interval may adversely affect the overall schedule, thus we
need suitable mechanisms to guarantee that the solution is
robust against future, unpredictable events that may reduce
the amount of available resources.

At every rescheduling point, the queue J includes both jobs

that have just been submitted and jobs that were previously
postponed. Moreover, since all assignments are reevaluated,
the scheduler virtually adds to J the already running jobs1.
The priority of each job j is characterized by the tardiness
weight ηj , used to compute the penalty for due date violations.
Each cluster node n ∈ N is instead characterized by a specific
number of GPUs, denoted by Kn, of a fixed type i ∈ I (we
define a coefficient Gni equal to 1 if node n hosts GPUs of
type i), and by an hourly cost cnk related to the number of
used GPUs k. Moreover, we denote by Mn the memory of
each GPU on node n (note that, for the sake of simplicity, we
consider the GPUs on a node to be homogeneous). Finally,
we introduce a set G to enumerate all the GPUs in the cluster
(i.e., |G| =

∑
n∈N Kn), and we introduce a binary parameter

Γgn that is 1 if GPU g ∈ G is located on node n. As discussed
in the next section, this will be relevant to properly define the
placement problem when multiple jobs share a single GPU.

Execution logs of the running jobs are used to periodically
re-train the ML models used to estimate execution time and
to update the statistics on the number of training epochs.

B. Power-Consumption Model

Discussing how the power consumption of the GPUs as-
signed to a given job j is related to the job processing speed
is crucial to identify the optimal solution to our problem.

Consider a job j, executed on k GPUs of type i on any
node n. Since the job, the GPU type and the node are fixed, we
will omit here the corresponding indices, denoting by K = Kn

the maximum possible value of k.
Let sk be the processing speed of job j when k GPUs are

in use. The function sk is the speed-up function of the job
and measures its degree of parallelism. We can assume sk
to be sublinear in the number of GPUs k (see, e.g., [26]).
More precisely, we assume that (sk)k is non-decreasing and
that sk+1 − sk is non-increasing. These “diminishing returns”
assumption is natural to model the overheads induced by
parallel computations [26], [30]. Moreover, s0 = 0.

We assume, as in [10], [31], that the (instantaneous) power
consumption when operating at speed sk takes the form:

P (sk) :=

{
kPon + (K − k)Pidle if k > 0

0 if k = 0,
(1)

where Pon and Pidle are the (instantaneous) power con-
sumption of an in-use and idle GPU, respectively. Note that
P (0) = 0, i.e., the assumption that the system is at complete
rest when no GPU is active, holds because we can prescribe
that nodes are switched off when no GPUs are used, to avoid
resource wastage. In the right-hand-side of (1), k is the inverse
function of sk. Since we have put mild assumptions on the
sequence (sk)k, the power consumption function in (1), seen
as a function of the processing speed, is in fact quite general.
We assume that P (s) is non-decreasing and convex.

1Note that they are actually stopped and migrated only at the end of the
scheduling process if their resource assignment needs to be modified

5

TABLE I: RS-JS Problem Parameters and Variables

Parameters
J set of submitted jobs
N set of cluster nodes
G set of all the cluster GPUs
I set of GPU types
F set of GPU fractions
Kn total number of GPUs on node n
Mn memory of a GPU on node n
Gni 1 if node n hosts GPUs of type i, 0 otherwise
Γgn 1 if GPU g is located on node n, 0 otherwise
mj minimum amount of memory needed to execute job j
wmax

j maximum number of training epochs for job j

Wj number of epochs executed by job j
tjik training time of job j on k GPUs of type i
bf time-inflation coefficient when a GPU fraction f is used
H maximum scheduling time interval
T̄j maximum execution time of job j
dj due date of job j
ηj tardiness weight of job j
cnk time-unit energy cost of node n when k GPUs are used
ρ penalty coefficient for postponed jobs
Variables
νn 1 if node n is chosen, 0 otherwise
ξjink 1 if job j is executed on node n with k GPUs of type i, 0 otherwise
σjg 1 if GPU g is assigned to job j, 0 otherwise
φjf 1 if job j is executed on a GPU fraction f , 0 otherwise
ζjn 1 if job j is executed on node n, 0 otherwise
γnk 1 if k is the total number of used GPUs on node n, 0 otherwise
τj tardiness of job j
τ̄j worst-case tardiness of job j
πjn energy-consumption cost of job j on node n
αjn 1 if j is the first-ending job on node n, 0 otherwise

IV. RESOURCE SELECTION–JOB SCHEDULING PROBLEM

This section proposes the mathematical formulations we
developed to describe the RS-JS problem introduced in Sec-
tion III. The goal is to minimize the expected energy con-
sumption costs and penalties for due date violations, over
a long time horizon including multiple job submissions and
executions. As described in Section III, all the assignment
decisions are reevaluated at each rescheduling point, occurring
after (i) a new job arrival, (ii) a job completion, or (iii) a
maximum time interval H . Since the problem is tackled in
an online setting, future job submissions are unpredictable,
and therefore we consider only events (ii) and (iii) in our
MINLP formulation. Moreover, here we focus on determining
the optimal solution for the local problem considering a single
scheduling interval, while the complete horizon is tackled by
the model described in Section V and the heuristic method
presented in Section VI.

The scheduling decisions addressed in the RS-JS problem
are characterized through a list of parameters and variables that
are reported for clarity in Table I. The main binary variables
introduced to represent the schedule are νn, which are 1 if
node n ∈ N is used, ζjn, which are 1 if job j ∈ J runs on
node n, ξjink, which are 1 if job j is executed on node n with
k GPUs of type i ∈ I, σjg , which are 1 if job j is deployed on
a GPU g ∈ G, and φjf , which are 1 if job j runs on a GPU
fraction f ∈ F . Note that the set of fractions is defined as
F = {1/2, 1/4, · · · , 1}, where f = 1 is assigned when a job
runs on a dedicated GPU (with, of course, no time inflation:
b1 = 1). Finally, we consider binary variables αjn, which are
1 if j is the first job that terminates on node n, and γnk, which
are 1 if k is the total number of used GPUs on node n. We
introduce eight families of placement constraints, which are
defined in the following. The first group (Constraints (2)-(5))

imposes that a job can be deployed on a specific configuration
(node n, GPU type i and number of GPUs k) only if that
configuration is selected in the schedule:

ξjink ≤ ζjn ∀j ∈ J , i ∈ I, n ∈ N , k = 1 : Kn (2)∑
i∈I

Kn∑
k=1

ξjink ≤ νn ∀j ∈ J , n ∈ N (3)

∑
n∈N

ζjn ≤ 1 ∀j ∈ J (4)

ζjn ≤ νn ∀j ∈ J , n ∈ N . (5)

Specifically, inequalities (2) specify that each job j can run
on node n using k GPUs of type i only if it is assigned to
node n in the current time period, i.e., ζjn = 1. The sum at the
left-hand-side of Constraints (3) corresponds to the number of
pairs (i, k) selected for each job j on node n. This must be 0
when node n is not in use (νn = 0). When instead νn = 1, at
most one of the variables ξjink can be equal to 1 (if the job
is actually deployed on the node, as specified by the previous
constraints). Finally, by Constraints (4) and (5), each job must
be assigned to at most one node, and only if the node is in
use. Note that, while deciding to deploy jobs on single nodes
may seem a limitation, recent DL workloads analysis [32]
highlighted how over 50% of jobs require a single GPU, while
jobs exploiting more than 8 GPUs (which we will consider as
the maximum node size in our experimental evaluation) are
less than 10%. Moreover, enforcing GPU locality yields over
10× speed-up [16].

The second family (Constraints (6) and (7)) is related to the
GPU type selected for job j:

ξjink ≤ Gni ∀j ∈ J , i ∈ I, n ∈ N , k = 1 : Kn (6)
Kn∑
k=1

ξjink = ζjnGni ∀j ∈ J , n ∈ N , i ∈ I. (7)

In particular, the former prescribes that a job can be assigned
to node n with GPU type i only if this is the type hosted by
the node (Gni = 1). The right-hand side of equalities (7) is 1
if job j is deployed on node n and this hosts GPUs of type i. If
this is the case, the constraints impose that a specific number
of GPUs is assigned to the job.

The third group (Constraints (8)-(10)) predicates on the
GPU fraction f assigned to job j:

∑
f∈F

φjf ≤ 1 ∀j ∈ J (8)

∑
j∈J
f∈F

fφjfσjg ≤ 1 ∀g ∈ G (9)

∑
i∈I
n∈N

Kn∑
k=2

ξjink ≤ φj1 ∀j ∈ J . (10)

Specifically, at most one fraction in F can be assigned to
each job (see (8)), the sum of the fractions assigned to all
jobs in a specific GPU g must not exceed 1 (see (9)), and the
fraction f = 1 must be assigned to all jobs that are executed
on more than one GPU (identified by the sum at left-hand side
of Constraints (10)).

The fourth family (Constraints (11) and (12)) predicates on
the GPU(s) assigned to each job:

6

∑
g∈G

σjg =
∑
i∈I
n∈N

Kn∑
k=1

kξjink ∀j ∈ J (11)

σjg ≤ ζjnΓgn ∀j ∈ J , n ∈ N , g ∈ G. (12)

By summing over all GPUs g ∈ G, Constraints (11) compute
the number of GPUs assigned to job j; this must be equal
to the number k identified by variables ξjink. Moreover, by
Constraints (12), a specific GPU g can be assigned to j only
if it is on the same node n where the job is deployed.

The fifth group (Constraints (13) and (14)) is related to the
number of active GPU in each node:

∑
j∈J
g∈G

σjgΓgn = kγnk ∀n ∈ N , k = 1 : Kn (13)

Kn∑
k=1

γnk = νn ∀n ∈ N . (14)

Constraints (13) prescribe that, for each node n, the variable
γnk is equal to 1 if k is the total number of used GPUs on
the node, given by the sum at the left-hand side. Moreover,
Constraints (14) impose that, if the node is selected (νn = 1),
exactly one γnk is equal to 1 (the number of used GPUs on
the node must be unique), while all the γnk variables are zero
if the node is not used.

Constraints (15) check the memory requirement of each job
j, prescribing that it cannot exceed the fraction of available
GPU memory on the selected node:

∑
g∈G
f∈F

(Mnf −mj) Γgnφjfσjg ≥ 0 ∀j ∈ J , n ∈ N . (15)

Constraint (16) concerns the total number of active nodes:

∑
n∈N

νn = min {|J |, |N |}. (16)

In particular, it requires that the number of used nodes is
equal to the minimum between the queue length |J | and
the total number of nodes |N |, guaranteeing that as many
submitted jobs as possible are executed. Running the jobs as
soon as resources are available contributes to minimizing the
costs, because postponed jobs approach their due date and thus
require more (and possibly more expensive) resources to be
completed without delays. Moreover, preemption guarantees
that, if higher-priority jobs are submitted in the future, the
resources can be reallocated, thus the current decisions do not
undermine the effectiveness of the solution in the long run.

Finally, the eighth family (Constraints (17) and (18)) pre-
scribes that exactly one job will be the one that completes first
on each open node n:

∑
j∈J

αjn = νn ∀n ∈ N (17)

αjn ≤ ζjn ∀j ∈ J , n ∈ N . (18)

To characterize the system costs, we introduce continuous
variables representing the execution delays with respect to the
jobs due dates (τj and τ̄j) and the energy-consumption costs
(πjn). In particular, the tardiness τj is defined by:

∑
n∈N
i∈I

tji1ξjin1

∑
f∈F

bfφjf +

Kn∑
k=2

tjikξjink

 ≤ dj + τj , (19)

where the first term represents the total execution time of
job j if it is executed on a single GPU using a fraction f ∈ F ,
and the second term defines the execution time if it is executed
on multiple, dedicated GPUs.

The worst-case tardiness τ̄j is defined by prescribing:

(
H + T̄j

)1−
∑
n∈N

ζjn

 ≤ dj + τ̄j , (20)

where T̄j is the maximum execution time of job j on all
possible configurations. Indeed, by definition of ζjn, the sum
at the left-hand side is 0 if the job is postponed (no node
is selected for the execution), so that τ̄j denotes the worst
possible delay occurring when job j is not executed in the
current scheduling point and runs with the slowest possible
configuration afterward.

Finally, the energy cost πjn is defined by:

∑
i∈I

tji1ξjin1

∑
f∈F

bfφjf +

Kn∑
k=2

tjikξjink

Kn∑
κ̄=1

cnκ̄γnκ̄

 ≤ πjn,

(21)

where the first parenthesis corresponds to the total execution
time of job j with the current configuration (defined, as in
Constraints (19), by summing the contribution obtained if j
is deployed on a GPU fraction and the one obtained if it is
deployed on dedicated GPUs). The second parenthesis is the
energy cost of node n, since γnκ̄ is 1 when a total of κ̄ GPUs
are used on node n. Note that, with this definition, job j pays
the energy cost due to the entire node usage, even if the k̂
GPUs are partitioned among many jobs. However, this does
not create issues since, in each scheduling interval, only one
job will have αjn = 1 in each node, thus the cost terms are
effectively considered only once.

Our optimization problem reads:

minE

∑
j∈J

(ηjτj + ρηj τ̄j) +
∑
j∈J
n∈N

αjnπjn

 (P1.1)

subject to: (2)-(21) and

νn ∈ {0, 1} ∀n ∈ N (P1.2)

ξjink ∈ {0, 1} ∀j ∈ J , i ∈ I, n ∈ N , k = 1 : Kn (P1.3)

σjg ∈ {0, 1} ∀j ∈ J , g ∈ G (P1.4)

φjf ∈ {0, 1} ∀j ∈ J , f ∈ F (P1.5)

ζjn ∈ {0, 1} ∀j ∈ J , n ∈ N (P1.6)

γnk ∈ {0, 1} ∀n ∈ N , k = 1 : Kn (P1.7)

αjn ∈ {0, 1} ∀j ∈ J , n ∈ N (P1.8)

πjn ≥ 0 ∀j ∈ J , n ∈ N (P1.9)

τj ≥ 0 ∀j ∈ J (P1.10)

τ̄j ≥ 0 ∀j ∈ J . (P1.11)

The first term of the objective function (P1.1) represents
the sum over all jobs j ∈ J of the penalties for due date
violations. Tardiness and worst-case tardiness are multiplied
by the weight ηj , defined so that violating the due date of high-
priority jobs implies a higher penalty. Since job postponements
may induce unforeseen delays if the submission of new jobs

7

TABLE II: Stochastic Model Parameters and Variables

Parameters
sk job processing speed when using k GPUs
Pon instantaneous power consumption of a GPU in-use
Pidle instantaneous power consumption of an idle GPU
Variables
w(t) number of epochs (amount of work) executed at time t
s(w) processing speed when w epochs have been completed
Q(s) power consumption per epoch when operating at speed s
P (s) instantaneous GPU power consumption at speed s
xk number of epochs after which we move from sk to sk+1

prevents from assigning them all the required resources, the
worst-case tardiness is further penalized by a coefficient ρ > 1.

The second term corresponds to the total energy cost: for
each node n ∈ N , we add to the sum the energy cost πjn

related to the execution of the first job that terminates on
node n under the current resource selection and scheduling,
characterized by αjn = 1. This cost definition is reasonable
because the system is fully reconfigured when a job terminates,
thus the resources assigned to all jobs may change.

Note that all the terms in the objective function (P1.1) de-
pend, through the definitions in Constraints (19), (20) and (21),
on the jobs execution times. These are random variables
because the number of epochs executed during the training is
stochastic, therefore the total cost is optimized in the expected
value. Moreover, all reconfiguration costs are neglected in
our model, since the corresponding overheads are orders of
magnitude smaller than DL training times (a few minutes
against several hours or days [32]).

V. STOCHASTIC MODEL FOR A SINGLE DL JOB

The RS-JS problem needs to be solved online within a short
computing time (in the order of a few minutes). However,
the MINLP formulation presented above is not solvable in
such a short time, even using state-of-the-art MINLP solvers.
Indeed, in our previous work [33], an instance including 40
nodes in a simplified problem setting where GPU sharing
was neglected and a deterministic number of epochs were
considered required about 15 min execution time making the
adoption of state-of-the-art commercial solvers impractical.
Therefore, we propose the STS heuristic method to obtain
good solutions in a reasonable computing time.

The main idea of our heuristic is to focus on a single DL
job j and, for every GPU type i, to compute the best allocation
of GPUs that respects its due date dj while minimizing the
resulting expected energy cost.

In this section, we develop a stochastic model for the
execution of a single job and identify structural properties
that will yield the definition of an efficient algorithm for the
computation of an optimal speed profile. Note that the model
relies on the assumption that the number of available GPUs in
the cluster is always enough to execute the considered job with
its optimal configuration, i.e., that the cluster can allocate all
GPUs to each job. While this is not true in practice, unless the
load is very light, we will show in the next sections that the
solution found under this theoretical setting can be effectively
exploited to guide the choices of our STS method. The list of
parameters and variables is reported in Table II.

A. Problem Formulation

The model presented in this section was first introduced
in a previous work [17]. In Section VI, we will rely on this
model to solve the global optimization problem heuristically
by using the optimal GPU allocation for each job in isolation
and then by constructing a global schedule by superposing
each individual schedule. Therefore, since here we consider a
fixed job j and GPU type i, we simplify the notation and drop
indices j and i in the rest of this section. Let K represent the
total number of GPUs and d the job due date. The number
of epochs (or work) required to complete the job is a random
variable W upper bounded by wmax and with complementary
probability distribution function F c(w) := P(W > w).

Now, let us define the following quantities:
• w := w(t), the number of epochs executed at time t;
• s := s(w) ∈ {s1, . . . , sK}, the speed used when w

epochs have been executed, w ∈ [0, wmax];
• Q(s), the power consumption per epoch when operating

at speed s, defined as:

Q(s) := P (s)
dt

dw
=

P (s)

s
, (22)

where derivatives are always intended as right derivatives
and P follows the power-consumption model defined in
Section III-B. Since P (0) = 0 and P is non-decreasing
and convex, then Q is non-decreasing.

We aim to find a speed profile s : [0, wmax] → {s1, . . . , sK}
that minimizes the mean energy consumption to execute the
given job constrained by the due date d. The mean energy
consumption under speed profile s is defined by:

E(s) =

∫ wmax

0

F
c
(w)Q(s(w)) dw.

Our objective is to solve the optimization problem:

min
s:[0,wmax]→{s1,...,sG}

∫ wmax

0

F c(w)Q(s(w)) dw (P2.1)

subject to: ∫ wmax

0

dw

s(w)
≤ d. (P2.2)

Note that the constraint in (P2.2) simply states that the job
has to be completed before the due date d. To see this, let
t(w) denote the time to execute the job up to w. Then,

dt(w)

dw
=

1

s(w)

and integrating both sides and using that t(0) = 0 and that
t(wmax) ≤ d, we obtain (P2.2).

B. A Convex Programming Solution

We show that the problem (P2) can be solved via convex
programming, which implies that an optimal solution can
be computed efficiently by using existing algorithms as the
interior point method. The following Lemma and Propositions
are reported here to make this paper self-contained; the cor-
responding proofs can be found in [17].

8

Lemma 1. There exists an optimal speed schedule s∗(w) of
(P2) that is non-decreasing almost everywhere.

The proof is based on Lusin’s theorem for measurable
functions and a compactness argument. Any non-decreasing
speed schedule can be described by K (possibly empty) time
intervals: Speed s1 is used in [0, x1) (i.e., one GPU is used),
speed s2 is used in [x1, x2) (i.e., the job is assigned two
GPUs), and so forth up to sK in [xK−1, xK) with xK = wmax.
This implies that the infinite-dimensional optimization prob-
lem (P2) can be recast into a discrete one:

min
xk, k=1,...,K−1

K∑
k=1

Q(sk)

∫ xk

xk−1

F c(w)dw (P3.1)

subject to:

K∑
k=1

xk − xk−1

sk
≤ d (P3.2)

xk ≤ xk+1, ∀k = 0, . . . , K − 1, (P3.3)

where x0 = 0 and xK = wmax. Here, the new decision
variable xk is interpreted as the number of epochs (i.e., the
amount of work) after which the speed changes from sk to
sk+1. At this point, one more GPU is allocated to the job.

The following proposition gives properties about (P3).

Proposition 1. The optimization problem (P3) is convex, with
a differentiable objective function when F c is continuous. In
addition, if F c is strictly decreasing, then it is strictly convex.

This means that a solution of (P3) can be computed using
interior point methods [34] or even derivative-free optimization
algorithms [35]. Note that if W is discrete, one can define
a non-linear interpolation scheme to construct a continuous
and strictly decreasing complementary probability distribution
function that approximates the original one arbitrarily well.

C. Efficient Computation

By Proposition 1, an optimal speed profile may be directly
computed by applying standard algorithms for convex pro-
gramming. However, this approach does not fully exploit the
particular structure of our problem as these algorithms essen-
tially rely on convexity only. We now go beyond convexity
and investigate further structural properties possessed by an
optimal speed profile when the objective is strictly convex
and regular. These will be used to develop Algorithm 1, which
will find an optimal solution much faster than general-purpose
algorithms from convex programming. These are given in
Propositions 2 and 3 below and will lead us to the design
of an algorithm (Algorithm 1) that will significantly speed up
the computation of an optimal speed profile.

The first result says that only consecutive speeds are used.
Specifically, if the job starts under speed, e.g., s2 and then
moves to speed s3, either it runs with speed s3 until it
terminates or it moves to s4, but there is no possibility to
move directly from s3 to any sk with k ≥ 5.

Proposition 2. Assume that F is continuous and P is strictly
convex. Then, the optimal schedule uses a consecutive set of
speeds and always uses the maximal speed sK .

Now, given m ∈ {1, . . . ,K}, let us construct the speed
profile v := vm : [0, wmax] → {sm, . . . , sK} as follows:

v(w) = sk if and only if w ∈ [yk−1, yk) (23)

for all k = m, . . . ,K, where y0 = · · · = ym−1 = 0, yK =
wmax and the speed change vector point (ym, . . . , yK−1) ∈
[0, wmax]K−m satisfies:

yk = (F
c
)
−1

(
Φm

Φk

F
c
(ym)

)
, m + 1 ≤ k ≤ K − 1, (24)

where (F c)−1(y) := sup{z : F c(z) = y},

Φk :=
skP (sk+1)− sk+1P (sk)

sk+1 − sk

and
K∑

k=m

yk − yk−1

sk
= d. (25)

The expression for the yk’s in (24) is closely related to the
KKT conditions of the optimization problem (P3).

The next proposition gives a property on v.

Proposition 3. Assume that F is continuous and P is strictly
convex. Then, there exists a unique optimizer that solves (P2).
In addition, if such optimizer uses all the speeds s1, . . . , sK ,
then it is given by v with m = 1.

By combining the previous propositions, we can design an
algorithm that computes the optimal schedule even when some
speeds are not used in the optimal solution; see Algorithm 1.

Algorithm 1 Dichotomy over the set of speeds for the optimal
schedule computation (single job).
1: Input: The set of speeds s1, . . . , sK , the power function P , the deadline d and

the complementary probability distribution F c.
2: Output: The optimal subset of speeds sU , . . . , sK , and schedule yU , . . . yK .
3: U := K;L := 1;
4: while U > L do
5: m := ⌊(U + L)/2⌋;
6: Solve (25) for ym using speeds sm, . . . , sK , where ym+1, . . . , yK are given

by (24);
7: if ym ≤ 0 then
8: L := m;
9: else

10: U := m;
11: end if
12: end while

We have the following result (see the proof in [17]):

Proposition 4. Assume that F is continuous and P is strictly
convex. Then, Algorithm 1 computes the (unique) optimal
schedule. The complexity of this algorithm is log2(K) times
the complexity of solving the one-dimensional equation (25).

Let us comment on the computational complexity of Al-
gorithm 1. First, it is clear that it halts after no more than
log2 (K) iterations. Then, for each iteration, a one-dimensional
equation needs to be solved, i.e., (25). Rearranging terms and
using (24), this equation can be rewritten as:

d =
wmax

sK
+

K−1∑
k=m

ykSk =
wmax

sK
+

K−1∑
k=m

(F
c
)
−1

(
Φm

Φk

F
c
(ym)

)
Sk, (26)

9

where Sk := 1
sk

− 1
sk+1

. We notice that (26) admits a unique
solution and that F c is differentiable almost everywhere be-
cause it is increasing. If derivatives can be computed, one can
solve (26) by using (efficient) standard root-finding algorithms
such as the Newton–Raphson or the secant methods.

VI. STOCHASTIC SCHEDULER

As previously mentioned, tackling the MINLP formulation
presented in Section IV is impractical for state-of-the-art
solvers, especially considering the stochastic nature of the
parameters and, consequently, the objective function.

Therefore, in this section we illustrate the STS heuristic
to determine high-quality solutions in a reasonable computing
time. This method leverages the single-job stochastic model
presented in Section V, under the assumption that energy costs
increase linearly with the number of used GPUs (assumption
that in practice holds see, e.g., the Cloud Providers pricing
models in [36], [37]).

The STS method is reported in Algorithm 2 and includes
three stages, which are described in the following sections.

Algorithm 2 STochastic Scheduler
1: Input: J , ∆, N , Sold
2: Output: S, Jp

J : list of submitted jobs; ∆: pressure indices of all jobs; N : set of cluster nodes; Sold : solution of the previous
scheduling step

S: new schedule; Jp: list of postponed jobs

3: S ← ∅
4: Jp ← ∅
5: NA ← N
6: Js ← SORT JOBS LIST(J , ∆)
7: while NA ̸= ∅ do
8: for all j ∈ Js do
9: Dj ← SELECT BEST CONFIGURATIONS(j)

10: (assigned, nj , Dj) ← ASSIGN(j,Dj ,N)
11: if assigned then
12: S ← S ∪ (j,Dj , nj)
13: if nj was saturated then
14: NA \ {nj}
15: end if
16: else
17: Jp ← Jp ∪ {j}
18: S ← S ∪ (j, ·, ·)
19: end if
20: Js ← Js \ {j}
21: end for
22: end while
23: S ← POSTPROCESSING(S, Sold)
24: return S, Jp

A. Preprocessing Stage

The list of submitted jobs J is sorted (line 6) by assigning
to all jobs a pressure index ∆j that denotes how close they
are to the corresponding due date. This step is based on the
assumption that, in our framework, the penalties for due date
violations are significantly larger than the energy costs. Since,
moreover, for large systems (such as the ones that are usually
tackled by Cloud Service Providers) the available resources
may not be enough to execute all jobs concurrently, it is
reasonable to prioritize jobs that have a higher risk of violation.
∆j is defined as:

∆j = Tc + min
i∈I,n∈N ,k=1:Kn

{tjik} − dj , (27)

where Tc denotes the current time and the minimum iden-
tifies the smaller possible execution time of job j with all

the existing configurations. Note that this index can be further
updated by multiplying it by ηj when it is strictly positive,
which means prioritizing more jobs that are not only violating
the due date but also subject to higher penalties.

It is worth noting that first-principle scheduling methods
often considered in the literature, as EDF and FIFO, exploit
modified versions of this pressure index defined as ∆EDF

j =
dj or ∆FIFO

j = Θj , respectively, where Θj is the submission
time of job j.

B. Optimization and Assignment Stage

The goal of this stage (corresponding to the loop in lines
7–22) is to determine a high-quality schedule S, defined by a
set of tuples characterizing the configuration selected for each
job j and the node where it is executed (if any). Specifically,
we denote the configuration as Dj = (ij , kj , fj), i.e., as the
type, number and fraction of GPUs assigned to job j. If nj is
the node where j is deployed, the corresponding element in
the scheduler will thus be (j,Dj , nj). Note that, when job j
is postponed, this is denoted in the schedule as (j, ·, ·).

For each job j in the sorted queue Js defined at the previous
step, the set Dj of optimal configurations is selected following
the procedure reported in Algorithm 3, which is developed
by adapting and iteratively solving the model presented in
Section V. It is based on the assumption that, since jobs fre-
quently terminate before their maximum number of epochs, it
is reasonable to start executing them with low-power configu-
rations, that are less expensive, and then progressively increase
the resources as the due dates approach. This minimizes costs
for jobs that terminate early while guaranteeing that the due
dates are still met even for jobs that have a slow improvement
rate and terminate at the maximum number of epochs. Note
that the stochastic model of Section V was defined to cover a
simpler scenario, where each job is deployed on a dedicated
node, GPUs are homogeneous and there are infinite resources.
This entailed that, on one hand, postponements never occur,
and, on the other hand, the optimal resource profile assigned
to each job can be determined upon submission. Indeed, since
GPUs are infinite, future submissions do not affect the resource
availability. This is not true in our setting, where the optimal
resource selection needs to be dynamically adjusted over time.
Therefore, we need to perform some adaptations:
• After solving the model for each job and GPU type sep-

arately to determine the best configurations, we demand
the deployment to a different component, so that multiple
jobs can be packed on a single node or GPU if needed.

• We translate the model over time so that if Tc is the
current scheduling step, the due dates become dj − Tc.

• Only the first configuration of the optimal resource
profile, i.e., the number of GPUs k to be used at the
beginning of the current scheduling step, is considered,
and the stochastic model is periodically reevaluated.

Note that performing the last adjustment requires the fol-
lowing considerations. First of all, we need to determine the
stochastic profile of partially executed jobs. For each job j,
if wc is the number of already executed epochs, we redefine
the support of w as

[
wc, w

max
j

]
, we impose x0 = wc and we

10

replace the probability measure P (W) with P (W | W > wc)
by exploiting the conditional probability theory. Furthermore,
the model determines not only the optimal configuration for
job j, but also the time Tj at which the resource assignment
needs to be improved (i.e., the processing speed for the
considered job should change from sk to sk+1). Therefore,
other than solving the optimization problem every time a job
terminates, we need to determine a new optimal schedule at
each Tj . To guarantee that the optimal configuration selected
by the model in two scheduling steps is consistent (i.e., the
number of GPUs assigned to a job does not decrease over
time), we set the minimum number of GPUs that can be
selected for a job j, denoted as k0, to k + 1 if Tc = Tj ,
and to k otherwise, where k is the number selected in the
previous schedule (we set k0 = 0 if j was never executed).

The model is solved (line 5 of Algorithm 3) by the
procedure described in Algorithm 1, keeping, as previously
mentioned, only the first configuration. The list of all config-
urations selected for each GPU type i ∈ I is sorted (line 9)
according to the value of the objective function (P3.1).

Once the procedure is complete and the set Dj is available,
the assignment process starts (lines 10–19 of Algorithm 2).
The assign function selects the node nj where job j is
scheduled for execution, exploiting the best configuration
Dj ∈ Dj compatible with the available resources, if any,
according to a best-fit approach with the aim to saturate the
resources currently in use. If no resources are available, job
j is returned to the queue (lines 17–18). Note that the job
allocation always aims to saturate first the resources that are
already partially used, since this contributes to minimizing the
energy costs. During the assignment process, if the selected
node nj is saturated after having deployed job j, it is removed
from the set NA of available resources.

Algorithm 3 Optimization procedure
1: function SELECT BEST CONFIGURATIONS(j)

I : GPU types; Mj : instance of stochastic model for j; Pji : profile solution of Mj with GPU type i; Tc :

current scheduling time

2: Dj ← ∅
3: for all i ∈ I do
4: Mj ← DEFINE MODEL(j, i, Tc)
5: Pji ← OPTIMAL SOLUTION FOR SINGLE JOB(Mj)
6: Dji ← GET INITIAL CONFIGURATION(Pji)
7: Dj ← Dj ∪Dji

8: end for
9: Dj ← SORT(Dj)

10: return Dj

11: end function

C. Postprocessing Stage

Once the schedule S is complete, we try to minimize the
amount of idle resources by increasing the number of GPUs
or the GPU fractions assigned to the jobs when these remain
unused. Moreover, if the type and number of GPUs assigned
to a job do not change between Sold and S, we attempt to
allocate it to the same node, to avoid unnecessary migrations.

VII. EXPERIMENTAL ANALYSIS

This section describes the experimental evaluation we de-
signed to assess the quality of solutions obtained by the

STS, comparing the energy costs and the due date violation
penalties with the outcomes of other heuristic approaches by
means of extensive simulations. Specifically, Section VII-A
introduces the setup of the experiments and the approach we
followed in the comparisons, while the results are reported in
Section VII-B. Finally, a scalability analysis is discussed in
Section VII-C. All the analyses are based on simulation. The
code and all results presented in this section are available on
Zenodo.2

A. Experimental Setup and Methodology

This section illustrates the experimental settings for eval-
uating the quality of the STS solutions. In particular, Sec-
tion VII-A1 presents the methods we used to compare the
obtained results, as well as the metric we defined to denote
the solution quality. Section VII-A2 describes the experi-
ment we performed to derive the stochastic profiles for job
training times. Section VII-A3 describes how we generated
the problem instances we tackled with the different methods,
and Section VII-A4 presents the parameters we considered to
investigate the impact of GPU sharing. Finally, Section VII-A5
describes the software and hardware setting of our tests.

1) Alternative Methods: We compared STS with:
• Earliest-Deadline-First: a first-principle scheduling

method often used for comparison in the literature [3],
which we consider as our benchmark. It assigns
resources to jobs giving higher priority to those closer to
the due date. It is relevant to note that the configuration
chosen for each job is never reevaluated, so that, if
higher-priority jobs are submitted after long-running
jobs with lower priority, they have to wait for them to
be completed before receiving resources. Note that we
chose EDF over other heuristics such as FIFO because
it proved to be more effective in similar scenarios [11].

• Random Greedy: a heuristic method proposed in [11],
which orders jobs according to the same pressure index
defined in Equation (27) and selects the best configuration
for each job j as (i) the cheapest configuration such that
j completes before the due date, if possible, or (ii) the
fastest available configuration if j is going to violate
the due date with any type and number of GPUs. RG
algorithm had to be adapted because it was developed to
deal with cluster nodes that can be equipped on demand
with different Virtual Machines, while for us the GPU
type on each node is fixed.

• Dynamic Programming (DP): a heuristic method initially
proposed in [4], that leverages dynamic programming to
determine at each reconfiguration interval ∆t the optimal
batch size and number of GPUs required by all jobs,
and then schedules them in FIFO order. As mentioned
in [11], we extended this method by proposing alternative
proxy functions, with the goal of better addressing the
issue of due date violations and thus obtaining a more fair
comparison with STS. In this work, we discuss the results
obtained by considering a proxy function FWCT defined,
by adapting the corresponding equation from [11], as:

2https://doi.org/10.5281/zenodo.7438625

11

(a) TensorFlow AlexNet (b) PyTorch AlexNet (c) PyTorch ResNet

(d) PyTorch VGG16 (e) PyTorch MobileNetV2 (f) PyTorch all networks

Fig. 2: Number of jobs ending at a specific epoch for different combinations of AI frameworks and neural networks

∑
j∈J

ηjτj +
∑
n∈N

Γn∑
k=1

γnkcnk∆t +
∑
j∈J

1−
∑
n∈N

ζjn

 τ̄j . (28)

The first term penalizes due date violations as the cor-
responding sum in Equation (P1.1). The second term
defines the energy costs paid in the current scheduling
step ∆t. The last term adds a penalty corresponding to
the worst-case tardiness τ̄j to all jobs whose execution is
postponed. To further avoid due date violations, FWCT

is coupled with the choice of executing each job with the
fastest available configuration.

Note that all these heuristics consider the worst-case job
execution times, i.e., the expected training times when the
jobs are executed up to the maximum number of epochs.
Therefore, to extend the comparison we modify them to
consider the average expected training times, derived from the
distributions described in Section VII-A2 (they will be denoted
as avgEDF , avgRG, and avgDP respectively). In this case,
whenever a job is trained for longer than the average time
without terminating, the heuristic reverts to considering the
worst-case execution time as in the original version.

In comparing the listed methods, we consider two different
metrics. First of all, we define the cost ratio between any
method m and a method b used as baseline:

cost ratio =
Cm

Cb

, (29)
where C can denote either the total cost or the energy cost

of the methods m and b, respectively. Note that considering as
a metric the cost ratio instead of the absolute cost Cm allows
to better capture the distance among methods and, moreover,
makes the plots more readable if the cost of one method is
significantly far from the others (due, e.g., to high tardiness
penalties). Finally, we define the percentage cost-reduction

(PCR) obtained by a target method with respect to any other
approach as:

PCR =
Co − Ct

Co

· 100, (30)
where Ct is the cost obtained with the target method and Co

is the cost of the other approach, so that it is positive when the
target method achieves lower costs than the other one. Also
in this case, the PCR is computed considering either the total
cost or the energy cost of the methods.

2) Stochastic Execution Profiles: To evaluate our STS
method, we had to model the probability distributions for
the number of epochs required to complete the training of a
Deep Learning job. For this purpose, we collected data on the
execution of DL tasks of various kinds using different neural
networks and AI frameworks.

We considered a subset of the ImageNet competition
dataset [38], including 10 classes with 1300 images each. We
trained jobs exploiting ResNet[39], VGG16 [40], AlexNet [41]
and MobileNetV2 [42], varying the batch size (16, 32, 64)
and the optimizer (Adam, SGD). We set to 100 the maximum
number of epochs for all jobs and record after how many
epochs the jobs terminate using a stopping criterion based
on patience. This corresponds to fixing a given number of
epochs (we considered 10) after which the training is stopped
if no improvement is observed on the validation accuracy. We
performed a total number of 648 runs with PyTorch and 237
with TensorFlow, obtaining the results reported in Figure 2.
The probabilities used in the simulations are obtained from
these distributions to be comparable with real-life scenarios.
Note that these probability distributions are heterogeneous:
those for AlexNet are skewed to the right with jobs ending
at the maximum number of epochs, those for ResNet and
VGG16 are skewed to the left, and for MobileNetV2 we have
a centered distribution.

12

Fig. 3: Number of submitted jobs for every distribution

3) Randomly Generated Instances: We randomly generated
a set of problem instances using the parameters described in
the following. We varied the number |N | of cluster nodes
between 10 and 100 and selected |J | = 10|N | jobs from the
application types listed in Section VII-A2. The set of GPU
types includes NVIDIA K80, M60 and A100. Due to the recent
high variability of energy prices in Europe, which did not
allow to have stable estimates, we decided to follow a more
conservative approach and consider as energy costs the market
prices of the three GPU types in the cloud [37]. The values
are reported in Table III.

TABLE III: Energy cost [$/h] for number and type of GPUs

#GPUs 1 2 3 4 5 6 7 8
K80 0.90 1.80 2.70 3.60 4.50 5.40 6.30 7.20
M60 1.14 2.28 3.42 4.56 5.70 6.84 7.98 9.12
A100 3.67 7.35 11.02 14.69 18.37 22.04 25.71 29.38

Jobs inter-arrivals are generated following three distribu-
tions, as proposed in [3], [4], [11]:

• an exponential distribution with mean 50000s/|N |; di-
viding by the number of nodes |N | guarantees a nearly
constant per-node workload.

• two Poisson distribution with different rates, denoted as
high and low. The former is set to λh = εκmaxλ while
the latter is λl = λh/4, where λ is the reciprocal of
the minimum expected completion time given the con-
figurations available in the catalog, κmax is the number
of cluster nodes multiplied by the maximum number of
GPUs that can be assigned to each job, and the parameter
ε is tuned to match real-life scenarios (0.4 in our tests).

Sample workloads generated with the three distributions in a
scenario featuring 1000 cluster nodes are reported in Figure 3.

The due dates dj were sampled uniformly in the range:[
min
i,k

tjik,min

(
3min

i,k
tjik,max

i,k
tjik

)]
, (31)

while the tardiness weights ηj are sampled uniformly from
the range (0.0254, 0.0444) $/s, so that the penalty for a time-
unit due date violation is about 10 times larger than the time-
unit energy cost.

Three problem instances were generated for each value of
cluster size and each possible inter-arrival distribution, varying
the random seed. Overall we considered 900 experiments. In
the following, we report the average of the evaluated costs.

4) GPU Sharing Parameters: As mentioned in Section III,
when enabling GPU sharing among multiple jobs, the cor-
responding execution times increase due to interference. The
time-inflation coefficients bf introduced to characterize this
phenomenon were selected at random from a uniform distribu-
tion between 1.01 (i.e., 1% increase) and a bf,max that was set
depending on the chosen fraction and literature models [43].
The list of admissible fractions and corresponding parameters
for each GPU type is reported in Table IV, where mj is
the memory required to run job j. The NVIDIA K80 has
24 GB of memory and allows four jobs with mj ≤ 6GB
or two with 6GB < mj ≤ 12GB to run simultaneously. In
contrast, the NVIDIA M60 is slightly more limiting, having
only 16 GB of memory. Finally, most recent GPUs as the
NVIDIA A100 have significantly larger memory (up to 80GB).
This entails that the number of jobs that can be co-located
increases, inducing better resource usage and, consequently, a
more substantial cost reduction but introducing slightly higher
performance variability.

TABLE IV: Possible GPU fractions and their parameters

GPU type Memory mj [GB] Fraction f bf,max

K80 6 0.25 1.11
12 0.5 1.05

M60 4 0.25 1.11
8 0.5 1.05

A100 8 0.1 1.17
12 0.15 1.15

We investigated the impact of GPU sharing by enabling or
disabling it when running the STS method, considering the
same random instances described in Section VII-A3. Since
the execution times increase when co-locating jobs on the
same GPUs, however, we adapted the due dates in this setting,
increasing by 20% the right extremum of interval (31).

5) Software and Hardware Settings: Both the STS method
and the heuristics used for comparison (EDF, RG and DP) are
implemented in C++, to guarantee good scalability properties
and fast execution times. We performed the experiments with 3
different random seeds for each job trace, and we repeated 10
times each run with the RG method. The server time required
to complete the experiments (on an Ubuntu 18.04 VM based
on a dual Intel Xeon Silver 4114 CPU at 2.20GHz with overall
40 cores and 64GB of memory) is about one week.

B. Experimental Results

In this section, we report the results of the experiments
described in Section VII-A1. The methods are compared by
considering the two metrics defined in Equations (29) and (30),
namely the total or energy cost ratio and the PCR. The
considered costs are always obtained by averaging over the
three problem instances considered for each scenario (see
Section VII-A3).

Figure 4 reports the comparison between STS, EDF, RG and
the modified versions considering the average execution times,
i.e., avgEDF and avgRG, when GPU sharing is not allowed. In
particular, Figure 4a plots the average total cost ratio across the
three random instances (computed according to Equation (29)
with Cm equal to the total cost of STS, EDF, RG, avgEDF or

13

20 40 60 80 100
Nodes

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

to
ta

l c
os

ts
 ra

tio

RG
EDF
STS
avgRG
avgEDF

20 40 60 80 100
Nodes

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

to
ta

l c
os

ts
 ra

tio

RG
EDF
STS
avgRG
avgEDF

20 40 60 80 100
Nodes

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

to
ta

l c
os

ts
 ra

tio

RG
EDF
STS
avgRG
avgEDF

(a) Average over all random instances of the total cost ratio between each method and EDF, varying the number of nodes |N | (Exponential
inter-arrival times; High rate; Low rate)

RG EDF STS avgRG avgEDF
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

to
ta

l c
os

ts
 ra

tio

EnergyCosts
TardinessCosts

RG EDF STS avgRG avgEDF
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

to
ta

l c
os

ts
 ra

tio
EnergyCosts
TardinessCosts

RG EDF STS avgRG avgEDF
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

to
ta

l c
os

ts
 ra

tio

EnergyCosts
TardinessCosts

(b) Average across all the considered instances with different numbers of nodes of the total cost ratio between each method and EDF,
separating the contribution of energy costs and due dates violation penalties (Exponential inter-arrival times; High rate; Low rate)

RG EDF avgRG avgEDF
0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 c

os
t r

ed
uc

tio
n

min
max
average

RG EDF avgRG avgEDF
0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 c

os
t r

ed
uc

tio
n

min
max
average

RG EDF avgRG avgEDF
0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 c

os
t r

ed
uc

tio
n

min
max
average

(c) PCR of STS against the other methods (Exponential inter-arrival times; High rate; Low rate)

Fig. 4: Average total costs ratio and percentage cost reductions of STS against RG and EDF (no GPU sharing)

avgRG, and Cb being the total cost of EDF) while increasing
the number of cluster nodes |N |. The total cost includes the
sum of energy costs and penalties for due date violations.
Each column in the plots of Figure 4b corresponds to the total
cost ratio of each method averaged across all the problem
instances with different cluster sizes |N |. With respect to
the previous case, we highlight the contribution to the total
cost of energy costs and tardiness penalties, to verify whether
the different methods effectively avoid due dates violations.
Finally, Figure 4c reports the percentage cost reduction of
STS with respect to the other methods (RG, EDF, avgRG and
avgEDF), i.e., the PCR computed according to Equation (30)
by considering STS as the target method.

From the first set of plots (Figure 4a), we note that the
total cost ratio of STS over EDF is very stable with respect
to the number of nodes |N | in the cluster. This is significant
since it shows that our method performs well both for small
and large systems. From the second set of plots (Figure 4b),

we see that the energy costs achieved by avgRG and avgEDF
are lower than those of STS. However, these methods do not
manage to effectively avoid execution delays, which result
in very significant penalties. Indeed, considering the average
execution times, avgRG and avgEDF tend to assign minimum-
cost configurations to the jobs; if these terminate earlier
than expected, they get excellent results; otherwise, having to
balance the slow initial training, frequently they are not able to
recover the delay, and the jobs are led into tardiness. Since our
priority is to prevent due date violations, these results show
how the avgRG and avgEDF cannot be used in practice and
confirm that consistent heuristics with respect to the worst-case
execution times need to be developed to effectively minimize
the energy cost by exploiting stochastic execution profiles.
On the other hand, the energy costs delivered by STS are
significantly lower than the ones obtained by both EDF and
RG. Overall, we observe an average PCR of about 40% (and
up to 80%) in all the considered scenarios (see Figure 4c).

14

20 40 60 80 100
Nodes

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Av
er

ag
e

en
er

gy
 c

os
ts

 ra
tio

EDF
STS
DP
avgDP

(a) Exponential inter-arrival times

20 40 60 80 100
Nodes

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Av
er

ag
e

en
er

gy
 c

os
ts

 ra
tio

EDF
STS
DP
avgDP

(b) High rate

20 40 60 80 100
Nodes

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Av
er

ag
e

en
er

gy
 c

os
ts

 ra
tio

EDF
STS
DP
avgDP

(c) Low rate

Fig. 5: Average over all random instances of the energy cost ratio computed by dividing the energy cost of STS, EDF and DP
by the energy cost of EDF, varying the number of nodes |N | (no GPU sharing)

20 40 60 80 100
Nodes

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Av
er

ag
e

to
ta

l c
os

ts
 ra

tio

STS-NoSharing
STS-Sharing
STS-Sharing_A100

20 40 60 80 100
Nodes

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Av
er

ag
e

to
ta

l c
os

ts
 ra

tio

STS-NoSharing
STS-Sharing
STS-Sharing_A100

20 40 60 80 100
Nodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Av
er

ag
e

to
ta

l c
os

ts
 ra

tio

STS-NoSharing
STS-Sharing
STS-Sharing_A100

(a) Average over all random instances of the total cost ratio between STS exploiting GPU sharing and STS without GPU sharing, varying
the number of nodes |N | (Exponential inter-arrival times; High rate; Low rate)

STS-NoSharing STS-Sharing STS-Sharing_A100
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

to
ta

l c
os

ts
 ra

tio

STS-NoSharing STS-Sharing STS-Sharing_A100
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

to
ta

l c
os

ts
 ra

tio

STS-NoSharing STS-Sharing STS-Sharing_A100
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

to
ta

l c
os

ts
 ra

tio

(b) Average across all the considered instances with different numbers of nodes of the total cost ratio between STS exploiting GPU sharing
and STS without GPU sharing (Exponential inter-arrival times; High rate; Low rate)

STS-Sharing STS-Sharing_A100
0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 c

os
t r

ed
uc

tio
n

min
max
average

STS-Sharing STS-Sharing_A100
0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 c

os
t r

ed
uc

tio
n

min
max
average

STS-Sharing STS-Sharing_A100
0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 c

os
t r

ed
uc

tio
n

min
max
average

(c) PCR of STS exploiting GPU sharing against STS without GPU sharing (Exponential inter-arrival times; High rate; Low rate)

Fig. 6: Average total costs ratio and percentage cost reductions of STS considering GPU sharing

15

Similar considerations can be drawn from the comparison
reported in Figure 5, where we plot the energy cost ratio
computed according to Equation (29) (where Cm is the energy
cost of STS, EDF, DP and avgDP, and Cb is the energy
cost of EDF) averaged across the three problem instances
defined while increasing the cluster size. The plots highlight
how STS achieves better performance than all the others. The
PCR computed by Equation (30) when considering STS as the
target and DP as the other method is of 67%, while the PCR
when avgDP is the other method is 32%.

Finally, the average total cost ratio obtained by STS when
enabling GPU sharing are reported in Figure 6, together with
the PCR achieved in this scenario. Here the baseline we
consider in defining the cost ratio is the STS method when
GPU sharing is not enabled, since our goal is to analyze the
impact of jobs co-location on the same GPU. It is relevant
to note that larger GPUs (A100) allow co-locating even more
jobs, increasing the PCR from around 17% to around 29%
on average. The corresponding results are reported separately
with respect to the outcomes of GPU sharing on K80 and M60
GPUs since there is a significant gap both in performance and
costs among these resources.

C. Scalability Analysis

To test the performance of our STS method, we performed
a scalability analysis measuring the time required by our STS
method, RG and EDF to solve a single problem instance
involving a variable number of jobs and nodes. Specifically,
we increased |N | from 10 to 100 and considered |J | = 2|N |
and |J | = 4|N | to characterize light and heavy system loads.
These values were chosen since we realized by inspecting the
simulations reported in the previous sections that at most 400
jobs were concurrently in the queue J for problem instances
including 100 cluster nodes.

The results are reported in Figure 7. In particular, Figure 7a
reports the execution times of all methods while increasing
the number of cluster nodes; Figure 7b reports the average
execution times over all system sizes. We can note that the
time required by STS to determine a solution, albeit higher
than the one required by RG and EDF, is still considerably
small, being lower than 5s even for systems involving 100
nodes and 400 concurrent jobs, and lower than 3s on average.

VIII. CONCLUSION

In this paper, we presented a stochastic approach to model
and tackle the optimal resource selection and scheduling prob-
lem for DL training jobs in GPU-based systems. We provided
a mathematical formulation of the problem by defining the
execution time as a stochastic variable, and we developed
a stochastic heuristic that allocates jobs to the available re-
sources to minimize the average energy costs while meeting
the imposed due dates.

We set up an extensive experimental evaluation and per-
formed simulations to test the quality of our method by
comparing it with other literature approaches. The results
confirm that our heuristic guarantees significantly better results
than the existing ones, with a percentage total cost reduction

20 40 60 80 100
Nodes

10 1

100

Ti
m

e
(s

)

RG (J=2N)
RG (J=4N)
EDF (J=2N)
EDF (J=4N)
STS (J=2N)
STS (J=4N)
STSgpusharing (J=2N)
STSgpusharing (J=4N)

(a) Execution times with the different methods

Method
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

tim
e

(s
)

J=2N J=4N
J=2N J=4N

J=2N

J=4N

J=2N

J=4N

RG
EDF
STS
STSgpusharing

(b) Average execution times with the different methods

Fig. 7: Scalability analysis changing the system load

between 32% and 80% on average in all the considered
scenarios. Moreover, the results demonstrate that, depending
on the workload and GPU memory, the possibility of co-
locating multiple jobs on a single GPU can yield a percentage
cost reduction between 17% and 29% on average.

Future developments of our work will include the support
for multi-node executions, i.e., the possibility of running very
demanding applications on GPUs hosted on different nodes
involving, possibly, also mixed training and long inference
workloads.

ACKNOWLEDGMENT

Federica Filippini and Danilo Ardagna’s work has been funded by
the European Commission under the H2020 grant N. 101016577 AI-
SPRINT: AI in Secure Privacy pReserving computINg conTinuum.

REFERENCES

[1] S. Madougou, A. Varbanescu, et al., “The landscape
of GPGPU performance modeling tools,” PC, vol. 56,
pp. 18–33, 2016.

[2] V. Anand. “‘NVIDIA DGX A100,’” [Online]. Available:
https://www.hardwarezone.com.sg/tech-news-nvidia-
dgx - a100 - supercomputer - super - performance - fight -
covid-19 (visited on 01/09/2023).

[3] M. Amaral, J. Polo, et al., “Topology-aware gpu
scheduling for learning workloads in cloud environ-
ments,” in HPCNSA Proc., ACM, 2017.

16

[4] V. Saxena, K. R. Jayaram, and et al., “Effective elastic
scaling of deep learning workloads,” in MASCOTS,
2020, pp. 1–8.

[5] H. Albahar, S. Dongare, et al., “Schedtune: A
heterogeneity-aware gpu scheduler for deep learning,”
in CCGrid Proc., 2022, pp. 695–705.

[6] B. Li, T. Patel, et al., “Miso: Exploiting multi-instance
gpu capability on multi-tenant gpu clusters,” in SoCC
Proc., 2022, pp. 173–189.

[7] A. Qiao, S. K. Choe, et al., “Pollux: Co-adaptive cluster
scheduling for goodput-optimized deep learning.,” in
OSDI, vol. 21, 2021, pp. 1–18.

[8] B. Li, T. Patel, et al., “Dash: Scheduling deep learning
workloads on multi-generational gpu-accelerated clus-
ters,” in IEEE HPEC, 2022, pp. 1–7.

[9] Z. Yang, H. Wu, et al., “Hydra: Deadline-aware and
efficiency-oriented scheduling for deep learning jobs on
heterogeneous gpus,” IEEE Trans. Comput., pp. 1–13,
2023.

[10] F. Filippini, D. Ardagna, et al., “ANDREAS: Artifi-
cial intelligence traiNing scheDuler foR accElerAted
resource clusterS,” in FiCloud Proc., IEEE Computer
Society, 2021, pp. 388–393.

[11] F. Filippini, M. Lattuada, et al., “A path relinking
method for the joint online scheduling and capacity
allocation of dl training workloads in gpu as a service
systems,” IEEE Trans. Serv. Comput., pp. 1–16, 2022.

[12] K. Mahajan, A. Balasubramanian, et al., “Themis:
Fair and efficient GPU cluster scheduling,” in USENIX
(NSDI 20), 2020, pp. 289–304.

[13] S. Chaudhary, R. Ramjee, et al., “Balancing efficiency
and fairness in heterogeneous gpu clusters for deep
learning,” in EUROSYS, 2020.

[14] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job
placement in distributed machine learning clusters,” in
IEEE INFOCOM, 2019, pp. 505–513.

[15] G. Yeung, D. Borowiec, et al., “Horus: Interference-
aware and prediction-based scheduling in deep learning
systems,” IEEE TPDS, vol. 33, no. 1, pp. 88–100, 2022.

[16] Q. Weng, W. Xiao, et al., “MLaaS in the wild: Workload
analysis and scheduling in Large-Scale heterogeneous
GPU clusters,” in USENIX NSDI, 2022, pp. 945–960.

[17] J. Anselmi and B. Gaujal, “Energy Optimal Activation
of Processors for the Execution of a Single Task with
Unknown Size,” in MASCOTS Proc., 2022.

[18] H. Shen, L. Chen, et al., “Nexus: A gpu cluster engine
for accelerating dnn-based video analysis,” in ACM
SOSP Proc., 2019, pp. 322–337.

[19] Y. Hu, R. Ghosh, and R. Govindan, “Scrooge: A cost-
effective deep learning inference system,” in ACM SoCC
Proc., 2021, pp. 624–638.

[20] H. Zhao, Z. Han, et al., “HiveD: Sharing a GPU cluster
for deep learning with guarantees,” in USENIX OSDI,
2020, pp. 515–532.

[21] Z. Ye, P. Sun, et al., “Astraea: A fair deep learning
scheduler for multi-tenant gpu clusters,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 11, pp. 2781–2793,
2022.

[22] F. Xu, J. Xu, et al., “Igniter: Interference-aware gpu
resource provisioning for predictable dnn inference in
the cloud,” IEEE Trans. Parallel Distrib. Syst., vol. 34,
no. 3, pp. 812–827, 2023.

[23] C. Chen, Y. Chen, et al., “Pickyman: A preemptive
scheduler for deep learning jobs on gpu clusters,” in
IEEE IPCCC, 2022, pp. 120–129.

[24] Q. Hu, M. Zhang, et al., “Lucid: A non-intrusive,
scalable and interpretable scheduler for deep learning
training jobs,” in ASPLOS Proc., vol. 2, 2023, pp. 457–
472.

[25] L. Liu, J. Yu, and Z. Ding, “Adaptive and efficient gpu
time sharing for hyperparameter tuning in cloud,” in
ACM ICPP Proc., 2023.

[26] M. Lattuada, E. Gianniti, et al., “Performance predic-
tion of deep learning applications training in GPU as
a service systems,” Clust. Comput., vol. 25, no. 2,
pp. 1279–1302, 2022.

[27] Y. Peng, Y. Bao, et al., “Optimus: An efficient dynamic
resource scheduler for deep learning clusters,” in EU-
ROSYS, 2018.

[28] W. Xiao, R. Bhardwaj, et al., “Gandiva: Introspective
cluster scheduling for deep learning,” in USENIX OSDI,
2018.

[29] H. Larochelle, D. Erhan, and Y. Bengio, “Zero-data
learning of new tasks,” vol. 2, Jan. 2008, pp. 646–651.

[30] X. Zhan, Y. Bao, et al., “Parsec3.0: A multicore
benchmark suite with network stacks and splash-2x,”
SIGARCH Comput. Archit. News, vol. 44, no. 5, pp. 1–
16, Feb. 2017.

[31] K. Kasichayanula, D. Terpstra, et al., “Power aware
computing on gpus,” in SAAHPC, 2012, pp. 64–73.

[32] Q. Hu, P. Sun, et al., “Characterization and prediction of
deep learning workloads in large-scale gpu datacenters,”
in SC21 Proc., 2021.

[33] F. Filippini, M. Lattuada, et al., “Hierarchical Schedul-
ing in on-demand GPU-as-a-Service Systems,” in
SYNASC, 2020, pp. 125–132.

[34] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, Mar. 2004.

[35] A. R. Conn, K. Scheinberg, and L. N. Vicente, Intro-
duction to Derivative-Free Optimization. SIAM, 2009.

[36] “‘Amazon ec2 on-demand pricing.’” (2023), [Online].
Available: https : / / aws . amazon . com / ec2 / pricing / on -
demand/?nc1=h ls (visited on 01/25/2023).

[37] “‘Azure cloud services pricing.’” (2023), [Online].
Available: https://azure.microsoft.com/en- us/pricing/
details / virtual - machines / linux / #pricing (visited on
01/25/2023).

[38] O. Russakovsky, J. Deng, et al., “ImageNet Large Scale
Visual Recognition Challenge,” IJCV, vol. 115, no. 3,
pp. 211–252, 2015.

[39] K. He, X. Zhang, et al., “Deep residual learning for
image recognition,” in IEEE CVPR, 2016, pp. 770–778.

[40] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” in
ICLR, Y. Bengio and Y. LeCun, Eds., 2015.

17

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90,
2017.

[42] M. Sandler, A. Howard, et al., “Mobilenetv2: Inverted
residuals and linear bottlenecks,” in 2018 IEEE/CVF
CVPR, 2018, pp. 4510–4520.

[43] G. Gilman and R. J. Walls, “Characterizing concurrency
mechanisms for nvidia gpus under deep learning work-
loads,” Perform. Evaluation, vol. 151, 2021.

Federica Filippini is a Ph.D. student at Politecnico
di Milano where she received in April 2020 the
Master degree in Mathematical Engineering. Her
research interests include optimization problems ap-
plied to resource selection and scheduling in Cloud
and distributed environments.

Jonatha Anselmi is a tenured researcher at the
French National Institute for Research in Digital
Science and Technology (Inria), since 2014. Prior
to this, he was a full-time researcher at the Basque
Center for Applied Mathematics and a postdoctoral
researcher at Inria. He received his PhD in computer
engineering at Politecnico di Milano (Italy) in 2009.
His research interests focus on the performance
evaluation and optimization of distributed systems.

Danilo Ardagna is Associate Professor at Politec-
nico di Milano, DEIB. He received a Ph.D. degree
in computer engineering in 2004 from Politecnico
di Milano. His work focuses on the design, proto-
type, and evaluation of optimization algorithms for
resource management of cloud computing and big
data systems.

Bruno Gaujal Bruno Gaujal is an Inria researcher.
Till Dec. 2015, he has been the head of the large-
scale computing team in Inria Grenoble-Alpes. He
has held several positions in AT&T Bell Labs, Loria
and École Normale Supérieure of Lyon. He obtained
his PhD from University of Nice in 1994. He is
a founding partner of a start-up company, RTaW,
since 2007. His main interests are in performance
evaluation, optimization and control of large discrete
event dynamic systems with applications to telecom-
munication and large computing infrastructures.

