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Fine Dense Alignment of Image Bursts
through Camera Pose and Depth Estimation

Bruno Lecouat1,2,∗ Yann Dubois de Mont-Marin2,∗ Théo Bodrito2,*

Julien Mairal4 Jean Ponce2,3

Abstract

This paper introduces a novel approach to the fine align-
ment of images in a burst captured by a handheld cam-
era. In contrast to traditional techniques that estimate two-
dimensional transformations between frame pairs or rely
on discrete correspondences, the proposed algorithm estab-
lishes dense correspondences by optimizing both the camera
motion and surface depth and orientation at every pixel. This
approach improves alignment, particularly in scenarios with
parallax challenges. Extensive experiments with synthetic
bursts featuring small and even tiny baselines demonstrate
that it outperforms the best optical flow methods available
today in this setting, without requiring any training. Beyond
enhanced alignment, our method opens avenues for tasks be-
yond simple image restoration, such as depth estimation and
3D reconstruction, as supported by promising preliminary
results. This positions our approach as a versatile tool for
various burst image processing applications.

1. Introduction

This paper tackles the challenge of dense alignment in burst
photography, a domain characterized by minimal camera
movement and predominantly static scenes. We aim to align
these image sequences accurately, quickly, and reliably.

Burst photography is increasingly pivotal in a range of
image enhancement applications, as evidenced by recent
advancements in high dynamic range imaging [23, 29],
night photography [31], deblurring [14], or super-resolution
[6, 28, 41]. In this context, a handheld camera captures a
rapid sequence of images with slightly different viewpoints
due to hand tremor, possibly with varying camera settings,
over a brief duration. The alignment of these frames is a
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critical precursor for these methods. However, current ap-
proaches to image registration between image pairs, such as
homography or optical flow estimation, do not fully leverage
the nature of burst sequences (multiple views of a quasi-static
three-dimensional scene with slight camera motion). This
limitation potentially leads to suboptimal outcomes. Preci-
sion in alignment is crucial for the quality of the enhanced
images, and inaccuracies can significantly impair the final
results, introducing artifacts like ghosting or zipping [28].

In this paper, instead of relying on traditional pairwise
dense alignment of frames, we propose a novel global esti-
mation approach tailored for image bursts, which explicitly
considers the three-dimensional nature of the scene. Specifi-
cally, our approach takes full advantage of the small baseline
feature by introducing a new parametrization of optical flows,
consistent across different views, based on the image for-
mation model. This model assumes a perspective camera
with known intrinsic parameters, capturing a static scene
comprising surfaces approximated as small planar patches.
Given the small baseline, we anticipate minimal occlusions
between views. Consequently, we simplify the representa-
tion of the 3D scene into a concise two-dimensional grid that
encodes the depth and normals of these planar surfaces.

More precisely, our method employs a 2D grid to repre-
sent depth, normals from a reference view, and camera poses.
While camera poses are optimized individually for each
frame, structural parameters are shared across all views. This
shared parameterization requires fewer parameters than tra-
ditional pairwise optical flow methods. It enhances the over-
all consistency and effectiveness of our alignment method
while still preserving the expressivity necessary for accu-
rately modeling motion induced from 3D scenes.

In practice, we solve a global optimization problem to
align frames, minimizing patch photometric reprojection er-
rors across all views within the reference frame. Optimizing
for camera pose, depth, and normal parameters. In situations
with parallax, our model adapts to determine camera motion
and scene geometry that accounts for the relative movements
between frames. When no parallax effects are present, the
model defaults to fitting pose parameters for each frame with
constant depth, similar to homography fitting.



Figure 1. The global pipeline of our optimization-based method. It inputs a burst of images and an initialization depth map and outputs
the direct and reverse flow between each image and the first one. Our method estimates the optical flow using the camera’s pose and 3D
scene structure as optimization variables of the photometric reprojection errors in a reference frame then poses and depth maps can also be
retrieved.

To achieve efficient optimization, we propose a new
coarse-to-fine block-coordinate descent algorithm inspired
by the parametric Lucas-Kanade algorithm [5] in its struc-
ture, using a variant of the Gauss-Newton algorithm for
precise pose optimization on SO(3) and gradient descent
for depth and normal adjustments. We also introduce a novel
fixed-point algorithm to infer depth maps for new camera
positions. This algorithm is particularly advantageous for
our specific needs but also holds potential for broader ap-
plications. It enables us to calculate reverse optical flows
and adapt reference views to other views, which is essen-
tial for downstream tasks like super-resolution and low-light
photography and can also be used to detect occlusions.

We validate our approach with synthetic bursts built with
photorealistic rendering software. To validate our approach
with real-world data, we also demonstrate applications with
real bursts captured with a Pixel 6 pro smartphone to night
photography denoising and super-resolution. Quantitative
and qualitative experiments with synthetic and real data show
that our method consistently gives accurate registration re-
sults even when little or no parallax is present and consis-
tently outperforms the state-of-the-art in the burst setting,
outperforming learning-based methods for flow estimation
such as RAFT [40].

Beyond flow estimation, our model demonstrates excep-
tional versatility and efficiency in small baseline scenarios.
It not only achieves convergence in pose and depth to mean-
ingful values but also surpasses specialized methods in these
areas. Distinct from conventional 3D methods that typically
separate camera pose estimation and dense reconstruction
into different steps, our method directly tackles dense opti-
mization within a joint estimation framework.

Essentially, our approach acts as a multifunctional tool
in burst photography, with the dual capability to accurately
estimate flow and precisely determine depth and pose. It
is helpful across a wide range of downstream tasks and
sets a new benchmark for processing small motion scenes—
characterized by its simplicity, accuracy, and robustness.

Contributions. Below, we summarize our key contributions,
highlighting how our approach serves as a versatile tool
applicable to various burst image processing tasks:
1. State-of-the-art dense alignment for burst imagery:

we propose a novel optimization algorithm that outper-
forms deep-learning methods in dense alignment. This
precision is especially useful for tasks requiring fine align-
ments, like burst super-resolution.

2. Accurate pose and depth estimation in small motion:
our algorithm provides state-of-the-art camera pose and
depth estimation results in scenarios with minimal mo-
tion, effectively capturing 3D scene structures from bursts
with small baselines. This performance is achieved where
standard SFM methods such as COLMAP [37] struggle.

3. Novel fixed-point algorithm for depth inference: we
propose a new fixed-point algorithm for deducing depth
maps at novel camera positions, enhancing our method’s
utility in reversing optical flows and warping reference
views onto other views, with potential applications be-
yond the scope of this paper.

2. Related work
Burst photography. Burst photography is a technique that
involves capturing a sequence of images to improve the over-
all quality of a photograph by reducing noise [23], enhancing
details [6, 7, 16, 28, 32, 33, 41], and improving dynamic



range [29]. Traditionally, algorithms for burst photography
rely on a registration step to align frames [15].

Recent advancements explore machine learning, specifi-
cally deep learning, for burst photography, often eliminating
the need for traditional registration [16, 32]. However, many
such algorithms are based on supervised learning, demand-
ing paired datasets of degraded raw bursts and high-quality
sRGB images for training. The reliance on simulated raw
bursts generated from ground truth sRGB images introduces
a potential mismatch between training and real-world data
distributions. Real-world bursts may exhibit different degra-
dations or involve a sensor mismatch, leading to artifacts [8].
Self-supervised learning methods [8, 34] have emerged to ad-
dress these issues. Furthermore, the computational demands
of deep learning models pose challenges for integration into
embedded devices [15], limiting their practical utility under
constraints of limited ressources.

In contrast, we present an efficient approach to image
alignment specifically designed for burst image data. This
approach does not rely on machine learning and can serve
as a versatile tool in various burst processing applications,
whether they involve learning-based components or not.

Multi-frame image registration.
A straightforward method for image alignment in burst

photography involves aligning frames with a reference frame,
as demonstrated in [23, 41]. Some works have explored
the multi-view setting to enhance registration quality, such
as [3, 4, 19], which introduced various optimization-based
approaches for multi-view image registration. However,
these approaches are limited to simple motion models, such
as translations. In contrast, our method is more general and
takes into account the three-dimensional nature of the scene.

Depth reconstruction from small motions. Popular 3D
reconstruction methods rely on geometric approaches such
as structure from motion (SfM) [37]. These methods use ge-
ometric constraints and depend on keypoint correspondences
to reconstruct a sparse 3D scene. Subsequently, dense 3D
representations can be estimated based on the sparse recon-
struction, as done by Colmap [37]. Bundle adjustment is a
critical step for refining the estimated 3D structure and cam-
era poses of a scene. This process involves optimizing 2D
image keypoints, corresponding 3D points, and camera cali-
bration parameters iteratively to minimize the reprojection
error, leading to a more accurate scene reconstruction.

Several 3D reconstruction methods have been specifically
tailored for scenarios involving small motions to reconstruct
depth maps. For instance, Im et al. [24] have adapted SfM
to small motion settings, whereas [21] have proposed an effi-
cient method using feature tracking for pairwise key points
and bundle adjustment algorithms adapted to small motions.
Additionally, this method estimates the intrinsic parameters
of the camera as well as distortion parameters to achieve a

better fit with the data. In a different approach, [12] intro-
duces a neural depth model and uses an inertial measurement
unit (IMU) and lidar measurements to respectively initialize
camera poses and the depth map. Then, [11] eliminates the
need to initialize with a depth map model, although initial-
ization with such a model may still yield improved results.

In contrast, our method serves a different purpose than
depth estimation, with our primary goal being accurate im-
age alignment. As shown in Sec. 4, our dense depth estima-
tion procedure is more suitable for this task than approaches
based on bundle adjustment with sparse keypoints.

3. Method

The proposed method aims to robustly and accurately es-
timate the optical flow and its inverse between a reference
image and other images within a burst sequence. Given the
nature of a burst, where movements are small, this approach
provides the opportunity to directly address the problem
densely, in contrast to [21], which relies on prior sparse
matching between pairs of views. Densely approaching the
problem enables high flow accuracy compared to other exist-
ing methods. In order to address the problem both densely
and robustly, the key idea of the method is to parameterize
the flows for each view using a common dense map char-
acterizing the scene in the reference view and the relative
positions of the views with respect to the reference frame.

Our formation model is detailed in the first paragraph
below, leading to the formulation of flow estimation by op-
timizing the dense structure map and the relative positions
of the views. This optimization is achieved by minimizing
the photometric reprojection error through the direct flow
induced by the parameters, which is the loss that best charac-
terizes the quality of the induced flow. The challenges of this
minimization problem are outlined in the second paragraph.
The minimization procedure uses a block coordinate descent
between the dense structure map and the relative poses, de-
scribed in the third paragraph. This approach stabilizes the
optimization process.

It also enables a coarse-to-fine approach for the dense
parameterization of the scene. Finally, our formation model
also allows the calculation of inverse optical flow through a
fixed-point algorithm, detailed in the fourth paragraph. The
global pipeline is illustrated in Fig. 1.

Image formation model. We consider a rigid scene de-
scribed by a piecewise surface andK+1 internally calibrated
pinhole cameras (Ck)k=0..K . A point ui in G a regular grid
of the C0 camera plane, is the projection of a point xi of the
scene surface. We denote by πi, the affine plane tangent to
the scene in xi parameterized, by its (non-unit) normal ni
such that πi = {y ∈ R3,n⊤

i y = 1}. A patch P (ui) around
ui is the projection of a patch around xi in πi, and its image
in the camera plane Ck is given by a homography uniquely



Figure 2. Image formation model with a patch and its local homog-
raphy flow.

defined by the plane πi and the extrinsic parameters Rk, tk
of the other camera (Fig. 2). For u′ in the patch P (ui), we
have the direct flow locally expressed as a homography:

Ĥi,k(u
′) = ψ(Hi,k[u

′, 1]⊤) (1)

Hi,k = Rk + tkn
⊤
i , (2)

where Hi,k is the homography matrix for the patch P (ui)
in the camera plane of Ck, [u′, 1] is the homogeneous rep-
resentation of u′ and ψ : x, y, z → x/z, y/z is the standard
projection. The parameters of this flow are the non-unit nor-
mal ni characterizing the plane πi and the pose Rk, tk. It
is important to note, as in [11, 22], that ni is not a homoge-
neous vector defined up to scale and has three full degrees
of freedom. The formation model is summed up in Fig. 2.

Minimization problem. The parameters of our formation
model is n = (ni)i∈G the dense map over a regular grid G
parametrizing the scene structure andR, t = (Rk, tk)k=1..K

the pose parameters of each Ck relative to C0. As the ob-
jective is to estimate the optical flow between view k and
the reference view, we optimize the parameters R, t,n so
that the flows derived from local homographies Hi,k mini-
mize the photometric reprojection error between the images
I0 and Ik. More specifically, we solve the minimization
problem:

min
n,R,t

1

2

K∑
k=1

∑
i∈G

∑
u′∈P(ui)

ρ(|I0(u′)− Ik(Ĥi,k(u
′))|2), (3)

where ρ is a robust loss function as in [39]. Indeed, the
formation model does not account for occlusion phenomena.
When a pixel u′ in the C0 plane is the projection of a point
x that is not visible in camera Ck, Ĥi,k(u

′) is essentially
the projection of another point y that is not on the same

scene element as x. Consequently, it is likely that the color
Ik(Ĥi,k(u

′)) deviates significantly from I0(u). The func-
tion ρ reduces the importance of large values, effectively
filtering out such cases.

Optimization procedure. As usual in structure from motion
litterature [22], there is a global scale ambiguity since for
every λ > 0, jointly replacing t by λt and n by 1/λn does
not change the homography matrices Hi,k and nor the loss.
To prevent this ambiguity from hindering the convergence of
the optimization procedure, our algorithm relies on a block
coordinate descent that alternates between steps on the plane
map n and steps on the relative poses R, t. Indeed, when
n is fixed, there is no longer any ambiguity about the value
that t can take, and the same applies to n when t is fixed.
Gradually, the ambiguity boiles down to the scale induced by
the parameters’ initialization. In addition, the optimization
problem (3) is not convex and a good initialization is crucial
to enable the algorithm’s convergence. In the case of small
movements, it is reasonable to initialize the pose with Rk =
I and tk = 0. Therefore, it is necessary to have a good
initialization of the plane parameters. Our method relies on
an initialization based on a very coarse and low-resolution
estimation of the scene depth in the reference image. Starting
from a depth map z = (zi)i∈G(0) on a very low-resolution
grid G(0) (typically 16 × 16), we can initialize the plane
map as n(0) = ([0, 0, 1/zi])i∈G(0) . This corresponds to
initializing the planes as fronto-parallel and located at a
distance zi from the reference camera. It is important to
note that this initialization resolves the scale ambiguity and
initializes in a good region, thereby avoiding certain local
minima. However, it does not need to be extremely precise.
As observed in Section 4, the performance of our method
is minimally impacted by the quality of the initialization.
This paper uses the smallest monocular network of shallow
resolution from [36], which has negligible inference cost, to
initialize the algorithm.

From this initialization, we adopt a coarse-to-fine strategy
as in [30, 39] for optimizing the plan map. Specifically, we
define a sequence G(0), . . . ,G(L) of L regular grids, each
twice as fine as the previous one, with G(L) having the same
resolution as the burst (Ik)k=0..K . We also denote I(l)k as
the downsampled version of the image Ik to the resolution
of G(l). Our optimization strategy is as follows:
• We perform the steps for poses R, t using the high-

resolution grid G(L), a linear interpolation of the cur-
rent estimate of the plane map n(l) to the resolution of
G(L), and using the high-resolution images (Ik)k=0..K .
For these steps, we employ a proximal Gauss-Newton al-
gorithm tailored to the fact that rotation matrices belong
to the Lie group SO(3) and the minimization problem
(3) is a robust nonlinear least squares problem [25]. The
small number of variables (six times the number of im-
ages) makes the computation of the required Jacobians



tractable. Details about the Gauss-Newton step and the
closed form of the Jacobians are provided in Appendix A.
Using the Lie group exponential representation of rotation
and employing a second-order optimization method are
crucial elements of our method for achieving high preci-
sion. We empirically show the advantages of these choices
in the ablation study presented in Appendix E.

• We perform the steps on the plane map parameters n(l)

at scale l using the gradient descent variation Adam [26],
with the loss calculated using the grid G(l), R, t, and the
images at resolution l: (I(l)k )k=0..K . Using a method with
moments like Adam accelerates the convergence of the
procedure.

• Every few alternate steps on R, t on one side and n(l) on
the other side, we double the resolution of the plane map
n(l) and move to the next scale with n(l+1).

The procedure is summarized in the pseudocode in Algo-
rithm 1. In the case of a dense approach, a coarse-to-fine
strategy is crucial. Since we use a photometric loss, the
gradients and Jacobians depend on the spatial gradients of
the Ik images and contain only sub-pixel information. When
the alignment error is larger than one pixel, this can lead to
convergence issues. At lower scales of the coarse-to-fine
approach, pixels cover a larger area, allowing us to benefit
from the information. As we move to higher scales, we
increase the precision we aim to achieve. Finally, note that
the original minimization problem is properly solved during
the last stage of the coarse-to-fine approach. The previous
stages can be interpreted as a procedure to generate the right
initialization for the original minimization problem.

Algorithm 1 Multiscale block coordinate descent

Require: L ≥ 0, N ≥ 0, β
Require: I = (Ik)k=0..K , d ▷ Burst and 16× 16 resolution

depth map
1: d← Mono(I0) ▷ Low resolution monocular depth estimation
2: n← [0, 0, 1/d] ▷ dimension 16× 16
3: R← I ▷ K matrices 3× 3
4: t← 0 ▷ K vectors of size 3
5: l← 0
6: while l ≤ L do ▷ Multiscale loop
7: n← interpole(n, 2× resolution(n)) ▷ Double

resolution
8: I− ← sample(I, resolution(n)) ▷ Low resolution image
9: m← 0

10: while m ≤M do ▷ Block descent
11: n+ ← interpole(n, resolution(I)) ▷ High resolution
12: R, t← PGN(R, t, n+, I) ▷ Pose Newton step
13: n← ADAM(R, t, n, I−) ▷ Some steps with ADAM
14: m← m+ 1
15: end while
16: l← l + 1
17: end while
18: return R, t, n

Figure 3. We have the depth map (z
(0)
i )i∈G(L) in the reference

view (C0), with interpolation we construct Z that gives the depth
for any u0. We initialize a depth map (z

(k)
i )i∈G(L) in view k with

a copy of the depth map in view 0. Then, we use z(k) on the regular
grid to induce a direct flow into the view 0 and query the depth
Z(F (u

(k)
i )). Reprojecting the obtained depth map gives the new

iterate of z(k). At convergence, the direct flow induced by z(k) is
the reverse flow from view 0 to view k.

Outputting the flows, poses, depth map and normal map.
After the convergence of the algorithm, we obtain R, t,

and n(L) that minimize the problem (3) on a grid of maxi-
mum resolution, thus minimizing the photometric error of
the flow. We then obtain an estimation of the direct flow for
each image. For u(0)

i ∈ G(L):

u
(k)
i = Ĥi,k(u

(0)
i ) = ψ(Rku

(0)
i + 1/z

(0)
i tk), (4)

where, from n(L), we recover a high-resolution depth map in
the reference view: z(0)i = 1/([u

(0)
i , 1]⊤n

(L)
i ). Normalizing

n(L) also provides a high-resolution normal map. Finally,
our algorithm directly estimates the camera poses R, t. For
certain applications, such as super-resolution, we need the
inverse flow, i.e., u

(0)
i = F (u

(k)
i ). The flow inverse is

generally unstable, so PyTorch [35] does not implement
the forward warp. As the movements are small for a burst,
the depth map in view Ck will be close to that in view C0.
Moreover, the depth map in view Ck allows generating a
direct flow u

(0)
i = F (u

(k)
i ) as in (4) using the inverse poses:

[R⊤
k ,−R⊤

k tk]. So, if the depth map is correct, we should
obtain the identity by composing with the initial direct flow.
This allows designing a fixed-point algorithm presented in
Fig. 3 and detailed in Appendix B. Pixels for which the fixed
point does not converge correspond to the occluded pixel,
and the occlusion masks are presented in Appendix G.

4. Experiments
We conduct experiments on synthetic bursts and showcase
practical applications using real bursts captured with a Pixel
6 Pro smartphone. These applications include night photog-
raphy and 3D reconstruction, serving as proof of concept.
Additionally, we have included preliminary experiments on
burst super-resolution in Appendix K.



Method
EPE
↓

RMSE
↓

NPE1
↑

NPE2
↑

NPE3
↑

EPE
↓

RMSE
↓

NPE1
↑

NPE2
↑

NPE3
↑

Blender 1 (small motion) Blender 2 (micro motion)

DfUSMC [21] * 1.4466 2.1723 0.5315 0.7488 0.8477 4.1356 4.5676 0.2267 0.4278 0.5497
RCVD [27]* 5.9556 7.678 0.0957 0.2534 0.3763 0.4007 0.5316 0.8676 0.9825 0.9959
Saop [11] * 9.7262 12.5891 0.101 0.2457 0.3402 2.0430 2.3563 0.5684 0.7645 0.8424

Homography 2.8102 4.7107 0.4998 0.6627 0.7405 0.3008 0.3772 0.9003 0.9921 0.9982
Farnebäck [17] 2.6852 4.8478 0.5299 0.6612 0.7278 2.0892 3.8154 0.6480 0.7296 0.7642
RAFT [40] 0.9013 1.5396 0.7348 0.9069 0.9443 0.4857 0.5765 0.8664 0.9857 0.9963
Ours 0.7439 1.4324 0.7841 0.9084 0.9456 0.2321 0.2820 0.9366 0.9972 1.0000

Table 1. Optical flow errors. The optical flow was predicted from the extrinsic camera parameters and depth maps for the models marked
with an asterisk.

Pose Depth

Method
Left l2
(m)↓

ATE
(m) ↓

Geom
(m) ↓

Biinvrot l2
(deg) ↓ Abs rel ↓ Sqr rel ↓ RMSE↓ Delta 1↑ Delta 2 ↑ Delta 3 ↑

Dataset Blender 1 (small motion)

Colmap [37] ✗ ✗

DfUSMC[21] 0.0117 0.0108 0.0094 0.1948 0.2107 0.4864 0.9683 0.7723 0.8877 0.9409
Saop [11] 0.0274 0.0229 0.0204 0.6369 0.5818 1.8768 1.7900 0.3958 0.6009 0.7198
RCVD [27] 0.0168 0.0162 0.0140 0.2158 0.3111 0.5382 1.2368 0.5294 0.814 0.9524
Ours 0.0066 0.0056 0.0050 0.1806 0.1381 0.2391 0.8688 0.8358 0.9263 0.9761

Dataset Blender 2 (micro motion)

Colmap [37] ✗ ✗

DfUSMC[21] 0.0046 0.0026 0.0024 0.1918 0.3093 0.9543 2.0499 0.5722 0.7785 0.9187
Saop [11] 0.0078 0.0043 0.0040 0.2678 0.2936 0.8326 2.0020 0.5794 0.7976 0.9263
RCVD [27] 0.0168 0.0162 0.0140 0.2158 0.1898 0.3492 1.3745 0.6726 0.8816 0.9693
Ours 0.0022 0.0022 0.0020 0.0245 0.1383 0.1962 1.1521 0.7996 0.9819 0.9983

Table 2. Pose and depth errors metrics on the two proposed synthetic bursts datasets.

Synthetic burst simulation. We require photorealistic
bursts containing ground truth depth and camera poses for
evaluating our approach and concurrent methods, but exist-
ing public multi-view stereo datasets we are aware of lack
the needed characteristics due to non-static scenes or ex-
cessively large frame baselines that do not align with our
specific use cases.

We generated two photorealistic synthetic datasets using
CYCLES, the path tracing engine of Blender [13]. We used
a set of twelve publicly available indoor scenes made by 3D
artists, with detailed and varied scene compositions.

Ten scenes come from [1], and two scenes are from [2].
Each burst of the dataset consists of 20 frames, with a reso-
lution of 512x512 pixels.

We skipped the post-processing denoising step at the end
of the rendering to avoid temporal flickering artifacts and
mitigated render noise by using a large number of samples
(4096). The camera trajectories and orientations are crafted
as follows: a few keyframes was positioned manually to out-

line the global path, and the other keyframes were obtained
with Bezier interpolation.

We generated two datasets: Blender 1 with small base-
lines and Blender 2 with micro-baselines. The first dataset
exhibits larger parallax effects, while the second dataset has
reduced parallax effects. Detailed characteristics of these
datasets are provided in the Appendix D.

Evaluation on synthetic data. We initialize our algorithm
on synthetic data with a 16 × 16 coarse depth map using
the shallow network from [36]. For the evaluation, we fol-
low the standard practice to evaluate pose, depth, and flow,
described in [20, 27]. For all the methods, as depth esti-
mation and pose are known up to an unknown scale, we
align the predicted depth and the ground truths using median
scaling. For pose evaluation, we compute the scale factor
as s = argmins ∥T − sT̂∥2, where T =

[
t0, · · · , tN

]
.

In addition, we use the canonic left-invariant distance in
SE(3) that combines rotational and translation parts in one
quantity; see [10, 42] for details. We report the distance



Ref. image Noisy Homography Farneback [17] Ours

Figure 4. Burst denoising for night photography on real bursts exploiting alignment of various algorithms. Left: Full image with bounding
boxes highlighting the region of interest. Top line: background region is misaligned for concurrent methods. Bottom line: The cup is
misaligned for other methods. Homography misaligned the plant as well. It is best seen by zooming on a computer screen.

Ref. image Groundtruth Midas [36] RCVD [27]

Saop [11] DfUSMC [21] Ours Ours + reg

Figure 5. Depth estimation from a synthetic image burst. It is one of
the scenes generated with Blender used in the dataset Blender 2. We
present our result w/o regularisation (Ours) and with determinant
penalization (Ours + reg) for smoother results, see the Appendix C.

between the ground truth pose and the estimated pose. It
reads d([R, t], [R′, t′])2 = ∥t′ − t∥22 + λ∥ log(R⊤R′)∥22.
For λ, we use the median value of the ground truth depth.
∥ log(R⊤R′)∥2 is the canonic metric on the set of rotation
SO(3) and is also reported independently. Unlike other
methods in the literature [27], we choose not to present rela-
tive pose error (RPE) as a good RPE may not correlate with
good alignment metrics and rely on a time coherent burst. To
evaluate the ATE, we did not align the estimated poses with
the ground truth poses with rigid transformation, as is com-
mon in the SLAM community. Indeed, our loss 3 and, more
generally, the flow is not invariant by a solid transformation
of the poses. As the final goal of our method is alignment,
performance evaluation up to a rigid transformation would
not be informative.

For optical flow evaluation, we conducted comparisons
on our synthetic datasets. We utilized a state-of-the-art deep

optical flow method [40] by registering all frames pairwise
with a reference. Additionally, we employed a standard
homography and the Farneback optical flow [17] for compar-
ison. Furthermore, we computed optical flow errors for other
concurrent methods [11, 21, 27] using the camera projection
model as in Eq. (4) and their estimated pose and depth maps.
Leveraging the assumption of a static scene, our method
consistently outperformed [40] regarding flow accuracy.

We conducted comparisons of our pose and depth estima-
tion method with methods introduced in [27], [11], and [21],
utilizing publicly available codebases. To ensure a fair com-
parison, we initialized the method from [11] with the same
depth map as the one we used for our own initialization.

We compare our method with a monocular depth esti-
mation model Midas [36]. However, monocular methods
estimate depth up to an affine transformation, whereas flow
estimation is not invariant by affine reparameterization. Us-
ing affine registration lacks full relevance to evaluate the
quality of the result, so the performances in Table 2 are ob-
tained after rescaling only. For a fair depth map comparison,
we also evaluate our method and others against Midas with
an affine registration. Results are presented in Appendix F.

3D reconstructions quality on synthetic data and real
bursts.

We evaluate qualitatively our depth reconstructions on
synthetic data from our dataset and real bursts captured with
a Pixel 6 Pro smartphone.

Visualizations of reconstructed depth maps are provided
in Figure 5. Our depth map can have a noisy aspect on a
texture-less structure. This is a normal feature as our op-
timization is not well conditioned on uniform surfaces, as
small variations in inferred depth will not affect the repro-
jection photometric loss. This noisy effect can be mitigated
by adding spatial regularization for the scene steps. But this



Figure 6. Top : point cloud reconstruction with DfUSMC [21].
Bottom : point cloud reconstructed with our method. We show
respectively left, right, and top views of the two point clouds.

trades with lower performance in terms of flow and pose
metrics on synthetic data. We observed that no spatial regu-
larization plan parameters give the best image alignment and
pose estimation results. We detail the spatial regularization
in Appendix C.

For real scenes, we showcase the high-quality depth re-
constructions achievable with our method in Figure 7. We
input RAW image bursts from the Pixel 6 Pro smartphone,
and perform demosaicking using bilinear filtering. We ini-
tialize our algorithm with a low-resolution depth map from
the phone sensor. We compare our results with depth maps
obtained from a monocular method [36], RCVD [27], Saop
[11], and DfUSMC [21]. Furthermore, we provide visualiza-
tions of reconstructed point clouds in Figure 6.

Low-light photography on real bursts.
To demonstrate the robustness and accuracy of our align-

ment method for downstream tasks, we conducted a low-
light photography experiment as a proof of concept. This
scenario is challenging as it involves aligning frames with
a low signal-to-noise ratio. We captured night bursts using
a Pixel 6 Pro smartphone under low light conditions, using
a short exposure time and high ISO settings to reduce mo-
tion blur. We aligned these frames using our method and
other concurrent alignment algorithms, including a simple
homography and dense optical flow using the Farneback
implementation from OpenCV [9].

To reduce noise, we averaged the aligned frames, using a
straightforward denoising approach. While our focus was on
highlighting the registration quality of our method, it’s worth
noting that a more sophisticated fusion algorithm could be
employed to enhance image quality and reduce artifacts, as
seen in previous works [23, 31].

In Figure 4, we provide visual comparisons of our results.
We observed that due to the nonplanar nature of the scene,
the homography-based approach failed to align objects in the

foreground and background, resulting in a blurry appearance
in the denoised image. In contrast, the optical flow model
exhibited greater flexibility, successfully aligning objects
in both the foreground and background. However, some
elements, such as the white book in the background or certain
patterns on the white cup in the foreground, were still not
perfectly aligned.

Ref. image Midas [36] RCVD [27]

DfUSMC [21] Ours Ours+reg

Figure 7. Depth estimation from a real burst. We present our result
w/o regularisation (Ours) and with determinant penalization (Ours
+ reg) for smoother results; see Appendix C for more details.

Depth initialization. Figure 8 shows the impact of the depth
map’s initialization on our method’s performance. We gradu-
ally increase the variance of a Gaussian random noise added
to the 16 × 16 initialization depth map and evaluate the
performance of our algorithm on our synthetic dataset with
various depth, pose, and alignment metrics. This experiment
demonstrates that our method is robust to noise on the initial-
ization depth map. The model only requires a noisy estimate
to converge to the right solution.
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0.00
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Figure 8. Noise on the initialization depth map. Our method is
robust to noise; the performance degrades when the noise’s variance
is larger than 1 meter.

5. Conclusion
Our approach offers a comprehensive and versatile solution
for burst photography. It excels in accurately estimating flow,
depth, and pose, setting a new benchmark for processing



small motion scenes. Future enhancements include integrat-
ing intrinsic camera parameter estimation like focal length
to improve accuracy, refining our model for lens-induced
distortions, and exploring more advanced camera models
such as thin-lens to account for defocus effects.
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Appendix
A. Closed form Jacobean for Gauss-Newton step

From Eq. (3), we recall that the residual of the robust least square for which we have to compute the Jacobian is the flat vector
r with coordinates indexed by k = 1..K, i ∈ G, u′ ∈ Pi with total dimension noted KD with D = #(G)#(P ) size of grid
by size of patch:

rk,i,u′ = I0(u
′)− Ik(Ĥi,k(u

′)). (5)

We note the twist ξk such that Rk, tk = Exp(ξk). We want to find the Jacobian Jr with the variable flat vector ξ = (ξk)k=1..K .
Then we note that Jr is of dimensions KD,K and that Jr is diagonal by K block of dimension D,K. We note Jk these
blocks. Using the expression of the homography matrix in (2), the block Jk have D rows of the form (∇ϕk,i,u′)⊤ where:

ϕk,i,u′(ξ) = Ik(ψ((R+ tn⊤
i )u

′)) (6)

= Ik

(
ψ

(
R

1

n⊤
i u

′u
′ + t

))
, (7)

with ψ(x, y, z) = [x/z, y/z]⊤ and R, t = Exp(ξ). So if we note Xi,u′ = 1
n⊤

i u′u
′ in R3 and ΛX : SE(3) → R3 the action

on X ∈ R3 that takes an element of [R, t] in SE(3) and gives its action on X: ΛX(R, t) = RX+ t we can simplify ϕk,i,u′

to a simple composition and compute its gradient with a chain rule:

ϕk,i,u′ = Ik ◦ ψ ◦ ΛXi,u′ ◦ Exp (8)

(∇ϕk,i,u′)⊤ = ∇I⊤k Jψ JΛX
i,u′

JExp . (9)

Note that ΛX takes input on the group SE(3), and Exp has an output on the same group. However, as described in [38], using
the so-called left jacobian suffices. ∇Ik is the spatial gradient of the image Ik calculated using a convolution and a Sobel
kernel and evaluated in a coordinate using bilinear interpolation. The individual Jacobians are reported dropping indexes in
Table 3.

In practice, exploit the diagonal structure of Jr in our implementation.

Domains Function Jacobian

R3 → R2 ψ(x, y, z) = [x/z, y/z]⊤ Jψ = 1
z [I2 | − ψ(x, y, z)]

SE(3) → R3 ΛX(R, t) = RX+ t JΛX
= [R| −R[X]×]

R6 → SE(3) Exp(ξ) as eq (172) in [38] JExp as eq (179a) in [38]

Table 3. Closed form of functions needed to calculate the residual jacobian. I2 is the identity matrix of size 2

B. Fixed point algorithm for reverse flow estimation

We have a depth map in the reference view (z
(0)
i )i∈G and we note γ(0)i = 1/z

(0)
i the associated disparity.

Given a disparity γ, a relative pose R, t and u a point in the camera plane of the first view, we can calculate the image ū a
point on the second camera plane and γ̄ the projected disparity in the second view frame:

ū (u, γ,R, t) = ψ (R[u, 1] + γt) (10)
γ̄ (u, γ,R, t) = γω (R[u, 1] + γt) . (11)

In particular, given a regular grid of u(0)
i in the reference view and the relative position of other views, Rk, tk, we have the

direct flow:

ū
(k)
i = ū

(
u
(0)
i , γ

(0)
i ,Rk, tk

)
, (12)

ū
(k)
i is not a regular grid in the view Ck, it is the image of a regular grid in the view C0. The direct flow warp Ik as an image
I
(
k0) in the camera plane C0. It is called a backward warp. But for some applications, we also need the warp of the image



I0 as an image I(k)0 in the view Ck. This can be done using the direct flow ū
(k)
i and a forward warp, but it is known as not

numerically stable. Instead, it can be computed using a backward warp and the reverse flow. The reverse flow is the other way
around; the regular grid is u(k)

i in the camera plane Ck and we want to find its antecedent ū(0)
i in the camera plane of C0. The

reverse can be computed using (10) using the inverse of the relative position and the disparity map in the view Ck. The inverse
of the relative position is the inverse in SE(3), and it is R⊤

k ,−R⊤
k tk. On the other hand, the disparity map in the view Ck is

not known. However, using the inverse relative position, the disparity γ(k) in a point u(k) in the camera plane of Ck must
match the known one in C0:

γ̄(u(k), γ(k),R⊤
k ,−R⊤

k tk) = Γ(0)
(
ū(u(k), γ(k),R⊤

k ,−R⊤
k tk)

)
, (13)

where Γ(0) is the disparity function on the whole camera plane of C0 using interpolation and the depth map (z
(0)
i )i∈G. This

equation can be interpreted as the reprojection of the disparity in Ck must match the disparity in C0 evaluated in the flow
induced by the disparity in Ck. It is an implicit equation for γ(k). Using (11) again from C0 to Ck, it can be converted as a
fixed point equation γ(k) = F

(
γ(k)

)
when defining F as :

F (γ) = γ̄
(
u,Γ(0)(u),Rk, tk

)
with u = ū

(
u(k), γ,R⊤

k ,−R⊤
k tk

)
.

Then we can estimate the disparity map (γ
(k)
i )i∈G in view Ck using a regular grid u

(k)
i in the view Ck and using a fixed point

algorithm with a function F for every pixel using u
(k)
i .

We build the sequence for γ(k)i,m with m > 0 as:

γ
(k)
i,m+1 = γ̄

(
ui,k,m,Γ

(0)(ui,k,m),Rk, tk

)
with ui,k,m = ū

(
u
(k)
i , γ

(k)
i,m,R

⊤
k ,−R⊤

k tk

)
, (14)

as the motion baseline is small, we initialize the disparity map in view Ck by the one in C0: γ(k)i,0 = γ
(0)
i and we can use the

composition of the two flows (direct and reverse) as a convergence error:

ϵi,k,m =
∥∥∥u(k)

i − ū
(
ui,k,m,Γ

(0)(ui,k,m),Rk, tk

)∥∥∥ (15)

The value of i and k for which the sequence does not converge correspond to the occlusion of the element projected in u
(k)
i

between view Ck and C0. We can build an occlusion mask using the convergence criterion. Examples of these masks are
available in appendix G. For the value of i and k for which the sequence does converge γ(k)i .

Finally, the reverse flow is given by:

ū
(0)
i = ū

(
u
(k)
i , γ

(k)
i ,R⊤

k ,−R⊤
k tk

)
. (16)

C. Determinant regularization

The idea behind this regularization is that when the gradient is small, we will favor the direction of descent for the structure that
deforms the current flow the least. To do this, we look at the flow effect on the center of the patches regularly distributed on
the G(l) grid. We note i = ix, iy the i elements of the grid G(l) with ix = 1..Wl and iy = 1..Hl. We note (uix,iy ) the center
point of the pixel in the corresponding image plane, and we suppose that the coordinates of uix,iy are normalized and evolve
in a range [−1, 1]. A parallelogram constituted by the points (uix,iy ,uix+1,iy ,uix+1,iy+1,uix,iy+1) thus has a normalized
area of 4/(HlWl). We compare independently, for each view k and each grid mesh element, the normalized area of the mesh
after application of the local homographic flow and the constant area noted ū

(k)
ix,iy

= Ĥ(ix,iy),k(uix,iy ). We penalize the ratio
of the area of each parallelogram before and after the homography flow to 1. The penalization reads:

P =

K∑
k=1

Wl−1∑
ix=1

Hl−1∑
iy=1

∣∣∣∣∣ A(k)
ix,iy

/2

4/(HlWl)
− 1

∣∣∣∣∣ (17)

A(k)
ix,iy

=det(ū
(k)
ix+1,iy

− ū
(k)
ix,iy

, ū
(k)
ix,iy+1 − ū

(k)
ix,iy

) (18)

+ det(ū
(k)
ix,iy+1 − ū

(k)
ix+1,iy+1, ū

(k)
ix+1,iy

− ū
(k)
ix+1,iy+1), (19)

where Aix,iy is the double of the area of the parallelogram (ū
(k)
ix,iy

, ū
(k)
ix+1,iy

, ū
(k)
ix+1,iy+1, ū

(k)
ix,iy+1) using determinant on the

two halves triangle as illustrated in figure 9.



Figure 9. Illustration of the determinant regularization.

D. Additional details on the datasets and on the experiments

Proposed datasets. We generated two datasets: Blender 1 with small baselines and Blender 2 with micro-baselines. The
first dataset exhibits larger parallax effects, while the second dataset has reduced parallax effects. Detailed characteristics of
these datasets are provided in Table 4.

Experiments. In our experiments, whose results are reported in Table 1 and Table 2, we evaluated the performance of the
Saop method [11] by calculating the average results across all scenes where Saop successfully converged. On the blender 1
dataset, we excluded one scene where Saop did not converge. Excluding this scene for Saop does not change the methods’
ranking and our experiments’ conclusion.

E. Ablation study

We make an ablation study to understand the impact of the different choices in our modeling and algorithm. We compare
the global algorithm to an identical algorithm using the same hyperparameters but, respectively, without the exponential
parametrization of the motion, without the newton step, using spatial regularization (total variation and determinant), without
the plan parametrization, with patches of size one, i.e., a pixel-wise loss and without the multiscale approach. We report the
performance on the fllow estimate in Table. 6, and depth/pose in Table. 7.

F. Comparison with monocular method

Monocular depth estimation methods can only estimate depth up to an affine transformation. Therefore, we evaluate them up
to an affine correction. It does not make sense to compare them to the binocular method with linear correction as in Table 2.
On the other hand, to compare them to the latter, we must recalculate the error of each of the methods in Table 2 with an affine
correction. The results are reported in Table 5.

G. Estimated occlusion mask

We use the fixed point algorithm described in B on the depth map obtained at the optimization’s last step and note the points
for which the fixed point algorithm does not converge. We use a threshold and a maximum number of iterations to construct
the non-convergent set. This set constitutes a partial occlusion mask. It can be used in downstream tasks to avoid aggregating
erroneous information because it is occluded. Fig. 10 shows examples of masks on synthetic data.

H. Depthmaps

We provide additional examples of depth maps from both synthetic bursts (Fig. 11) and real bursts (Fig. 12). All disparity
maps were aligned to the ground truth with an affine transform by using the least square criterion of [36].

Dataset Scenes Frames
Std baselines

(m)
Std rotations

(deg)
Max depth

(m)
Min depth

(m)
Mean depth

(m)

Blender 1 15 20 0.116 0.20 0.316 11.234 3.73
Blender 2 10 20 0.010 0.29 1.92 19.453 6.21

Table 4. Main characteristics of the two proposed datasets.



Method Abs rel ↓ Sqr rel ↓ RMSE↓ Delta 1↑ Delta 2 ↑ Delta 3 ↑

Blender 1 (small motion)

Midas [36] 0.1589 1.0747 1.3148 0.8019 0.951 0.9824
RCVD [27] 0.2038 1.0622 1.3888 0.698 0.9191 0.9684
Ours 0.1544 0.2229 0.9258 0.7881 0.9544 0.9911

Blender 2 (micro motion)

Midas [36] 0.0790 0.0786 0.7166 0.9429 0.9929 0.9986
RCVD [27] 0.0971 0.1131 0.8244 0.9149 0.988 0.9973
Ours 0.1763 0.2875 1.3711 0.6857 0.9594 0.9976

Table 5. Depth errors metrics on the two proposed synthetic bursts datasets.

Method
EPE
↓

RMSE
↓

NPE1
↑

NPE2
↑

NPE3
↑

EPE
↓

RMSE
↓

NPE1
↑

NPE2
↑

NPE3
↑

Blender 1 (small motion) Blender 2 (micro motion)

Base 0.7439 1.4324 0.7841 0.9084 0.9456 0.2321 0.2820 0.9366 0.9972 1.0000
with regularization 0.7641 1.4596 0.7732 0.9024 0.9432 0.2660 0.3286 0.9297 0.9937 0.9997
with k = 1 (pixelwise) 0.8102 1.4705 0.7512 0.8909 0.9377 0.2834 0.3482 0.9220 0.9940 0.9997
w/o plan parametrization 544.3828 3151.1105 0.2983 0.4619 0.5569 219.6589 1234.7524 0.6671 0.7301 0.7420
w/o exponential parametrization 0.7685 1.4629 0.7721 0.9013 0.9421 0.2658 0.3294 0.9294 0.9937 0.9997
w/o newton step 0.7676 1.4630 0.7725 0.9015 0.9422 0.2741 0.3402 0.9272 0.9933 0.9997

Table 6. Optical flow errors.

Pose Depth

Method
Left l2
(m)↓

ATE
(m) ↓

Geom
(m) ↓

Biinvrot l2
(deg) ↓ Abs rel ↓ Sqr rel ↓ RMSE↓ Delta 1↑ Delta 2 ↑ Delta 3 ↑

Dataset Blender 1 (small motion)

Base 0.0066 0.0056 0.0050 0.1806 0.1381 0.2391 0.8688 0.8358 0.9263 0.9761
with regularization 0.0072 0.0062 0.0053 0.1850 0.1399 0.2462 0.8777 0.8344 0.9236 0.9759
with k = 1 (pixelwise) 0.0073 0.0062 0.0054 0.1883 0.1538 0.2673 0.9217 0.8087 0.9220 0.9734
w/o plan parametrization 0.0267 0.0250 0.0221 0.4317 0.4518 0.7926 1.7602 0.2319 0.5076 0.7142
w/o exponential parametrization 0.0073 0.0062 0.0054 0.1865 0.1392 0.2398 0.8694 0.8340 0.9252 0.9763
w/o newton step 0.0073 0.0062 0.0054 0.1861 0.1393 0.2397 0.8696 0.8342 0.9253 0.9763

Dataset Blender 2 (micro motion)

Base 0.0022 0.0022 0.0020 0.0245 0.1383 0.1962 1.1521 0.7996 0.9819 0.9983
with regularization 0.0023 0.0022 0.0020 0.0256 0.1766 0.2935 1.3640 0.6943 0.9498 0.9948
with k = 1 (pixelwise) 0.0024 0.0024 0.0022 0.0287 0.1750 0.2928 1.3629 0.6932 0.9503 0.9952
w/o plan parametrization 0.0040 0.0039 0.0037 0.0430 0.2571 0.5270 1.7727 0.5005 0.8881 0.9857
w/o exponential parametrization 0.0022 0.0022 0.0020 0.0261 0.1755 0.2908 1.3590 0.6981 0.9510 0.9949
w/o newton step 0.0023 0.0022 0.0021 0.0258 0.1818 0.3040 1.3837 0.6807 0.9458 0.9946

Table 7. Pose and depth errors metrics on the two proposed synthetic bursts datasets.

For a fair comparison, we also show the results of DfUSMC without their additional depth map filtering, which is essential
to obtain a visually appealing depth map. However, this step introduces a stratification of the depth map, which is not present
in our method.

I. Pose estimation visualization

To visualize the positions the algorithm approximates, we can look at the translation part of the positions. Because our images
come from a burst, we use the temporal coherence of the series of pictures and can trace the trajectory of the camera center
during the burst. After rescaling, we compare the trajectory approximated by the algorithm to the trajectory used to create the
burst in Blender. Fig. 13 shows examples of trajectories for different images of the Blender 2 dataset during the last three
stages.



Figure 10. Partial occlusion mask obtained using the fixed point algorithm for four examples of the Blender 2 dataset.

J. Visual inspection of the registration of real frames

Fig. 14 visually demonstrates the alignment quality achieved with our method on a real burst. To assess the alignment quality,
we generate images by overlaying the green and blue channels of the warped source images onto the red channel of the



Learning based Optimization based

Ref. image Groundtruth Midas [36] RCVD[27] Saop [11] DfUSMC [21] DfUSMC no filt. Ours Ours + reg.

Figure 11. Depth estimation from synthetic bursts (Blender 2 dataset).

Ref. image Midas [36] RCVD[27] DfUSMC [21] Ours

Figure 12. Depth estimation from real bursts.

target image, following a similar approach as [12] In this example, we observe that the majority of the frames exhibit a good
alignment, while a few frames (5 out of 15) show inadequate alignment particularly in certain regions of the foreground (see
for example the books or the plant).

K. Super-resolution on real bursts

To showcase the ability of our method to produce fine alignments on real images, we perform burst super-resolution (SR) with
our alignments. To achieve the task, we use the popular inverse problem framework employed in [18, 28]. To recover the
high-resolution image x from a set of K noisy and low-resolution observations yi with i ∈ [0,K] we solve the minimization
problem minx

∑K
i ∥DBWix− yi∥22, with a gradient descent algorithm.

D is a decimation operator that reduces spatial resolution, B is a blurring operator, and W is a warp parametrized by the
optical flow. In our experiments, DB is chosen as the average pooling operator following [28]. The gradient can be derived as
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Figure 13. Trajectory at different scales of the coarse to fine approach for all the scenes shown in Fig. 10 and Fig. 11.



Figure 14. Qualitative alignment results of our method on a real burst. Images are generated by superimposing the warped source images on
the target image.

∑K
i W

⊤
i B

⊤D⊤(DBWix− yi).
The optical flow to warp the reference high-resolution image x candidate is estimated in two steps using our method and

then the fixed point algorithm presented in Sec. 3 to infer the motion field of interest. We perform super-resolution on RGB
images in linear space demosaicked RAW frames with bilinear filtering. Joint super-resolution and demosaicking is left for
future work.

We visually compare our results in Figure 15. Our algorithm can recover fine details, including, for instance, the fine texture
on the rum bottle or the hair of the doll, that were not distinguishable in the original frames.

Figure 15. burst super-resolution on real raw bursts exploiting our alignment method. Top: low-resolution crops. Bottom: super-resolution
exploiting our alignment method. Data kindly provided by the authors of [28]. It is best seen by zooming aggressively on a computer screen.
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