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We present a general multi-scale approach for modeling the interaction of controlled autonomous vehicles (AVs) with the surrounding traffic flow. The model consists of a scalar conservation law for the bulk traffic, coupled with ordinary differential equations describing the possibly interacting AV trajectories. The coupling is realized through flux constraints at the moving bottleneck positions, inducing the formation of non-classical jump discontinuities in the traffic density. In turn, AVs are forced to adapt their speed to the downstream traffic average velocity in congested situations. We analyze the model solutions in a Riemann-type setting, and propose an adapted finite volume scheme to compute approximate solutions for general initial data.

The work paves the way to the study of general optimal control strategies for AV velocities, aiming at improving the overall traffic flow by reducing congestion phenomena and the associated externalities.

1. Introduction. Moving bottleneck models have been introduced in the engineering literature starting from the end of the last century to describe the interaction of slow moving vehicles, such as buses or trucks, with bulk traffic, see [START_REF] Claudel | Lax-Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton-Jacobi Equation. Part II: Computational Methods[END_REF][START_REF] Leclercq | Moving bottlenecks in Lighthill-Whitham-Richards model: A unified theory[END_REF][START_REF] Lebacque | Introducing buses into first-order macroscopic traffic flow models[END_REF]. Further approaches have then be proposed in the applied mathematics community [START_REF] Borsche | Mixed systems: ODEs -balance laws[END_REF][START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Lattanzio | Moving bottlenecks in car traffic flow: a PDE-ODE coupled model[END_REF][START_REF] Sylla | Influence of a slow moving vehicle on traffic: well-posedness and approximation for a mildly nonlocal model[END_REF][START_REF] Villa | Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model[END_REF], always following the underlying idea of using multi-scale models consisting of Partial Differential Equations (PDEs) to model the overall traffic flow evolution, coupled with Ordinary Differential Equations (ODEs) accounting for the moving bottlenecks trajectories. Despite the intrinsic difficulties arising as a result of the flux constraint induced by the presence of the slow vehicles, corresponding existence and stability results have been provided, see also [START_REF] Delle Monache | Stability estimates for scalar conservation laws with moving flux constraints[END_REF][START_REF] Garavello | A multiscale model for traffic regulation via autonomous vehicles[END_REF][START_REF] Liard | Well-posedness for scalar conservation laws with moving flux constraints[END_REF][START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF], together with numerical schemes to compute approximate solutions capturing the emerging non-classical phenomena [START_REF] Bretti | Two algorithms for a fully coupled and consistently macroscopic PDE-ODE system modeling a moving bottleneck on a road[END_REF][START_REF] Chalons | A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem[END_REF][START_REF] Daganzo | On the numerical treatment of moving bottlenecks[END_REF][START_REF] Delle Monache | A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow[END_REF][START_REF] Delle Monache | A numerical scheme for moving bottlenecks in traffic flow[END_REF].

More recently, moving bottleneck models have been applied to traffic flow regulation by means of Autonomous Vehicles (AVs), see e.g. [START_REF] Cičić | Coordinating vehicle platoons for highway bottleneck decongestion and throughput improvement[END_REF][START_REF] Cičić | Traffic regulation via individually controlled automated vehicles: a cell transmission model approach[END_REF][START_REF] Cičić | Energy-optimal platoon catch-up in moving bottleneck framework[END_REF][START_REF] Cičić | Stop-and-go wave dissipation using accumulated controlled moving bottlenecks in multi-class CTM framework[END_REF][START_REF] Cičić | Front tracking transition system model with controlled moving bottlenecks and probabilistic traffic breakdowns[END_REF][START_REF] Piacentini | Traffic control via moving bottleneck of coordinated vehicles[END_REF]. Indeed, AVs can act as endogenous actuators of moving variable speed limits, improving throughput by hindering upstream traffic. This possibility has already been the object of several theoretical studies (see e.g. [START_REF] Davis | Effect of adaptive cruise control systems on traffic flow[END_REF][START_REF] Guériau | How to assess the benefits of connected vehicles? a simulation framework for the design of cooperative traffic management strategies[END_REF][START_REF] Knorr | Reducing traffic jams via VANETs[END_REF][START_REF] Piacentini | VACS equipped vehicles for congestion dissipation in multi-class ctm framework[END_REF][START_REF] Talebpour | Influence of connected and autonomous vehicles on traffic flow stability and throughput[END_REF][START_REF] Wang | Cooperative car-following control: Distributed algorithm and impact on moving jam features[END_REF] and [START_REF] Ferrara | Freeway traffic modelling and control[END_REF]Chapter 11]), but also artificial [START_REF] Jang | Simulation to scaled city: Zero-shot policy transfer for traffic control via autonomous vehicles[END_REF] and real world [START_REF] Stern | Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[END_REF] experiments. In particular, it has been demonstrated that even low AV penetration rates can have a significant impact on reducing congestion phenomena and the associated energy consumption. In this context, macroscopic approaches are needed to address the curse of dimensionality in control design for microscopic models [START_REF] Delle Monache | Feedback Control Algorithms for the Dissipation of Traffic Waves with Autonomous Vehicles[END_REF].

Even if some of the above works account for the presence of multiple AVs on the road, very few of them allow for AV interactions, and only in very specific modeling frameworks [START_REF] Gasser | Vehicular traffic flow dynamics on a bus route[END_REF][START_REF] Simoni | A fast simulation algorithm for multiple moving bottlenecks and applications in urban freight traffic management[END_REF]. In this paper, we aim at generalizing the control framework designed in [START_REF] Garavello | A multiscale model for traffic regulation via autonomous vehicles[END_REF][START_REF] Piacentini | Traffic control via moving bottleneck of coordinated vehicles[END_REF] for the Lighthill-Whitham-Richards model [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF] to multiple, possibly interacting, moving bottlenecks, as if they were distributed on several lanes and they were allowed both to merge (if on the same lane) and to overtake (if on different lanes). This can be achieved by a careful study of the corresponding Riemann-type problems, and a natural generalization of the numerical reconstruction technique presented in [START_REF] Chalons | A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem[END_REF]. The proposed model can be used to develop a general simulation environment accounting for several AVs interacting with the surrounding traffic flow and among themselves, which in turns allows to design optimization-based control strategies having fleets of AVs as actuators.

The paper is organized as follows: Section 2 details the model framework, providing a mathematical description of the fully coupled PDE-ODE model and the interactions among AVs at the level of Riemann problems. Section 3 describes the numerical scheme and Section 4 shows the results of the numerical experiments.

2. PDE-ODE model with interacting moving bottlenecks. Following [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Garavello | A multiscale model for traffic regulation via autonomous vehicles[END_REF], we consider the following strongly coupled PDE-ODEs system the maximal vehicle density attainable on the considered road section). Above, ρ 0 ∈ [0, R] and y 0 ∈ R, = 1, . . . , N , are respectively the initial traffic density and AV positions, while the function F α in (1c), α ∈ ]0, 1[, represents the road capacity reduction rate due to the presence of the AV at x = y (t), = 1, . . . , N , acting as a moving bottleneck which imposes a unilateral flux constraint at its position.

∂ t ρ (t, x) + ∂ x f (ρ (t, x)) = 0, , (1a) 
ẏ (t) = min{u (t), v(ρ(t, y (t)+))}, (1b) f (ρ (t, y (t))) -ẏ (t)ρ (t, y (t)) ≤ F α ( ẏ (t)) := max ρ∈[0,R] (αf (ρ/α) -ρ ẏ (t)) , (1c) ρ(0, x) = ρ 0 (x), (1d) 
y (0) = y 0 , (1e) 
For simplicity, we assume that this parameter is the same for all AVs, and it is a function of the number of lanes: α = (M -1)/M , where M ∈ N denotes the number of lanes. (The extension to a more general framework would follow the same lines detailed in this work.) To determine the function F α , we consider the rescaled flux function f α : [0, αR] -→ R + ρ -→ ρv(ρ/α) = αf (ρ/α), which is strictly concave function and such that f α (0) = f α (αR) = 0. For every u ∈ [0, V ], we define the point ρu as the unique solution to the equation f α (ρ) = u. Moreover, for every u ∈ [0, V ], we define the function

ϕ u : [0, R] -→ R + ρ -→ f α (ρ u ) + u (ρ -ρu ) .
Hence, if ẏ(t) = u, the function F α in (1c) is defined by

F α : [0, V ] -→ R + u -→ ϕ u (0) = f α (ρ u ) -uρ u .
If ẏ(t) = v(ρ(t, y(t)+)), the inequality (1c) is trivially satisfied since the left-hand side is zero. Finally, the points 0 [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Garavello | A multiscale model for traffic regulation via autonomous vehicles[END_REF] and Figure 1. We remark that ρV = ρV = ρV = ρ * V = 0. Solutions to (1) are defined as follows (see [START_REF] Garavello | A multiscale model for traffic regulation via autonomous vehicles[END_REF]Definition 3.1]):

≤ ρu ≤ ρu ≤ ρu ≤ ρ * u ≤ R are uniquely defined by ρu = min I u , ρu = max I u , I u = {ρ ∈ [0, R] : f (ρ) = ϕ u (ρ)} , v(ρ * u ) = u, see
Definition 2.1. The N + 1-tuple (ρ, y 1 , . . . , y N ) provides a solution to (1) if the following conditions hold.

1.

ρ ∈ C 0 R + ; L 1 loc (R; [0, R]) and TV (ρ(t)) < +∞ for all t ∈ R + ; 2. y ∈ W 1,1 loc (R + ; R) for = 1, . . . , N ; 3. For every κ ∈ R and for all ϕ ∈ C 1 c (R 2 ; R + ) it holds R + R (|ρ -κ|∂ t ϕ + sgn(ρ -κ)(f (ρ) -f (κ))∂ x ϕ) dx dt + R |ρ 0 -κ|ϕ(0, x) dx + 2 N =1 R + (f (κ) -ẏ (t)κ -min{f (κ) -ẏ (t)κ, F α ( ẏ (t))}) ϕ(t, y(t)) dt ≥ 0 ; 4. For a.e. t > 0, f (ρ (t, y (t)±))-ẏ (t)ρ (t, y (t)±) ≤ F α ( ẏ (t)) for = 1, . . . , N ; 5. For a.e. t > 0, ẏ (t) = min {u (t), v (ρ (t, y (t)+))} for = 1, . . . , N .
As long as AV trajectories do not intersect, one can apply the theory and the numerical schemes developed in [START_REF] Chalons | A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem[END_REF][START_REF] Delle Monache | A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow[END_REF][START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Delle Monache | A numerical scheme for moving bottlenecks in traffic flow[END_REF][START_REF] Garavello | A multiscale model for traffic regulation via autonomous vehicles[END_REF]. In particular, we recall that the Constrained Riemann Solver is defined as follows.

Definition 2.2. The Constrained Riemann Solver R α for

∂ t ρ (t, x) + ∂ x f (ρ (t, x)) = 0, (2a) ẏ(t) = min{u, v(ρ(t, y(t)+))}, (2b) 
f (ρ (t, y(t))) -ẏ(t)ρ (t, y(t)) ≤ F α ( ẏ(t)) , (2c) 
ρ(0, x) = ρ L if x < 0, ρ R if x > 0, (2d) 
y(0) = 0, (2e) 
is the map

R α : [0, R] 2 × [0, V ] → L 1 loc (R, [0, R]) defined as follows. 1. If f (R(ρ L , ρ R )(u)) > F α (u) + u R(ρ L , ρ R )(u), then R α (ρ L , ρ R ; u)(x/t) = R(ρ L , ρu )(x/t) if x < u t, R(ρ u , ρ R )(x/t) if x ≥ u t, and 
y(t) = u t. 2. If f (R(ρ L , ρ R )(u)) ≤ F α (u) + u R(ρ L , ρ R )(u), then R α (ρ L , ρ R ; u) = R(ρ L , ρ R ) and y(t) = min{u, v(ρ R )} t.
Above, R denotes the standard (i.e. without the constraint (2c)) Riemann solver for (2a)-(2d), i.e. the (right continuous) map (t, x) → R(ρ L , ρ R )(x/t) given by the standard weak entropy solution to (2a)-(2d).

In this paper, we are interested in describing what happens when two vehicles AV i and AV j , with i, j ∈ {1, . . . , N }, i = j, interact. Let us assume y i (t) < y j (t) with constant speeds u i (t) = u i > u j (t) = u j for t ∈ ] t-, ε t[, so that y i ( t) = y j ( t) for some t > 0, see Figure 2. Depending on the surrounding traffic density conditions, only three situations may occur in a Riemann-like setting (piece-wise constant density with at most one jump discontinuity):

• The constraint (1c) is enforced for = i (we will say that AV i is active), so that ρ(t, x) = ρui for x < y i (t) and ρ(t, x) = ρui for x > y i (t). Since, at x = y j (t), it holds f (ρ ui ) -u j ρui ≤ F α (u j ) (see Figure 2), the constraint is not enforced for = j (AV j is then inactive). • If AV j is active, we have ρ(t, x) = ρuj for x < y j (t) and ρ(t, x) = ρuj for

x > y j (t). At x = y i (t), it therefore holds f ρuj -

u i ρuj ≤ F α (u i ) , thus AV i is inactive. 0 Fα(uj) Fα(ui) ρuj ρui ρuj ρui ρ f f α R ϕ ui ϕ uj Figure 2.
Notation for interacting bottlenecks.

• If both AV i and AV j are inactive, we may have either a constant density or a classical shock coinciding with one of the AV trajectories. In any case, the density must satisfy ρ(t, x) ∈ [0, ρui ] ∪ [ρ uj , R]. We remark that AV i and AV j cannot be both active at the same time, unless other waves are present between them.

To detail the problem evolution after the interaction (at t > t), we distinguish if AVs are moving in different lanes or if they are located on the same lane.

Same lane interactions.

Let us assume that the two vehicles are in the same lane, so for t > t the upstream vehicle must adapt to the downstream vehicle speed: we will have y i (t) = y j (t) with u i (t) = u j (t) for t ≥ t. Three situations may occur, see Figure 3: • If, before the interaction, AV i was active and AV j inactive, at t > t the solution will consists of a classical shock joining ρui to ρuj , followed by a non-classical shock at x = y j (t) = y i (t) between ρuj and ρuj and a rarefaction wave from ρuj to ρui , see Figure 3a. In particular, after the interaction, both AVs will be active. • If, before the interaction, AV i was inactive and AV j active, at t > t the solution will consists only of a non-classical shock joining ρuj to ρuj , see Figure 3b. Again, after the interaction, both AVs will be active. • If, before the interaction, AV i and AV j were both inactive, at t > t the solution will consists at most of the classical shock that was already present before the interaction, see Figure 3c. After the interaction, both AVs will still be inactive. In any case, after the interaction, the two vehicles behave as AV j . Different lane interactions. If the two interacting vehicles travel in different lanes, for t > t they will follow their own trajectory and AV i will overtake AV j : we will have y i (t) ≥ y j (t) with u i (t) ≥ u j (t) for t ≥ t. Three situations may occur, see Figure 4: • If, before the interaction, AV i was active and AV j inactive, at t > t the solution will consists of a classical shock joining ρui to ρuj , followed by a non-classical shock at x = y j (t) from ρuj to ρuj , a classical shock from ρuj to ρui and a non-classical shock at x = y i (t) from ρui to ρui , see Figure 4a. In particular, after the interaction, both AVs will be active. • If, before the interaction, AV i was inactive and AV j active, at t > t the solution will consists of a non-classical shock at x = y j (t) from ρuj to ρuj , followed by a classical shock from ρuj to ρui , a non-classical shock at x = y i (t) from ρui to ρui and a classical shock from ρui to ρuj , see Figure 4b. In particular, after the interaction, both AVs will be active. • If, before the interaction, AV i and AV j were both inactive, at t > t the solution will consists at most of the classical shock that was already present before the interaction, see Figure 4c. After the interaction, both AVs will still be inactive. 3. Numerical scheme. We extend the reconstruction strategy introduced in [START_REF] Chalons | A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem[END_REF] to include moving bottleneck interactions. The scheme is composed of two parts:

Numerical approximation of (1a)-(1c). To approximate the conservation equation (1a), we use a conservative finite volume scheme for the constrained hyperbolic PDE using a flux reconstruction technique at the constraint locations, which allows to capture the non-classical shocks sharply. Let ∆x and ∆t be the fixed space and time steps satisfying the standard Courant-Friedrichs-Lewy (CFL) condition [START_REF] Courant | On the partial difference equations of mathematical physics[END_REF]: max

ρ∈[0,R] |f (ρ)|∆t < ∆x,
and set x j-1/2 = j∆x, x j = (j + 1/2)∆x for j ∈ Z, and t n = n∆t for n ∈ N.

The initial data ρ 0 is approximated by the piece-wise constant function obtained by averaging it on the discretization cells C j = [x j-1/2 , x j+1/2 [, namely

ρ 0 j = 1 ∆x x j+1/2 x j-1/2 ρ 0 (x) dx, j ∈ Z.
Away from AV positions, equation (1a) is approximated by the standard Godunov scheme [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF], whose numerical fluxes at cell interfaces

F n j+ 1 2 = F (ρ n j , ρ n j+1
) can in this case be derived using the supply-demand formula [START_REF] Lebacque | The Godunov scheme and what it means for first order traffic flow models[END_REF] 

F (ρ n j , ρ n j+1 ) = min{D(ρ n j ), S(ρ n j+1 )}, (3) 
where

D(ρ) = f (min{ρ, ρ cr }), S(ρ) = f (max{ρ, ρ cr }), ρ cr = argmin ρ∈[0,R] f (ρ)
being the point of maximum of the flux function f . Let now the approximate -th AV position be y n ∈ C m for some m ∈ Z, = 1, . . . , N . If

f (R(ρ n m -1 , ρ n m +1 )(u n )) > F α (u n ) + u n R(ρ n m -1 , ρ n m +1 )(u n ), we assume a moving bottleneck at xm = x m -1/2 + d n m ∆x with d n m = ρu n -ρ n m ρu n -ρu n . If 0 ≤ d n m ≤ 1, then xm ∈ C m and we set ∆t n m = 1 -d n m u n ∆x, F n m -1 2 = F (ρ n m -1 , ρu n ), ∆tF n m + 1 2 = min (∆t n m , ∆t)f (ρ u n ) + max (∆t -∆t n m , 0)f (ρ u n ).
We can then update the density by means of the conservative formula

ρ n+1 j = ρ n j - ∆t ∆x F n j+ 1 2 -F n j-1 2 , j ∈ Z. (4) 
Above, we set u n = u (t n ). If two or more AVs are located in the same cell, the moving bottlenecks are treated sequentially one after the other, starting from those which are not active (i.e. satisfy (1c)), then processing those which are active (violating (1c)).

Remark 1. For better resolution, we also apply the above reconstruction technique to classical shocks, as described in [3, Section 3.1].

Numerical approximation of (1b). To track the AV trajectories, at each time step, we update the positions y n using an explicit Euler scheme

y n+1 = y n + v(ρ n )∆t n , = 1, . . . , N.
If two AVs are in the same lane and in the same cell, and the upstream AV 1 moves faster than the downstream AV 2 , i.e. u n 1 > u n 2 , then we set

y n+1 1 = y n+1 2 = y n 2 + v(ρ n )∆t n and u n 1 = u n 2 .
(A more accurate computation of the interaction point could be implemented to improve simulation accuracy.) Remark 2. The above procedure seems not coherent with the observation that two vehicles travelling at close speeds u i ≈ u j would act as a single bottleneck with α ij = α i + α j -1. In this perspective, another option could be to reconstruct a single front moving at speed u ij = (u i + u j )/2 with α = α ij whenever two vehicles are in the same cell on two different lanes. In this case, the procedure should be the following:

If 

f (R(ρ n m-1 , ρ n m+1 )(u ij )) > F αij (u ij ) + u ij R(ρ n m-1 , ρ n m+1 )(u ij ),
d n m = ρuij -ρ m ρuij -ρuij .
To reconstruct the numerical flux at the cell interface x m+ 1 2 , we compute

∆t m+ 1 2 = 1 -d n m u ij ∆x and we set ∆tF n m+ 1 2 = min{∆t m+ 1 2 , ∆t}f (ρ uij ) + max{∆t -∆t m+ 1 2 , 0}f (ρ uij ).
4. Numerical tests. In this section we illustrate the performances of the numerical scheme described in the previous Section 3 in capturing AV interactions correctly.

We first analyze the Riemann-like cases described in Section 2, to conclude with a more general test case. We consider a three lane stretch of road of length 50 km, parametrized by the interval [0, 50] with absorbing boundary conditions. We consider the quadratic flux function proposed by Greenshields [START_REF] Greenshields | A study of traffic capacity[END_REF] that assumes a linear decreasing dependence of the speed on the traffic density

f (ρ) = V ρ 1 - ρ R , (5) 
where V = 140 km/h denotes the maximal speed and R = 400 veh/km the maximal (bump-to-bump) density on the road. The capacity reduction ratio is set to α = 0.6. In all simulations, we set ∆x = 0.2 and ∆t = 0.9∆x/V . For the Riemann-like cases, we consider the following initial data:

AV 1 : y 1 (0) = 7.5, u 1 = 50, AV 2 : y 2 (0) = 15, u 2 = 20, (a) ρ 0 (x) = ρu1 ≈ 210 if x < 7.5, ρu1 ≈ 47 if x > 7.5, (b) ρ 0 (x) = ρu2 ≈ 280 if x < 15, ρu2 ≈ 63 if x > 15, (c) ρ 0 (x) ≡ 20.
The results are depicted in Figures 5 and6. Except small spurious oscillations emerging from AV interactions in some cases, the solutions, and in particular nonclassical shocks, are accurately reproduced.

To give a more general example, we consider the following initial data: ρ 0 (x) ≡ 200 and

AV 1 : y 1 (0) = 2.5, u 1 = 120, AV 2 : y 2 (0) = 7.5, u 2 = 30, AV 3 : y 3 (0) = 10, u 3 = 55, AV 4 : y 4 (0) = 20, u 4 = 20, (6) 
Moreover, AV 1 and AV 3 are on the same lane. Figure 7 displays the solution, accounting for the different interaction types (queuing and overtaking). We observe that AV 1 and AV 3 are initially inactive while AV 2 and AV 4 are active. Moreover, AV 1 and AV 3 overtake the preceding vehicles and finally merge. Also, AV 1 is always inactive until it merges with AV 3 , which becomes active after the interaction with AV 4 , while AV 4 is always active. On the contrary, AV 2 becomes inactive when it reaches an high traffic density region.

Conclusion.

We have presented a strongly coupled PDE-ODE model describing the interaction of a small number of autonomous vehicles with bulk traffic on a multi-lane highway. The model allows for AV queuing and overtaking, expanding the range of traffic control applications of previous works [START_REF] Cičić | Coordinating vehicle platoons for highway bottleneck decongestion and throughput improvement[END_REF][START_REF] Cičić | Traffic regulation via individually controlled automated vehicles: a cell transmission model approach[END_REF][START_REF] Cičić | Energy-optimal platoon catch-up in moving bottleneck framework[END_REF][START_REF] Cičić | Stop-and-go wave dissipation using accumulated controlled moving bottlenecks in multi-class CTM framework[END_REF][START_REF] Cičić | Front tracking transition system model with controlled moving bottlenecks and probabilistic traffic breakdowns[END_REF][START_REF] Piacentini | Traffic control via moving bottleneck of coordinated vehicles[END_REF]. A first study on traffic management opportunities offered by this framework is presented in [START_REF] Daini | Centralized Traffic Control via Small Fleets of Connected and Automated Vehicles[END_REF], showing that low penetration rates are sufficient to reach nearly optimal improvements of a selected performance index. 
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 11 Figure 1. The definition of ρu , ρu , ρu and ρ * u .
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 3 Figure 3. Possible configurations of AV interactions on the same lane.
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 4 Figure 4. Possible configurations of AV interactions on different lanes.
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 a Same lane interaction of an upstream active AV with an inactive one, causing the formation of a classical shock followed by a non-classical shock at the AVs' common position, see Fig.3a. (b) Same lane interaction of an inactive AV with an active preceding one, causing no change in the surrounding traffic density displaying only a non-classical shock at the AVs' common position, see Fig. 3b. (c) Same lane interaction of inactive AVs, resulting in no change in the surrounding traffic density, see Fig.3c.

Figure 5 .

 5 Figure 5. Numerical reconstruction of possible configurations of AV interactions on same lanes. Left: (t, x) representation. Right: density profile at given time instant.

( a )

 a Different lane interaction of an upstream active AV with an inactive one, causing the formation of two classical shocks alternated with two non-classical shocks at the AVs' positions, see Fig. 4a. (b) Different lane interaction of an inactive AV with an active preceding one, causing the formation of a classical shock separating two non-classical shocks at the AVs' positions, see Fig. 4b. (c) Different lane interaction of inactive AVs, resulting in no change in the surrounding traffic density, see Fig.4c.

Figure 6 .

 6 Figure 6. Numerical reconstruction of possible configurations of AV interactions on different lanes. Left: (t, x) representation. Right: density profile at given time instant.

Figure 7 .

 7 Figure 7. Numerical reconstruction of the solution of (1) corresponding to four interacting AVs with initial data (6). Top: (t, x) representation. Bottom: density profiles at given time instants. The first and third AV are on the same lane and merge after overtaking the others.
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