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Abstract. We present a general multi-scale approach for modeling the inter-

action of controlled autonomous vehicles (AVs) with the surrounding traffic

flow. The model consists of a scalar conservation law for the bulk traffic, cou-
pled with ordinary differential equations describing the possibly interacting AV

trajectories. The coupling is realized through flux constraints at the moving
bottleneck positions, inducing the formation of non-classical jump discontinu-

ities in the traffic density. In turn, AVs are forced to adapt their speed to the

downstream traffic average velocity in congested situations.
We analyze the model solutions in a Riemann-type setting, and propose an

adapted finite volume scheme to compute approximate solutions for general

initial data.
The work paves the way to the study of general optimal control strate-

gies for AV velocities, aiming at improving the overall traffic flow by reducing

congestion phenomena and the associated externalities.

1. Introduction. Moving bottleneck models have been introduced in the engineer-
ing literature starting from the end of the last century to describe the interaction
of slow moving vehicles, such as buses or trucks, with bulk traffic, see [9, 30, 28].
Further approaches have then be proposed in the applied mathematics commu-
nity [1, 15, 27, 39, 41], always following the underlying idea of using multi-scale
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models consisting of Partial Differential Equations (PDEs) to model the overall traf-
fic flow evolution, coupled with Ordinary Differential Equations (ODEs) accounting
for the moving bottlenecks trajectories. Despite the intrinsic difficulties arising as
a result of the flux constraint induced by the presence of the slow vehicles, corre-
sponding existence and stability results have been provided, see also [17, 20, 31, 32],
together with numerical schemes to compute approximate solutions capturing the
emerging non-classical phenomena [2, 3, 11, 14, 16].

More recently, moving bottleneck models have been applied to traffic flow regu-
lation by means of Autonomous Vehicles (AVs), see e.g. [4, 5, 6, 7, 8, 34]. Indeed,
AVs can act as endogenous actuators of moving variable speed limits, improving
throughput by hindering upstream traffic. This possibility has already been the
object of several theoretical studies (see e.g. [13, 24, 26, 35, 40, 42] and [19, Chapter
11]), but also artificial [25] and real world [38] experiments. In particular, it has
been demonstrated that even low AV penetration rates can have a significant impact
on reducing congestion phenomena and the associated energy consumption. In this
context, macroscopic approaches are needed to address the curse of dimensionality
in control design for microscopic models [18].

Even if some of the above works account for the presence of multiple AVs on the
road, very few of them allow for AV interactions, and only in very specific modeling
frameworks [21, 37]. In this paper, we aim at generalizing the control framework
designed in [20, 34] for the Lighthill-Whitham-Richards model [33, 36] to multi-
ple, possibly interacting, moving bottlenecks, as if they were distributed on several
lanes and they were allowed both to merge (if on the same lane) and to overtake (if
on different lanes). This can be achieved by a careful study of the corresponding
Riemann-type problems, and a natural generalization of the numerical reconstruc-
tion technique presented in [3].
The proposed model can be used to develop a general simulation environment ac-
counting for several AVs interacting with the surrounding traffic flow and among
themselves, which in turns allows to design optimization-based control strategies
having fleets of AVs as actuators.

The paper is organized as follows: Section 2 details the model framework, pro-
viding a mathematical description of the fully coupled PDE-ODE model and the
interactions among AVs at the level of Riemann problems. Section 3 describes the
numerical scheme and Section 4 shows the results of the numerical experiments.

2. PDE-ODE model with interacting moving bottlenecks. Following [15,
20], we consider the following strongly coupled PDE-ODEs system

∂tρ (t, x) + ∂xf (ρ (t, x)) = 0, , (1a)

ẏ`(t) = min{u`(t), v(ρ(t, y`(t)+))}, (1b)

f (ρ (t, y`(t)))− ẏ`(t)ρ (t, y`(t)) ≤ Fα (ẏ`(t)) := max
ρ∈[0,R]

(αf(ρ/α)− ρẏ`(t)) , (1c)

ρ(0, x) = ρ0(x), (1d)

y`(0) = y0` , (1e)

for ` = 1, . . . , N and t > 0, x ∈ R, where ρ = ρ(t, x) ∈ [0, R] denotes the macroscopic
traffic density at time t ≥ 0 and at position x ∈ R, f = f(ρ) = ρv(ρ) is the (strictly
convex) flux and v ∈ C2 ([0, R]; [0, V ]) is a strictly decreasing function such that
v(0) = V and v(R) = 0, which represents the average speed of cars (R being
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Figure 1. The definition of ρ̃u, ρ̌u, ρ̂u and ρ∗u.

the maximal vehicle density attainable on the considered road section). Above,
ρ0 ∈ [0, R] and y0` ∈ R, ` = 1, . . . , N , are respectively the initial traffic density and
AV positions, while the function Fα in (1c), α ∈ ]0, 1[, represents the road capacity
reduction rate due to the presence of the AV at x = y`(t), ` = 1, . . . , N , acting
as a moving bottleneck which imposes a unilateral flux constraint at its position.
For simplicity, we assume that this parameter is the same for all AVs, and it is a
function of the number of lanes: α = (M−1)/M , where M ∈ N denotes the number
of lanes. (The extension to a more general framework would follow the same lines
detailed in this work.) To determine the function Fα, we consider the rescaled flux
function

fα : [0, αR] −→ R+

ρ 7−→ ρv(ρ/α) = αf(ρ/α),

which is strictly concave function and such that fα(0) = fα(αR) = 0. For every
u ∈ [0, V ], we define the point ρ̃u as the unique solution to the equation f ′α(ρ) = u.
Moreover, for every u ∈ [0, V ], we define the function

ϕu : [0, R] −→ R+

ρ 7−→ fα(ρ̃u) + u (ρ− ρ̃u) .

Hence, if ẏ(t) = u, the function Fα in (1c) is defined by

Fα : [0, V ] −→ R+

u 7−→ ϕu(0) = fα(ρ̃u)− uρ̃u.
If ẏ(t) = v(ρ(t, y(t)+)), the inequality (1c) is trivially satisfied since the left-hand
side is zero. Finally, the points 0 ≤ ρ̌u ≤ ρ̃u ≤ ρ̂u ≤ ρ∗u ≤ R are uniquely defined by

ρ̌u = min Iu, ρ̂u = max Iu, Iu = {ρ ∈ [0, R] : f(ρ) = ϕu(ρ)} , v(ρ∗u) = u,

see [15, 20] and Figure 1. We remark that ρ̌V = ρ̃V = ρ̂V = ρ∗V = 0.
Solutions to (1) are defined as follows (see [20, Definition 3.1]):

Definition 2.1. The N + 1-tuple (ρ, y1, . . . , yN ) provides a solution to (1) if the
following conditions hold.

1. ρ ∈ C0
(
R+; L1

loc (R; [0, R])
)

and TV (ρ(t)) < +∞ for all t ∈ R+;

2. y` ∈W1,1
loc(R+;R) for ` = 1, . . . , N ;
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3. For every κ ∈ R and for all ϕ ∈ C1
c(R2;R+) it holds∫

R+

∫
R

(|ρ− κ|∂tϕ+ sgn(ρ− κ)(f(ρ)− f(κ))∂xϕ) dx dt+

∫
R
|ρ0 − κ|ϕ(0, x) dx

+ 2

N∑
`=1

∫
R+

(f(κ)− ẏ`(t)κ−min{f(κ)− ẏ`(t)κ, Fα(ẏ`(t))})ϕ(t, y(t)) dt ≥ 0 ;

4. For a.e. t > 0, f (ρ (t, y`(t)±))−ẏ`(t)ρ (t, y`(t)±) ≤ Fα (ẏ`(t)) for ` = 1, . . . , N ;
5. For a.e. t > 0, ẏ`(t) = min {u`(t), v (ρ (t, y`(t)+))} for ` = 1, . . . , N .

As long as AV trajectories do not intersect, one can apply the theory and the
numerical schemes developed in [3, 14, 15, 16, 20]. In particular, we recall that the
Constrained Riemann Solver is defined as follows.

Definition 2.2. The Constrained Riemann Solver Rα for

∂tρ (t, x) + ∂xf (ρ (t, x)) = 0, (2a)

ẏ(t) = min{u, v(ρ(t, y(t)+))}, (2b)

f (ρ (t, y(t)))− ẏ(t)ρ (t, y(t)) ≤ Fα (ẏ(t)) , (2c)

ρ(0, x) =

{
ρL if x < 0,

ρR if x > 0,
(2d)

y(0) = 0, (2e)

is the map Rα : [0, R]2 × [0, V ]→ L1
loc(R, [0, R]) defined as follows.

1. If f(R(ρL, ρR)(u)) > Fα(u) + uR(ρL, ρR)(u), then

Rα(ρL, ρR;u)(x/t) =

{
R(ρL, ρ̂u)(x/t) if x < u t,
R(ρ̌u, ρR)(x/t) if x ≥ u t, and y(t) = u t.

2. If f(R(ρL, ρR)(u)) ≤ Fα(u) + uR(ρL, ρR)(u), then

Rα(ρL, ρR;u) = R(ρL, ρR) and y(t) = min{u, v(ρR)} t.

Above, R denotes the standard (i.e. without the constraint (2c)) Riemann solver
for (2a)-(2d), i.e. the (right continuous) map (t, x) 7→ R(ρL, ρR)(x/t) given by the
standard weak entropy solution to (2a)-(2d).

In this paper, we are interested in describing what happens when two vehicles AVi
and AVj , with i, j ∈ {1, . . . , N}, i 6= j, interact. Let us assume yi(t) < yj(t) with
constant speeds ui(t) = ui > uj(t) = uj for t ∈ ]t̄−,εt̄[, so that yi(t̄) = yj(t̄) for some
t̄ > 0, see Figure 2. Depending on the surrounding traffic density conditions, only
three situations may occur in a Riemann-like setting (piece-wise constant density
with at most one jump discontinuity):

• The constraint (1c) is enforced for ` = i (we will say that AVi is active), so
that ρ(t, x) = ρ̂ui

for x < yi(t) and ρ(t, x) = ρ̌ui
for x > yi(t). Since, at

x = yj(t), it holds f (ρ̌ui) − uj ρ̌ui ≤ Fα (uj) (see Figure 2), the constraint is
not enforced for ` = j (AVj is then inactive).
• If AVj is active, we have ρ(t, x) = ρ̂uj

for x < yj(t) and ρ(t, x) = ρ̌uj
for

x > yj(t). At x = yi(t), it therefore holds f
(
ρ̂uj

)
−uiρ̂uj ≤ Fα (ui) , thus AVi

is inactive.
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Figure 2. Notation for interacting bottlenecks.

• If both AVi and AVj are inactive, we may have either a constant density or
a classical shock coinciding with one of the AV trajectories. In any case, the
density must satisfy ρ(t, x) ∈ [0, ρ̌ui

] ∪ [ρ̂uj
, R].

We remark that AVi and AVj cannot be both active at the same time, unless other
waves are present between them.

To detail the problem evolution after the interaction (at t > t̄), we distinguish if
AVs are moving in different lanes or if they are located on the same lane.

Same lane interactions. Let us assume that the two vehicles are in the same
lane, so for t > t̄ the upstream vehicle must adapt to the downstream vehicle speed:
we will have yi(t) = yj(t) with ui(t) = uj(t) for t ≥ t̄. Three situations may occur,
see Figure 3:

• If, before the interaction, AVi was active and AVj inactive, at t > t̄ the solution
will consists of a classical shock joining ρ̂ui to ρ̂uj , followed by a non-classical
shock at x = yj(t) = yi(t) between ρ̂uj

and ρ̌uj
and a rarefaction wave from

ρ̌uj
to ρ̌ui

, see Figure 3a. In particular, after the interaction, both AVs will
be active.

• If, before the interaction, AVi was inactive and AVj active, at t > t̄ the solution
will consists only of a non-classical shock joining ρ̂uj to ρ̌uj , see Figure 3b.
Again, after the interaction, both AVs will be active.

• If, before the interaction, AVi and AVj were both inactive, at t > t̄ the solution
will consists at most of the classical shock that was already present before the
interaction, see Figure 3c. After the interaction, both AVs will still be inactive.

In any case, after the interaction, the two vehicles behave as AVj .
Different lane interactions. If the two interacting vehicles travel in different

lanes, for t > t̄ they will follow their own trajectory and AVi will overtake AVj : we
will have yi(t) ≥ yj(t) with ui(t) ≥ uj(t) for t ≥ t̄. Three situations may occur, see
Figure 4:

• If, before the interaction, AVi was active and AVj inactive, at t > t̄ the solution
will consists of a classical shock joining ρ̂ui

to ρ̂uj
, followed by a non-classical

shock at x = yj(t) from ρ̂uj
to ρ̌uj

, a classical shock from ρ̌uj
to ρ̂ui

and a
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Figure 3. Possible configurations of AV interactions on the same lane.

non-classical shock at x = yi(t) from ρ̂ui
to ρ̌ui

, see Figure 4a. In particular,
after the interaction, both AVs will be active.

• If, before the interaction, AVi was inactive and AVj active, at t > t̄ the solution
will consists of a non-classical shock at x = yj(t) from ρ̂uj to ρ̌uj , followed by
a classical shock from ρ̌uj to ρ̂ui , a non-classical shock at x = yi(t) from ρ̂ui

to ρ̌ui
and a classical shock from ρ̌ui

to ρ̌uj
, see Figure 4b. In particular, after

the interaction, both AVs will be active.
• If, before the interaction, AVi and AVj were both inactive, at t > t̄ the solution

will consists at most of the classical shock that was already present before the
interaction, see Figure 4c. After the interaction, both AVs will still be inactive.

t = t̄

ρ̌ui

ρ̌ujρ̂ui

ui uj

uj

ui

ρ̂ui

ρ̂uj

(a) t < t̄: AVi active, AVj
not
t > t̄: both active

t = t̄

ρ̌uj

ρ̌uj

ui uj

uj

ui

ρ̂uj

ρ̂ui

ρ̌ui

(b) t < t̄: AVj active, AVi
not
t > t̄: both active

t = t̄

ui uj

uj

ui

ρ̄
ρ̄

(c) AVi, AVj not active

Figure 4. Possible configurations of AV interactions on different lanes.

3. Numerical scheme. We extend the reconstruction strategy introduced in [3]
to include moving bottleneck interactions. The scheme is composed of two parts:

Numerical approximation of (1a)-(1c). To approximate the conservation
equation (1a), we use a conservative finite volume scheme for the constrained hy-
perbolic PDE using a flux reconstruction technique at the constraint locations,
which allows to capture the non-classical shocks sharply. Let ∆x and ∆t be the
fixed space and time steps satisfying the standard Courant-Friedrichs-Lewy (CFL)
condition [10]:

max
ρ∈[0,R]

|f ′(ρ)|∆t < ∆x,
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and set xj−1/2 = j∆x, xj = (j + 1/2)∆x for j ∈ Z, and tn = n∆t for n ∈ N.
The initial data ρ0 is approximated by the piece-wise constant function obtained
by averaging it on the discretization cells Cj = [xj−1/2, xj+1/2[, namely

ρ0j =
1

∆x

∫ xj+1/2

xj−1/2

ρ0(x) dx, j ∈ Z.

Away from AV positions, equation (1a) is approximated by the standard Godunov
scheme [22], whose numerical fluxes at cell interfaces Fn

j+ 1
2

= F (ρnj , ρ
n
j+1) can in

this case be derived using the supply-demand formula [29]

F (ρnj , ρ
n
j+1) = min{D(ρnj ), S(ρnj+1)}, (3)

where

D(ρ) = f(min{ρ, ρcr}), S(ρ) = f(max{ρ, ρcr}),

ρcr = argminρ∈[0,R] f(ρ) being the point of maximum of the flux function f .
Let now the approximate `-th AV position be yn` ∈ Cm`

for some m` ∈ Z, ` =
1, . . . , N . If

f(R(ρnm`−1, ρ
n
m`+1)(un` )) > Fα(un` ) + un`R(ρnm`−1, ρ

n
m`+1)(un` ),

we assume a moving bottleneck at x̄m`
= xm`−1/2 +dnm`

∆x with dnm`
=
ρ̌un

`
− ρnm`

ρ̌un
`
− ρ̂un

`

.

If 0 ≤ dnm`
≤ 1, then x̄m`

∈ Cm`
and we set

∆tnm`
=

1− dnm`

un`
∆x,

Fnm`− 1
2

= F (ρnm`−1, ρ̂un
`
),

∆tFnm`+
1
2

= min (∆tnm`
,∆t)f(ρ̌un

`
) + max (∆t−∆tnm`

, 0)f(ρ̂un
`
).

We can then update the density by means of the conservative formula

ρn+1
j = ρnj −

∆t

∆x

(
Fnj+ 1

2
− Fnj− 1

2

)
, j ∈ Z. (4)

Above, we set un` = u`(t
n). If two or more AVs are located in the same cell,

the moving bottlenecks are treated sequentially one after the other, starting from
those which are not active (i.e. satisfy (1c)), then processing those which are active
(violating (1c)).

Remark 1. For better resolution, we also apply the above reconstruction technique
to classical shocks, as described in [3, Section 3.1].

Numerical approximation of (1b). To track the AV trajectories, at each time
step, we update the positions yn` using an explicit Euler scheme

yn+1
` = yn` + v(ρn)∆tn, ` = 1, . . . , N.

If two AVs are in the same lane and in the same cell, and the upstream AV`1 moves
faster than the downstream AV`2 , i.e. un`1 > un`2 , then we set

yn+1
`1

= yn+1
`2

= yn`2 + v(ρn)∆tn and un`1 = un`2 .

(A more accurate computation of the interaction point could be implemented to
improve simulation accuracy.)
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Remark 2. The above procedure seems not coherent with the observation that
two vehicles travelling at close speeds ui ≈ uj would act as a single bottleneck with
αij = αi + αj − 1. In this perspective, another option could be to reconstruct a
single front moving at speed uij = (ui + uj)/2 with α = αij whenever two vehicles
are in the same cell on two different lanes. In this case, the procedure should be
the following:

If f(R(ρnm−1, ρ
n
m+1)(uij)) > Fαij

(uij) + uijR(ρnm−1, ρ
n
m+1)(uij),

we replace ρnm by ρ̂uij
and ρ̌uij

, with the jump located at

x̄m = xm− 1
2

+ dnm∆x,

where dnm ∈ [0, 1] is given by

dnm =
ρ̌uij
− ρm

ρ̌uij
− ρ̂uij

.

To reconstruct the numerical flux at the cell interface xm+ 1
2
, we compute

∆tm+ 1
2

=
1− dnm
uij

∆x

and we set

∆tFnm+ 1
2

= min{∆tm+ 1
2
,∆t}f(ρ̌uij

) + max{∆t−∆tm+ 1
2
, 0}f(ρ̂uij

).

4. Numerical tests. In this section we illustrate the performances of the numeri-
cal scheme described in the previous Section 3 in capturing AV interactions correctly.
We first analyze the Riemann-like cases described in Section 2, to conclude with a
more general test case.

We consider a three lane stretch of road of length 50 km, parametrized by the
interval [0, 50] with absorbing boundary conditions. We consider the quadratic flux
function proposed by Greenshields [23] that assumes a linear decreasing dependence
of the speed on the traffic density

f(ρ) = V ρ
(

1− ρ

R

)
, (5)

where V = 140 km/h denotes the maximal speed and R = 400 veh/km the maximal
(bump-to-bump) density on the road. The capacity reduction ratio is set to α = 0.6.
In all simulations, we set ∆x = 0.2 and ∆t = 0.9∆x/V .

For the Riemann-like cases, we consider the following initial data:

AV1 :

{
y1(0) = 7.5,

u1 = 50,
AV2 :

{
y2(0) = 15,

u2 = 20,

(a) ρ0(x) =

{
ρ̂u1
≈ 210 if x < 7.5,

ρ̌u1
≈ 47 if x > 7.5,

(b) ρ0(x) =

{
ρ̂u2
≈ 280 if x < 15,

ρ̌u2
≈ 63 if x > 15,

(c) ρ0(x) ≡ 20.

The results are depicted in Figures 5 and 6. Except small spurious oscillations
emerging from AV interactions in some cases, the solutions, and in particular non-
classical shocks, are accurately reproduced.

To give a more general example, we consider the following initial data: ρ0(x) ≡
200 and
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AV1 :

{
y1(0) = 2.5,

u1 = 120,
AV2 :

{
y2(0) = 7.5,

u2 = 30,

AV3 :

{
y3(0) = 10,

u3 = 55,
AV4 :

{
y4(0) = 20,

u4 = 20,
(6)

Moreover, AV1 and AV3 are on the same lane.
Figure 7 displays the solution, accounting for the different interaction types (queuing
and overtaking). We observe that AV1 and AV3 are initially inactive while AV2 and
AV4 are active. Moreover, AV1 and AV3 overtake the preceding vehicles and finally
merge. Also, AV1 is always inactive until it merges with AV3, which becomes active
after the interaction with AV4, while AV4 is always active. On the contrary, AV2
becomes inactive when it reaches an high traffic density region.

5. Conclusion. We have presented a strongly coupled PDE-ODE model describing
the interaction of a small number of autonomous vehicles with bulk traffic on a
multi-lane highway. The model allows for AV queuing and overtaking, expanding
the range of traffic control applications of previous works [4, 5, 6, 7, 8, 34]. A first
study on traffic management opportunities offered by this framework is presented
in [12], showing that low penetration rates are sufficient to reach nearly optimal
improvements of a selected performance index.
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(a) Same lane interaction of an upstream active AV with an inactive one, causing the for-
mation of a classical shock followed by a non-classical shock at the AVs’ common position,
see Fig. 3a.

(b) Same lane interaction of an inactive AV with an active preceding one, causing no
change in the surrounding traffic density displaying only a non-classical shock at the AVs’
common position, see Fig. 3b.

(c) Same lane interaction of inactive AVs, resulting in no change in the surrounding traffic
density, see Fig. 3c.

Figure 5. Numerical reconstruction of possible configurations of
AV interactions on same lanes. Left: (t, x) representation. Right:
density profile at given time instant.
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(a) Different lane interaction of an upstream active AV with an inactive one, causing
the formation of two classical shocks alternated with two non-classical shocks at the AVs’
positions, see Fig. 4a.

(b) Different lane interaction of an inactive AV with an active preceding one, causing the
formation of a classical shock separating two non-classical shocks at the AVs’ positions,
see Fig. 4b.

(c) Different lane interaction of inactive AVs, resulting in no change in the surrounding
traffic density, see Fig. 4c.

Figure 6. Numerical reconstruction of possible configurations of
AV interactions on different lanes. Left: (t, x) representation.
Right: density profile at given time instant.



14 P. GOATIN, C. DAINI, M. L. DELLE MONACHE AND A. FERRARA

Figure 7. Numerical reconstruction of the solution of (1) corre-
sponding to four interacting AVs with initial data (6). Top: (t, x)
representation. Bottom: density profiles at given time instants.
The first and third AV are on the same lane and merge after over-
taking the others.
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