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Abstract

More and more manufacturers, as part of the transition toward Industry 4.0, are using Internet of Things
(IoT) networks for more efficient production. The wide and extensive expansion of IoT devices and the
variety of applications generate different challenges, mainly in terms of reliability and energy efficiency.
In this paper, we propose an approach to optimize the performance of IoT networks by making the IoT
devices intelligent using machine learning techniques. We formulate the optimization problem as a mas-
sive multi-player multi-armed bandit and introduce two novel policies: Decreasing-Order-Reward-Greedy
(DORG) focuses on the number of successful transmissions, while Decreasing-Order-Fair-Greedy (DOFG) also
guarantees some measure of fairness between the devices. We then present an efficient way to manage the
trade-off between transmission energy consumption and packet losses in Long-Range (LoRa) networks using
our algorithms, by which LoRa nodes adjust their emission parameters (Spreading Factor and transmitting
power). We implement our algorithms on a LoRa network simulator and show that such learning techniques
largely outperform the Adaptive Data Rate (ADR) algorithm currently implemented in LoRa devices, in
terms of both energy consumption and packet losses.

Keywords: IoT, Multi-player multi-armed bandits, LoRaWAN, resource allocation

1. Introduction

The Internet of Things (IoT) has gained a great at-
tention in the last decade. The world has been wit-
nessing such a massive growth in the node deploy-
ment that the IoT survey reported on the Forbes
website [1] forecasts more than 75 billion connected
IoT devices by 2025. Massive IoT applications re-
quire energy-efficient and low-complexity nodes. To
support such requirements, Low Power Wide Area
Networks (LPWANs), that provide large coverage
areas, low transmission data rates with small packet
data sizes, low device complexity and long bat-
tery life have evolved [2]. LPWANs include several
technologies operating in the unlicensed industrial,
scientific and medical (ISM) frequency band (868
MHz in Europe, 915 MHz in North America, and
433 MHz in Asia), and the Long Range Wide Area
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Network (LoRaWAN) developed by the LoRa al-
liance [3] is one of these massively deployed tech-
nologies for low power and long distance transmis-
sions. However, with the great increase of IoT de-
ployment, a major problem of systems’ coexistence
arises. Inside the unlicensed band, the different sys-
tems are not separated in the frequency domain but
overlapping in the sense that they may use the same
frequency resource at any time, causing interference
and hence transmission failures. In this context, we
propose in this paper an approach to optimize the
communications in IoT networks by configuring IoT
devices so that they are aware of the best operating
parameters in order to avoid interference and packet
loss while consuming as little energy as possible.

We consider a large number N of devices com-
municating through a unique gateway on a limited
number K of orthogonal (independent) channels
(N ≥ K). The devices use an acknowledgement
protocol slotted in time, where an acknowledgement
is sent by the gateway to the transmitting device
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after each successful transmission. A transmission
fails if and only if a collision occurs. If this is the
case, the packets of all colliding devices are lost and
no acknowledgement is sent. There exist two types
of collision. An internal collision occurs when two
or more devices send packets to the gateway at the
same time slot through the same channel. External
collisions may also occur with unknown and uncon-
trolled devices. Therefore, even if only one device
sends a packet on one channel at a given time slot,
the packet may not be received by the gateway. Be-
cause of their nature, external collisions make the
probabilities of successful transmission (and hence
the channels’ qualities) uncontrollably differ over
channels. Another important feature of the studied
problem is that, in the general case, the gateway
cannot know that packets have been sent by some
devices if a collision occurs. As a consequence, the
estimation of the channel quality can only be done
at the device side in a decentralized way. In such
conditions and in order to maximize the number of
successful transmissions of the IoT network while
consuming as little energy as possible, we model
our problem as a massive multi-player multi-armed
Bandit.

Multi-Player Multi-Armed Bandits. Multi-
Armed Bandit (MAB) refers to an online decision-
making game where a player has to make decisions
at specific time steps by selecting an arm from a
set of K available arms. Each arm is associated
with a sequence of rewards that are randomly and
independently drawn according to an unknown dis-
tribution. At each turn, the player should select
an arm and receive the reward corresponding to
the selected arm. The player’s goal is to maximize
its cumulative reward over time by compromising
between exploring the arms that have loosely esti-
mates in order to build a better one, and exploiting
the arm that seems to be the best in order to max-
imize the cumulative reward. The player should
follow a certain policy that chooses the arm to play
at each turn based on the previous outcomes.

In this work, we focus on stochastic MABs, where
we assume that the rewards are generated inde-
pendently from an unknown and constant distribu-
tion. UCB (Upper Confidence Bound) [4] is one of
the most commonly used algorithms in stationary
stochastic environments. It builds an upper confi-
dence bound of the expected reward of each arm,
and selects the arm with the highest bound at each
iteration. UCB can be used in selfish MAB [5] for

optimizing the packet data rate in IoT networks.
Notice however that the basic assumption of selfish
UCB does not hold in our setting: due to internal
collisions and learning of other players, the reward
evolves during time.

The multi-player multi-armed bandit (MP-MAB)
problem is a class of MAB problems where instead
of a single agent, there exists a set [N ] of N play-
ers, where all players have access to the same set
of arms [K], and have to make decisions at some
pre-specified time instants and observe the corre-
sponding outcome. In this model, the notion of
collisions is introduced, i.e., whenever two or more
players select the same arm at the same time, they
all suffer from a collision. Different collision models
have been proposed, but the simplest one consists
in giving a 0 reward to each of the colliding players.
In this context, the players must learn to access the
arms while maximizing their rewards, which neces-
sitates avoiding collisions.

To set the aforementioned problem into the
framework of multi-player MAB, each IoT device is
considered as a player, a channel is considered as an
arm, and the reward corresponds to the reception
or not of the acknowledgement from the gateway.

Related Work. The decentralized multi-player
multi-armed bandits have been studied for oppor-
tunistic spectrum access in [6, 7, 8, 9], where pri-
mary users have a strict priority over secondary
users, which are allowed to sense a channel before
sending a packet in order to check whether it is free.
The objective of those works is to avoid collisions
between concurrent secondary users, that share the
same channels, while choosing the best channels,
i.e., with the highest probabilities of being free of
primary users. This line of work makes the as-
sumption that there are less players than channels,
that the collisions with other players are observed,
and uses orthogonalization techniques to avoid col-
lisions. In [10], the authors propose to use colli-
sions to estimate in a first phase the number of
players and the value of arms, and then applies a
Musical Chair approach to allocate each player on
a different N -best arm. In [11], the authors im-
prove this approach by reducing the first phase to
the estimation of the value of arms and then use
a trekking approach to allocate each player on a
different N -best arm without the knowledge of the
number of players. In [12], the authors propose a
communication protocol based on controlled colli-
sions that achieves almost the same performance as
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a centralized algorithm. In [13], the authors im-
prove this result by electing a leader that explores
the arms and allocates other players on different
estimated N -best arms. The leader communicates
to the other players the list of estimated N -best
arms when it changes using the same communica-
tion protocol as in [12]. An interesting extension of
the problem setting is proposed in [14] for handling
the case where the mean rewards of arms are not the
same for each player. Despite its merits, this thread
of research makes the assumption that sensing in-
formation is available and the number of players is
small (N ≤ K), which are respectively impractical
and unrealistic assumptions for IoT networks. In
contrast, in this paper we do not consider any con-
dition on the number of players, neither we consider
primary/secondary user setting, and we do not al-
low sensing. Instead, players observe the success or
failure of their transmissions.

Motivated by IoT networks, in [5] the authors
propose a new problem setting where sensing is not
allowed, the number of players is larger than the
number of channels, and the players asynchronously
play: each player has the same probability of send-
ing a packet at each time slot. The authors show
experimentally that selfish UCB, which consists in
each player independently playing UCB [4], i.e.,
a classic commonly-used MAB algorithm, works
surprisingly well. This experimental result has
been confirmed in the case of LoRa networks using
stochastic and non-stochastic multi-armed bandits
in [15, 16] or in the case of the IEEE 802.15.4 time-
slotted channel hopping protocol [17]. Despite its
good experimental performance, this algorithm has
no theoretical guarantees, and it has been shown
that selfish UCB can fail badly on some cases [18].
With a similar problem setting but with different
probabilities to send packets, the authors in [19]
propose a cooperative algorithm that aims to find
a set of optimal arms while minimizing the num-
ber of plays. However, that work does not optimize
the number of optimal arms to find, and the ex-
ploitation policy followed by the players is uniform,
which is clearly sub-optimal. These limitations are
resolved with our proposed algorithms.

Finally, the optimization problem we propose to
solve is related to the slotted-Aloha protocol [20],
where each player n transmits a packet with a
probability pn at the beginning of a slot. For in-
stance, in [21] the authors formulate the decentral-
ized throughput maximization problem in an Aloha
network with a single channel in a way that is close

to our optimization problem. However, that work
considers a single channel, and the decision variable
is the sending probability pn rather than the choice
of the channel. If the probabilities of sending a mes-
sage are optimized, then the application constraints
of IoT (frequency of sending messages or real-time
messages) cannot be respected. In [22], the authors
propose a best-response algorithm which solves the
throughput maximization problem for the multi-
channel Aloha protocol. They notably show that
the best-response algorithm converges to a Nash
Equilibrium in a finite time. However the authors
consider that the channel capacities and the strate-
gies of other players are known, and that each
player has the same probability of sending a mes-
sage at each slot, which is unrealistic and restrictive
for IoT networks.

Contributions and paper organization. In
this paper, we study the extension of the prob-
lem proposed in [5], where at each time slot, each
device n has a probability pn to send a packet
to the gateway [19]. We propose an explore-then-
exploit approach, where a decentralized exploration
algorithm outputs an estimation of the parame-
ters. Players send these estimates to the gateway
in order to centralize the decision making. Then,
the gateway computes a policy to be used during
the exploitation phase. We then test our approach
on LoRa networks using a LoRa network simula-
tor, and compare it with the already-implemented
Adaptive Data Rate (ADR) algorithm.

In section 2, after discussing the assumptions
and simplifications done in comparison to a real
IoT network, we formalize the objective of opti-
mizing the successful transmissions. We show in
Theorem 1, that there exists a deterministic policy
(an assignment of players over arms) that is opti-
mal. Then, in section 3, we propose two determinis-
tic policies: DORG (decreasing-order-reward-greedy)
aims to optimize the number of successful trans-
missions, while DOFG (decreasing-order-fair-greedy)
guarantees fairness between players in terms of suc-
cessful transmission rate. In Theorem 2, we show
that DORG is optimal at least in the setting pro-
posed in [5] (when ∀n, pn = p), while Theorem 3
establishes fairness guarantees for DOFG. We then
compare the performance of the two policies in
preliminary experiments in section 3.3. In sec-
tion 4, we propose a collaborative exploration al-
gorithm, which has to be decentralized since the
packet loss can only be observed by players. The
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players output unbiased estimates of the mean re-
wards of arms, i.e. the probability of not suffer-
ing an external collision, with classic concentration
properties. Theorem 5 proves an upper bound on
the number of time steps needed to output a con-
trolled approximation of the arms that is near op-
timal in comparison to the lower bound of K bi-
ased coin estimations in Ω

(
K/ϵ2 log 1/δ

)
[23]. Fur-

thermore, Theorem 4 guarantees its communication
efficiency by stating an upper bound on its com-
munication cost in O (NK log(NK +N)/δ). The-
orem 7 establishes a pseudo-regret lower bound in
Ω
(
T 2/3 log T

N

)
, which holds for any explore-then-

exploit algorithm, and unveils the hardness of the
studied problem in comparison to the multi-armed
bandit and multi-player bandit problems. Then,
in the specific setting when ∀n, pn = p (proposed
in [5]), Theorem 6 demonstrates that DORG enjoys
a pseudo-regret upper bound that is optimal in
T . Finally, Theorem 8 states fairness guarantees
of our explore-then-exploit algorithm with DOFG.
In section 4.4, we compare our approach with the
state-of-the-art methods on a large set of synthetic
problems. Our experiments reveal that when us-
ing DORG, the proposed algorithm outperforms the
baselines in terms of successful communication rate,
and when using DOFG it outperforms them in terms
of fairness between players. In section 5, we im-
plement the proposed algorithms and some MAB
baselines into LoRaWAN technology. The experi-
ments done on a realistic simulator show that the
Adaptive Data Rate (ADR) algorithm, which is
currently implemented in LoRa protocol, is largely
outperformed by our algorithms in terms of energy
consumption and packet losses. We moreover show
that if a team of nodes uses ADR while another
team uses our approach, the first team consumes
more energy and suffers of more packet losses. We
finally conclude in section 6 by suggesting directions
for future work. The reader will find the societal
impact in appendix Appendix .1, additional ex-
periments in appendix Appendix .2 and the proofs
in appendix Appendix .3.

2. Massively Multi-Player Multi-Armed
Bandits

In the following, we model the problem of op-
timizing the communications in IoT networks as
a massive MP-MAB after presenting the main as-
sumptions that we make.

2.1. Underlying assumptions
To best formulate our optimization problem, we

model an IoT network by considering the following:

1. The number of devices could be greater
than the number of channels: Unlike most
of previously mentioned works, we do not as-
sume the number of devices is less than the
number of channels. Indeed, in Internet of
Things (IoT) networks, a large number of de-
vices are connected to the Internet through
wireless gateways, and hence the number of
devices cannot be lesser than the number of
channels.

2. Each successful uplink transmission is
followed by a downlink acknowledge-
ment: The communication protocols used in
IoT allow to assign a binary outcome for each
transmission (success or not) since each up-
link transmission is followed by time windows
during which the device listens to the gateway
to receive the acknowledgement of the uplink
transmission.

3. Sensing information is not possible: The
players cannot distinguish internal and exter-
nal collisions, rather they can only observe the
success or failure of their transmissions. This
is known to be a difficult case for multi- player
multi-armed bandits, however it is realistic for
IoT networks, where sensing information is too
costly in terms of energy consumption.

4. Downlink transmissions do not fail: We
do not consider that collisions could occur
when the gateway sends acknowledgements.
Indeed, these downlink collisions require that
at least two acknowledgements are sent from
the gateway at the same time to different de-
vices located at the same place, which cannot
happen with a unique gateway using a protocol
slotted in time, and which would be unlikely in
a real Internet of Things (IoT) network, where
a finite number of gateways is positioned to
cover the maximum area.

5. Each player has a probability of sending
a packet at each time step: The frequency
of sending packets through the gateway de-
pends on the application (healthcare, security,
smart cities, marketing, home automation...).
Moreover, for several real-time applications,
the device has to send a packet when an un-
known and uncontrolled event occurs. For in-
stance, a user’s device can interact with its
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environment in real-time, to get a green light
when the user faces a crossroad, an ad when the
user is in front of a shop, a ticket when getting
on the bus, and more critical applications such
as healthcare ones. Such packets has to be sent
and processed as soon as possible, and there-
fore the authors in [16] suggest a modification
in the LoRA@FIIT [24] link-layer protocol, so
such emergency packets are given the priority
to be retransmitted in case of failure over other
types of normal packets in order to guarantee
QoS in LoRa networks. In this work, in order
to model the packets’ delivery rate, we assume
that each player has a probability of sending a
packet at each time step.

6. Players are Socratic1: Considering that the
probability of sending a packet depends mainly
on the type of devices, we assume that each
player knows its own probability of sending a
packet.

7. Known number of players: We assume that
the number of players is known by the gateway,
which is realistic in IoT protocols (the gateway
can keep track of all the devices it has received
packets from), and that the gateway sends this
information to each player at the beginning of
the game.

8. Players can share information by includ-
ing their messages in the payload of the
packet they need to send: We allow the de-
vices to share information by sending messages
to other devices through the gateway using the
IoT protocol. As in IoT networks the payload
of each packet can contain up to 255 bytes
[25, 26], we assume that in the same packet
8 bytes of the payload can be used to send a
message to other players. We hereby distin-
guish between the two terms: a packet that
corresponds to the regular transmissions of a
device, and a message that corresponds to the
information shared between the players.

2.2. Problem Formulation
We consider a large set [N ] of N devices (players)

communicating with a unique gateway on a limited
number K of orthogonal channels (N ≥ K), using
an acknowledgement protocol slotted in time. Let

1from the ancient Greek aphorism "know thyself" at-
tributed to Socrates.

[K] denote the set of K arms. At each time slot
t each player n ∈ [N ] has a constant probability
pn to send a packet, such that 1 > p > pn > 0,
where p is the duty cycle that is imposed on the
IoT network in order to share the free bandwidth
with other users. Without loss of generality, in the
following we assume that the indices of players are
sorted in decreasing order of their probability of
sending a packet: p1 ≥ ... ≥ pN . At each time slot
t, the set Nt of players sending packets is selected
by N independent Bernoulli samples: Nt := {n ∈
[N ] such that an = 1, with an ∼ B(pn)}.

For a given time slot t, let kt,n (or kn when no
confusion is possible) denote the arm played by
player n. The transmission of a packet is successful
if it does not collide with other packets. The ran-
dom variable representing an external collision on
arm k is denoted by Ek ∼ B(θk) (equals 0 if colli-
sion, 1 otherwise). Similarly, internal collisions be-
tween the controlled players are represented by the
random variables (Ik)k∈[K] (equals 0 if collision, 1
otherwise) and depend on the implemented policy.
After playing arm k, player n observes the binary
outcome Y kn = EknIkn , i.e., knows whether a colli-
sion occurred or not (through an acknowledgement)
but cannot distinguish external and internal colli-
sions.

We will call a policy a (possibly randomized) way
for players to select the channel to use for their
next transmission. Formally, a policy π will be a
vector of probability distributions over the set of
arms: π = (π1, ..., πN ), with πn = (π1

n, ..., π
K
n ) ∈

∆K , where πk
n ∈ [0, 1] denotes the probability that

player n chooses arm k for sending a packet. We
denote by µk

n,θ(π) the expected reward in model
θ = {θ1, ..., θK} of playing arm k while the other
players follow policy π. It is the probability that no
external collision occurs times the probability that
no internal collision occurs:

µk
n,θ(π) = θk

N∏
n′=1,n′ ̸=n

(1− pn′πk
n′). (1)

Equation (1) shows the difficulty of the studied
problem: the mean reward of an arm for a given
player depends on the probabilities of the other
players to send a packet and on the policies they
follow. The aggregated average reward in model
θ = {θ1, .., θK} per time slot over all players µθ(π)
is:
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µθ(π) =

K∑
k=1

θk
N∑

n=1

pn.π
k
n

∏
n′∈[N ]\{n}

(1− pn′πk
n′).

(2)

This performance metric corresponds to the ex-
pected number of successful transmissions per time
slot. The optimization problem in Equation (2)
with respect to π has a solution, since the objec-
tive function is continuous and the set of decision
variables is compact. But the problem itself is not
convex with respect to πk

n, hence classical convex
optimization methods cannot be applied.

Another approach is to consider a particular sub-
set of policies: the subset of deterministic policies is
obtained when ∀(k, n) ∈ [K]× [N ], πk

n ∈ {0, 1}. Let
kn be the arm assigned to player n. The expected
reward per time slot in model θ = {θ1, ..., θK} of a
deterministic policy π can then be written as:

µθ(π) =

N∑
n=1

pnθ
kn

∏
n′ ̸=n, s.t. kn′=kn

(1− pn′) (3)

=

K∑
k=1

θk
∏

n∈[N ], s.t. kn=k

(1− pn)︸ ︷︷ ︸
zk

∑
n∈[N ], s.t. kn=k

pn
1− pn︸ ︷︷ ︸

ℓk

,

where zk is the probability that no player as-
signed to arm k sends a packet, and ℓk is the sum of
the activation odds for all players assigned to arm
k.

Theorem 1. There exists a policy maximizing the
overall network utility (equation (2)) that is deter-
ministic.

Theorem 1 states that at least one solution is a
deterministic policy, which justifies to consider only
the subset of deterministic policies. However, as a
deterministic policy is an assignment of players over
arms, there are NK deterministic policies. This
means that when N and K are not small, finding
the optimal policy is hopeless, and this even if the
model θ is known in advance, which is not the case.

2.3. Discussion

In face of these impossibility results for both
stochastic and deterministic policies, for handling
massively multi-player multi-armed bandits, we aim

to find reasonably good deterministic target poli-
cies in the next section. Then, in section 4, we will
propose an exploration algorithm that finds an un-
biased and controlled approximation of the model θ
for computing the target policy. This explore-then-
exploit approach allows to compute a controlled ap-
proximation of a target policy, even in the case
where N and K are not small. Moreover if N and
K are small, a controlled approximation of the op-
timal policy can be obtained. The alternative ap-
proach consisting of using an optimal multi-armed
bandit algorithm that consider each deterministic
policy as an arm will lead to a regret lower bound
in Ω

(√
NKT

)
[27]. Notice that even when N and

K are small (for instance in the order of 10) the
dominant term of the regret lower bound is not T ,
but NK .

3. Collaborative Exploitation in Massively
Multi-Player Bandits

3.1. Reward greedy algorithm
In this section, we propose a greedy algorithm that
aims to maximize the network utility (equation (3)).

Lemma 1. For a deterministic policy π, let
µθ(π[n]) denote the expected reward when only play-
ers 1, ..., n are playing (all players n′ > n are deac-
tivated). Then we have the recursive expression:

µθ(π[n]) = µθ(π[n−1])+pnθ
kn

(
1− ℓkn

[n−1]

)
zkn

[n−1],

where zk[n] is the probability that arm k is not used
by any of the first n players, and ℓk[n] is the sum of
activation odds of the n first players for arm k.

Lemma 1 reveals a recurrence relation over n of
the expected total reward. Under the assumption
that the problem parameters are known, Lemma 1
paves the way to the definition of DORG, decreasing-
order-reward-greedy (Algorithm 1), a recursive al-
gorithm that assigns player n to arm kn such that
the right-hand term of the recursive equation in
Lemma 1 is maximized. The result is highly de-
pendent on the order in which the players are added
to the pool, but the following theorem shows Algo-
rithm 1 can lead to an actual optimum.

Theorem 2. If
∑

n∈[N ]
pn

1−pn
≤ K + 1, then there

exists an ordering over players σ∗ : [N ]→ [N ] such
that Algorithm 1 returns an optimal policy.
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Algorithm 1 Reward Greedy
(DORG if players are sorted in pn decreasing order)
Inputs: [K], [N ], {θk}k∈[K], {pn}n∈[N ]

Output: π
Init: per-arm inactivity probabilities: zk = 1.
Init: per-arm activation odds sums: ℓk = 0.
1: for n = 1 to N do
2: Set kn ∈ argmaxk∈[K] θ

kzk(1− ℓk).
3: Update zkn ← zkn (1− pn).
4: Update ℓkn ← ℓkn + pn

1−pn
.

5: Set πkn
n = 1, and ∀k ̸= kn, π

k
n = 0.

6: end for

Algorithm 2 Fairness Greedy
(DOFG if players are sorted in pn decreasing order)
Inputs: [K], [N ], {θk}k∈[K], {pn}n∈[N ]

Output: π
Init: per-arm inactivity probabilities: zk = 1.
1: for n = 1 to N do
2: Let kn ∈ argmaxk∈[K] θ

kzk

3: Update zkn ← zkn(1− pn)
4: Set πkn

n = 1, and ∀k ̸= kn, π
k
n = 0.

5: end for

Remark 1. When ∀n, pn = p [5] Theorem 2 states
that DORG returns the optimal policy. The precon-
dition of Theorem 2 clearly holds in IoT networks,
where the duty cycle p is commonly set to less than
0.01 [26].

In DORG, we sort the players in the decreasing or-
der of their probabilities to send packets so that the
most frequently-playing players, which are respon-
sible of a major part of sent packets, are assigned
to the best arms in order to maximize the num-
ber of successful transmissions. In the next section,
we experimentally show that scheduling players by
decreasing activity values is a good heuristic, sig-
nificantly outperforming the random scheduling.

3.2. Fairness greedy algorithm

Theorem 1 states that the resource assignment of
an optimal deterministic policy is a Pareto opti-
mum: as the network utility is maximum, if a user
increases its own utility (equation (1)) another user
has necessarily to decrease its utility (due to equa-
tion (2)). Notice that a Pareto optimum does not
provide any guarantee about the fairness of the re-
source allocation among players. In this section, we

design a policy to ensure fairness among players, for
which we will use the definition below.

Definition 1 (α-fairness). A policy π is said to
be α-fair if minn∈[N] µn,θ(π)

maxn∈[N] µn,θ(π)
≥ α, where µn,θ(π) =∑K

k=1 π
k
n.µ

k
n,θ(π)

Building a fair policy can be done by balancing
the load with respect to the mean rewards of arms.
The fair greedy algorithm (see Algorithm 2) assigns
sequentially each player to the arm that maximizes
the reward of the arm times the probability of no
internal collision. The player scheduling also plays
an important role and we prove a lower bound on
the fairness of Algorithm 2, when players are sorted
in decreasing order of pn. In that case we coin this
algorithm DOFG, which stands for decreasing-order-
fair-greedy.

Theorem 3. DOFG generates α-fair policies, with
α ≥ 1−maxn∈[N ] pn.

Theorem 3 implies that when the probability of
sending packets of the most frequent player is not
high, which is the case in IoT networks, DOFG is a
fair policy. In the following section, experimental
evidence about performance and fairness of DORG
and DOFG is provided.

3.3. Preliminary Experiments
In this section, we perform the following experi-
ment: the problem parameters are sampled as fol-
lows: ∀n ∈ [N ], pn ∼ U(0, 0.3)2 and ∀k ∈ [K], θk ∼
U(0, 1). Figure 1 compares the performance of
DORG, DOFG, and Reward Greedy (Algorithm 1) with
random ordering, where each point is the average
of 10,000 runs. Figure 1a that compares the ex-
pected reward ratio of the algorithms with respect
to DORG, where π̄ denotes the policy to be com-
pared with DORG, reveals that sorting the players
in decreasing order is a good policy. However, it
has to be noted that the difference between DORG
and a random ordering is much thinner when pn
are smaller, as expected in a real setting. We also
notice that DOFG expected reward loss, as compared
to DORG, is below 20% until N ≈ 75. Figure 1b illus-
trates the result of Theorem 3, and indicates that
the fairness lower bound is tight. It also shows that,
while DOFG only loses 20% rewards when N ≈ 75 as

2Such high values for pn are used to graphically observe
the expected properties.
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Figure 1: With a fixed number of arms K = 10, and for N values (ranging from 16 to 512 on a log scale), the performance of
DORG, DOFG, and Reward Greedy (Algorithm 1) with random ordering is compared.

compared to DORG, its fairness is approximately 30
times larger.

Further, on figure 1c, we notice that the expected
number of channels with collisions stops increasing
as N grows around N = 100. It is the moment when
the channels get completely saturated. N = 100
coincides with the point where the fairness gets to
0 on figure 1b. We explain this phenomenon as
follows: each channel k fills up, up to the point
when ℓk > 1. When all the channels reached this
point, adding new players to the network actually
decreases the expected reward, and DORG’s strategy
condemns the arms with the lowest θk and use them
as a garbage bin for new players. These channels get
so crowded that there is a collision on it with a very
high probability, in order to keep the other channels
functionally unspoiled. In comparison, to guarantee
fairness DOFG does not throw away players on a bin
channel.

Similar experiments with different settings are

presented in Appendix Appendix .2.

4. Collaborative Exploration in Massively
Multi-Player Bandits

The policies Reward Greedy and Fairness Greedy
necessitate the knowledge of the model θ and the
probabilities to send packets of the players pn which
are unknown to the players. Therefore, we propose
in the following a collaborative exploration algo-
rithm that returns unbiased estimates of the mean
rewards of the arms.

4.1. Principle

Decentralized explore-then-exploit ap-
proach: The choice of the policy depends on the
metric to be maximized: for maximizing network
utility, DORG policy (Algorithm 1) should be used,
while to guarantee some fairness among players,
DOFG policy (Algorithm 2) is to be used. However
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both policies require an estimate of the model
θ, which can only be obtained after sufficient
exploration. Since the gateway cannot observe the
collisions (packet losses), the learning (exploration)
is done at the device (player) side. Therefore,
we propose a decentralized exploration algorithm
performed with the packets that the players have to
send, i.e. they do not send extra packets dedicated
for exploration but just the packets they need to
send with probability pn, hence they do not lose
any of their packets neither consume higher energy.
Then, the exploration is followed by an exploita-
tion phase, i.e. explore-then-exploit approach: an
exploration algorithm shares the probabilities of
sending packets of players at the beginning, which
is necessary to compute the exploration policy of
each player and outputs an ϵ-approximation of the
model θ with high probability for a sufficiently
small ϵ, and then a target policy is used during the
exploitation phase.

Definition 2 (ϵ-approximation). θ̂k is said to be an
ϵ-approximation of arm k, if the difference between
it and θk is less than ϵ : |θk − θ̂k| ≤ ϵ.

Collaboration: In order to reduce the exploration
time needed to find an ϵ-approximation of each arm,
we propose to distribute the exploration task on
the players: each player is responsible of a prede-
fined number of samples t∗n for each arm according
to its probability of sending a packet, so that all
players would finish their estimations almost at the
same time. At the end of the exploration phase,
each player sends its ϵ-approximation of each arm
to other players through the gateway. Then, the
target policy can be computed in a centralized way
(by the gateway) or separately within each player.
Our exploration algorithm as the algorithm in [28],
belongs to the federated multi-armed bandits as de-
fined in [29], as the players learn independently on
different data and share their knowledge afterwards.
In Algorithm 3, we assume that a message to other
player can be sent with the packet at the same time
slot (see section 2).

4.2. Description of the algorithm
The function send(s), used in Algorithm 3, means

that message s is sent by player n and broadcast
to other players through the gateway on a channel
chosen uniformly over K. The function send(s) re-
turns 1 if an acknowledgement is received by player
n from the gateway or 0 else. When player n re-
ceives the probabilities of sending packets of all

Algorithm 3 Collaborative Exploration in Mas-
sively Multi-Player Multi-Armed Bandits
Inputs: [K], [N ], ϵ ∈ [0, 1], δ ∈ (0, 1)

Output: θ̂ = {θ̂k,∀k ∈ [K]}
Init: t := 0; ∀n ∈ [N ] : t∗n := ∞, ack1n := 0;
∀(n, k) ∈ [N ]× [K]: ack2kn := 0, ack3kn := 0

repeat
Nt := {n ∈ [N ], an ∼ B(pn), an = 1}
for n ∈ Nt do

kn ∼ U(1,K)
Y kn
n (tkn

n ) := Ikn
n Ekn

µ̂kn
n (πu) :=

∑t=tkn
n

t=1 Y kn
n (t)/tkn

n

tkn
n := tkn

n + 1
if ack1n = 0 then
ack1n := send(pn)

else
if ∀i ∈ [N ], ack1i = 1 then

∀i, t∗i :=
pi log (2K/δ)

2(ϵρki (πu))2
∑N

j=1 pj
end if
if ∃k, tkn ≥ t∗n then

if ack2kn = 0 then
ack2kn := send(θ̂kn)

else if ack3kn = 0 then
ack3kn := send(tkn)

end if
end if

end if
end for
t = t+ 1

until ∃N ′ ⊂ N ,


∀k

∑
n∈N ′

tkn ≥
∑

n∈N
t∗n

∀k
∑

n∈N ′
ack2kn = |N ′|

all players calculate θ̂k :=

∑
n∈N ′ θ̂knt

k
n∑

n∈N ′ tkn

other players (Algorithm 3 line 11), it computes the
required number of samples of each arm t∗n accord-
ing to Lemma 2. When player n samples at least
t∗n times an arm k, it sends its estimation θ̂kn and
tkn to other players (Algorithm 3 lines 16,18) each
in a distinct message (in distinct time slots). θ̂kn
is computed according to equation (4). The explo-
ration phase ends when the arms have been sampled
enough by a subset of players and the estimations of
this subset have been successfully sent (Algorithm
3 line 20). Finally, the players compute the global
estimations of arms by combining the received local
ones (Algorithm 3 line 21).
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The sampling strategy used in collaborative ex-
ploration is the Uniform Policy πu: ∀n, ∀k, πk

n = 1
K .

Then, player n can estimate the mean reward of
arms using:

θ̂kn =
µ̂k
n(πu)

ρkn(πu)
, where (4)

ρkn(πu) =

N∏
n′=1,n′ ̸=n

(1− pn′πk
n′) =

N∏
n′=1,n′ ̸=n

(1− pn′/K)

Lemma 2. With Algorithm 3, to obtain with a
probability 1−δ an ϵ-approximation of the mean re-
wards of arms, player n needs to sample each arm
at least

t∗n =

⌈
pn log (2K/δ)

2ϵ2(
∏

n′ ̸=N (1− pn′/K))2
∑N

i=1 pi

⌉
times.

In the following we study the communication cost
and the exploration duration of the proposed explo-
ration algorithm.

4.3. Analysis of the algorithm
The communication cost presents the number of

transmissions needed to successfully send the mes-
sages of Algorithm 3.

Theorem 4. Communication cost. When Algo-
rithm 3 stops, the number of messages sent is, with
probability 1− δ, less than C(N(1 + 2K)), where

C(m) = m

⌈
logm/δ

log
(
1−

∑K
k=1

(1−p1/K)N−1

K θk
)−1+1

⌉
.

Theorem 4 states an upper bound on the number
of messages issued by the N players for sharing
the probabilities of sending packets, and for sharing

their estimations that is in O

(
NK log

NK +N

δ

)
.

Theorem 5. Exploration duration. With a
probability at least 1 − δ, when N ≥ 2 Algorithm
3 stops while finding the ϵ-approximations of model
θ = {θ1, ..., θK} at:

t∗ ≤ K log (NK/δ)

2ϵ2((1− p1/K))2N−2
∑N

i=1 pi

(
1 +

√
K

2pN

)

+
K2

2(pN )2
log

NK

δ
+

(
K

pN

)3/2
√

C(3)

2
log

NK

δ

+
KC(3)

pN
,

where pN = minn∈[N ] pn, p1 = maxn∈[N ] pn, and
C(3) is the needed number of transmissions to suc-
cessfully send 3 messages.

Theorem 5 states an upper bound on the number
of time slots needed by all players to finish their
estimations of the mean rewards of the arms and to
share them. The left term in O

(
K3/2/ϵ2 logK/δ

)
is the dominating term of the upper bound of the
sample complexity. It is near optimal in comparison
to the lower bound of K biased coin estimations in
Ω
(
K/ϵ2 log 1/δ

)
[23].

For the regret analysis of the proposed algorithm,
we define the pseudo-regret as follows:

Definition 3 (Pseudo-regret). Let πt be a policy
generated at time t by an algorithm, and µθ(πt) be
its value in model θ = {θ1, ..., θK}, we define the
pseudo-regret with respect to the optimal policy π∗

θ

as R(T ) =
∑T

t=1(µθ(π
∗
θ)− µθ(πt)).

Theorem 6. Pseudo-regret upper bound. when
∀n ∈ [N ], pn = p, and N ≥ 3, the pseudo-regret
with respect to the optimal policy π∗

θ of Algorithm 3
followed by the policy π∗

θ̂
is upper bounded by:

R(T ) ≤O
(

T 2/3 logNKT

p3/2(1− p/K)2N−2N
+K9/4T 2/3

)
.

To show how tight this bound is we provide below
a lower bound on the pseudo-regret of any explore-
then-exploit approach.

Theorem 7. Pseudo-regret lower bound.
There exists a model θ = {θ1, ..., θk} and a dis-
tribution of players p1, ..., pN such that the pseudo-
regret with respect to the deterministic optimal pol-
icy π∗

θ of any exploration algorithm that outputs an
ϵ-approximation of each arm θk with probability at
least 1 − 1/T and which is followed by the optimal
policy using the estimated model is at least:

R(T ) ≥ Ω

(
T 2/3 log T

N

)
.

Theorem 7 reveals the difficulty of the studied
problem in comparison to the multi-armed bandit
and multi-player bandit problems. Indeed, in the
case of bandit, the pseudo-regret lower bound of
explore-then-exploit algorithms is in Ω(

√
KT log T )

[30], and in the case of multi-player bandit, there
exists an explore-then-exploit algorithm with a re-
gret upper bound in O(K

√
T log T ) [12]. The dif-

ference in power of T of the pseudo-regret lower
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bounds of bandits and massively multi-player ban-
dits is due to the fact that, in the studied problem,
the whole model θ is needed to compute the optimal
policy, and not only the N best arms: when the ex-
ploration stops, there is no guarantee that the arms
are sufficiently sampled to compute the optimal pol-
icy without mistakes of assignment of players over
arms. The independence of K of the pseudo-regret
lower bound of massively multi-player bandits is
due to the fact that, at each time step, K play-
ers can sample the arms. Finally, the pseudo-regret
lower and upper bounds are tight in T , since the
pseudo-regret upper bound of 3 followed by the pol-
icy π∗

θ̂
reaches the pseudo-regret lower bound (The-

orem 6).

Theorem 8. Fairness. Applying Algorithm 3 fol-
lowed by DOFG (Algorithm 2) on θ̂ returns with a
probability 1 − δ an α-fair policy in the true model
θ, with

α ≥ 1− p1 −
2Kϵ

maxn∈[N ]
(θkn−ϵ)zkn

1−pn

.

Theorem 8 implies that, using ϵ-approximations
of arms, with high probability DOFG still has the
same fairness guarantee minus a term that de-
creases with ϵ.

4.4. Experiments on simulated environment
In order to illustrate and complete the analysis

of the aforementioned algorithms, we first compare
the performance of collaborative exploration (Algo-
rithm 3) with selfish exploration, where each player
explores selfishly, and with follow-the-leader explo-
ration (FtL), where only the most frequent player
explores. Then we compare collaborative explo-
ration followed by DORG(θ̂) and DOFG(θ̂), with selfish
UCB [5] and selfish EXP3 [31], which respectively
consist in independently playing UCB and EXP3
on each player, and with CBAIMPB [19], where
the players find (ϵ′,m)− optimal arms and exploit
them uniformly with m = 5, ϵ′ = 0.2. We run sim-
ulations with various values of N , and K = 10,
such that ∀k, θk ∼ U(0, 1). The distribution of
players is uniform and the upper bound of the dis-
tribution is chosen such that the internal collision
rate does not exceed 0.15 when the number of play-
ers reaches 1300 and play the arms uniformly, so
∀n, pn ∼ U(3.10−4, 2.2.10−3). δ = 0.05, ϵ = 0.1.

The curves are averaged over 10 trials and run on
106 time steps.

In figure 2a, we observe that the exploration
time of collaborative exploration is two orders of
magnitude less than follow-the-leader exploration
and three orders of magnitude less than selfish ex-
ploration but one order of magnitude more than
CBAIMPB, which stops exploration when it finds
the best arms. Concerning the communication cost,
we observe that the communication cost of the col-
laborative exploration is only one order of mag-
nitude greater than other exploration algorithms,
however it is more than two times less than the up-
per bound stated in Theorem 4, which is in the

order of O

(
NK log

NK +N

δ

)
. This is due to

the fact that the stopping condition of Algorithm
3 does not imply that all players have been sam-
pled enough, but that the arms have been sampled
enough. As a consequence, all the estimations of all
players do not need to be shared, but only those of
players that have finished their estimations.

The performance differences of the exploration
policies affect the whole performance of DORG(θ̂)
and DOFG(θ̂), which consist of the exploration al-
gorithm followed by the corresponding exploitation
phase. That is why, in figures 2b and 2f, the suc-
cessful communication rate when using selfish ex-
ploration and follow-the-leader exploration are dra-
matically less than the one of collaborative explo-
ration. In figures 2b and 2f, DOFG(θ) is slightly
outperformed in terms of successful communica-
tion rate by DORG(θ). DORG(θ̂) and DOFG(θ̂) exhibit
the same behavior, and we can notice that DORG(θ̂)
and DOFG(θ̂) clearly outperform selfish UCB1, self-
ish Exp3 and CBAIMPB, and tend to perform as
well as DORG(θ) and DOFG(θ) as N increases (figure
2b). This improvement is due to their low external
collision rate (figure 2d) thanks to playing more the
best arms, while because of playing more the best
arms, their internal collision rate is higher (figure
2c). Finally, while Selfish Exp3 is theoretically bet-
ter suited for our problem setting, it is clearly out-
performed by Selfish UCB.

Concerning fairness, DOFG(θ̂) clearly outperforms
selfish UCB1, selfish Exp3 and DORG(θ̂), while
DORG(θ̂) is outperformed by them when N is high
(Figure 2e). CBAIMPB offers a high fairness be-
tween players due to the uniform selection of the
arms by all players during both exploration and
exploitation phases. The use of selfish exploration
leads to high fairness level due to its very long uni-
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Figure 2: (a) exploration phase, (b) successful communication rate, (c) internal collision rate, (d) external collision rate, (e)
fairness, (f) successful communication rate versus time. The successful communication and collision rates are cumulative over
time. θ̂C when collaborative exploration is used, θ̂S when selfish exploration is used, and θ̂L when follow-the-leader exploration
is used. θ is the ground truth.
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Figure 3: Fairness level achieved by DOFG(θ) as a function of
time with 10 players.

form exploration phase, in contrast to follow-the-
leader exploration that suffers of very low fairness
level due to the fact that, during the exploration
time, only the leader can send messages.

The observed fairness of DOFG(θ) in figure 2e dif-
fers from the theoretical one (Theorem 3). This
is due to the fact that the mean rewards of play-
ers are observed on a finite number of time slots
(106). Figure 3 shows the progress of the fairness
level achieved by DOFG(θ) policy as time passes.
The black plot corresponds to the theoretical fair-
ness level proved in Theorem 3. In order to reach
the theoretical fairness level, the observed mean re-
wards of all players have to reach their expected val-
ues. Due to the low probabilities of sending pack-
ets of the players, this would take a long time. As
shown by figure 3, the observed fairness tends to the
theoretical fairness in 108 times steps for 10 players.

In the next section, we propose an adaptive mod-
elling of the LoRa communications such that we can
apply DORG and DOFG to optimize not only packet
delivery but also to minimize the energy consump-
tion.

5. Application to LoRa Network

5.1. LoRaWAN Technology

LoRaWAN is a LPWAN protocol designed to
optimize LPWANs for battery lifetime, capacity,
range, and cost. LoRaWAN follows a pure-ALOHA

Table 1: Spreading factors and corresponding SNR required
for ADR [32], antenna sensitivities [33], and Inter-SF colli-
sion threshold [34]

SF

Required
SNR for

ADR (dB)

LoRa gateway
antenna

sensitivity(dBm)

Inter-SF
collision

threshold (dB)

SF7 -7.5 -123 -7.5
SF8 -10 -126 -9
SF9 -12.5 -139 -13.5
SF10 -15 -132 -15
SF11 -17.5 -134.5 -18
SF12 -20 -137 -22.5

principle and is basically a single-hop technology
that relays messages from the nodes to the cen-
tral server via gateways. It is based on the chirp
spread spectrum modulation technique, that sup-
ports 6 orthogonal spreading factors corresponding
to 6 different data rates: SF7 (50 kbps) to SF12
(300 bps). The different SFs are orthogonal, allow-
ing simultaneous transmissions of multiple frames
with different SFs. At each transmission, the node
selects the communication parameters including the
spreading factor, radio channel, and the transmit-
ting power that varies between 2 dBm and 14 dBm.
The higher the SF (i.e., the lower the data rate and
the slower the transmission), the longer the com-
munication range. Consequently, the choice of an
SF can be seen as a trade-off between coverage and
message duration (and thus, energy consumption)
[35].

As any IoT technology, LoRa is bonded with
many constraints, including the maximum duty
cycle, which defines a maximum percentage of
time during which an end-device can occupy a
channel. Therefore, LoRaWAN nodes follow a
pseudo-random channel hopping at each trans-
mission while meeting the duty-cycle constraint
which is 1% in EU 868 for example. The resulting
frequency diversity makes the system more robust
to interference. The choice of the spreading factor
as well as the transmitting power is done at the
gateway using the so-called Adaptive Data Rate
(ADR) algorithm. ADR compromises between
energy consumption and packet loss depending on
the past performance of each end node. It was
established for stationary end nodes and stable
radio channel environments [36].
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5.2. Adaptive Data Rate Algorithm
An Adaptive Data Rate (ADR) mechanism is

built into LoRaWAN for dynamically managing
each end node’s link parameters in order to increase
the packet delivery ratio and to decrease energy
consumption. It is only suitable for static devices
and should not be applied on mobile devices since
the radio channel changes dramatically with every
frame. We hereby present a simple baseline way to
implement this decision mechanism recommended
by Semtech [37].Its performance has been evalu-
ated in [38]. This algorithm in its present form
is limited to EU868 Industrial Scientific and Med-
ical bands, and to 6 data rates (SF12/125kHz to
SF7/125kHz). The ADR mechanism adjusts the
data rate (SF) and the transmitting power of an
end device based on the values of the Signal to Noise
Ratio (SNR) of the last 20 transmissions (i.e., for
each transmission, it considers the maximum of the
various SNRs reported by the different gateways
who received this given frame) following the steps
below:

• an SNR margin is calculated such that:

SNRmargin = SNRmax−SNR(SF)−margin_db,

where:

– SNRmax is the maximum SNR value
among the last 20 received packets,

– margin_db is the installation margin
of the network which is a device specific
static parameter, It is typically 10 dB in
most networks [37],

– SNR(SF) is the required SNR to success-
fully demodulate a frame, and is a func-
tion of the SF of the end-device’s last re-
ceived frame and presented in table 1.

• Nstep := round( SNRmargin/3) is calculated to
determine the number of steps to perform:

– if Nstep is negative (i.e. SNRs are low),
the transmitting power is incremented by
3×Nstep dBm,

– if Nstep is positive (i.e. SNRs are high),
SF is decreased by Nstep, in order to de-
crease the time-on-air and save energy, if
SF7 is reached and there are still steps
remaining, then the transmitting power
is decreased by 3 dBm for each remaining
step until the minimum power (2 dBm) is
reached.

The end-device has also the possibility to man-
age its transmit parameters itself by making use
of ADR mechanism that resides at the end-device
side. If the end-device does not receive any down-
link frame from the gateway for a certain number
of sent packets, it must try to regain connectivity
by first stepping up the transmit power to default
power (i.e., the max power 14 dBm). It must fur-
ther lower its data rate (increase the SF) step by
step every predefined number of sent packets until
it reaches the lowest data rate (i.e., SF12) [3].

Notice that ADR is a heuristic and is not based
on any optimization objective: it increases and
decreases SF and transmitting power depending
on the SNR values. It also treats each device
individually regardless of other devices in the
network. In this work, we contrarily aim to
optimize the global network capacity by adapting
massively multi-player multi-armed bandits for
handling the trade-off between energy consumption
and packet losses. We compare the performance
of the ADR algorithm with different multi-armed
bandit algorithms using a LoRa network simulator
presented below.

5.3. LoRa Network Simulator
For our simulations we extended a realistic LoRa

network simulator [39] and adapt it to our settings.
It is described below.

Network Operation: By default, LoRa devices
use pure ALOHA for transmissions. However, due
to the need of synchronized nodes and referring
to [40] that shows that slotted-ALOHA (where a
device can only transmit data in the start of a
time slot) outperforms pure-ALOHA in terms of
packet error rate, throughput, collision, and energy
consumption, we propose that the devices transmit
according to the slotted-ALOHA protocol. Each
node n transmits at the beginning of a time slot
with a fixed probability pn. The time slot is of
a configurable duration that together with pn
respect a duty cycle of 1%. We consider devices
of class A, which after each uplink transmission
open two short reception windows in order to
receive a downlink transmission from the gateway
as an acknowledgement of their uplink trans-
mission reception at the gateway. The devices
always receive an acknowledgement if their uplink
transmission is successful. In case of a packet
loss, an end-device n retransmits its packet in
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the next time slots with a probability p†n > pn
whose value depends on the application. The
maximum possible number of retransmissions is
configurable and depends on the device (we con-
sider 8 maximum retransmissions in the simulator).

Transmission Success and Collision Rules:
The success or failure of a transmission mainly de-
pends on two important metrics: the Received Sig-
nal Strength Indicator (RSSI) which characterizes
the power level of a received radio signal, and the
Signal to Noise Ratio (SNR). A packet is success-
fully received by a gateway if it does not collide
with any other packets, and if its RSSI is strictly
greater than the antenna sensitivity. The antenna
sensitivity depends on the SF of the sent transmis-
sion as reported in table 1. A collision may occur
when two or more packets sent on the same radio
channel are received simultaneously. There are two
types of collisions:

• Intra-SF collisions: occurs when the colliding
packets (packet a and packet b) are of the same
SF. The packet with the highest power will be
decoded if it is at least 6 dB higher than the
other LoRa packets: RSSIa − RSSIb ≥ 6 dB.

• Inter-SF collisions: occurs when the colliding
packets are of different SFs (SFa ̸= SFb). The
packet is demodulated if the power difference
is strictly greater than the inter-SF collision
threshold which depends on the SF of the
corresponding frame (see table 1): packet "a"
is demodulated if: RSSIa−RSSIb > Thr(SFa).

Propagation Model: Propagation is modeled by
the universal Okumura-Hata model, which is an
accurate and widely used propagation model for
predicting path loss in urban areas. Adaptations
to rural and suburban areas are also added as rec-
ommended by ETSI for GSM 900 MHz [41]. This
model takes into account the effects of diffraction,
reflection and scattering caused by city structures.
It is generally used for frequency ranges of 150
MHz to 1500 MHz, for a link distance varying
from 1 km to 20 km and for antenna heights
varying from 30 m to 200 m and from 1 m to 10 m
for the transmitter and the base station antenna
respectively [42]. Typical indoor penetration losses
are considered (18 dB, 15 dB, 12 dB and 10
dB for dense urban, urban, suburban and rural
environments respectively) along with additional 6

dB loss for deep indoor environments [43, 44].

Environment Modeling: Two main environmen-
tal aspects are modeled: shadowing and fast fading.
Shadowing is the effect causing the received signal
power to fluctuate due to objects obstructing the
propagation path between the transmitter and the
receiver. The resulting loss is modeled as a random
variable following a log-normal distribution with
a standard deviation of 12 dB (resp., 6 dB) for
outdoor (resp., indoor) settings. Fast fading or
Rayleigh fading is the variation of the signal power
due to multipath propagation, and its resulting
loss is modeled using a Rayleigh distribution.

5.4. Optimizing LoRa Communications using Mas-
sive Multi-Player Multi-Armed Bandit

At each transmission, a node selects the corre-
sponding SF and TP , and then observes a reward.
We have a set of 30 arms of pairs of (SF,TP) corre-
sponding to the 6 possible spreading factors (SF7,
SF8, SF9, SF10, SF11 and SF12) and 5 transmit-
ting power (2 dBm, 5 dBm, 8 dBm, 11 dBm and 14
dBm). Minimizing the energy consumption while
maintaining a high packet delivery ratio (PDR) are
two incompatible objectives: as SF and TP increase
PDR increases and energy consumption increases.
That is why our approach for handling energy con-
sumption is to introduce a parametric function used
to penalize high-energy consuming arms. We first
normalize the values of the energy consumption of
each arm with respect to the largest possible con-
sumed energy (the arm with the highest power and
greatest SF (SF12, 14 dBm)). Let ek ∈ (0, 1] be the
value of the normalized energy consumed on arm k.
The values of ek are presented in table 2. We con-
sider the following penalty function according to the
energy consumption of arm k:

ξα,q(e
k) = (1− αek)q. (5)

ξα,q(e
k) is a decreasing function of the energy con-

sumption ek. The parameters α ∈ [0, 1) and q ≥ 1
allow to shape it, depending on the energy con-
sumption of arms (table 2).

Note that we focus here on the energy consumed
due to transmissions rather than that due to poli-
cies computation, since the energy consumed by the
transmission hardware, including power amplifiers
and RF circuitry, far exceeds the energy required
for such simple computations [45].
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Table 2: The normalized energy consumption per arm ek,
where the colors from blue to red correspond to the values
from low to high

As mentioned previously, a packet is successfully
received if it does not collide with any internal
or external transmissions, and the RSSI is strictly
greater than the antenna sensitivity. To model
packet delivery, we consider three random variables
for every arm k:

• Ek ∈ {0, 1} denotes the event ‘no external
collision occurs’ (intra-SF or inter-SF collision
with an unknown node),

• Ikn ∈ {0, 1} denotes the event ‘no internal col-
lision occurs for node n’ (intra-SF or inter-SF
collision with an known node),

• Dk
n ∈ {0, 1} denotes the event ‘no decoding er-

ror occurs’ (RSSI lower than the antenna sen-
sitivity).

Consequently, the event ‘transmission is successful’
for node n is denoted T k

n ∈ {0, 1}, such that:

T k
n = EkIknD

k
n. (6)

To handle both energy consumption and packet
delivery we combine equations (5) and (6) in the
reward function of node n playing arm k below:

Rk
n(α, q) = (1− αek)qT k

n . (7)

To handle packet delivery, the used propagation
model takes into account all conditions impacting
it. Inter-SF or intra-SF collisions may occur even if
the transmissions are not performed using the same
parameters (SF,TP). Moreover, the propagation
model introduces a decoding error, which depends
on the topography, the position of the node, and
the position of the gateway. Notice that this
realistic propagation model violates two assump-
tions made by the theoretical model described in
section 2: the channels are orthogonal, and the
arms are the same for all players. Moreover, the

re-transmissions are not taken into account in the
utility function (equation 2), and hence in the
target policies DORG and DOFG. Finally, we did not
modify the LoRa protocol for including an optional
8 bytes overhead for exchanging messages between
players. We simply consider the messages between
players as a regular transmissions. Despite there is
a significant gap between the theoretical model and
the true model, in the next section we will see that
Massively Multi-Player Multi-Armed Bandits is a
competitive candidate for choosing the connection
parameters of LoRa transmissions in order to
minimize the energy consumption while ensuring
high reliability.

5.5. Experimental results
Experimental setup: For our simulations, we
consider a network operating in the LoRa European
band 863 − 870 MHz. We consider only one gate-
way and assume all transmissions are done on one
frequency channel (868 MHz). The network con-
figuration and input parameters are summarized in
table 3. We consider the worst case of a deep indoor
LoRa network in an urban city. The frame size is 11
bytes (4 bytes of payload for the consumption in-
dex and 7 bytes Zigbee Cluster Library application
protocol overhead) [39] corresponding to a smart
metering application. We consider a set of N = 400
end nodes where each node n has a fixed probability
pn to send a packet at the beginning of a time slot.
The distribution of the nodes is uniformly chosen
such that ∀n, pn ∼ U(7.10−4, 5.10−3). We consider
the maximum number of transmissions = 8. In case
of a packet loss of any node n, it will increase its
probability to send packets to p†n = pn × 8 in or-
der to be able to retransmit it before a new packet
is needed to be sent. The communication param-
eters of the retransmissions are chosen according
to the policy the nodes follow. In such settings,
we compare the performances of ADR algorithm
[32], selfish UCB [18], selfish Exp3 [46], which is
a commonly-used algorithm in non-stochastic envi-
ronments, CBAIMPB [19], and collaborative explo-
ration followed by DORG or DOFG.

Due to the very slow increase of energy values
near 0 and very fast increase near 1 as shown in
table 2, we set the parameters of the penalty func-
tion (7) to α = 0.5 and q = 4. Although DORG
and DOFG assume that the mean rewards of the
arms are the same for all the nodes which necessi-
tates that all nodes be located at the same distance
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Table 3: The network configuration and input parameters

Channel Frequency 868 MHz
Bandwidth 125 kHz

Number of Gateways 1
Gateway noise figure 3 dB

Gateway antenna gain 5 dBi
Indoor penetration loss 15 dB

Additional deep indoor loss 6 dB
Gateway antenna height 30 m

End-device height 1.5 m
End-device antenna gain 0 dBi

Targeted C/N after despreading 6 dB

from the gateway, we consider here that the nodes
are uniformly distributed in the hexagonal cell re-
gion centered by the gateway. We consider 3 dif-
ferent inter-sight distances d = {500, 1000, 2000}.
For each trial, 5.105 packets are sent by the nodes.
The figures present the averaged values over 40 tri-
als with 95% confidence intervals. We perform two
different experiments, each considering different ex-
ternal traffics.

Experiment 1:

In the first experiment, to simulate external traf-
fic, we consider S = 200 static devices located in
the same area, each sends packets with a fixed
probability p = 0.01. These external nodes elect
an arm k for each transmission with a probability
lk ∼ U(0, 1), such that

∑K
k=1 l

k = 1, which makes
the environment stationary. Notice however that
for selfish Exp3 or selfish UCB, which does not take
into account other nodes, the environment cannot
be considered as stationary, since the internal nodes
can change arm and hence due to the collisions the
reward function (7) evolves during time.

In figure 4 we present the average values of the
total energy consumed by the end nodes, the total
number of lost packets and the total sum of rewards
gained by the end-devices. It clearly shows that the
nodes when implementing the ADR algorithm suf-
fer of very high energy consumption and packet loss
compared to the learning methods with any inter-
site distance. This directly leads to greater sum
of rewards for all the learning methods, and im-
plies that MAB algorithms guarantee better man-
agement of the trade-off between energy consump-
tion and packet loss, and provides a better QoS.
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Figure 4: Experiment 1: Performance of the LoRa network
with end nodes distributed in hexagonal areas centered by
the gateway with three different radii and external nodes
following a fixed policy
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the number of plays

Despite there still being a gap between the the-
oretical model and the true model, DORG and DOFG
largely outperform ADR in terms of energy con-
sumption and packet losses and outperform UCB by
compromising energy consumption and packet loss
(see figure 4), while the latter shows to be highly
robust against collisions. We also notice that self-
ish UCB outperform selfish Exp3 even though the
stationary assumption is violated.
Experiment 2:

In this experiment, we consider that the external
nodes are LoRa devices that follow the ADR mech-
anism. Due to ADR mechanism, the external nodes
can change an arm at each time step. This intro-
duces a non-stationarity even for the collaborative
algorithms DORG and DOFG: the percentage of ADR
nodes that change their arms tends to the order of
8% (figure 5).

Notice that despite the non-stationary environ-
ment, the results are very similar to those in the
previous experiment: all MAB algorithms outper-
form ADR, and our developed algorithms outper-
form other state-of-the-art MAB algorithms (figure
6). This experiment reveals that if there exist some
nodes that does not follow our collaborative algo-
rithms but ADR, they will lose in terms of delivery
rate, while consuming more energy. Finally, no-
tice that the explore-then-exploit algorithms DORG
and DOFG are more appropriate for low-complexity
devices (used in IoT networks) than classic selfish
MAB algorithms, since after the exploration phase
ends no computation takes place at the device side,
while using MAB algorithms the devices keep com-
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Figure 6: Experiment 2: Performance of the LoRa network
with end nodes distributed in hexagonal areas centered by
the gateway with three different radii and external nodes
following ADR algorithm
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puting confidence bounds or distributions to find
the next arm to select.

6. Conclusion

We tackled the problem of optimizing transmissions
in IoT networks. To do so, we modeled our prob-
lem as a massively multi-player multi-armed ban-
dit problem, and proposed two policies DORG and
DOFG that are efficient with any number of play-
ers, and can handle internal and external collisions
without sensing. We then tested our algorithms
on LoRa networks by replacing the ADR algorithm
with our developed algorithms to manage the trade
off between the energy consumption and the packet
loss by selecting the spreading factor and the trans-
mitting power of the transmissions. Using a LoRa
simulator that meets the LoRaWAN standards, we
experimentally showed that the multi-player MABs
outperform the standard ADR algorithm by man-
aging the trade off between the energy consump-
tion and packet loss and achieving high reduction
of both metrics at different distances from the gate-
way.

Regarding future research directions, we plan to
adjust the two DORG and DOFG policies so they
take into account the different mean rewards of
the arms between the players and non-orthogonal
channels, and consider the case of non-stationary
environments. Also, in this work we considered a
slotted-ALOHA transmission protocol where nodes
send at the beginning of the fixed-duration time
slots. But, since the time-on-air of packets varies
(depending on the selected spreading factor), con-
sidering slotted-ALOHA necessitates long-duration
time slots which decreases the performance by cre-
ating more collisions. Future works could over-
come this by considering sub-slotting: one time slot
can be divided into several sub-slots of durations
that depend on the time-on-air of the transmission
(1 sub-slot for SF12, 2 sub-slots for SF11, 4 for
SF10,..etc.).
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Appendix .1. Broader Impact
Optimizing the communications in IoT networks has a clear positive environmental impact. Indeed, when

the number of collisions decreases, obviously the amount of wasted energy also decreases. Moreover, IoT
devices often work on batteries, and minimizing the wasted energy increases the lifetime of batteries, which
reduces the amount of batteries that need to be recycled. The decrease of the number of collisions is done
thanks to the cooperation between players. In this work, we develop the concept of fairness between players,
which is a necessary condition of cooperation. We believe that providing a mathematical framework to
guarantee the fairness and then to favor cooperation is a necessity in our world where more and more
automatic devices equipped with machine learning algorithms exchange information. This work is a first
step in this direction.

In a real life implementation of this work, to take care about ethical consideration, we will need also to
take into account that the purposes of the devices is not the same. Some of them could have significant
packets to transmit, for instance for heath care and emergency purpose. The fairness has to be weighted by
the purpose of the devices. Finally, in a real life application the system has to be protected against malicious
players that may lie about its probability of being active or about the rewards of a channel for bypassing
the fairness constraint of algorithms. We believe that this issue can be fixed by the gateway that can check
the consistency of the observed rewards and probabilities of each player’s activity.
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Appendix .2. Preliminary experiments
Similar to the experiments in section 3.3, figures with N = 200 and K ranging from 4 to 256 on a log

scale are available below.
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Figure .7: With a fixed number of players N = 200, and for K values (ranging from 4 to 256 on a log scale), the performance
of DORG, DOFG, and Reward Greedy (Algorithm 1) with random ordering is compared.
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Figure .8: With a fixed number of arms K = 10, and for N values (ranging from 128 to 16384 on a log scale), the performance
of DORG, DOFG, and Reward Greedy (Algorithm 1) with random ordering is compared.
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Appendix .3. Proofs

Appendix .3.1. Notations
For the sake of ease the reading of proofs, we provide below the notations.

notation meaning
N number of players.
[N ] set of players.
pn probability that player n sends a packet.
K number of arms.
[K] set of arms.
θk mean reward of arms k.
θ model θ = (θ1, ..., θK).
θ̂k estimated mean reward of arms k.
θ̂ estimated model θ̂ = (θ̂1, ..., θ̂K).
ϵ approximation term.
δ probability of failure.
πk
n probability that player n chooses arm k.

πn policy of player n, πn = (π1
n, ..., π

K
n ).

π policy of players, π = (π1, ..., πn).
πu uniform policy.
π† decreasing order fair greedy policy generated by Algorithm 2.
π∗
θ optimal policy in model θ, which is deterministic, when it is clear in the context, we use π∗.

µθ(π) mean reward in model θ of the policy π, when it is clear in the context, we use µ(π).
For a stochastic policy: µθ(π) =

∑K
k=1 θ

k
∑N

n=1 pnπ
k
n

∏
n′ ̸=n(1− pn′πk

n′).
For a deterministic policy µθ(π) =

∑K
k=1 θ

kzklk.
zk probability that arm k is not used by any other players, zk =

∏
n′∈[N ],kn=k(1− pn).

lk sum of activation odds on arm k of other players, lk =
∑

n′∈[N ],kn=k
pn

1−pn
.

kn arm assigned to player n.
π[n] policy π when players n′ > n do not play.
zk[n] probability that arm k is not used by any of the first n players.
lk[n] sum of activation odds of the n first players for arm k.
ρkn(π) probability that no other players have chosen arm k using policy π.

Appendix .3.2. Proof of Theorem 1
There exists an optimal policy which is deterministic.

Proof. We may write the global objective as:

µθ(π) =

K∑
k=1

θk︸︷︷︸
mean reward of arm k

N∑
n=1

pn.π
k
n︸ ︷︷ ︸

probability that player n chooses arm k

N∏
n′=1,n′ ̸=n

(1− pn′ .πk
n′)︸ ︷︷ ︸

probability that no collision occurs

(.1)

Let us assume that π∗ = {πn}n∈[N ] is optimal. Let us fix all player policies but player n’s. Then, we
notice that µθ(π) is linear (see (.1)) in each πk

n, k = 1, ...,K, meaning that the maximum is achieved for any
k∗n ∈ argmaxk∈[K]

∂µθ(π)
∂πk

n
, and therefore the optimal policy may have been chosen so that πn is deterministic:

πk∗

n = 1 and ∀k ̸= k∗, πk
n = 0. The same reasoning can be repeated for the other players, so that there exists

an optimal policy that is deterministic.
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Appendix .3.3. Proof of Lemma 1
For a deterministic policy π, let µθ(π[n]) denote the aggregated expected reward when only the players

1, ..., n are playing (all players n′ > n are deactivated). Then we have the recursive expression

µθ(π[n]) = µθ(π[n− 1]) + pnθ
kn

(
1− ℓkn

[n−1]

)
zkn

[n−1],

where zk[n] is the probability that arm k is not used by any of the first n players, and ℓk[n] is the sum of
activation odds of the n first players for arm k.

Proof. We have:

µθ(π[n]) = µθ(π[n− 1]) + µθ(π[n])− µθ(π[n− 1])

= µθ(π[n− 1]) +
∑

k∈[K]

θkzk[n]ℓ
k
[n] −

∑
k∈[K]

θkzk[n−1]ℓ
k
[n−1]

= µθ(π[n− 1]) + θknzkn

[n]ℓ
kn

[n] − θknzkn

[n−1]ℓ
kn

[n−1] (.2)

= µθ(π[n− 1]) + θkn

(
zkn

[n]ℓ
kn

[n] − zkn

[n−1]ℓ
kn

[n−1]

)
= µθ(π[n− 1]) + θkn

(
(1− pn) z

kn

[n−1]

(
ℓkn

[n−1] +
pn

1− pn

)
− zkn

[n−1]ℓ
kn

[n−1]

)
= µθ(π[n− 1]) + θkn

(
−pnzkn

[n−1]ℓ
kn

[n−1] + pnz
kn

[n−1]

)
= µθ(π[n− 1]) + pnθ

knzkn

[n−1]

(
1− ℓkn

[n−1]

)
,

where the line (.2) comes from the fact that zk[n] = zk[n−1] and ℓk[n] = ℓk[n−1] for all k ̸= kn.

Appendix .3.4. Proof of Theorem 2
Lemma 3. As long as ℓkn−1 ≤ 2, the reward-greedy criterion for Algorithm 1 decreases as we add a new
player n:

zk[n]

(
1− ℓk[n]

)
≤ zk[n−1]

(
1− ℓk[n−1]

)
. (.3)

Proof. We look at the difference:

∀k ̸= kn, zk[n]

(
1− ℓk[n]

)
− zk[n−1]

(
1− ℓk[n−1]

)
= 0 (.4)

zkn

[n]

(
1− ℓkn

[n]

)
− zkn

[n−1]

(
1− ℓkn

[n−1]

)
= (1− pn)z

kn

[n−1]

(
1− ℓkn

[n−1] −
pn

1− pn

)
− zkn

[n−1]

(
1− ℓkn

[n−1]

)
(.5)

= (1− pn)z
kn

[n−1]

(
1− ℓkn

[n−1]

)
− pnz

kn

[n−1]

− zkn

[n−1]

(
1− ℓkn

[n−1]

)
(.6)

= −pnzkn

[n−1]

(
1− ℓkn

[n−1]

)
− pnz

kn

[n−1] (.7)

= −pnzkn

[n−1]

(
2− ℓkn

[n−1]

)
(.8)

Since pn and zkn

[n−1] are always positive, we may conclude.

Theorem 2: If
∑

n∈[N ]
pn

1−pn
≤ K + 1, then, there exists an ordering over players σ∗ : [N ] → [N ] such

that Algorithm 1 returns an optimal policy.
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Proof. The proof makes use of Lemma 3 which states that, as long as ℓkn−1 ≤ 2, the reward-greedy criterion
for Algorithm 1 decreases as we add a new player n.

We prove below that this Lemma applies for all picked arms if
∑

n∈[N ]
pn

1−pn
≤ K + 1. By reductio ad

absurdum, we assume that
∑

n∈[N ]
pn

1−pn
≤ K+1 and that there exists some arm k and some player ordering

σ (not necessarily σ∗) such that π∗(σ(N)) = k and ℓkσ([N−1]) > 2, where π∗ is an optimal policy and σ([N−1])
denotes the N−1 first indexes in the σ reordering. Then, there must exist an arm k′ for which ℓk

′

σ([N−1]) < 1,
otherwise we would have

∑
n∈[N ]

pn

1−pn
>
∑

n∈[N−1]
pσ(n)

1−pσ(n)
> K+1. It means that, for k′, the reward-greedy

criterion zk
′

σ([N−1])

(
1− ℓk

′

σ([N−1])

)
is positive, and therefore larger than that of k: zkσ([N−1])

(
1− ℓkσ([N−1])

)
,

which is negative. As Lemma 1 states that the reward-greedy criterion is incrementally optimal, it means
that k′ would have been a strictly better arm for player σ(N), which contradicts the assumption that π∗ is
optimal.

Let an optimal policy π∗ be given, and let us construct the player ordering σ∗ such that Algorithm 1
applied on the σ∗ ordering returns π∗.

Algorithm 4 Reconstruction of a player ordering that allows Algorithm 1 to return π∗

Inputs: [K], [N ], {θk}k∈[K], {pn}n∈[N ], π∗

Output: σ∗ such that Algorithm 1 returns π∗

Init: per-arm inactivity probabilities: zk = 1.
Init: per-arm activation odds sums: ℓk = 0.
Init: Set of players remaining to be assigned: N = [N ].
1: for n = 1 to N do
2: Let σ∗(n) be an element of N such that π∗(σ∗(n)) ∈ argmaxk∈[K] θ

kzk(1− ℓk).
3: Update N ← N − {σ∗(n)}.
4: Update zkn ← zkn

(
1− pσ∗(n)

)
.

5: Update ℓkn ← ℓkn +
pσ∗(n)

1−pσ∗(n)
.

6: end for

It is direct to understand that Algorithm 1 applied on a σ∗ player ordering would retrieve π∗. Indeed,
Algorithm 4 makes it so the players are ordered to be incrementally optimal. The last piece of the proof is
to check the existence of a player σ∗(n) assigned to a reward-greedy arm on line 2.

Again by reductio ad absurdum, we assume that there is no remaining player that π∗ assigned to a reward-
greedy arm k∗. Then, it means that until the last selection, this arm will not be picked and another arm
k will be picked instead. We showed at the beginning of the proof that the reward-greedy criterion is only
decreasing as the arms are being selected, and that the reward-greedy criterion of an arm not being selected,
such as k∗, is constant. So it means that π∗(σ∗(N)) should be k∗, hence, the contradiction.

We may therefore conclude the proof by stating that Algorithm 4 will never fail to construct σ∗ and that
Algorithm 1 applied to the σ∗ player ordering will return π∗.

Appendix .3.5. Proof of Theorem 3
DOFG generates α-fair policies, with

α ≥ 1− max
n∈[N ]

pn. (.9)

Proof. Let π† be the policy generated by DOFG. For every arm, we have the following equality:

µn,θ(π
†) = θkn

∏
n′ ̸=n, s.t. kn′=kn

(1− pn′) =
θknzkn

1− pn
. (.10)
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We prove now that minn∈[N ] µn,θ(π
†) = µN,θ(π

†). We proceed by induction. The base case is direct for
N = 1. Now, we prove the induction step by assuming that it is true for N and prove it for N +1. We have
to distinguish two cases whether kN equals kN+1 or not.

Case kN = kN+1, then from Equation .10, we have µN+1,θ(π
†) = 1−pN

1−pN+1
µN,,θ(π

†). Since we know by
construction that pN+1 ≤ pN , we may conclude that µN+1,θ(π

†) ≤ µN,θ(π
†).

Case kN ≤ kN+1, then stating that µN+1,θ(π
†) > µN,θ(π

†) would imply that kN was not optimally
selecting the arm at the previous step, which brings a contradiction.

Let us assume without loss of generality that player N has been assigned to arm K. Since π†
N has been

chosen so that to maximize θkzk at iteration N , it means that:

min
n∈[N ]

µn,θ(π
†) = µN,θ(π

†) ≥ max
k∈[K]

θkzk. (.11)

We also know that:

max
n∈[N ]

µn,θ(π
†) = max

n∈[N ]

θknzkn

1− pn
(.12)

≤
maxk∈[K] θ

kzk

1−maxn∈[N ] pn
(.13)

≤ 1

1− p1
min
n∈[N ]

µn,θ(π
†), (.14)

which concludes the demonstration.

Appendix .3.6. Proof of Lemma 2
By using Algorithm 3, in order to obtain with a probability 1− δ an ϵ-approximation of the mean rewards

of arms, player n needs to sample each arm at least

t∗n =

⌈
pn log (2K/δ)

2ϵ2(
∏

n′ ̸=N (1− pn′/K))2
∑N

i=1 pi

⌉
times.

Proof. Due to equations 1 and 4, for a given probability of failure δ ∈ [0, 1], and a given approximation
factor ϵ, ∀n ∈ [N ], ∀k ∈ [K] we have:

P (|µk − µ̂k
n| ≥ ϵ) ≤ δ

K
⇐⇒ P (|θk − θ̂kn| ≥ ϵ′n) ≤

δ

K
, (.15)

where ϵ′n = ϵ.
∏

n′ ̸=n(1− pn′/K).
Applying Hoeffding’s inequality:

P (|θkn − θ̂kn| ≥ ϵ′n) ≤ 2e−2tknϵ
′
n
2

. (.16)

Therefore for obtaining an ϵ-approximation of arm k on player n with a probability 1− δ
K :

tkn ≥
log(2K/δ)

2ϵ′2n
⇐⇒ tkn ≥

log(2K/δ)

2ϵ2(
∏

n′ ̸=n(1− pn′/K))2
≥ t† =

log(2K/δ)

2ϵ2(
∏

n′ ̸=N (1− pn′/K))2

Now, as Algorithm 3 shares the estimations of the N players for finding ϵ-approximation of arm k with
high probability, we need

∑N
n=1 t

∗
n = t† samples.

Hence, if each player samples arm k at least t∗n ≥
⌈ pn log(2K/δ)

2ϵ2(
∏

n′ ̸=N (1− pn′/K))2
∑N

i=1 pi

⌉
times, an ϵ-

approximation of arm θk is obtained with a probability 1− δ
K .
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Appendix .3.7. Proof of Theorem 4
Lemma 4. In Algorithm 3, so that player n sends successfully m messages, with a probability 1− δ player
n needs to issue a number of transmissions C(m), which is at most:

m

⌈
logm/δ

log

(
1−

∑K
k=1

(1− p1/K)N−1

K
θk
)−1 + 1

⌉
transmissions.

Proof. Let C(1) be the random variable corresponding to the number of transmissions of player n to send a

message. C(1) follows a geometric distribution with a probability of success p = µn(πu) =
∑K

k=1

ρn(πu)

K
θk,

and probability of failure q = 1− p. Let F be the number of failures before the success. We have:

P(C(1) ≤ F + 1) = 1− qF = 1− δ,

=⇒ F =

⌈
log δ

log q

⌉
Assuming that p1 ≥ p2, .., pN−1 ≥ pN , we get ρn(πu) =

∏
n′ ̸=n(1−pn′/K) ≤ (1−p1/K)N−1. Consequently,

for sending m messages, with a probability 1− δ any player needs at most :

C(m) ≤ m


log δ/m

log(1−
∑K

k=1

(1− p1/K)N−1

K
θk)

+ 1



Theorem 4 When Algorithm 3 stops, the number of messages sent is, with probability 1 − δ, less than
C(N(1 + 2K)), where

C(m) = m

⌈
logm/δ

log
(
1−

∑K
k=1

(1−p1/K)N−1

K θk
)−1 + 1

⌉
.

Proof. The required number of messages to send during Algorithm 3 is at most N(1+2K). Using Lemma 4,
the total number of transmissions done by all players to send successfully their messages is with probability
1− δ:

C(N(1 + 2K)) ≤ N(1 + 2K)


log δ/(N(1 + 2K))

log(1−
∑K

k=1

(1− p1/K)N−1

K
θk)

+ 1

 (.17)

Appendix .3.8. Proof of Theorem 5
With a probability at least 1− δ, when N ≥ 3, Algorithm 3 stops while finding the ϵ-approximations of θ

at:

t∗ ≤ K log (NK/δ)

2ϵ2((1− p1/K))2N−2
∑N

i=1 pi

(
1 +

√
K

2pN

)
+

K2

2(pN )2
log

NK

δ
+

(
K

pN

)3/2
√

C(3)

2
log

NK

δ
+

KC(3)

pN
,

where pN is the lowest probability of sending a packet among the players, and C(3) is the needed number of
transmissions to successfully send 3 messages.

28



Proof. A player n stops, while finding its estimations with high probability, when it plays each arm k at
least t∗n times (Lemma 2). Let tkn be the number of plays of arm k by player n before the algorithm stops
at time t∗ with high probability. tkn is a binomial random variable with parameters t∗ and pn/K. Then we
have:

E[tkn] =
pn
K

.t∗ (.18)

The estimation does not terminate if this event occurs: E = {∃n ∈ [N ],∃k ∈ [K], tkn < t∗n + C(3)}.

Applying Hoeffding’s inequality we get:

P(tkn −
pn
K

.t∗ < −ϵ) ≤ exp−2 ϵ2

t∗ =
δ

NK
. (.19)

Hence, when E does not occur =⇒ ∀n we have with probability at most δ:

t∗n + C(3)− pn
K

.t∗ < −
√

t∗

2
log

NK

δ
, (.20)

⇔ −pn
K

.t∗ +

√
t∗

2
log

NK

δ
+ t∗n + C(3) < 0, (.21)

⇔
√
t∗ >

K

2pn

(√
1

2
log

NK

δ
+

√
1

2
log

NK

δ
+ 4

pn
K

(t∗n + C(3))

)
, (.22)

⇔ t∗ >
K2

4(pn)2

(√
1

2
log

NK

δ
+

√
1

2
log

NK

δ
+ 4

pn
K

(t∗n + C(3))

)2

, (.23)

Then, when E does not occur and hence the estimation terminates, we have ∀n with probability at least
1− δ:

t∗ ≤ K2

4(pn)2

(√
1

2
log

NK

δ
+

√
1

2
log

NK

δ
+ 4

pn
K

(t∗n + C(3))

)2

, (.24)

⇔ t∗ ≤ K2

4(pn)2
log

NK

δ
+

K(t∗n + C(3))

pn
+

K2

2(pn)2

√
1

2
log

NK

δ

√
1

2
log

NK

δ
+ 4

pn
K

(t∗n + C(3)), (.25)

⇒ t∗ ≤ K2

4(pn)2
log

NK

δ
+

K(t∗n + C(3))

pn
+

K2

4(pn)2
log

NK

δ
+

K

pn

√
K

2pn
(t∗n + C(3)) log

NK

δ
, (.26)

⇒ t∗ ≤ K

pn

(
t∗n + C(3) +

√
K

2pn
(t∗n + C(3)) log

NK

δ

)
+

K2

2(pn)2
log

NK

δ
. (.27)
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Then using Lemma 2, the following inequality holds with a probability at least 1− δ:

t∗ ≤K

pn

 pn log (2K/δ)

2ϵ2(
∏

n′ ̸=N (1− pn′/K))2
∑N

i=1 pi
+ C(3) +

√√√√ K

2pn

(
pn log (2K/δ)

2ϵ2(
∏

n′ ̸=N (1− pn′/K))2
∑N

i=1 pi
+ C(3)

)
log

NK

δ


(.28)

+
K2

2(pn)2
log

NK

δ
,

t∗ ≤K

pn

(
pn log (NK/δ)

2ϵ2(
∏

n′ ̸=N (1− pn′/K))2
∑N

i=1 pi
+ C(3) +

√
K

2pn

pn log (NK/δ)

2ϵ2(
∏

n′ ̸=N (1− pn′/K))2
∑N

i=1 pi
+

√
K

2pn
C(3) log (NK/δ)

)
(.29)

+
K2

2(pn)2
log

NK

δ
,

t∗ ≤ K log (NK/δ)

2ϵ2((1− p1/K))2N−2
∑N

i=1 pi

(
1 +

√
K

2pN

)
+

K2

2(pN )2
log

NK

δ
+

(
K

pN

)3/2
√

C(3)

2
log

NK

δ
+

KC(3)

pN

(.30)

where pN and p1 are respectively the lowest and the greatest probability of sending a packet among the
players.

Appendix .3.9. Proof of Theorem 6
Lemma 5. The expected instantaneous regret in the model θ of the target policy π∗

θ̂
using the estimated

model θ̂ with respect to the optimal policy π∗
θ using the true model θ is upper bounded by:

µθ(π
∗
θ)− µθ(π

∗
θ̂
) ≤ 2Kϵ, (.31)

where µθ(π) denotes the mean reward of the policy π in the model θ.

Proof.

µθ(π
∗
θ)− µθ(π

∗
θ̂
) = µθ(π

∗)− µθ̂(π
∗) + µθ̂(π

∗)− µθ̂(π
∗
θ̂
) + µθ̂(π

∗
θ̂
)− µθ(π

∗
θ̂
) (.32)

Then, we have:

• µθ(π
∗)− µθ̂(π

∗) =
∑K

k=1 z
klkθk −

∑K
k=1 z

klkθ̂k ≤ Kϵ,

• µθ̂(π
∗
θ)− µθ̂(π

∗
θ̂
) ≤ 0, since π∗

θ̂
is the best policy in the model θ̂.

• µθ̂(π
∗
θ̂
)− µθ(π

∗
θ̂
) =

∑K
k=1 ẑ

k l̂kθ̂k −
∑K

k=1 ẑ
k l̂kθk ≤ Kϵ.

Theorem 6: When N ≥ 3, and ∀n ∈ [N ], pn = p, the pseudo-regret with respect to the target policy π∗ of
Algorithm 3 followed by a policy π∗

θ̂
is upper bounded by:

R(T ) ≤ O

(
T 2/3 logNKT

p3/2(1− p/K)2N−2N
+K9/4T 2/3

)
.

Proof. Let T be the time horizon, πu be the uniform policy used in Algorithm 3, which outputs an ϵ-
approximation with high probability of θ, and π∗

θ be the optimal policy. Let t∗ be stopping time of the
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exploration phase. Then, the pseudo-regret with respect to a target policy π∗
θ of Algorithm 3 is expressed

as:

R(T ) = t∗((µθ(π
∗
θ)− (µθ(πu)) + (T − t∗)((µθ(π

∗
θ)− µθ(π

∗
θ̂
)), (.33)

where µθ(π
∗
θ̂
) denotes the mean reward in the model θ of the optimal policy using the estimated model

θ̂. The left term of equation .33 is the instantaneous pseudo-regret of the exploration policy πU , and the
right term is the instantaneous pseudo-regret of the estimated optimal policy π∗

θ̂
.

Theorem 5 allows us to upper-bound the stopping time of Algorithm 3 with t∗ on an event of high
probability 1− δ:

t∗ ≤ K log (NK/δ)

2ϵ2((1− p1/K))2N−2
∑N

i=1 pi

(
1 +

√
K

2pN

)
+

K2

2(pN )2
log

NK

δ
+

(
K

pN

)3/2
√

C(3)

2
log

NK

δ
+

KC(3)

pN
.

(.34)

When ∀n ∈ [N ], pn = p, with a probability 1− δ, we have:

t∗ ≤ K log (NK/δ)

2ϵ2(1− p/K)2N−2Np

(
1 +

√
K

2p

)
+

K2

2p2
log

NK

δ
+

(
K

p

)3/2
√

C(3)

2
log

NK

δ
+

KC(3)

p
. (.35)

The instantaneous pseudo-regret of uniform policy with respect to the optimal policy π∗
θ is upper bounded

by:
µθ(π

∗
θ)− µθ(πu) ≤ K

and on the other hand we know by Lemma 5 that:

µθ(π
∗
θ)− µθ(π

∗
θ̂
) ≤ 2Kϵ (.36)

Then the pseudo-regret is controlled by the trivial upper bound KT on the complementary event of
probability less than δ:

R(T ) ≤ t∗(µθ(π
∗
θ)− µθ(πu)) + (T − t∗)(µθ(π

∗
θ)− µθ(π

∗
θ̂
)) + δKT (.37)

Then, by setting δ = 1/T , the pseudo-regret of Algorithm 3 followed by a policy π∗
θ̂

is:

R(T ) ≤ Kt∗ + (T − t∗)× 2Kϵ+K, (.38)
≤ Kt∗ + 2KϵT +K, (.39)

≤ O

(
K5/2 logNKT

p3/2ϵ2(1− p/K)2N−2N
+

K2

2p2
logNKT +KTϵ

)
. (.40)

Finally, by setting ϵ = K5/4/ 3
√
T , we conclude the proof:

R(T ) ≤ O

(
T 2/3 logNKT

p3/2(1− p/K)2N−2N
+K9/4T 2/3

)
. (.41)
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Appendix .3.10. Proof of Theorem 7
There exists a model θ = {θ1, ..., θk} and a distribution of players p1, ..., pN such that the pseudo-regret with

respect to the deterministic optimal policy π∗
θ of any exploration algorithm that outputs an ϵ-approximation of

each arm θk with probability at least 1− 1/T and which is followed by the optimal policy using the estimated
model is at least:

R(T ) ≥ Ω

(
T 2/3 log T

N

)
.

Proof. In the following we show that a lower bound holds for a class of models θ and distribution of players
p1, ..., pN . Without loss of generality, we assume in the following that:

• θ1 ≥ θ2, ..., θK−1 ≥ θK ,

• p1 ≥ p2, ..., pN−1 ≥ pN .

Choice of a class of problems.. The most difficult point for evaluating a regret lower bound is that in the
general case, the optimal policy, which maximizes the mean reward (see equation (3)), is unknown. For
handling this point we choose a particular class of problems, where N = K + 1. Then, we assume that the
distribution of players and the mean rewards of arms are such that:



∀k ∈ [K − 1] θk = θk+1 + ϵ,

p1 > p2 = ... = pK > pK+1,

p1(1− pK+1) + pK+1(1− p1) = p2,

p2(1− pK+1) + pK+1(1− p2) > p2,

∀k ∈ [K] ϵ
2pk

< θk.

(.42)

The optimal policy.. When ϵ
2pk

< θk (equation (.42)), superposing players on any arm provides less reward
than spreading players on the arms. Indeed, let ∆s be the gap between the mean reward of two players
k1, k2, k1 < k2 ≤ K assigned on different arms, and the mean reward of two players assigned on the same
arm:

∆s = pk1
θk1 + pk2

θk2 − pk1
θk1(1− pk2

)− pk2
θk1(1− pk1

), (.43)

= pk2
(θk2 − θk1) + 2pk1

pk2
θk1 , (.44)

= −pk2ϵ+ 2pk1pk2θ
k1 > 0. (.45)

Let ∆1,2 be the difference between the mean reward of policy that assigns player K +1 on arm 1 and the
one that assigns it on arm 2.

∆1,2 = (p1(1− pK+1) + pK+1(1− p1))θ
1 + p2θ

2 − p1θ
1 − (p2(1− pK+1) + pK+1(1− p2))θ

2 (.46)

= p2θ
1 − p1θ

1 + p2θ
2 − (p2(1− pK+1) + pK+1(1− p2))θ

2 < 0 (.47)

Now let ∆2,k be the difference between the mean reward of policy that assigns player K+1 on arm 2 and
the one that assigns it on arm k > 2.

∆2,k = (p2(1− pK+1) + pK+1(1− p2))θ
2 + p2θ

k − p2θ
2 − (p2(1− pK+1) + pK+1(1− p2))θ

k (.48)

= (p2(1− pK+1) + pK+1(1− p2))(θ
2 − θk)− p2(θ

2 − θk) > 0 (.49)

Hence, when equation (.42) holds, the optimal assignment of players over arms is:

π∗
θ = (p1, θ

1), (p2, pK+1, θ
2), ..., (pK−1, θ

K−1), (pK , θK). (.50)
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The optimal exploration policy.. As an ϵ-approximation of each arm is needed to compute the optimal policy.
The optimal exploration policy plays each arm the same expected (with respect to the distribution of players
p) number of times. When equation (.42) holds, any optimal exploration policy belongs to the following set:

π∗
E ∈ {m ∈ [K],∀n ∈ [K] \ {1}, k ∈ [K] \ {m} : (pn, θk), (p1, pK+1, θ

m)}. (.51)

Hence any other assignment of players over arms generates more collisions.

Pseudo-regret decomposition.. Let T be the time horizon. Let π∗
E be the optimal (in term of sample com-

plexity) exploration policy that outputs an ϵ-approximation with high probability of θ, i.e. each arm θk,
and π∗

θ be the optimal policy. We consider the time t∗, where the optimal exploration algorithm π∗
E outputs

exactly an ϵ-approximation of model θ. Then, the pseudo-regret with respect to the deterministic policy π∗
θ

is expressed as:

R(T ) = t∗(µθ(π
∗
θ)− µθ(π

∗
E)) + (T − t∗)(µθ(π

∗
θ)− µθ(π

∗
θ̂
)), (.52)

where µθ(π
∗
θ̂
) denotes the mean reward in the model θ of the optimal policy using the estimated model

θ̂.

Lower bound of the right term.. The right term equation (.52) is the instantaneous regret of the estimated
optimal policy π∗

θ̂
. For stating a lower bound on this term, we lower bound it by the minimal gap between

the optimal policy and the estimated optimal policy when a mistake in the ranking of two arms is done. As
the probability of making a mistake in the estimation the model θ is not null, it exists c ∈ (0, δ) such that:

µθ(π
∗
θ)− µθ(π

∗
θ̂
) ≥ c min

k∈[K],θ̂k+1>θ̂k

(
µθ(π

∗
θ)− µθ(π

∗
θ̂
)
)
. (.53)

The minimal gap, between the mean reward of the optimal policy (see equation (.50)) and a policy where
an arm is not well ranked, is obtained when the ranks of arms 2 and 3 are inverted.

min
k∈[K],θ̂k+1>θ̂k

(
µθ(π

∗
θ)− µθ(π

∗
θ̂
)
)
≥ (p2(1− pK+1) + pK+1(1− p2))θ

2 + p2θ
3

− p2θ
2 − p2(1− pK+1 + pK+1(1− p2))θ

3

(.54)

Hence we have:
µθ(π

∗
θ)− µθ(π

∗
θ̂
) ≥ cpϵ, where cp > 0. (.55)

Lower bound of the left term.. The left term of equation (.52) is the instantaneous regret of the optimal
exploration policy π∗

E . The optimal exploration policy cannot be the optimal policy since estimating ϵ-
approximations of arms necessitates to play the same expected number of times the arms, and hence assigning
p1 and pK+1 on the same arm, which is not optimal. There are three possibilities:

• p1 and pK+1 are on arm 1:

µθ(π
∗
θ)− µθ(π

∗
E) ≥ p1θ

1 + (p2(1− pK+1) + pK+1(1− p2))θ
2

− (p1(1− pK+1) + pK+1(1− p1))θ
1 − p2θ

2,

• p1 and pK+1 are on arm m ∈ [K] \ {1, 2}:

µθ(π
∗
θ)− µθ(π

∗
E) ≥ p1θ

1 + pmθm + (p2(1− pK+1) + pK+1(1− p2))θ
2

− p2θ
1 − (p1(1− pK+1) + pK+1(1− p1))θ

m − p2θ
2,
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• p1 and pK+1 are on arm 2:

µθ(π
∗
θ)− µθ(π

∗
E) ≥ p1θ

1 + (p2(1− pK+1) + pK+1(1− p2))θ
2

− p2θ
1 − (p1(1− pK+1) + pK+1(1− p1))θ

2.

Hence we have:

µθ(π
∗
θ)− µθ(π

∗
E) ≥ cθ,p, (.56)

where cθ,p > 0 is a constant depending on the problem parameters θ and p1, ..., pN .

Lower bound of the regret.. Now, injecting the lower bound of µθ(π
∗
θ) − µθ(π

∗
E) (equation (.56)) and the

lower bound of µθ(π
∗
θ) − µθ(π

∗
θ̂
) (equation (.55)) in the pseudo-regret decomposition (equation (.52)), we

obtain:

R(T ) ≥ t∗cθ,p + (T − t∗)cpϵ, (.57)
≥ t∗cθ,p + Tϵ∆p − t∗cpϵ. (.58)

The lower bound of number of samples for finding a bias ϵ of a coin is Ω
(
1/ϵ2 log 1/δ

)
[23]. At each time

step, a maximum of N players are sampled. Hence, the time t∗ where π∗
E finds exactly an ϵ-approximation

of each arm θk is at least:

Ω

(
K

Nϵ2
log

1

δ

)
⇔ ∃c1 > 0, t∗ = c1

K

Nϵ2
log

1

δ
. (.59)

We have:

R(T ) ≥ c1cθ,p
K

Nϵ2
log

1

δ
+ Tcpϵ− c1cpϵ

K

Nϵ
log

1

δ
. (.60)

Finally setting δ = 1/T and ϵ =
√
K/ 3
√
T , obtain:

E[R(T )] ≥ Ω

(
T 2/3 log T

N
+ T 2/3 − K1/2

N
T 1/3 log T

)
. (.61)

Hence, we have:

E[R(T )] ≥ Ω

(
T 2/3 log T

N

)
. (.62)

Appendix .3.11. Proof of Theorem 8
Applying Algorithm 2 on a model estimate θ̂ returns with a probability 1− δ an α-fair policy in the true

model θ:

α ≥ 1− max
n∈[N ]

pn −
2∥θ − θ̂∥∞

maxn∈[N ]
θ̂knzkn

1−pn

(.63)
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Proof. Theorem 3 states that the policy returned by Algorithm 2, denoted as π† has the following fairness
guarantees:

α̂ =
minn∈[N ] µn,θ̂(π

†)

maxn∈[N ] µn,θ̂(π
†)
≥ 1− max

n∈[N ]
pn, (.64)

with µn,θ̂(π
†) denoting the expectation of rewards received by player n in estimated model θ̂ when following

policy π†. We may write it as follows:

µn,θ̂(π
†) = θ̂kn

∏
n′, s.t. kn′=kn

(1− pn′) =
θ̂knzkn

1− pn
. (.65)

We therefore get:

α =
minn∈[N ] µn,θ(π

†)

maxn∈[N ] µn,θ(π†)
(.66)

=
minn∈[N ]

θknzkn

1−pn

maxn∈[N ]
θknzkn

1−pn

(.67)

≥
minn∈[N ]

θ̂knzkn

1−pn
− ∥θ − θ̂∥∞

maxn∈[N ]
θ̂knzkn

1−pn
+ ∥θ − θ̂∥∞

since
zkn

1− pn
≤ 1,∀n (.68)

= α̂− 2∥θ − θ̂∥∞
maxn∈[N ]

θ̂knzkn

1−pn
+ ∥θ − θ̂∥∞

(.69)

≥ 1− max
n∈[N ]

pn −
2∥θ − θ̂∥∞

maxn∈[N ]
θ̂knzkn

1−pn

(.70)

Now, Theorem 5 states that with a probability 1− δ Algorithm 3 stops while finding ϵ-approximations of
model θ. Finally, we get:

α ≥ 1− max
n∈[N ]

pn −
2∥θ − θ̂∥∞

maxn∈[N ]
(θkn−ϵ)zkn

1−pn

(.71)
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