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Abstract: This paper presents a regularized recursive identification algorithm with simultane-
ous on-line estimation of both the model parameters and the algorithms hyperparameters. A
new kernel is proposed to facilitate the algorithm development. The performance of this novel
scheme is compared with that of the recursive least-squares algorithm in simulation.
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1. INTRODUCTION

Recursive identification is unavoidable whenever one needs
a model estimation performed on-line (real-time). The
principle dates back to (Whitacker (1959)) and is almost
as old as the concept of identification itself. Recursive
identification algorithms have been designed for the three
classes of classical identification schemes: Prediction Er-
ror Methods (PEM) (Ljung and Söderström (1983)), In-
strumental Variable (Young (2011)), and Pseudo-Linear
Regression (PLR) (Landau et al. (2011)) (for which some
improvements have been made recently (Vau and Bourlès
(2021))). For several decades since the famous paper of
(Aström and Bohlin (1965)), identification has been dom-
inated, directly or indirectly, by the Maximum Likelihood
(ML) approach, and this is also the case for recursive
schemes. On the contrary, Bayesian concepts consisting
in introducing a prior knowledge in estimation, did not
received a significant attention, in spite of earlier attempts
to estimate dynamical systems (Leamer (1972)), (Akäıke
(1979)).
It is only since since the beginning of the 2010s, that
the Bayesian approach has attracted a considerable in-
terest in the identification field with the emergence of
kernel-based identification schemes, coming from Machine
Learning (Pillonetto and de Nicolau (2010)). By applying
some regularization techniques, namely modifying a least
squares criterion, the bias-variance trade-off can be sig-
nificantly improved, especially if the initial problem is ill
conditioned (Pillonetto et al. (2014)). The most significant
kernels embedding a prior knowledge of intrinsic systems
properties (such as stability and smoothness of the impulse
response) are the Stable-Spline (SS) Kernel (Pillonetto
and de Nicolau (2010)), the Diagonal Correlated (DC) and
the Tuned-Correlated (TC) kernels (Chen et al. (2012)).
These kernels are tuned with a number of hyperparameters
whose values can be determined beforehand from data,
using a Hierarchical Bayes approach (see Pillonetto et al.
(2022) p. 107). So far, to the authors knowledge, this
kernel approach has been employed in a recursive context
in (Prando et al. (2016)), (Romeres et al. (2016)) and (Illg

et al. (2022)).
In the sequel one presents a novel recursive and regularized
identification scheme for the estimation of the impulse
response of a discrete Linear Time Invariant (LTI) system,
and where the model is a Finite Impulse Response (FIR)
filter. The proposed scheme is more easily implementable
online than the one disclosed in (Romeres et al. (2016)).
Like in this last reference it is assumed that the prior is
not known at initialization, which requires to estimate
online the prior hyperparameters at the same time as
the parameters. In general, in regularized schemes, the
number of Kernel hyperparameters is reduced (see Pil-
lonetto et al. (2022)). Here, in order to make the algorithm
implementable on line, one proposes unusually a prior
with a number of hyperparameters equal to the number of
parameters, the prior structure (smoothness of the impulse
response and stability) being imposed by putting some
constraints to those hyperparameters. This prior is finally
very close to the TC prior (Chen et al. (2012)). The online
estimation of the hyperparameters aims at minimizing the
cost of the marginal likelihood criterion (Empirical Bayes
approach) (Pillonetto et al. (2022), chap.4), by using a
recursive gradient with projection, while the parameters
are estimated with an algorithm quite similar to RLS.
The paper is structured as follows: Section 2 shows how the
recursive least-squares can be implemented in case of reg-
ularized criterion, following a Bayesian approach, Section
3 proposes a prior structure inspired from the TC prior,
Section 4 details the algorithm mixing on-line parameters
and hyperparameters estimation. At last Section 5 displays
some simulations showing the performances of this novel
algorithm.

2. PROBLEM STATEMENT

2.1 Classical propagation equations for recursive estimation

Let us consider the “true” discrete-time system G0(q),
which is assumed to be stable and proper, (q being the
forward shift operator). The sequences {u(t)}, {y(t)},
{e(t)} correspond respectively to the input, output and



a centred gaussian white noise. This noise has a variance
σ2 assumed to be known. One has

y(t) = G0(q)u(t) + e(t) (1)

The model is a finite impulse filter G with

G(q) =

n∑
k=1

bkq
−k (2)

Our purpose is to estimate the vector θ where

θT = [b1 b2 · · · bn]

The regularized least-squares criterion with data up to
time t denoted as J0(t) is

J0(t) =

t∑
i=1

(
y(i)− ϕT (i− 1)θ̂(i)

)2
+ θ̂T (t)σ2Π−1

0 θ̂(t),

(3)

θ̂(t) being the estimation of θ at time t. The positive defi-
nite matrix Π0 is the regularization matrix (corresponding
to the kernel functions in a Machine Learning approach).
By cancelling out the criterion gradient with respect to the

vector θ̂, one finds immediately

θ̂(t) =

(
t−1∑
i=0

ϕ(i)ϕ(i)T + σ2Π−1
0

)−1 t∑
i=1

ϕ(i− 1)y(i) (4)

Let us introduce the positive definite matrix F as

F−1(t) =

t−1∑
i=0

ϕ(i)ϕ(i)T + σ2Π−1
0 (5)

Its propagation equations are

F−1(t+ 1) = F−1(t) + ϕ(t)ϕT (t) (6a)

F−1(0) = σ2Π−1
0 (6b)

By using the matrix inversion lemma, one has classically
(Landau et al. (2011), p.64)

F (t+ 1) = F (t)− F (t)ϕ(t)ϕT (t)F (t)

1 + ϕTF (t)ϕ(t)
(7)

On the other hand, it is well known (see Landau et al.

(2011), p.63) that the propagation of θ̂ is given by

θ̂(t+ 1) = θ̂(t) + F (t)ϕ(t)
εo(t+ 1)

1 + ϕT (t)F (t)ϕ(t)
(8a)

εo(t+ 1) = y(t+ 1)− ϕT (t)θ̂(t) (8b)

In a Bayesian perspective, the prior knowldege is incorpo-
rated in Π0 (which corresponds to the covariance matrix
of this prior). Therefore, in a recursive perspective, incor-
porating this prior is equivalent to specify F (0). However,
when one performs an identification in real-time, in general
one cannot use some available data so as to specify this
prior (by applying for example the Hierarchical Bayes
approach) allowing to determine the optimal prior hyper-
parameters, by maximizing a marginal likelihood function.
It is the reason why, we consider in this paper the issue
of computing on-line the regularisation matrix Π(t) in

parallel with the computation of θ̂(t).

2.2 Case where the regularization matrix is no longer
invariant

Let us assume that by a specific estimation algorithm
(which will be detailed below), the regularization matrix Π
is updated at each sample time, yielding Π(t). We assume
that Π is expressed from a vector of hyperparameters η
which is no longer constant. From (5) and (6), one can
write now

F−1(0, η(0)) = σ2Π−1(0) (9)

F−1(t, η(t)) =

t−1∑
i=0

ϕ(i)ϕ(i)T + σ2Π−1(t) (10)

F−1(t+ 1, η(t+ 1)) =

t∑
i=0

ϕ(i)ϕ(i)T + σ2Π−1(t+ 1)

(11)

The propagation equations of F−1 becomes

F−1(t+ 1, η(t)) = F−1(t, η(t)) + ϕ(t)ϕT (t) (12)

On the other hand, from (8), one has

θ̂(t+ 1, η(t)) = θ̂(t, η(t)) +
F (t, η(t))ϕ(t)εo(t+ 1)

1 + ϕT (t)F (t, η(t))ϕ(t)
(13)

2.3 Marginal Likelihood in a recursive context

Set
Y T (t+ 1) = [y(1) y(2) · · · y(t+ 1)]

In the hierarchical Bayes approach, the vector of hyper-
parameters η is estimated from data at first, by maxi-
mizing the Marginal Likelihood function L(η|Y ). After-

wards the maximum a posteriori (MAP) estimate θ̂ =
argmax p(θ|Y ) is computed, p being the probability
density function (pdf).
In a recursive context, where data are obtained on-line,
and available up to time t + 1, the maximization of the
Marginal Likelihood function L(η(t+1)|Y (t+1)) and the

computation of the MAP θ̂(t + 1) = argmax p(θ(t +
1)|Y (t + 1), η(t + 1)) must be computed alternatively, so
as to take into account only available data at time t + 1.
For this purpose set

Φ(t) = [ϕ(0) ϕ(1) · · · ϕ(t)]T

Σ(t+ 1) = Φ(t)Π(t+ 1)ΦT (t) + σ2It+1

assuming that the prior expectation of θ is null, and that
θ, η are normally distributed, the marginal LogLikelihood
function log L(η(t+1), Y (t+1) is (Pillonetto et al. (2022),
p.108)

logL(η(t+ 1)|Y (t+ 1)) = −1

2
log(2π |Σ(t+ 1)|)

− 1

2
Y T (t+ 1)Σ−1(t+ 1)Y (t+ 1) (14)

0ne has the following result:

Lemma 1. The derivative of logL(η(t+ 1)|Y (t+ 1)) with
respect to the k entry of η (denoted as ηk) is

∂log(L(t+ 1))

∂ηk
=

1

2
Tr
([
σ−2 (Π(t+ 1)−

−θ̂(t+ 1)θ̂T (t+ 1)
)
− F (t+ 1)

] ∂σ2Π−1(t+ 1)

∂ηk

)
(15)



Proof: See Appendix A.

3. PRIOR STRUCTURE AND HYPERPARAMETERS
ESTIMATION

3.1 Prior structure

One proposes a matrix regularization structure inspired
from the TC Kernel (Chen et al. (2012)) but where η
has n entries so as to facilitate the on-line estimation.
This is contrary to the usual method where the amount of
hyperparameters is generally very reduced (see for example
Pillonetto et al. (2022)). Afterwards some constraints on
the hyperparameters are introduced so as to incorporate
the prior knowledge associated to the system impulse
response (stability, exponential decay). The regularization
matrix is defined as

Π(t, η) = UW (t, η)UT (16)

where

U =


1 1 · · · 1
0 1 · · · 1

0 0
. . .

...
0 · · · 0 1

 (17)

and

W (t, η) =


eη1(t) 0 · · · 0
0 eη2(t) · · · 0
... · · ·

. . .
...

0 0 · · · eηn(t)

 (18)

with ηT (t) = [η1(t) η2(t) · · · ηn(t)].
Now, some constraints are imposed to η.

• Constraint C1: η2(t) < η1(t) ∀ t

• Constraint C2: ηk(t)− 2ηk+1(t) + ηk+2(t) = 0

Note that the vector subspace of Rn subject to constraints
C1 and C2 is convex, moreover these constraints are
equivalent to imposing ηk(t) = η1(t) − (k − 1)α(t), where
α(t) > 0. One has also

Wi,i(t, η) = λ(t)Wi−1,i−1(t, η)

with
0 < λ(t) < 1

This prior structure differs from the TC kernel only
because of the term Wn,n (see Carli et al. (2017)). One
can now perform a change of basis where the parameters

estimate is θ̂
′
and the regressor ϕ

′
(t) such that

θ̂
′
(t) = U−1θ̂(t) (19)

ϕ
′
(t) = UTϕ(t) (20)

F
′
(t+ 1, η(t+ 1)) = U−1F (t+ 1, η(t+ 1))U−T =

t∑
i=0

ϕ
′
(i)ϕ

′T (i) + σ2W (t+ 1, η(t+ 1)) (21)

and in this basis from (4), one can write

θ̂
′
(t+ 1, η(t+ 1)) =(
t∑

i=1

ϕ
′
(i)ϕ

′
(i)T + σ2W−1(η(t+ 1))

)−1 t∑
i=1

ϕ
′
(i)y(i)

(22)

Thus, in the basis where θ̂
′
is the estimated parameters

vector and ϕ
′
the regressor, the associated prior W is

nothing but a kernel matrix K
′
corresponding to the DI

Kernel (see Pillonetto et al. (2022), p.145), with

K
′

i,j = βλiδ(i− j) (23)

where δ(i) = 1 if i = 0 and δ(i) = 0 otherwise, and β > 0.

Property 1. The prior Π(t, η) as defined in (16), (17), and
(18) under the constraints C1 and C2 is stable.

Proof: One verifies immediately that Π
1/2
k,k (t, η) ≤

W1,1√
1−λ

λ
k−1
2 ,

hence limn→∞
∑n

k=1 Π
1/2
k,k (t, η) ≤

W1,1√
1−λ

1
1−λ1/2 ,

thus limn→∞
∑n

k=1 Π
1/2
k,k (t, η) < ∞, which is the condition

for the prior to be stable (see Lemma 5.1 of Pillonetto
et al. (2022)). 2

Property 2. The prior Π(t, η) as defined in (16), (17), and
(18) has the property of maximum entropy.

Proof: See Appendix B.

3.2 On-line hyperparameters estimation

The estimation procedure of the vector η consists in
finding η that minimizes Jh(t) = log(L(η(t)|Y (t))). By
combining (15), (19)–(21), one can write (the dependence
with respect to t being omitted for sake of simplicity)

∂Jh
∂ηk

=
1

2
Tr

(
U
(
W − θ̂

′
θ̂
′T − σ2F

′
)
UTU−T ∂W−1

∂ηk
U−1

)
(24)

∂Jh
∂ηk

=
1

2
Tr

((
W − θ̂

′
θ̂
′T − σ2F

′
) ∂W−1

∂ηk

)
(25)

and finally

∂Jh
∂ηk

=
1

2

1− θ̂k
′2
+ σ2F

′

kk

eηk

 . (26)

Set Ψ(t) such that

Ψ(t) =


1− θ̂

′2
1 (t)+σ2F

′
11(t)

eη1(t)

1− θ̂
′2
2 (t)+σ2F

′
22(t)

eη2(t)

...

1− θ̂
′2
n (t)+σ2F

′
nn(t)

eηn(t)

 (27)

One defines Ψp(t) as the projection of Ψ(t) onto the vector
subspace subject to constraints C1 and C2 with

Ψp(t) = Proj(Ψ(t)),

where the function Ψ 7→ Proj(Ψ(t)) is such that



Ψ∗
p =

(
In − CT

(
CCT

)−1
C
)
Ψ(t) (28a)

if Ψ∗
p(1)(t) < Ψ∗

p(2)(t) Ψp(t) = Ψ∗
p(t) (28b)

else Ψp(k) = Ψ∗
p(1) − (k − 1)ϵ, (28c)

ϵ > 0 is close to 0, and

C =


1 −2 1 0 0 · · · 0 0 0
0 1 −2 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 1 −2 1


the size of C being (n − 2 × n). The estimation on-line
of η is therefore performed using a gradient descent with
projection ( γ > 0 being the corresponding adaptation
gain)

η(t+ 1) = η(t)− γΨp(t). (29)

4. OVERALL ALGORITHM

4.1 Update of the adaptation gain an estimated parameters
vector

By combining (11) and (12), one obtains

F−1(t+ 1, η(t+ 1)) = F−1(t+ 1, η(t))+

σ2
(
Π−1(η(t+ 1))−Π−1(η(t))

)
. (30)

Introducing (29), one gets

F
′−1(t+ 1, η(t+ 1))− F

′−1(t+ 1, η(t)) =

= −σ2γ (diag (Ψp(t)))
−1

. (31)

For a square matrix X one has ∂X = −X∂X−1X.
Consequently,

F
′−1(t+ 1, η(t+ 1))− F

′−1(t+ 1, η(t)) =

σ2γF
′
(t+ 1, η(t)) (diag (Ψp(t)))

−1
F

′
(t+ 1, η(t)) (32)

On the other hand, from (22)

θ̂
′
(t+ 1, η(t+ 1)) = F

′
(t+ 1, η(t+ 1))

t∑
i=0

ϕ
′
(t)y(i+ 1)

(33a)

θ̂
′
(t+ 1, η(t)) = F

′
(t+ 1, η(t))

t∑
i=0

ϕ
′
(t)y(i+ 1)

(33b)

and by combining (31) and (33), one gets

θ̂
′
(t+ 1, η(t+ 1)) =(

In + σ2γF
′
(t+ 1, η(t+ 1)) (diag (Ψp(t)))

−1
)
θ̂(t+ 1, η(t))

(34)

4.2 Summary

The algorithm computing alternatively the estimation of
parameters and hyperparameters is given by

θ̂′(t+ 1, η(t)) =

θ̂′(t, η(t)) + F ′(t, η(t))ϕ′(t)
εo(t+ 1)

1 + ϕ′T (t)F ′(t, η(t))ϕ′(t)
(35)
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Fig. 1. Impulse response of Go.

F
′
(t+ 1, η(t)) =

F
′
(t, η(t))− F

′
(t, η(t))ϕ′(t)ϕ

′T (t)F ′(t, η(t))

1 + ϕ′TF ′(t, η(t))ϕ′(t)
(36)

η(t+ 1) = η(t)− γΨp(t) (37)

F
′−1(t+ 1, η(t+ 1)) = F

′−1(t+ 1, η(t))+

σ2γF
′
(t+ 1, η(t)) (diag (Ψp(t)))

−1
F

′
(t+ 1, η(t)) (38)

θ̂
′
(t+ 1, η(t+ 1)) =(

In + σ2γF
′
(t+ 1, η(t+ 1)) (diag (Ψp(t)))

−1
)
θ̂(t+ 1, η(t))

(39)

5. SIMULATION RESULTS

In this section, the proposed regularization based recursive
identification algorithm is compared with the classic recus-
rive least squares (RLS) method (see (Landau et al., 2011,
Chapter 5)). The identification data is generated using the
nominal model:

Go(z) =
0.02008z−1 + 0.04017z−2 + 0.02008z−3

1− 1.561z−1 + 0.6414z−2
·

· −0.7334z−1 + 1.516z−2 − 0.7591z−3 + 0.6941z−4

1− 1.282z−1 + 1.298z−2 − 0.4757z−3 + 0.1775z−4

The impulse response of the transfer function Go is shown
in Fig. 1. The input is 250 samples from a zero mean
random gaussian signal with 0.5 standard deviation. Mea-
surement noise is added to the output of the model in the
form of zero mean gaussian signal with standard deviation
0.05. The number of parameters is n = 50. The initial gain
matrix F of the RLS algorithm is chosen diagonal, with
identical diagonal values. Four RLS identifications have
been done, with diagonal element given by 0.1, 1, 10, or
100. Figure 2 shows the comparison with the regularized
RLS algorithm proposed in this paper. For each algorithm,
the curves are obtained by averaging over 10 simulations.
The average signal-to-noise ratio for these 10 simulations
is 12.3 dB (computed using the standard deviation). The
identification results depend on the initialization of the
hyperparameters. The following initialization of η(t) is
used here:

ηk(0) =

{
log(0.001), if k = 1,

log(0.9) + ηk−1(0), for k > 1.
(40)



The estimation gain γ is equal to 1. At each time-step
when a new input-output data pair is available, the iden-
tified model of each algorithm is updated and the im-
pulse response is computed. The mean square error (MSE)
between the impulse response of the identified and the
nominal models are shown in the upper plot of Figure 2.
Similarly, after each new iteration of the recursive algo-
rithms, the fit of the model to the identification data is
computed and the result for the various algorithms are
shown in the lower plot of Figure 2.
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Fig. 3. Evolution of the hyperparameters (η1(0) =
log(0.001)).

For the computation of the fit, the full input-output data
is used, even though the algorithms only use this data
only one sample at a iteration time. Clearly, for both
MSE and Fit, the regularized least squares algorithm
yields better results. Figure 3 shows the evolution of
the hyperparameters in one simulation. Figure 4 shows
the comparison based on an average over 10 simulations
for a different initialization of the hyperparameters using
η1(0) = log(0.1). The evolution of the hyperparameters in
one of the simulations is displayed in Figure 5. Despite
a degradation of the results during the first 15 s, the
regularized least squares solution reaches the optimal
solution more rapidly than the other algorithms. This is

50 100 150 200 250
0

0.2

0.4

0.6

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

Comparison of impulse mean square error

MSE with regularization
MSE without regularization (F=0.1)
MSE without regularization (F=1)
MSE without regularization (F=10)
MSE without regularization (F=100)

50 100 150 200 250
Sampling time

-50

0

50

100

Fi
t 

(%
)

Comparison of fit

Fit with regularization
Fit without regularization (F=0.1
Fit without regularization (F=1)
Fit without regularization (F=10)
Fit without regularization (F=100)

Fig. 4. Comparison with recursive least squares with and
without regularization (η1(0) = log(0.1)).

Fig. 5. Evolution of the hyperparameters (η1(0) =
log(0.1)).

related also to the reach of the optimal hyperparameter
values.

6. CONCLUDING REMARKS

A novel recursive identification algorithm with online es-
timation of model parameters and regularization matrix
hyperparameters has been presented. A simulation com-
parison with classical recursive least squares shows the
superiority of the proposed method during the initial in-
stants of the recursive algorithm, and the faster reduction
of the prediction error squares. Future work will focus on
the initialization and the convergence properties of the
hyperparameters estimation.
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Appendix A. PROOF OF LEMMA 1

By using the inversion lemma, one has

Σ−1(t+ 1) =
1

σ2
It+1 −

1

σ2
Φ(t)

(
σ2Π−1(t+ 1)+

+ΦT (t)Φ(t)
)−1

ΦT (t) (A.1)

Since |Σ−1| = 1/|Σ|, and by using the Sylvester theorem
about determinants, one gets (the dependence with respect
to t is omitted for sake of clarity)

∣∣Σ−1
∣∣ = ∣∣∣(σ2Π−1 +ΦTΦ

)−1
∣∣∣ |σ2Π−1|

∣∣∣∣INσ2

∣∣∣∣ (A.2)

N being the data number (This number doesn’t play any
role in the sequel), thus

log
∣∣Σ−1

∣∣ = −Nlog(σ2)−log
∣∣σ2Π−1 +ΦTΦ

∣∣+log
∣∣σ2Π−1

∣∣
(A.3)

Note that ∂log|X(z)|
∂z = Tr

(
X−1 ∂X

∂z

)
, yielding (ηk is the

kth entry of η)

∂log
∣∣Σ−1

∣∣
∂ηk

= −Tr

[(
σ2Π−1 +ΦTΦ

)−1 ∂σ2Π−1

∂ηk

]
+ Tr

[
σ−2Π

∂σ2Π−1

∂ηk

]
(A.4)

but ΦT (t)Φ =
∑t

i=0 ϕ(i)ϕ
T (i), and therefore (σ2Π−1(t +

1) + ΦT (t)Φ(t))−1 = F (t+ 1), therefore one gets

∂log
∣∣Σ−1(t+ 1)

∣∣
∂ηk

=

= Tr

[(
σ−2Π(t+ 1)− F (t+ 1)

) σ2∂Π−1(t+ 1)

∂ηk

]
(A.5)

Now let us consider the expression l(t + 1) = Y T (t +
1)Σ−1(t+ 1)Y (t+ 1). One obtains

l =
1

σ2
Y T (t+1)Y (t+1)− 1

σ2
Y T (t+1)Φ(t)

(
σ2Π−1(t+ 1)

+ΦT (t)Φ(t)
)−1

ΦT (t)Y (t+ 1) (A.6)

Consequently we get

∂l(t+ 1)

∂ηk
= −σ−2Y T (t+ 1)·

· Φ
∂
(
σ2Π−1(t+ 1) + ΦT (t)Φ(t)

)−1

∂ηk
ΦT (t)Y (t+ 1)

(A.7)

Since ∂X−1(z)
∂z = −X−1 ∂X

∂ηk
X−1, one has

∂l(t+ 1)

∂ηk
= σ−2

t∑
i=1

y(i+1)ϕT (i)F (t+1)
∂σ2Π−1

∂ηk
F (t+1)·

·
t∑

i=1

ϕ(i)y(i+ 1) (A.8)

now from (Landau et al., 2011, Eq. (3.36)) , F (t +

1)
∑t

i=1 ϕ(i)y(i+ 1) = θ̂(t+ 1), therefore

∂l(t+ 1)

∂ηk
= σ−2θ̂T (t+ 1)

∂σ2Π−1

∂ηk
θ̂(t+ 1) (A.9)

By combining (A.5) and (A.9), one obtains the gradient
of logL(η(t+ 1)|Y (t+ 1))

∂log(L(t+ 1))

∂ηk
=

1

2

(
Tr
[(
σ−2Π(t+ 1)− F (t+ 1)

)
∂σ2Π−1(t+ 1)

∂ηk

]
− 1

σ2
θ̂T (t+ 1)

∂σ2Π−1(t+ 1)

∂ηk
θ̂(t+ 1)

)
(A.10)



and therefore

∂log(L(t+ 1))

∂ηk
=

1

2
Tr
[[
σ−2 (Π(t+ 1)−

−θ̂(t+ 1)θ̂T (t+ 1)
)
− F (t+ 1)

] ∂σ2Π−1(t+ 1)

∂ηk

]
(A.11)

Appendix B. MAXIMUM ENTROPY PROPERTIES
OF THE PROPOSED REGULARIZATION MATRIX

Notation: For a square matrix A, A({a1, . . . , ak}) denotes
the submatrix of A identified by row and column indexes

given by a1, . . . , ak. Define also the set of indices I(m)
b :=

{(i, j)| |i− j| ≤ m}.
Following the ideas of (Carli, 2014, Section IV), we prove
the maximum entropy properties of the regularization
matrix Π(t, η) in (16) of size n defined by Πij(t, η) =∑n

k=max(i,j) e
ηk(t). In the rest of this section, the paren-

thesis (t) is dropped to save space.

Proposition 1. Consider the maximum entropy band ex-
tension problem (Carli, 2014, (9)), with m = 1 and

ξij = Πij(t, η), (i, j) ∈ I(1)
b (B.1)

i.e. consider the partially defined 1–band matrix

Ξ(1)
n (x) =



∑n
k=1 e

ηk
∑n

k=2 e
ηk x13 . . . . . . x1n∑n

k=2 e
ηk
∑n

k=2 e
ηk
∑n

k=3 e
ηk x24 . . . x2n

x13

∑n
k=3 e

ηk
∑n

k=3 e
ηk

∑n
k=4 e

ηk . . . x3n

...
. . .

. . .
. . . xn−2,1

...
∑n

k=n−1 e
ηk
∑n

k=n−1 e
ηk
∑n

k=n e
ηk

x1n . . . . . . xn−2,1

∑n
k=n e

ηk
∑n

k=n e
ηk


(B.2)

Denote by x◦ the optimal value. Then Ξ
(1)
n (x◦) = Π(t, η),

i.e. the solution of the Maximum Entropy Problem (Carli,
2014, (9)) coincides with the regularization matrix Π(t, η)
in (16).

Proof: The statement is proved by induction as in (Carli,
2014, Proposition 4.1). Letm = 3, using (Carli, 2014, (13)–
(14)), the central extension of∑n

k=1 e
ηk
∑n

k=2 e
ηk x13∑n

k=2 e
ηk
∑n

k=2 e
ηk
∑n

k=3 e
ηk

x13

∑n
k=3 e

ηk
∑n

k=3 e
ηk

 (B.3)

is given by x◦
13 = − 1

y1
ξ32y2 = ξ32 =

∑n
k=3 e

η3 , since by

(Carli, 2014, (14))

y1 = e−η1 , y2 = −e−η1 . (B.4)

Assuming that the statement holds for m = l, l ≥ 3, we
want to prove that it holds true also for m = l + 1. The
proof is split into two parts:
- First, we show that for s = 2, . . . , l − 1 the central one-
step extension of

∑n
k=s e

ηk . . .
∑n

k=l e
ηk xs,l+1∑n

k=s+1 e
ηk . . . . . .

∑n
k=l+1 e

ηk

...
. . .

. . .
...

xs,l+1

∑n
k=l+1 e

ηk . . .
∑n

k=l+1 e
ηk

 (B.5)

is the submatrix Π({s, . . . , l + 1}), namely the matrix
formed by the lines and columns s, . . . , l + 1 from Π(t, η).
As in (Carli, 2014, (12)), consider the submatrix Λ =
Π({s, . . . , l}). Its cofactor matrix C is such that C11 =
−C12 and C13 = . . . = C1,l = 0. Using also that
|Λ| = (

∑n
k=s e

ηk)C11 +
(∑n

k=s+1 e
ηk
)
C12, one obtains

y1 = 1
ηs
, y2 = − 1

ηs
, and y3 = . . . = ys+l−2 = 0. Thus

x◦
s,l+1 = ξs,l+1 =

∑n
k=l+1 e

ηk by (Carli, 2014, (13)–(14)).

- Finally, one has to show that Π({1, . . . , l + 1}) is the
central one-step extension of


∑n

k=1 e
ηk . . .

∑n
k=l e

ηk x1,l+1

...
. . .

. . .
∑n

k=l+1 e
ηk∑n

k=l e
ηk . . . . . .

...
x1,l+1

∑n
k=l+1 e

ηk . . .
∑n

k=l+1 e
ηk

 (B.6)

The proof is similar to the above and is omitted. 2

The additional property that ∀k, eηk > 0, leads to the

positive definiteness of Π(t, η) and Ξ
(m)
n , thus assuring also

the feasibility of the problem (Carli, 2014, Theorem 3.1(i)).


