N
N

N

HAL

open science

System-level design for the assessment of shared
resources effects on multiprocessor systems security

Farah Khazaal, Ulysse Couturier, Sébastien Le Nours, Maria Mendez Real

» To cite this version:

Farah Khazaal, Ulysse Couturier, Sébastien Le Nours, Maria Mendez Real. System-level design for
the assessment of shared resources effects on multiprocessor systems security. Rapport Stage Ingénieur

ETN4 Polytech Nantes, Nantes université. 2023. hal-04337835

HAL Id: hal-04337835
https://hal.science/hal-04337835
Submitted on 12 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04337835
https://hal.archives-ouvertes.fr

O LT\ B v IETR

INTERNSHIP REPORT

SYSTEM-LEVEL DESIGN FOR THE ASSESSMENT OF SHARED RESOURCES
EFFECTS ON MULTIPROCESSOR SYSTEMS SECURITY

KHAZAAL Farah & Couturier Ulysse

SUPERVISORS :

LE NOURS Sebastien, MENDEZ REAL Maria

KHAZAAL Farah COUTURIER Ulysse Internship Report

Contents
1__Introductionl 2
LI Contextl 2
(.2 Problematic 2
2 Background and Discovering gemb| 3
2.1 Whatisgemo 7| 3
[2.2 Architecture of gemo|o 3
[2.3 Targeted architecture| 6
3__Basics of attacks| 7
[3.1 Cache memory| 7
[3.1.1 Importance of having a cache hierarchy| 7
[3.1.2 Cache functioning|. 7
3.2 Flush and Reloadl, 11
B3 Prime and Probel o oo 12
[4 Modelling and experiments| 14
4.1 Model 1 : One Corel 14
[4.1.1 System Behavior| 14
“.1.2 Flush and Reload attackl 21
413 Conclusionl. 27
M2 Model2: Two Cores| o 27
[4.2.1 System Behavior| 27
422 Flush and Reload Attackl. 33
4.2.3 Prime and Probe attackl 38
[4.3 Limitations of Syscall Emulation Mode 46
4.3.1 List of Limitationsl oL 47
5__Conclusion| 49

KHAZAAL Farah COUTURIER Ulysse Internship Report

1 Introduction

1.1 Context

The race for progress motivates all players in the electronics industry to always
push their limits in terms of optimization. Whether in terms of execution speed,
energy consumption, or portability, design hours are allocated to these themes.
However, the hardware security aspect struggles to impose itself. Despite being
an essential aspect, knowing that according to the ANSSI (French National Infor-
mation Systems Security Agency), between 2019 and 2020, the number of victims
of cyber attacks has quadrupled.

It is in this context that this three-month internship takes place, at the IETR
laboratory of Polytech Nantes (France). As a study support, it is the gemb virtual
prototyping software that has been used. The project’s aim is to study the possi-
bilities given by gemb software to analyze processor architecture’s vulnerabilities.
This project focuses on exploring the capabilities of gem) software for analyzing
vulnerabilities in processor architectures. The main emphasis lies in understand-
ing how the security of multiprocessor systems is influenced by the use of shared
resources.

The work is based on the github sources |2| provided by the gem5 community,
and on the work of Pierre Ayoub and Clémentine Maurice: "Reproducing Specter
Attack with gem5: How To Do It Right?" [7]

1.2 Problematic

According to this introduction, the question that will be examined throughout
this report is as follows: What level of detail is required for modeling a cyberse-
curity system using the Syscall Emulation mode of gem5?

KHAZAAL Farah COUTURIER Ulysse Internship Report

2 Background and Discovering gemb

2.1 What is gemb ?

Gemb is a merge between two simulators from 2011 : M5 and GEM5 [4]. The
role of gemb is to provide a cycle-accurate simulation platform for computer ar-
chitecture research. It enables developers to analyze, model, and experiment with
various designs and configurations. In today’s rapidly evolving landscape of pro-
cessors and systems, the need for a reliable and trustworthy configuration becomes
crucial. Moreover these systems are becoming increasingly complex and difficult
to comprehend. gemb serves as an excellent solution to address these challenges
by allowing developers to deeply understand and test their solutions on simulated
devices, avoiding issues related to cost or delivery delays.

In the security area, researchers can leverage gemb for malware analysis, creat-
ing safe environments to study malware behavior. It aids vulnerability assessment
by analyzing software behavior under potential threats, contributing to the iden-
tification of security flaws and impact assessment of attacks. Additionally, Gemb
assists in exploit development, enabling the study of exploits across different archi-
tectures and aiding in patch development. It proves valuable in hardware security,
simulating hardware components to study hardware-based threats.

2.2 Architecture of gem5

The architecture of gem5 encompasses various key components, including SimOb-
jects that represent both hardware and software elements (DRAM , CPU , Mem-
ory systems , Cache memories etc...). The system component plays a crucial role
in connecting and managing interactions among SimObjects. Additionally, gemb
incorporates CPU models for different architectures, a memory system that sim-
ulates cache hierarchies and memory components, and simulation control mech-
anisms for parameter configuration and data collection (including multiple types
of debugging). These components collectively contribute to the comprehensive
functionality and adaptability of the gem5 simulator, enabling its users to perform
diverse and efficient simulations. To work, gem5 combines different programming
languages to create an easy manipulating software.

Initially, all simulated entities, referred to as SimObjects, are coded in C++
based on an open-source coding style principles |1]. These highly detailed objects
are entirely modifiable, allowing alterations to the source code.

Subsequently, by incorporating mb libraries into Python code, these C-++ de-

KHAZAAL Farah COUTURIER Ulysse Internship Report

scribed SimObjects can be accessed within a Python script. Python is selected for
its user-friendly class implementation.

The Python script’s role is to construct the simulated system and initiate the
simulation, serving as the script invoked during gem5 construction. Ultimately,
upon creating and storing the script, the gem5 build through scons(an open-source
software construction tool) can be initiated, specifying the intended simulated sys-
tem. The build encompasses distinct options: debug, opt, and fast, with the latter
omitted. The debug mode facilitates code debugging using tools like GDB (GNU
debugger), while opt provides an optimal balance between simulation speed and
internal visibility. Subsequent to launching the simulation, gem5 generates three
debug files containing statistics, configurations, and other customizable flags indi-
cated in the shell. These files are comprehensively explained in the github |[3].

Gemb operates on a fundamental structure comprising SIMOBJECTS, which
are core components defined in C++. These SIMOBJECTS represent key system
elements such as CPUs and memory units. The system simulation is personalized
using Python, specifying the desired components. Subsequently, the simulation is
executed on a virtual system, generating essential "config" and "stats" files after
each run. The "config" file contains configuration details, defining the chosen
components and their settings, while the "stats" file provides in-depth insights
into the system’s performance, memory capacity, and various other metrics. This
process, involving C+-+ definition, Python customization, and virtual execution,
forms the backbone of Gem5’s functionality, enabling detailed and tailored system
simulations. The behavior of a general simulation is succinctly summarized in

Figure

KHAZAAL Farah COUTURIER Ulysse

Internship Report

Executable Execute on

B

simulated
sYEEm

G

SimObjects

@ imparting libraries

@ python

System

_@ EXECULInG With gems

waL e .

Simulation

Debug Files

Figure 1 — Simulation files link in gemb

KHAZAAL Farah COUTURIER Ulysse Internship Report

2.3 Targeted architecture

Since gemb is designed to facilitate complete customization of electronic de-
vices, it offers a lot of distinct features, necessitating selections to be made for
each component. Basically, main used components are : CPU’s, level 1 Instruc-
tion and data Caches, shared level 2 cache memory, data buses, and RAM.

The selected RAM is a DDR3 1600 MHZ 8x8. This one is recommended by
the gemb tutorial as it is the simplest memory. All other RAM memories inherit
from it. The data buses are implemented using an Xbar architecture, also given
in the tutorial. In terms of cache memory, gem) provides two options : classic
caches, and Ruby caches. Classic cache have been chosen due to the complexity of
the Ruby Cache and its advanced capabilities which are not our priority. Classic
caches are adequately configurable for our study, offering a fundamental configu-
ration of replacement policy, indexing policy, and other modifiable attributes. The
selected indexing policy is "Set Associative Mapping," while the chosen replace-
ment policy is "Least Recently Used". Finally, all CPU used are "ArmO3CPU".
First because they are out of order, with a behavior closer to modern processors,
and they implement branch predictor. Secondly, they are based on Arm architec-
ture. This architecture is often implemented in embedded systems like phones or
connected devices, the instruction set is also easier to understand. In gemb5, O3
CPU’s also allow to use a software called Konata, which gives a graphical overview
of execution behavior of the simulation. The table [I] summarizes all components
of targeted architecture.

KHAZAAL Farah COUTURIER Ulysse Internship Report

CPU ArmO3CPU
Cache Classic cache
Data bus XBar
Memory | DDR3 1600 MHZ 8x8

Table 1 — Table of targeted architecture’s characteristics.

3 Basics of attacks

Now that gemb and the architecture of simulated device have been presented,
a quick explanation of the attacks has to be done to understand why are modern
processors vulnerable.

3.1 Cache memory

3.1.1 Importance of having a cache hierarchy

The latency of execution is a problem that occurs in a lot of electronic appli-
cations. When an instruction is executed, all steps of its completion are studied
to be optimized.

Searching in the memory system for a data or an instruction can take a large
amount of clock cycles. So here comes the importance of cache memory.

Cache memories are placed between main memory and cores. Very recent
data are stored there in case they will be reused soon to avoid going through the
entire main memory. This is why cache memories are so important in modern
architectures, and are in almost all devices. As cache memories are expensive,
they are way smaller than main memories. To optimize their use, they are often
divided into a cache hierarchy. Here a maximum of two level of cache will be
studied but there can be more levels.

3.1.2 Cache functioning

As cache memories are used in all modern architecture, understanding their
vulnerabilities plays an important role in enhancing cyber-security. Before digging
into security, the behavioral aspect of cache memory has to be fully understood.

In simple terms, when a process requests data, the core checks if that data is
already in the cache. If it is, the data is quickly accessed from there, saving time
(this is called a cache hit). If the data isn’t in the cache, the core retrieves it from
the main memory (this is a cache miss). If the data is expected to be used again,

KHAZAAL Farah COUTURIER Ulysse Internship Report

it’s stored in the cache for faster access next time.

Caches have specific rules for how they organize and replace data, which in-
cludes indexing and replacement policies

3.1.2.1 Indexing policy

To determine the location to which a memory block is mapped based on its
address, our system utilizes the Set Associative mapping technique by default.
For a clearer understanding of Set Associative mapping, it’s helpful to first grasp
the concepts of Direct Mapping and Associative Mapping. Let’s start with Direct
Mapping:

Direct Mapping is a mapping technique used to determine the physical address
corresponding to a given memory location in a cache or memory hierarchy. It
divides the memory address into three components: the tag, the index, and the
offset. The tag uniquely identifies a memory block, the index selects the cache or
memory location, and the offset specifies the position within the memory block.
In direct mapping, each block of main memory is assigned to a specific block in
the cache. When the processor wants to access data, it checks if the needed block
is in the cache by looking at the memory address. If the block is in the cache, it’s
a "cache hit" and data is retrieved quickly. If not, it’'s a "cache miss," and the
required block is loaded into the cache, replacing the existing block in that specific
cache location

KHAZAAL Farah COUTURIER Ulysse

Internship Report

64 KB 4

Line 0

Line 1

DCache Memory

Main Memory

Figure 2 — Direct Mapping Memory Access Illustration

On the other hand, Associative Mapping is a technique that allows a memory
block to be stored in any available cache or memory location without restrictions.
Each memory block is associated with a tag that uniquely identifies it.

64 KB 4

Line 0

Line 1

Main Memory

DCache Memory

64 B

Figure 3 — Associative Mapping Memory Access Illustartion

Set Associative Mapping combines elements of both Direct Mapping and As-
sociative Mapping to strike a balance. It aims to reduce conflicts or collisions that

KHAZAAL Farah COUTURIER Ulysse Internship Report

occur in Direct Mapping while minimizing the hardware complexity associated
with fully Associative Mapping.

In Set Associative Mapping, the cache is divided into sets, and each set contains
multiple cache lines or memory locations. Each memory block is mapped to a
specific set based on its memory address. Within each set, the memory blocks
are differentiated using tags. The index determines the set number, and each set
contains multiple cache lines or memory locations. The index represents the block
number within a set rather than the entire cache.

By employing Set Associative Mapping, our system achieves a balance between
reducing conflicts and minimizing hardware complexity, allowing for efficient and
effective memory block mapping.

Here an example of 2-Set-Associative mapping (2 means that we have 2 lines per

Set).

DCache Memory Main Memary

Line 0 Set

Line 1

et2

64 KB 4

64 B

Figure 4 — 2-Set-Assocative Mapping Memory Access Illustartion

The cache write policy used is the "Write Back" Method . More information
are available on the website researchgate.com |[§].

10

KHAZAAL Farah COUTURIER Ulysse Internship Report

3.1.2.2 Timing vulnerabilities

The main characteristic of cache leading to backdoor for malicious processes is
all about timing. Because cache memories reduces a lot read and write timings, a
difference in execution time is observed if a process uses more cached data. The
figure o| below explains this timing difference for two cases.

Asks for a data
Y/ 1
. Cache
Cache Hit Process 2 Memory
«—
. 1 Data not f t 2
Cache Miss B c >
ache
Process 4 Memary 3 RAM
Longer time

Figure 5 — Timing difference in execution

Here the initial data request is processed in just two steps : from process to
cache, and cache to process. For the second request, the amount of steps has
doubled. Request has to go to cache memory, but because the data is not stored
there it goes to the RAM, before going back to the process with a longer execution
time than the first case. By using instructions to measure execution time, a process
can, by using this aspect of cache memory, know if its data was in the cache or
not. Starting from this point, a lot of attacks use this aspect to steal information.

3.2 Flush and Reload

First attack is called Flush and Reload. It uses a particular assembly instruc-
tion called "flush" which evicts a data from cache memory. In modern processors,
some libraries and their address can be shared between two process. The behavior
of a flush and reload is explained in the figure [6] below.

11

KHAZAAL Farah COUTURIER Ulysse Internship Report

Attacker Victim

Cache lines

Flush data -

Wait Access data -

Read data - -

cache hit

Flush data -

Wait no access

Read data - -
cache miss

Figure 6 — Execution of a flush and reload

Cache memory is represented in the center. White boxes represents empty
cache lines, and blue ones are cache lines where a data is mapped. Victim and
attacker are sharing two things : a data and a cache. First attacker flushes the blue
data, leading to an eviction from the cache and an empty cache line corresponding
to this address. Then, after waiting for the victim to execute he can know if this
shared data has been accessed or not by looking at the reading duration. If the
read (or reload) time is shorter than a threshold, then data is cached and has
been accessed by the victim. If it is longer than this threshold, then this data
has not been accessed. If he knows what is this data, he can deduce what did the
victim. The threshold varies according to the architecture and must be established
to ensure proper execution. A paper from Yuval Yarom and Katrina Falkner ﬂgﬂ
describes then how an attacker can crack a key or any password using this strategy.

3.3 Prime and Probe

In a Prime and Probe attack, the attacker exploits the ability to write a big
volume of data, sufficient to displace the victim’s data from the cache. If the
attacker fills the cache with its data and then wait for the victim to execute it’s
code, he can know which lines of the cache have been accessed by measuring
execution time and comparing it with a threshold. In fact data accessed by the

12

KHAZAAL Farah COUTURIER Ulysse Internship Report

victim are supposed to evict attacker’s ones, so by reloading them, attacker knows
which data have been evicted because of cache misses.

To visualize what is supposed to happen in the cache, the state of the cache of
three main states of these behaviors is summarized in figure [7]

Attacker Victim

Cache lines

Fills cache with data [

Wait Access data -

Read data []
1 cache miss

Wait no access

Read data []
no cache miss

Figure 7 — Execution of a prime and probe

Here, only the last level of cache is represented in the center because it is shared
one. Because of this, it is likely to store information coming from different process,
like data from attacker, and victim, at the same spot. The attacker first fills cache
with its data, and waits for victim to access (or not) to some specific locations.
At the end it reads again all data, and if one of them takes more time to reload,
it means that it has been evicted, so victim read something there.

3.3.0.1 Cache requirements for Prime and Probe

To work, prime and probe has to be executed on cache that are fully inclusive.
This means that if a data is present in a level 1 of cache, it has also to be present
in all others. Cached data has to be in all the hierarchy. This attack also requires
to have a cache shared between different processes.

13

KHAZAAL Farah COUTURIER Ulysse Internship Report

4 Modelling and experiments

4.1 Model 1 : One Core

Once that the supporting software and cache vulnerabilities used by attackers
have been presented, the aim is to set up a system. This system will be stimulated
by some external entities : victim and attacker, and it will be described using in
and out descriptions, automatas and characteristics.

4.1.1 System Behavior

The system implemented in this experiment is presented below .

Arm CPU

Memory Bus

F

h 4

DDR2 RAM

Figure 8 — One level System

4.1.1.1 Entities definition

In this experiment, a single core takes on the roles of both the victim and
the attacker, each with its own unique functions. In this particular phase, the
main core acts as the entity that interacts with our system, which consists of the
memory system. The main core can initiate actions like sending a flush command
to remove data from the cache memory, making a write request, or issuing a read
request. Conversely, the memory system’s role is to respond to these requests by
providing a write response or a read response, depending on the nature of the
request.

14

KHAZAAL Farah COUTURIER Ulysse Internship Report

Entity Defintion
Flush_cmd
Write Req
MEMORY)
SYSTEM Write Resp
_ Read Req
" Read Resp

Figure 9 — Entities Definition

4.1.1.2 Definition of input and outputs

In this section , we will discuss each entity’s input and output in more detail.

I / O Definition :
Write Req : def Write Req
Read Req : def Read Req
Read Resp : def Read Resp
Write Resp : def Write Resp
Flush cmd : def Flush cmd

def Flush cmd : address
def Write Req : data
def Read Req: address
def Read Resp : boolean,data
def Write Resp : boolean

boolean : {1;0 }
data : def data
def data : address,value
address : 40 bytes
value : 64 bytes

Commands can be divided into two types: requests and responses. Requests
tell the memory system where and what to read, write, or clear. The system then

15

KHAZAAL Farah COUTURIER Ulysse Internship Report

handles the request and provides either the read value (in the case of a read re-
quest) or a simple confirmation (a boolean) to show that the operation is done.

Apart from inputs and outputs, there are some internal features of the system
listed below. Some of these features, like frequency, might not affect the model
we’ve chosen, so not all of them are listed.

Internal caracteristics:

Replacement policy = Last Recently Used
Indexing Policy = Set Associative
Cache line size = 64 bytes
DRAM size = 512 MB x 8
L1D _size
L1I size
L1 Associaivity
L2 Associativity

4.1.1.3 Behavioral Description

Now we need to establish the way the system acts. This behavior is guided
by various requests received from and sent to the attacker and the victim. The
depiction in Figure showcases a universal behavior, describing the system’s
actions regardless of the external entities’ actions. The illustration is split into
three parts for clearer viewing. The initial part summarizes the three possible
requests to activate the system. Subsequent figures detail individual behaviors
following each of these requests.

16

KHAZAAL Farah COUTURIER Ulysse Internship Report

Write_Req Read_Req Flush_cmd

~0) (2) (3)

Figure 10 — First part of System behavior

The first Request described is present in the figure below.

17

KHAZAAL Farah COUTURIER Ulysse

Internship Report

Write_Req

/L1 Check(Write_Req) L1 Ghecking

Write_Resp resent_|1=True

present_I1 = False

Ram checking

v

present RAM = True

present_ RAM = False

Write data
RAM

end of write

Test data.address cache setin L1

cache line empty

Add data
to L1 cache line

%data_address added

Used cache line

cache line full

Find
Last Recently

Last Recently Used found

Data evicted

Figure 11 — First part of System write

18

KHAZAAL Farah COUTURIER Ulysse Internship Report

Following a Write Request, the system performs a check to determine whether
the requested data’s address is stored in L1 cache. If the data’s address is found
in L1 cache, the data is written to the correct address, and the system transitions
to its initial state. However, if the address isn’t present in L1 cache, the system
proceeds to check RAM. In a similar scenario, if the address is absent from RAM
as well, the system writes the data into RAM. After this, a further examination
takes place. The system evaluates whether the allocated cache line for the data’s
address is at its maximum capacity. If this condition is true, eviction process is
triggered, necessitating substitution of the least recently utilized data with the
new address.

After this procedure, the system reverts back to its initial state.

Now going to the read request, the figure below describes in detail how the
system react in case of a read operation.

19

KHAZAAL Farah COUTURIER Ulysse Internship Report

Read_Req
/L1 Check(Write_Req) L1 Checking
Read Resp resent_|1=True
present_I1 = False
Ram checking
—— present_ RAM = True present_ RAM = False
v

Test data.address cache set in L1

cache line empty cache line full

Find
Last Recently
Used cache line

Last Recently Used found

Data evicted

Add data
to L1 cache line

%data_address added

Figure 12 — Second part of System Read
20

KHAZAAL Farah COUTURIER Ulysse

As discussed before for the write request, a read request follows the same pro-
cess. The only difference lies in how RAM memory responds. In this case, if the
data isn’t found in the RAM, an error flag will be raised. This is because a read

cannot be done if the data doesn’t exist.

And finally the reaction of the system when a flush cmd takes place will be

detailed in the figure below.

(3]

<] Flush_cmd

L1 Clean and
Invalidate
data.address set

line L1 data.address empty

Write data
RAM

end of write

Figure 13 — Third part of System Flush

4.1.2 Flush and Reload attack

4.1.2.1 Definition of entities behavior

Let’s begin by examining a simplified system that operates with a single level
and a single CPU. The aim is to observe how it responds to a flush and reload

attack.

The behavior of the entities can be represent by the automata below.

21

Internship Report

KHAZAAL Farah COUTURIER Ulysse

Internship Report

Opening a file to save all the
results and defining a global

table
test on i
i=size = size
Flush ir=i+1
It :=Delay ush_cmd<}r—

(=>
=z

t = threshold t < threshold
[i | Set flag hit
I Set flag miss v
= Read Reg
=0

I Set flag wiss

t = threshold

P

t=0

[> Read Req
It=0

Waiting End of
Read

<]Read Resp

Waiting End of
Read

<]Read Resp

t = threshold
| Set flag hit

Figure 14 — Entities Behavior

4.1.2.2 Experiment

The experiment’s aim is to showcase a real-world implementation of "Flush and
Reload" attack within a controlled environment. By doing this, it helps show how
certain systems could be vulnerable due to leaks of information based on timing.
The realised code is present in the github |3| Expectation

22

KHAZAAL Farah COUTURIER Ulysse Internship Report

The expected order is :

1)

2)

3)

Clear the cache and prepare memory addresses to ensure clean measure-
ment conditions.

From the victim’s perspective:

- Simulate victim’s actions using "access time victim side" function.

- Access all memory locations pointed by the shared table.

- Measure access times.

- Ensure that no other instruction is pre-fetched after each access for accu-
rate timing.

- Expect access time larger than a threshold (cache misses) due to data
absence in the cache from previous flushing.

From the attacker’s perspective:

-Simulate attacker’s behavior with "access time attacker side" function.
-Observe memory access times similar to victim’s steps.

-Perform cache operations to maintain timing data integrity.

- Anticipate access time smaller than a threshold (cache hits) due to vic-
tim’s prior access to shared data.

Simulation
Now, it is time to examine actual results obtained from the previous test and
experiment described earlier. These results will provide us with a comprehensive
understanding of behavior and performance of cache memory system throughout
experiment.

The results are present in the figure below.

23

KHAZAAL Farah COUTURIER Ulysse Internship Report

Acces time of each element of the shared table

W Access time of the victim [l] Access time of the attacker

500

400
Threshold

300

access time (cycle)

(= N e B TR e e R R I T T e e B B R T R T e e e R R e B o o N T R <« e R B B S Y T N T B = = < I
HHHHHHHHHHNNNNNNNNNNNWNNMWNNNN%V?W%VQQ%Q

element i

_____ _——— e Y

Figure 15 — Access time to the element of the table vs the elements i

As expected, time it takes for the victim to access the shared table sometimes
goes beyond 200 cycle, which is the threshold for cache misses. However, after
each miss, noticing an instance of cache hits can be normal. This is because of
pre-fetching mechanism that tries to anticipate all data needed. Put differently,
in our scenario, the line size is 64B, and a table has been created with elements of
long data type. As observed in the diagram, after a specific point, we encounter 8
hits following each miss. The system fetches not just the initial element of a line,
but the entire line. In this context, a line consists of 8 elements, given the division
of 64 by 8.

Looking at the attacker’s perspective, consistently observing, the time taken
to access the shared table remains consistently below the threshold.This indicates
consistent cache hits for the attacker. So, in line with the previous predictions,
the results align with what was anticipated. So the attacker can conclude that the
victim had an access to the shared table.

24

KHAZAAL Farah COUTURIER Ulysse Internship Report

4.1.2.3 Example of Cache Timing Attack for Key Recovery in Encryp-
tion Operations on 1CPU

In the realm of cybersecurity, attackers constantly seek innovative ways to
exploit vulnerabilities and extract sensitive information from system, so for this
reason , we tried to write a code of a real case that uses the cache timing attack.
A cache timing attack is a type of side-channel attack that takes advantage of
variations in the time it takes to access data in the cache memory. The "Flush
and Reload" technique is one of the methods used in cache timing attacks.

Experiment

The code used for this experiment demonstrates a scenario where two participants
work together to securely exchange sensitive information. In this process, one
participant sends encrypted data to the other, who has the decryption key. To
understand the encryption method used and unveil the original data, a "flush and
reload" approach is employed. This method takes advantage of differences in mem-
ory access times, using the cache to leak unintentional information. By precisely
timing memory accesses, we can gain insights into the encryption method used and
ultimately decrypt the original data. This example highlights the vulnerability of
encryption to cache timing attacks and emphasizes the need to ensure exclusive
access to sensitive data during communication.

Here’s a brief overview of how the code achieves this:

User Input: User provides sensitive data for the encryption algorithm.

Encryption Process: The encryption function involve basic multiplication
and addition operations carried out on a clear message with a certain secret
key. It’s important to recognize that the operation applied to the plaintext
is determined by the value of each bit within the secret key.

Cache Management: The "flush operation()" function clears the cache, en-
suring that the attacker’s memory accesses remain unaffected by cache hits.

Measurement and Analysis: The "second participant read" function mea-
sures access times for the multiplication and addition functions. By compar-
ing these access times, it determines which operation the victim performed.

first participant Operations: The first participant access function simu-
lates an encryption operations. It performs a sequence of encryption oper-

25

KHAZAAL Farah COUTURIER Ulysse Internship Report

ations using the addition and multiplication functions.

- Main function: In the main function, the following steps are executed:
1-Flushes the cache.
2-Calls first _participant _access to simulate victim’s encryption operations.
3-Reads the detected operations using second participant read.
4-Decrypts the key by reversing detected operations. Outputs the decrypted
key.

Expectation
The key idea is that the attacker can detect which operations were performed by
the victim (addition or multiplication) based on the measured cache access times.

Simulation
The results of this code can be seen in the documents below :

Starting execution ...

Give me your key : 10080

Encrypted key: 12641295
the 3 decryotion done 1is 12542530
the 2 decryotion done 1is 12443765
the 1 decryotion done is 12345000
the ® decryption

The final Decrypted key: 1008

Figure 16 — proof 1

Starting execution ...
Give me your key : 123456

Encrypted key: 1524360615

the 3 decryotion done 1is 1524261850
the 2 decryotion done 1is 1524163085
the 1 decryotion done is 1524064320
the ® decryption 123456

The final Decrypted key: 123456

Figure 17 — proof 2
As evident from the figures above, the code enables us to deduce the message

26

KHAZAAL Farah COUTURIER Ulysse Internship Report

of another individual through the utilization of the flush and reload technique.

4.1.3 Conclusion

To sum up, our thorough analysis of the established system has allowed us to
carry out the flush and reload attack. This in-depth understanding of how the
system works has been crucial for successfully implementing and observing the
flush and reload attack in action.

Additionally, it’s worth mentioning that the Syscall Emulation mode "SE" en-
ables us to perform a flush and reload attack using a single C code with just one
CPU and application. However, it’s important to note that this setup might not
fully represent real-world scenarios since shared data are located in the same code.

Regarding limitations, it’s worth pointing out that the text debug files gener-
ated during all simulations are quite large. Although there was an intention to
visualize memory or cache mapping for different data, this was not feasible due to
the files’ size limitations .

4.2 Model 2 : Two Cores

Now to go further and closer to real cases, a second system is modeled with
two cores. This time two attacks will stimulate this system to get conclusions and
analyzes.

4.2.1 System Behavior
The system we implement in gemb is presented in the figure [18 below.

27

KHAZAAL Farah COUTURIER Ulysse

Internship Report

CPUD
Data I Tmsrmc!fan
L1
Lclasr?;a Instruction
cache
F) F)
Data Instructian
v

CPU1

Attacker
application

F
Data

hJ

Instruction

L1 Data
cache

L1
Instruction
cache

F)

)

Data

h 4

Instruction

L2 Instruction & Data Cache

Y
Data & Instruction

¥

Memory (RAM DDR3, 512 MB)

Figure 18 — gemb simulated system with attacker and victim

Here as two cores are implemented, a distinction has to be done between private
and shared caches. Each core will have instruction and data private caches, and
they will share one 12 cache. As explained in section [3.1.2.2] this will be the
backdoor for a spy to observe what victim’s application is doing.

4.2.1.1 Model definition

This model will have one memory system in the center, with two external
entities. The victim and the attacker are the only entities that will be taken into
account. To simplify the system approach for cyber-security, inputs and outputs
or external peripherals that affect memory system are not taken into account. The
figure [19) shows system’s overall.

28

KHAZAAL Farah COUTURIER Ulysse Internship Report

Entities definition

Flush_cmd

Write Req

MEMORY . Attacker
SYSTEM Write Resp

Read Req

> Core
- N Read Req
Read Resp Read Resp

Figure 19 — Definition of entities

&

Attacker and victim just send read or write request and receive read or write
response, with a possibility for attacker to use the flush. All of these interactions
have now to be described.

4.2.1.2 Definition of input and outputs

The input and output definitions remain consistent with those depicted in
Figure 77?.

Similarly, the internal features remain unchanged from before in the figure ?7.
However, the only addition is the consideration of L2 associativity.

4.2.1.3 Behavioral description

Entities” behavior is done according to all different requests coming from and
sent to attacker and victim cores. It is a general purpose behavior on figure [20]
allowing to describe what will happen in the system no matter what the two
external entities are doing. The capture is divided in four for a better visibility.
The first one resumes the three requests that can be done to activate the system.
After that each screenshot describes one behavior after one of these request. It is
quite similar as One CPU system’s behavior, but with new states associated with
12.

29

KHAZAAL Farah COUTURIER Ulysse Internship Report

Write_Req Read_Req Flush_cmd

~0) (2) (3)

Figure 20 — First part of System behavior

Here, from a start state, system can only go in three other states depending on
the incoming request of Read Write or Flush. First described one is Write (1) in
the figure 21] below.

30

KHAZAAL Farah

COUTURIER Ulysse

Internship Report

(&3]

/
Write_Req

/L1 Check(Write_Req) L1 Checking

present_|2 = False

RAM Checking

1 present_RAM = True

present_|1 = False

Wiite_Resp <] present=True

L2 Checking

present_RAM = False

Write data
RAM

end of
write

_| present |2 =True

Test data.address cache setin L2

Test data.address cache setin L1

cache line empty cache line full cache line empty

Find
Last Recentty
Used cache line

Last Recently Used found

Daia evicted

Add data
to L1 cache line

Add data
to L2 cache line

data address added

data address added

cache line full

Find
Last Recentty
Used cache line

Last Recently Used found

Daia evicted

Figure 21 — System behavior for a Write Request

Here is a list of the different steps of this behavior:

1. After a write request, the system checks if the requested data’s address is

present in L1 cache.

2. If the address is found in L1 cache, the data is written to the correct

location, and the system transitions to the Start state.

3. If the address is not present in L1 cache, the system checks L2 cache and

repeats the operation.

31

KHAZAAL Farah COUTURIER Ulysse Internship Report

4. In case the address is located in RAM but not in L2, the system brings the
address back to its corresponding cache set (due to set associative mapping).

5. Within this cache set, the system checks if lines are empty or occupied.

6. If a line is empty, the address is written on that line.

7. If no lines are empty, the system identifies the Least Recently Used (LRU)

data, clears it, sends it back to memory, and writes the new data in its
place.

Given that both the manipulated data and a cache line are 64 bytes long, cache
ways are not considered in this context. For a read operation, the behavior (illus-
trated in Figure follows a similar pattern.

(1)

L

Read_Req

/L1 Check(Write_Req) L1 Checking

present_I1 = False

Read_Resp <] present=True

L2 Checking

present_I2 = False _|present_I2 =True

RAM Checking

—— present_RAM = True [~ Error Flag

Test data.address cache setin L2 ‘ Test data.address cache setin L1 ‘

present_RAM = False

cache line empty cache line full cache line empty cache line full

Find
Last Recently
Used cache line

Find
Last Recently
Used cache line

Last Recently Used found Last Recently Used found

Data evicted Data evicted

Add data
to L2 cache line

Add data
to L1 cache line

data address added data.address added

Figure 22 — System behavior for a Read Request

32

KHAZAAL Farah COUTURIER Ulysse Internship Report

Here the only difference is that if asked data is not present it raises a flag,
instead of writing it like previous operation. The last process to describe is the
flush process in figure [23| below.

(3}

<] Flush_cmd

L1 Clean and
Invalidate
data.address set

line L1 data.address empty

L2 Clean and
Invalidate
data.address set

line L2 data.address empty

Write data
RAM

Figure 23 — System behavior for a Flush Request

Here the behavior has been simplified a lot because flush operation as shown for
example in its assembly instruction does different operations. Basically it checks
the address in 11, evicts and invalidate it, and repeats the operation for all other
cache levels. Finally it writes the actual value of the data in RAM.

Next step is now to apply cyber attacks to this system, to get simulation results
and validate or not the model.

4.2.2 Flush and Reload Attack
4.2.2.1 Definition of entities behavior

In this section, we focus on a system with two CPUs : the attacker’s CPU and
the victim’s CPU. To analyze their behavior, we have created two separated pro-
cesses in C codes, which are provided in [3].The type of CPU used is ArmO3CPU
. The behavior of the attack and the victim can be represented by the automata
below.

33

KHAZAAL Farah COUTURIER Ulysse

Internship Report

Victim Behavior

/ Variable update wisl [~Write Req

Waiting End
of Write

Write Resp [>—{>Read Req

/t:=0

‘Waiting End of
Read

<|Read Resp

Waiting End of
Read

<]Read Resp

t = threshold
{ Set flag miss

t = threshold
{ Set flag miss

t < threshold
/ Set flag hit

Waiting

Read

t < threshold
/ Set flag hit

/t= Delay

End of

<7|Read Resp

1 = threshold
{ Set flag miss

t < threshold
/ Set flag hit

Figure 24 — Victim Behavior

34

KHAZAAL Farah COUTURIER Ulysse Internship Report

*

Attacker Behavior

ft=Delay

ti=t-1

waiting end of write

Write Resp [=

teston i

i < size

j=size I=ieT| Ho> Write Req]

Flush_cmd

Figure 25 — Attacker Behavior

4.2.2.2 Experiment

We will conduct an investigation centered on calculating access times from
the victim’s perspective, with a specific focus on victim’s cache side. While this
experiment might not directly replicate a realistic attack scenario, its value lies
in its potential to reveal any irregularities or anomalies occurring within victim’s
environment. The primary objective of this experiment is to enable the target to
access specific data. Following this, the attacker will proceed to clear all cache
memory on their end and subsequently attempt to retrieve particular data from
target’s side.

Before accessing any data, we ensure a complete flushing of the L2 cache mem-
ory. To expedite the flushing process and minimize the required time, we have
configured the L2 cache size to be 16KB. Furthermore, both the L1 Instruction
cache and the L1 Data cache sizes have been set to SKB.

Expectation

35

KHAZAAL Farah COUTURIER Ulysse Internship Report

The expected order of execution is :

1 - The victim initially tries to access a mem block, and we measure the time
required for this access.

2 - Next, the attacker flush the L1 and L2 cache memory to ensure that the
victim’s data is no longer present in the cache.

3 - To verify that the cache memory has been successfully flushed and the
victim’s element is not present, we allow the victim to access their data
again after the flush. We expect the number of cycles required to be greater
than in the initial access, indicating a cache miss.

4 - Furthermore, to reinforce our results, we let the victim access their data
once more. This time, we expect a cache hit, which would result in a lower
number of cycles.

This experiment aims to demonstrate the behavior of cache memory in rela-
tion to accessing specific data, the effects of flushing the cache, and the subsequent
cache hits or misses.

Simulation

First of all, to ensure that these steps are performed in the correct order, a "for
loop" construct is used in source code. To maintain control over execution time and
measure the duration of the process, rdtsc() function is employed. This function
retrieves the current number of clock ticks at a precise moment. By capturing the
start time using start = rdtsc(), it is possible to track the elapsed time accurately.
The figure below just explain how the code is executed with the number of tick at
the beginning of each step .

36

KHAZAAL Farah COUTURIER Ulysse Internship Report

victim first tick : 1000000000000029323 second tick : 1000000000008842690
Time
Victim Define anew [Measure the accessh Wait Measure the Measure the END :
variable a timetoa i access fime fo a access time to a i
“' n------------------- ry - = d
" Write Read
Write Req Read Read req Read req Read
Resp| | Read req Resp Resp Resp
v M AR
I END 1
I 1
b == = d
A r
Write Req ;‘ggg Flush cmd
1 . il Define a large ot | [
Attacker Wait | enough table Flush all the table Wait : END X
s s s s s e e e =s== L L L L R R LT TR
-

S5PY commence au tick : 1000000000000032690

Figure 26 — Correct order

Now, it is time to examine the actual results obtained from all the previous
tests and experiments described earlier. These results will provide a comprehen-
sive understanding of the behavior and performance of the cache memory system
throughout the experiment.

The figure presented below illustrates the results obtained from system setup.

Victim first access : 175
hit

Victim first access after flush: 321

miss

Victim second access after flush: 155
hit

Figure 27 — Results of the experiment

As anticipated, victim’s access time after cache flush is greater than the access
time before flush. This can be attributed to the flushing process conducted on
the attacker’s side, which removed desired data from the cache. Consequently,
when the victim attempts to access the variable, it is not readily available in the
cache, resulting in a cache miss and an increased access time as the data needs to
be fetched from the main memory. Additionally, it is worth noting that the first
cache hit observed during the experiment is typically larger than the subsequent

37

KHAZAAL Farah COUTURIER Ulysse Internship Report

cache hits. This discrepancy arises from an icache miss.

4.2.2.3 Conclusion

To sum up, the set up system at the beginning of this experiment helps under-
standing final results. We also showed how the flush and reload attack could be
done using that system.

However, it’s important to note that executing the flush and reload attack is not
as straightforward as mere observation suggests. By looking from the attacker’s
side, trying this attack with two CPUs doesn’t work well. This is because of the
limits in the software that were talked about in paragraph 5 using the SE model.
Since CPUs can’t share memory, they can’t use shared libraries or variables. So,
the attacker can’t know for sure if the victim accessed a certain variable. This
variable is stored in different places in the stack of each process, so the attacker
can’t really watch what the victim is doing.

4.2.3 Prime and Probe attack
4.2.3.1 Definition of entities behavior

Another experiment is to use the fact that the attacker can write a large amount
of data that can be enough to erase victim’s data from the cache, as a Prime and
Probe attack acts. To implement this attack using our methodology, new behaviors
of victim and attacker are done. Victim’s behavior is shown below 28] It is again
represented as an automata.

38

KHAZAAL Farah COUTURIER Ulysse Internship Report

Victim Behavior

Attack execution wish

‘Wait end > Read Req

Wait

Read Resp

<| Read Resp

testoni

i < size
i=size i::i+1__[> Read Reg

Figure 28 — Victim Behavior

Here, as the aim is to show how the system acts when a application evicts
attacker’s data in cache hierarchy, victim needs to manipulate a big amount of
data here implemented as a table. Victim’s first wait is set up to ensure that
attacker has time to fills the cache. Then it Sends a lot of read request for a lot
of data in a table. Number of requests is determined by variable size. Once all
accesses are done, it goes back to a state named "Other", meaning that it can do
other things which are not taken into account here.

After that, attacker’s behavior is described in figure[29|below with an automata.

39

KHAZAAL Farah COUTURIER Ulysse

Internship Report

Attacker Behavior

Attack execution wish

Wait
Write Resp

i=0

not wait_end
start=0
end=0
size

time =0

Write Req

<] Write Resp

testoni

\Wait end

Wait end
t=Wait Duration

=0
Wait
Read Resp

i < zize

i +1——[> Write Req

™ Read Req

<|Read Resp

testoni

i=size

Figure 29 —

i< size

io=i +1——|> Read Req

Attacker Behavior

This automata can be cut in three part. First two states are for filling cache
with data (Prime phase). Then a wait state allows victim to manipulate its tab.
Then last states are for reading again its table and measure reading time, to deduce
information by printing these times in a file (Probe phase).

These two automatas are implemented as C programs executed by python

40

KHAZAAL Farah COUTURIER Ulysse Internship Report

system in gemb. They are available in the Git repository in : Model2 TwoCores/
. However, these C implementations would not work in a real modern processors
because some aspects have been avoided to simplify. A more real implementation
has been done in Miro Haller’s paper [5| paper about revisiting Microarchitectural
Side-Channels attacks.

4.2.3.2 Experiment

Here, the chosen approach to assess the relevance of this model with gemb is
as follows: evaluating using printed file on attacker’s side how much manipulated
data are detected by using a detecting rate. By varying 11 and 12 size, conclude
on how these variable may influence system’s vulnerability regarding prime and
probe attack. Finally by comparing simulation and expectation, also conclude
on the reliability of the system and its level of complexity. For experiments, as
attacker’s simulation gives reading times, there are different ways of exploiting
them. Chosen one are : plotting in a graph reading time for each index of the
table, plotting a histogram of the amount of each reading time, using this, trying
to map every data in our system hierarchy (RAM, 12, then 11).

Expectations

As everything is known for entities and system, a mapping of every attacker’s
data can be done and is the expected result of simulation. Cache sizes need first
to be fixed and are : 64 kB for 11 Dcaches, 16 kB for 11 ICaches and 128 kB for
12 shared cache. As manipulated data are 64 bytes long, a quick calculation gives
that 1024 data can be manipulated in 11 dcache, and 2048 in 12 cache. Once these
sizes are fixed, it is possible to imagine how attackers fills cache hierarchy with
its 2500 indexes table. This size has been chosen to fill both caches enough. This
filling is shown in figure [30] Values on the left have been observed after a first
simulation, to have an idea of how much data are stored by default in caches,
and conclude on how much data from a table can use the attacker. In fact by
not manipulating any data, caches are filled with some information by default like
registers addresses or libraries for example.

41

KHAZAAL Farah COUTURIER Ulysse Internship Report

Attacker

Level 1Cache lines Level 2 Cache lines

Writes data[0] to data[900] [7] -

Level 1Cache lines Level 2 Cache lines

Writes data[900] to data[1600] |:| I

Level 1Cache lines Level 2 Cache lines

Writes data[1600] to data[2500] [_] |

Figure 30 — Expectation on how is filled the system on first attacker’s writing

i

Replacement policy is here set as Last Recently Used, meaning that it is first
read data that will be first evicted. This is the order or all steps :

1- About 900 data are written in 11 cache and 12 as almost anything has been
written there.

2- For about 700 following ones, as 11 is full, system will evict cache lines to
put new data. As 12 is bigger, no data are evicted and everything is stored
there.

3- For last ones, 11 needs to evict lines, and now 12 also, because it is full.

At the end, first written data are stored in RAM, last ones are only in 12, and
intermediate ones are in 11 cache. Described behavior takes here into account that
gemb classic caches only implement a mostly inclusive policy. This is why orange
data, even if they are not in 11, are still located in 12.

In fact as to deduce information attacker will measure reading time for all
indexes before and after victim, only ones with a new location will provide infor-
mation. Data from 1600 to 2500 will always be in 11 cache. Data from 0 to 900
will always be in RAM. Only data between 900 and 1600 will first be in 12, but
then evicted. So there is a maximum of about 700-800 data to detect for this im-
plementation of a prime and probe. As implementing an attack can take months
and even years, this amount of detected data is supposed enough to conclude on
our two objectives : evaluate influence of cache size on vulnerability, and evaluate
the relevance of gemb in terms of hardware cyber-security.

42

KHAZAAL Farah COUTURIER Ulysse Internship Report

According to previous expected cache filling by attacker, the second graph to
imagine is the representation of reading time for all indexes of the table, before and
after victim’s actions. Normally, only times between 900 and 1600 should move,
and be longer because of their new location in RAM. Two graphs of expectation
are plot in the figure [31] below.

Expected reading time for each array of attacker's table (no victim)
260

240

220

200

Reading time (in ns)

180

160

140
500 1000 1500 2000 2500

Index of the array in attacker’s table

Expected reading time for each array of attacker's table (with victim)
260

240

220

200

Reading fime (in ns)

180

160

140
500 1000 1500 2000 2500

Index of the array in attacker’s table

Figure 31 — Graphs of expected attacker’s reading times with and without victim

By comparing these two measures, attacker should be able to deduce that
victim evicted some of its data and to know their index in the table. Next step
is not implemented but it is then usual to know for which data on which cache
set they are mapped, and then try to guess more information about the victim.
Here in this graph it is possible to link with the mapping. Data between 0 and
900 take a long time to read, showing their location in RAM, next ones are read
in 12 giving a reading time around 170, and then last ones are still in 11 cache,
giving the shortest reading time. All of these times have been measured before
and depends on the simulated type of CPU.

Simulation

43

KHAZAAL Farah COUTURIER Ulysse Internship Report

This system is then implemented and simulated. The two previous graphs are
then plot to compare expectation and simulation. These two graphs are shown in
figure [32] below.

Simulated reading time for each array of attacker's table (with victim)
== Simulation == Expectation

260

240

220

200

180

Reading time (in ns)

160

140
500 1000 1500 2000 2500

Index of the amray in the table

Simulated reading time for each array of attacker's table (with victim)
== Simulated == Expected
260

240
220
200

180

Reading time (in ns)

160

140
500 1000 1500 2000 2500

Index of the amray in the table

Figure 32 — Graphs of simulated attacker’s reading times with and without victim

Here simulation is plot in blue and expectation in red. First a trend can be
observed on the two curves that at some point simulation sticks with expectation.
For the case where victim reads a table, simulation is closer to expectation with
evicted data that have been moved to RAM. However, it seems that mapping is not
as expected at all, leading to data that are not stored at their expected location.
This lack of accuracy in the mapping can be due to different missing points in the
model, but as it is still possible to detect a variable amount of victim’s data, it
is still possible to conclude on global trends. The amount of moved data is here
counted and this is repeated for different cache size.

Other simulation with variable cache sizes

44

KHAZAAL Farah COUTURIER Ulysse Internship Report

L2 size (in kB) | L1 Size (in kB) | Rate of detected eviction by attacker in 12
32 8 21%
32 16 20%
32 32 22%
32 64 20%
32 128 14%
64 8 34%
64 16 30%
64 32 27%
64 64 22%
64 128 14%
128 8 64%
128 16 60%
128 32 54%
128 64 32%
128 128 16%

Table 2 — Table of Detection rate for variable 11 and 12

To conclude on if gemb and our model are trustworthy enough to observe
behavior in hardware cyber-security, the rate of detected victim’s data is measured
for different cache size. All simulation results are summarized in the table 2

Here, it is possible to conclude on the importance of cache size. Globally for
a victim manipulating 2500 data, the eviction rate is higher when the 12 shared
cache is big. On the other hand the more 11 is small the more attacker deduces
information. This is quite logical and can be linked to expectation. As data that
attacker can use to deduce things are in only 12 cache, the more 12 is big the more
he will have data there. And the more 11 is small, the less data he will store and
read back there. His objective is to have as less data in 11 as possible, and as much
in 12 as possible. In a real case with a fully inclusive cache (or using gem5 Ruby
caches), attacker should have a higher detecting rate.

4.2.3.3 Conclusion

To conclude for this experiments, this model used in gem5 allows to deduce
global trends. By not taking into account indexes of evicted data or rates amount,
but only the global trend, we conclude that systems with big 12 and very small 11
are more vulnerable.

However, a real prime and probe attack would then need to know the precise

45

KHAZAAL Farah COUTURIER Ulysse Internship Report

mapping of all data, to know how cache is mapped in term of sets, lines and ways
(in a set-associative mapping). Here, things are missing in our model, which does
not take fully into account this mapping of addresses in sets, this can explain
differences in simulation. Figure [33| tries to compare expectation and simulation.
In simulation, it is possible to observe the real mapping and the importance of
taking it into account. Data are not mapped in block, but are split in all cache
memory, making it harder for an attacker to deduce where his evicted information
are located.

Attacker

Level 1Cache lines Level 2 Cache lines
Expectation

Level 1Cache lines Level 2 Cache lines
Simulation

[patafo] to datajooo] [] Datalo00] to data[1600] [| Data[1600] to dataj2500]

l:l Other data

Figure 33 — Comparison between expectation and simulation on mapping

One last thing is that gem) simple cache models don’t give a fully inclusive

indexing policy but a mostly inclusive one. This "mostly" adds unknown variation
in measurement. In Syscall Emulation mode and without Ruby caches, we are
not exactly sure on how our cores transform addresses into set number and lines
number. We don’t even know if classic caches use virtual or physical mapping.
A solution could be to use Ruby caches, and Full System mode. First because
Ruby are fully configurable and can be fully inclusive, with a mapping close to
reality. Secondly because Full system would implement a Kernel, adding more
details in memory and cache mapping policies.

4.3 Limitations of Syscall Emulation Mode

When delving into the exploration of gem5, it’s essential to recognize both the
strengths and weaknesses of its operational modes in order to develop a thorough
grasp of its capabilities. While gemb serves as a potent and adaptable instrument
for architectural research and performance analysis, it’s important to acknowledge

46

KHAZAAL Farah COUTURIER Ulysse Internship Report

that its Syscall emulation (SE) mode, like any software, is not exempt from lim-
itations. These limitations, though not diminishing its value, provide contextual
understanding of the operational boundaries inherent to gemb. In the following
section, we will delve into some of the notable limitations that researchers and
simulation practitioners should consider when employing the SE mode for various
research and simulation objectives.

4.3.1 List of Limitations

1- Shared Memories : The limitation related to shared memory configura-
tion and inter-processor communication is particularly evident when uti-
lizing gemb’s Syscall Emulation (SE) mode. In this mode, gemb ensures
itself to strike a balance between simulation accuracy and performance by
emulating system calls, but it doesn’t fully emulate the operating system.
Consequently, while SE mode offers a lightweight approach to simulation,
it presents challenges in explicitly defining shared memory regions between
multiple CPUs. The absence of comprehensive operating system support
can prevent the accurate replication of scenarios that heavily rely on shared
memory synchronization mechanisms. Therefore, researchers and users opt-
ing for the SE mode in gem5 should recognize this limitation, especially
when investigating complex multiprocessing scenarios where direct shared
memory interactions between CPUs are a main aspect of the analysis.

Additionally, it’s important to note that certain functions like "shmget"
and its derivatives, which are utilized for creating shared memory, are not
implemented in gemb’s Syscall Emulation (SE) mode.

Demonstration

To illustrate the absence of shared memory capability in the SE mode, we
conducted a straightforward test within the terminal. The objective was to
attempt the creation of shared memory using the shmget command.

ietr-ci108c:

1: shmget: not found

Figure 34 — shmget not found

47

KHAZAAL Farah COUTURIER Ulysse Internship Report

2- Pipe Communication : In the realm of computer architecture, a pipe
serves as an inter-process communication mechanism that allows two pro-
cesses to exchange data. They enable efficient communication between pro-
cesses while ensuring data integrity and synchronization. One process can
generate data and pass it to another process through the pipe, even if the
two processes are not directly connected.

However, in Gemb’s SE mode, while the implementation of pipes is not
available, researchers and developers can still explore their functionalities
using other modes of Gemb. Pipes, being a fundamental mechanism for data
exchange between processes, require intricate synchronization and manage-
ment that might not align with SE mode’s goals of performance optimiza-
tion.

Demonstration

$ pipe
s

h: 1: pipe: not found

Figure 35 — pipe not found

3- Debug flags : A significant drawback of SE Mode is its lack of organized
debug flags and a graphical interface to visualize cache memory activities,
especially in complex system setups. Few options are available and have
been studied by some researchers like Jason Lowepower 6] but are not con-
ducive to precise conclusions. This absence makes it challenging to easily
understand what’s happening within cache memories and the MMU (Mem-
ory Management Unit). Without user-friendly visual tools, interpreting the
interactions and performance implications of different components becomes
a complex and time-consuming task, requiring manual code analysis for
deeper insights.

Moreover, we've tried to implement this graphical interface by converting
debug flags using python scripts but the executable was not working well
due to large files size.

48

KHAZAAL Farah COUTURIER Ulysse Internship Report

5 Conclusion

To conclude, addressing the details of modeling a cyber security system using
the Syscall Emulation mode of gem) necessitates a nuanced consideration of the
required level of detail. The setup we used made it possible to study how the
whole system behaves. This helped us understand things like how cache size
affects the system and how likely it is for an attack to work on the setup. With
this objective in mind, the utilization of Ruby caches combined with a kernel
operating in Full System mode becomes mandatory. Finally, considering potential
updates that could have proved beneficial in our context, the incorporation of
additional graphical interfaces could have served as valuable aids in comprehending
the simulated devices, as previously elucidated. This could be a very interesting
development project for any further work.

49

KHAZAAL Farah COUTURIER Ulysse Internship Report

References

[

2l

3]

4]
15]

(6]

17l

18]

19]

gemb community. C/C++ Coding Style. eng-ENG. URL: https://www.gem5.

org/documentation/general _docs/development/coding_style/| (visited
on 06/09,/2023).

The gemb dev community and contributors. The official repository for the
gemdb computer-system architecture simulator. eng-ENG. URL: https://github.
com/gemb/gemb.

Farah KHAZAAL Ulysse COUTURIER. internshipproject. eng-ENG. URL:
https://github. com/FarahKhazaal /gemb_Multiprocessor _security.
git (visited on 06/10,/2020).

gemd: The gemd simulator. eng-ENG. URL: https://www.gemb.org/.

Miro Haller. Revisiting Microarchitectural Side-Channels. eng-ENG. URL: https:
/ / github . com /Miro - H/ CacheSC / blob /master /docs / revisiting -
microarchitectural-side-channels-Miro-Haller.pdf|(visited on 06/10/2020).

Jason Lowe-Power. Visualizing Spectre with gemd. eng-ENG. URL: http :
/ /www . lowepower . com/ jason/visualizing - spectre-with- gem5 . html

(visited on 06/01,/2018).

Clémentine Maurice Pierre Ayoub. Reproducing Specter Attack with gemd :
How To Do It Right ¢ eng-ENG. URL: https://inria.hal.science/hal-
03215326/document (visited on 05/03/2021).

Writeback method. eng-ENG. URL: https://www.researchgate.net/figure/
A-A-Write-Through-cache-with-No-Write-Allocation-B-A-Write-
Back-cache-with-Write_fig4 318860805/

Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a High Resolution,

Low Noise, L3 Cache Side-Channel Attack. eng-ENG. URL: https://eprint.
iacr.org/2013/448.pdf.

20

https://www.gem5.org/documentation/general_docs/development/coding_style/
https://www.gem5.org/documentation/general_docs/development/coding_style/
https://github.com/gem5/gem5
https://github.com/gem5/gem5
https://github.com/FarahKhazaal/gem5_Multiprocessor_security.git
https://github.com/FarahKhazaal/gem5_Multiprocessor_security.git
https://www.gem5.org/
https://github.com/Miro-H/CacheSC/blob/master/docs/revisiting-microarchitectural-side-channels-Miro-Haller.pdf
https://github.com/Miro-H/CacheSC/blob/master/docs/revisiting-microarchitectural-side-channels-Miro-Haller.pdf
https://github.com/Miro-H/CacheSC/blob/master/docs/revisiting-microarchitectural-side-channels-Miro-Haller.pdf
http://www.lowepower.com/jason/visualizing-spectre-with-gem5.html
http://www.lowepower.com/jason/visualizing-spectre-with-gem5.html
https://inria.hal.science/hal-03215326/document
https://inria.hal.science/hal-03215326/document
https://www.researchgate.net/figure/A-A-Write-Through-cache-with-No-Write-Allocation-B-A-Write-Back-cache-with-Write_fig4_318860805
https://www.researchgate.net/figure/A-A-Write-Through-cache-with-No-Write-Allocation-B-A-Write-Back-cache-with-Write_fig4_318860805
https://www.researchgate.net/figure/A-A-Write-Through-cache-with-No-Write-Allocation-B-A-Write-Back-cache-with-Write_fig4_318860805
https://eprint.iacr.org/2013/448.pdf
https://eprint.iacr.org/2013/448.pdf

	Introduction
	Context
	Problematic

	Background and Discovering gem5
	What is gem5 ?
	Architecture of gem5
	Targeted architecture

	Basics of attacks
	Cache memory
	Importance of having a cache hierarchy
	Cache functioning

	Flush and Reload
	Prime and Probe

	Modelling and experiments
	Model 1 : One Core
	System Behavior
	Flush and Reload attack
	Conclusion

	Model 2 : Two Cores
	System Behavior
	Flush and Reload Attack
	Prime and Probe attack

	Limitations of Syscall Emulation Mode
	List of Limitations

	Conclusion

