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ON THE FOIAŞ AND STRATILA THEOREM

FRANÇOIS PARREAU.

Abstract. We extend the Foiaş and Sratila theorem to the case of L2–functions whose
spectral measure is continuous and concentrated on an independent Helson set, and to ergodic
actions of locally compact second countable abelian groups. We first prove it for functions
satisfying Carleman’s condition for the Hamburger moment problem, without the assumption
that the spectral measure is supported by a Helson set. Then we show independently that the
spectral projector associated with a Helson set preserves each Lp space, with a appropriate
bound of the corresponding norm.

1. Introduction

1.1. Main results. The Foiaş and Sratila theorem ([9]) asserts that, given an ergodic measure–
preserving automorphism T on a standard probability space, if the spectral measure σ of a
non zero square-integrable complex function f is continuous and supported by a Kronecker
set, then the process (f ◦ Tn) is Gaussian. The dynamical system generated by the process
(f ◦ Tn) is then determined up to a metric isomorphism by σ, the spectral measure of the
process. Except for the case of discrete spectrum and not deep extensions (see [14]), this is
the only result of spectral determination in ergodic theory.

A first motivation for this work was a better understanding of the Foiaş and Sratila theorem,
which implies strong ergodic properties for Gaussian–Kronecker automorphisms. Factors and
self-joinings of such systems can be completely described ([23]). In [15], we extend these
properties and prove disjointness results for a wider class of Gaussian automorphisms, the
“GAG” automorphisms, which include all Gaussian automorphisms with simple spectrum
and thus mixing cases, and all the results there eventually rely on the Foiaş and Sratila
theorem.

We shall here investigate possible extensions of this theorem. Our main result is its exten-
sion to the larger class of algebraically independent Helson sets, which allows us to get mildly
mixing examples.

Let (X,B, µ) denote a standard probability space and let T = (Tg)g∈G be an action of
a locally compact second countable abelian group G on X by measure–preserving automor-
phisms (for sake of simplicity, we use the same notation as for a single measure–preserving
automorphism).

The Fourier transform of a complex Borel measure σ on the dual group Γ = Ĝ is defined
by σ̂(g) =

∫
Γ γ(g) dσ(γ) for g ∈ G, and the spectral measure σf of f ∈ L2(µ) is the finite
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positive Borel measure on Γ given by

σ̂f (g) = (f ◦ Tg | f) (g ∈ G).

A closed set K ⊂ Γ is a Helson set with constant α (0 < α ≤ 1), or a Helson–α set if, for
every complex Borel measure σ on K (∥.∥ denotes the total variation norm),

sup
g∈G

|σ̂(g)| ≥ α ∥σ∥.

An equivalent definition, maybe more usual ([16]), is that K is a Helson set if each continuous
function on K vanishing at infinity is the restriction to K of some function in A(Γ).

Theorem 1. Assume that T is ergodic and let f be a non-zero function in L2(µ). If the
spectral measure of f is continuous and concentrated on an independent Helson set, then f
has a Gaussian distribution.

We shall firstly prove a result where the assumption that σf is supported by a Helson set
is replaced by an additional hypothesis on the moments of f .

Definition. Given a positive measure µ, we denote C(µ) the class of all f ∈
∩

2≤p<+∞ Lp(µ)
such that

∞∑
p=2

(1/∥f∥p) = +∞.

For real random variables, this condition is known as Carleman’s condition for the Ham-
burger moment problem.

Theorem 2. Assume that T is ergodic and let f be a non-zero function in C(µ). If the spectral
measure of f is continuous and concentrated on an independent compact set, then f has a
Gaussian distribution.

Corollary 1. Under the assumptions of Theorem 1 or of Theorem 2, the functions f ◦ Tg
(g ∈ G) span a Gaussian space. In case of a single measure–preserving automorphism T , the
process (f ◦ Tn)n∈Z is Gaussian.

Theorem 1 follows from Theorem 2 and from a result that may be of independent interest:

Theorem 3. Let K be a compact Helson subset of Γ. Then, for every p ≥ 2, the spectral
projector πK corresponding to K maps Lp(µ) into itself with, for every f ∈ Lp(µ),

∥πKf∥p ≤ Cp ∥f∥p

where C depends only on the Helson constant of K.
In particular πK(L∞(µ)) ⊂ C(µ).

Under the only assumption that σ is supported by an independent compact set, the problem
remains open, but there is little hope to get a complete answer. However, there are examples
of measures for which the corresponding Gaussian automorphism has a simple spectrum, but
which do not satisfy the spectral determination property.
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1.2. Notation, definitions and preliminaries.
We refer to [2], [18], [19] for basic definitions and results in ergodic theory and spectral theory
of dynamical systems. For harmonic analysis, we refer to [21], and to [16] for definitions and
properties of thin sets.

The abelian group G acting on (X,B, µ) is supposed locally compact second countable, and
non compact. For g ∈ G we also note Tg the unitary operator f → f ◦ Tg on L2(µ). We shall
note its dual group Γ multiplicatively and, for γ ∈ Γ and g ∈ G, γ(g) is also denoted ⟨γ, g⟩.
In the case G = Z we identify Γ = T with S1.

The group generated by K ⊂ Γ is denoted Gp(K). We shall need algebraic independence
through the property: if K1, K2 are two disjoint subsets of K, then Gp(K1) and Gp(K2)\{1}
are still disjoint; thus the definition of independence can be taken here in the weaker sense:
when γ1, . . . , γk ∈ K and n1, . . . , nk ∈ Z, then γn1

1 × · · · × γnk
k = 1 iff γn1

1 = · · · = γnk
k = 1

(so, n1 = · · · = nk = 0 is not required, and this allows finite order elements).
Let B(f) (resp. B(H)) denote the sub−σ−algebra generated by a measurable function f

(resp. a subset H of L2(µ)). If f ∈ L2(µ), the closed invariant subspace of L2(µ) generated by
f is denoted Z(f), so the factor generated by f is B(Z(f)) (factors will be taken as invariant
sub−σ−algebras).

By a measure σ on Γ we always mean a complex Borel measure on Γ. Then σ̃ denotes the
measure defined by σ̃(B) = σ̄(B−1) for every Borel subset B of Γ; given f ∈ L2(µ), the spectral
measure of f̄ is σ̃f and it is concentrated on supp(σf )

−1. If σ is the spectral type of T , defined
up to equivalence of measures, the spectral representation yields an isometry φ→ φ(T ) from
L∞(σ) onto a subalgebra of L2(µ) such that φ(T ) corresponds to the multiplication by φ, and
in particular each g ∈ G, taken as a character of Γ, corresponds to Tg.

Given a Borel subset K of Γ, 1K(T ) is the spectral projector of L2(µ) corresponding to K,
which we denote by πK . For f ∈ L2(µ), we have πKf = πK−1 f̄ .

In our proofs, the operation of A(Γ) on the spaces Lp(µ) plays a major role. Recall that
A(Γ) denotes the Banach algebra of Fourier transforms of integrable functions, equipped
with the norm inherited from the L1(G) norm. That is, when G is discrete, the algebra
of functions γ → φ(γ) =

∑
g∈G ag⟨γ, g⟩ where

∑
g∈G |ag| < +∞, equipped with the norm

∥φ∥A(Γ) =
∑

g∈G |ag|. Then φ(T ) : h →
∑

g∈G ag h ◦ Tg defines an operator on each Lp(µ)

(1 ≤ p ≤ +∞), of norm ∥φ(T )∥L(Lp) ≤ ∥φ∥A(Γ).

Since a L2−limit of Gaussian functions still is Gaussian, we have the elementary lemma:

Lemma 1. Let f ∈ L2(µ). If (Kn) is a sequence of Borel subsets of Γ such that σf (Γ\Kn) → 0
and each πKnf is Gaussian, then f is Gaussian.

In particular, it is sufficient to prove Theorem 1 in the case when σf has compact support.
Furthermore, for the proofs of Theorems 1 and 2, we can restrict ourselves to countable
group actions. Indeed, let G0 be a countable dense subgroup of G, endowed with the discrete
topology. Then Γ is countinuously embedded in the compact group Γ0 = Ĝ0, the spectral
measures of f for the actions of G and G0 being identified in this embedding. Clearly, if a
set K in Γ is independent and compact in Γ, these properties still hold in Γ0. The Fourier
transform of a measure concentrated on K is continuous in the topology of G, hence by density
of G0 in G, directly from the definition, if K is Helson in Γ, the same holds in Γ0.
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So, we henceforth assume that the abelian group G is countable and discrete, so that Γ is
compact and metrizable.

Note also that, given ε > 0, we can choose a totally disconnected compact subset K with
σf (Γ \K) < ε; indeed this is a standard fact for finite positive measures on TN and the dual
group of a countable abelian group is naturally embedded as a compact subgroup of Tn. By
Lemma 1, if we obtain that every such πKf is Gaussian, then f itself is Gaussian.

Concerning Gaussian automorphisms, we shall use the definitions and notation of [15].
In particular, if σ is a continuous symmetric measure on T, we denote Tσ the Gaussian
automorphism defined by the real Gaussian process of spectral measure σ. However, as Foiaş
and Stratila in [9], we consider complex–valued Gaussian processes (f ◦ Tn), which will be
more convenient. Then the corresponding Gaussian space H is the closed invariant subspace
of L2(µ) spanned by f and f̄ and the spectral type σH of T on H is the symmetric measure
σf + σ̃f .

2. Zsido’s theorem and abelian group actions

2.1. Spectral process.
Let f be a non–zero function in L2(µ). We consider firstly the case of a single measure–
preserving automorphism T . Let γ(t) = exp(2πit) for t ∈ [0, 1]. The spectral process corre-
sponding to f is defined by

ft = πγ([0,t))f (t ∈ [0, 1]).

As for the proof of C. Foiaş and S. Stratila, the main argument in the proof of Theorems
1 and 2 will be to prove that this process has independent increments. In order to obtain
that it is a Gaussian process, it is then sufficient to know that it admits a version with a.s.
continuous sample functions (see e.g. [4], chap. VII, Theorem 7.1). This latter fact has been
proved independently by L. Zsido ([26]):
Theorem (Zsido). Assume that T is ergodic and that σf is continuous. If the spectral process
(ft) has independent increments, then it is Gaussian.

For a countable abelian group action (Tg)g∈G we want to construct a process with similar
properties.

We can assume that K = suppσf is totally disconnected. Then K is homeomorphic to a
compact set L of [0, 1]. We can furthermore assume that L contains the endpoints 0 and 1.
Choose a homeomorphism γ from L onto K and let
(1) ft = π

γ
(
[0,t)∩L

)f (t ∈ [0, 1]).

Lemma 2. Assume that the action (Tg) is ergodic, that σf is continuous with compact support
K homeomorphic to L ∈ [0, 1], and let (ft) be defined by (1). Then, for every t ∈ (0, 1), the
spectral measures σft and σf1−ft are concentrated on disjoint open sets of K. Moreover, if this
process has independent increments, then it admits a version with almost surely continuous
sample functions and thus it is Gaussian.
Proof. The first assertion is immediate from the facts that

f1 − ft = π
γ
(
[t,1]∩L

)f = π
γ
(
(t,1]∩L

)f
since σf is continuous, and that γ

(
[0, t) ∩ L

)
and γ

(
(t, 1] ∩ L

)
are disjoint open sets of K.
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For the second assertion, we proceed by slight modifications of Zsido’s proof [26]. By
the same classical argument of probability theory (see [4]), (ft) has a version whose sample
functions t 7→ (ft(x)) are a.e. right continuous with left–limits (càdlàg) and thus have a jump
∆ft(x) at every t ∈ [0, 1]. Since the complement of L consists of countably many open intervals
(t′n, t

′′
n), we can moreover let ft(x) = ft′n(x) everywhere on each of these intervals, so that the

sample functions are continuous on [0, 1] \ L.
The main step is to show that, given g ∈ G, there is a set F of full measure in X such that

for every x ∈ F

(2) ∆ft(Tgx) = ⟨γ(t), g⟩∆ft(x) for every t ∈ L

Let η > 0. Since the map t 7→ ⟨γ(t), g⟩ is continuous on L, we can find a finite subdivision
t0 = 0 < t1 < · · · < tk = 1 of points in L such that |⟨γ(t), g⟩ − ⟨γ(tj), g⟩| < η on each
[tj−1, tj ]∩L. Let then fj = ftj − ftj−1 = πγ([tj−1,tj)∩L)f , (1 ≤ j ≤ k). Since Tg corresponds in
the spectral representation to the multiplication by ⟨·, g⟩, it follows

∥fj ◦ Tg − ⟨γ(tj), g⟩fj∥2 ≤ η ∥fj∥2,

hence the set N ′
j of all x ∈ X where

|fj(Tgx)− ⟨γ(tj), g⟩fj(x)| ≥ η1/2

has measure ≤ η ∥fj∥2.
Moreover, the set N ′′

j of all x where |fj(x)| ≥ η−1/2 also has measure ≤ η ∥fj∥2 and outside
N ′′
j we have, for all t ∈ [tj−1, tj ],

|⟨γ(tj), g⟩fj(x)− ⟨γ(t), g⟩fj(x)| < η1/2.

Let Nη be the union of all N ′
j and N ′′

j (1 ≤ j ≤ k). Since (ft) has orthogonal increments,

µ(Nη) ≤ 2η

k∑
j=1

∥fj∥22 = 2η ∥f∥22,

and, for each x /∈ Nη, we have for every t ∈ L, if t ∈ [tj−1, tj ] ∩ L,

(3) |fj(Tgx)− ⟨γ(t), g⟩fj(x)| < 2η1/2.

Let (ηn) be a sequence of positive reals converging to 0 and let F be the set of x ∈ X where the
sample functions are càdlàg and which belong to infinitely many sets [0, 1] \Nηn . Then F has
full measure and, if x ∈ F , (3) holds for an infinite subsequence of (ηn) with the corresponding
j = jn(t). As fjn(t) converges pointwise to the jump ∆ft, it follows that (2) holds for every
x ∈ F .

Now, there is a set of full measure on which (2) holds for all g in G. Then the modulus
|∆ft(x)| of the jump is invariant under the action of G, for all t ∈ L. The rest of the proof
is exactly as in [26]: by ergodicity, the number of jumps of modulus ≥ δ > 0 in any given
interval must be a.e. constant, whence non-zero jumps can only happen at fixed points of the
interval, and thus correspond to eigenfunctions in the closed invariant subspace generated by
f , which would contradict the hypothesis that σf is continuous. □
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2.2. A reduction. The following lemma expresses a criterion for f to be Gaussian, indepen-
dently of the construction of a spectral process.

Lemma 3. Assume that (Tg) is ergodic and σf continuous. In order that f be Gaussian, it
is sufficient that, for every disjoint open sets U and V in Γ, the factors generated by πUf and
πV f be independent.

Proof. Assume that this condition holds. By Lemma 2, it is enough to show that, for each
totally disconnected compact set K in Γ, the corresponding process (ft) has independent
increments. Now, for every t ∈ (0, 1), by the hypothesis and the first assertion of Lemma 2,
the factors generated by ft and f1−ft are independent. A priori, we would have to show that
every finite family (ftj − ftj−1) is independent but, as given any t ∈ (0, 1), all ft′ with t′ < t
belong to the closed invariant space Z(ft), the conclusion follows by induction. □

Of course, by regularity of σf , the same condition with disjoint compact sets instead of
open sets is also sufficient, and in fact it will hold for any pair of disjoint Borel sets. Notice
that the condition for symmetric Borel sets is also necessary in an invariant Gaussian space,
since two orthogonal real functions in a Gaussian space are independent.

3. Group property and Carleman’s condition

We will now prove Theorem 2. We need the following result of Foiaş [7], which states that
supports of spectral measures of locally compact group actions in ergodic theory satisfy a
“group property” (see also [8]):

Theorem (Foiaş). Let f1, f2 ∈ L2(µ). If f1f2 ∈ L2(µ) then
supp(σf1f2) ⊂ supp(f1) · supp(f2).

Lemma 4. Let f ∈ C(µ) and let U be an open set in Γ. The spectral type of T restricted to
the factor generated by πUf is concentrated on Gp(U ∩ supp(σf )).

Proof. Choose a sequence (φn) of functions in A(Γ), with compact support contained in U and
of norm ∥φn∥A(Γ) ≤ 1, which span a dense subspace of L2(σf |U ). The spectral isomorphism
yields that the φn(T )f span a dense subspace of Z(πUf) = πUZ(f).

Let then (fn)n≥1 be the sequence of all functions Reφn(T )f and Imφn(T )f , reordered. It
is a sequence of real functions generating a dense subspace of Z(πUf) + Z(πUf). For every
n ≥ 1, we have ∥fn∥p ≤ ∥f∥p for all p ≥ 2, fn belongs to C(µ) and has a spectral measure
σfn ≪ σf |U + σ̃f |U−1 , so that supp(σfn) ⊂ Gp(U ∩ supp(σf )).

Foiaş’ theorem applies to their finite products, which all belong to L2(µ), so the spectral
measure of any finite product of the fn is concentrated on Gp(U∩supp(σf )); since the spectral
measure of a sum is absolutely continuous with respect to the sum of the spectral measures
of its terms, this remains true by linearity for all polynomials in the functions fn.

The result will follow if we show that these polynomials are dense in L2
(
B(Z(πUf))

)
.

Moreover, as B(Z(πUf)) is the sub-σ-algebra generated by {fn}n≥1, the union of the subspaces
L2(B

(
{fj}1≤j≤n)

)
is dense in L2

(
B(Z(πUf))

)
. Thus, it is enough to show that for every given

n ≥ 1 the polynomials in f1,…, fn are dense in L2(B
(
{fj}1≤j≤n)

)
.

This is a classical result for the case of a single function satisfying Carleman’s condition,
and we just need to extend it. As in this case, we shall use quasi-analytic classes, for which
we refer to W. Rudin’s book [22], Chap. 19.
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Fix n ≥ 1 and let ν be the joint distribution of f1,…, fn, so that for any positive measurable
function h on Rn∫

Rn

h(t1, . . . , tn) dν(t1, . . . , tn) =

∫
X
h
(
f1(x), . . . , fn(x)

)
dµ(x).

Under the map h → h ◦ (f1, . . . , fn), L2(B
(
{fj}1≤j≤n)

)
is isomorphic to L2(ν), the fj corre-

sponding to the coordinate functions, so we have to show that the polynomials are dense in
L2(ν).

Let h be a function of L2(ν) orthogonal to all polynomials, and consider the Fourier trans-
form given on Rn by

Φ(s1, . . . , sn) =

∫
Rn

exp
(
i

n∑
j=1

sjtj
)
h(t1, . . . , tn) dν(t1, . . . , tn).

For every sequence k1, . . . , kn of natural integers,∫
Rn

|tk11 · · · tknn |2 dν(t1, . . . , tn) =
∫
X
|fk11 · · · fknn |2 dµ ≤

n∏
j=1

∥f2kjj ∥n ≤
n∏
j=1

∥f∥2kj2nkj
,

and ∫
Rn

|tk11 · · · tknn |h(t1, . . . , tn) dν(t1, . . . , tn) ≤
n∏
j=1

∥f∥kj2nkj · ∥h∥2.

Hence Φ is C∞. We denote by Dk1,...,knΦ the derivative ∂k1+···+knΦ/∂k1s1 · · · ∂knsn,

Dk1,...,knΦ(s1, . . . , sn) =

∫
Rn

n∏
j=1

(itj)
kj exp

(
i
n∑
j=1

sjtj
)
h(t1, . . . , tn) dν(t1, . . . , tn).

All these derivatives vanish at (0, . . . , 0) and we have have the bound

(4) |Dk1,...,knΦ(s1, . . . , sn)| ≤
n∏
j=1

∥f∥kj2nkj · ∥h∥2 for all s1, . . . , sn.

Given j (1 ≤ j ≤ n), for every choice of kℓ (ℓ > j) and sℓ (ℓ < j), we consider the one-variable
function

s→ D0,..., 0, kj+1,...,kn Φ(s1, . . . , sj−1, s, 0, . . . , 0),

and the sequence of its derivatives. By (4), the L∞ norm of its k-th derivative is bounded by( n∏
ℓ=j+1

∥f∥kℓ2nkℓ∥h∥2
)
·Mk

where Mk = ∥f∥k2nk, which means, according to the definition in [22], that these functions
belong to the class C{Mk}.

Now, by standard application of the Hölder inequality, the sequence (∥f∥p) is non-decreasing
and (∥f∥pp) is logarithmically convex. Logarithmic convexity is inherited by the arithmetic
subsequence (∥f∥2nk2nk) and then by (∥f∥k2nk), and the assumption that f belongs to C(µ)
together with the monotony of (∥f∥p) implies that

∞∑
k=1

(1/Mk)
1/k =

∞∑
k=1

1/∥f∥2nk = +∞.
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It follows from the Denjoy-Carleman Theorem that the class C{Mk} is quasi-analytic, and
thus that if one of these functions vanishes at 0 together with all its derivatives then it is
identically 0.

We conclude by an easy induction. For j = 1, given any k2,…, kn, all the functions
s → Dk, k2,...,kn Φ(s, 0, . . . , 0) for k ≥ 0 vanish at 0, whence D0, k2,...,kn Φ(s1, 0, . . . , 0) = 0 for
all s1 and all k2,…, kn. Then, for a given j ≥ 1, if we have that

D0,...,0, kj+1,...,kn Φ(s1, . . . , sj , 0, . . . , 0) = 0 for all s1 . . . , sj and all kj+1, . . . , kn,

we get similarly that all functions s→ D0,...,0, kj+2,...,kn Φ(s1, . . . , sj , s, 0, . . . , 0) are identically
0 and the induction hypothesis remains true for j + 1 instead of j.

Finally, Φ itself is identically 0 and this implies h = 0 ν-a.e. So, the null function is the
only function in L2(ν) orthogonal to all polynomials, which proves that polynomials are dense
in L2(ν), and the proof is complete.

□

Proof of Theorem 2. Assume that T is ergodic, let f be a non-zero function in C(µ) whose
spectral measure is continuous and concentrated on an independent compact set, and let U
and V be two disjoint open sets in Γ. By Lemma 4, the spectral types of T on the factors
generated by π|Uf and π|V f are concentrated on Gp(U ∩ supp(σf )) and Gp(V ∩ supp(σf ))
respectively. Since supp(σf ) is independent these groups have no other common element than
1. So, these factors are spectrally disjoint and a fortiori independent. The conclusion follows
then from Lemma 3. □

4. The spectral projector on a Helson set

To prove Theorem 3 we need to approximate the indicator function of a compact Helson
set by functions in A(Γ) (here, we release the assumption that Γ itself is compact). The main
tool is Drury’s lemma, which was used to solve the problem of the union of two Sidon sets
[6], and that of the union of two Helson sets by N. Varopoulos [24], [25]. We quote it in the
version given by C. Herz [10] with a more convenient estimate of the norm of the functions
obtained in A(Γ).

Definition. Let, for 0 < ε ≤ 1,
ω(ε) = sup

n≥1
ωn(ε),

where, denoting by En the canonical basis of Zn,
ωn(ε) = inf

ψ∈A(Zn)
{∥ψ∥A(Zn) : ψ|En = 1, |ψ| ≤ ε on Zn \ En}.

Theorem (Drury, Varopoulos, Herz). Let K be a compact Helson–α set of Γ. For each closed
set F of Γ disjoint from K, for every ε ∈ (0, 1] and every β < α2, there exists a function φ in
A(Γ) such that

φ = 1 on K, |φ| ≤ ε on F, and ∥φ∥A(Γ) ≤ β−1ω(βε)

Remark. This is essentially Theorem 2 of [10], except that it only states that there exists
a function ω : (0, 1] → [1,+∞) with that property. C. Herz defines ω later on (after the
statement of Proposition 1), as above, and he shows that it is suitable for the theorem.
Besides the Helson constant is inverted there.
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However, the estimates of ω(ε) given in [10] do not seem sufficient to show Theorem 3. A
little later, in a paper [17] on a slightly different problem, J.-F. Méla gave indirectly a nearly
optimal bound.

Theorem (Méla). For all ε in (0, 1/2]

ω(ε) ≤ 2| log ε|+ 6.

Proof. As this result is not explicitly stated in [17], we explain briefly how to deduce it. Fix
an arbitrary integer n ≥ 1, and consider the construction in section 7 when the group G is
Tn and its dual is Zn. The measures noted νs in [17] are then the finite Riesz products on
Tn×T admitting as density with respect to the Lebesgue measure the positive trigonometric
polynomials

Qs(z1, . . . , zn, z) =

n∏
j=1

(
1 + s(zjz + z̄j z̄)

)
, s ∈ (0, 1/2],

where ∥Qs∥L1(Tn+1) = 1 for all s.
For s ∈ (0, 1/2], the measure µs on Tn is then defined by µ̂s(k1, . . . , kn) = ν̂s(k1, . . . , kn, 1).

It admits as density the factor Ps of z̄ in the expansion of Qs. On the canonical basis, its
coefficients are all equal to s, all its other non-zero coefficients are odd powers s2k+1 of s with
k ≥ 1, and we still have ∥Ps∥L1(Tn) ≤ 1.

Now, the main idea is to construct, given ε > 0, a measure σ on (0, 1/2] of norm as small
as possible with

∫
s dσ = 1 and |

∫
s2k+1dσ| ≤ ε for all k ≥ 1. This is achieved by Lemma 3

of [17], where J.-F. Méla shows that we can obtain ∥σ∥ ≤ 2| log ε|+ 6 (taking a = log 2− 1/2
in the bound given in [17]).

Then, integrating Ps with respect to σ, we get a trigonometric polynomial P on Tn whose
Fourier transform ψ on Zn satisfies ψ = 1 on En, |ψ| ≤ ε elsewhere, and

∥ψ∥A(Zn) = ∥P∥L1(Tn) ≤
∫

∥Ps∥L1(Tn) d|σ| ≤ 2| log ε|+ 6.

This proves that ωn(ε) ≤ 2| log ε|+ 6 for all n ≥ 1. □

Remark. We also mention that this result by J.-F. Méla was used for a different problem in
[13]. The bound is nearly optimal since it can similarly be deduced from [17] that ω(ε)/| log ε|
is bounded from below by a positive constant.

Proof of Theorem 3. Let a compact Helson set K ⊂ Γ be given and denote by σ be the
spectral type of T .

A remarkable fact in the results by S. Drury, N. Varopoulos and C. Herz is that the bound
for ∥φ∥A(Γ) does not depend on the set F disjoint from K. Thanks to Méla’s result, for
ε ≤ 1/2, this bound is less than c | log ε|, where c is a constant depending only on the Helson
constant of K.

If we fix ε ∈ (0, 1/2] and appply this to a non-decreasing sequence (Fn) of closed sets whose
union is Γ \K, we get a sequence (φn,ε) of functions with A(Γ) norms ≤ c| log ε|, hence also
bounded in L∞(σ). By extracting a subsequence if needed, we may assume that it converges
to some function φε in the weak∗ topology of the duality (L1(σ), L∞(σ)). Then

φε = 1 (σ|K)–a.e., |φε| ≤ ε (σ|Γ\K)–a.e.,
and the operator φε(T ) on L2(µ) is the weak limit of the sequence (φn,ε(T )).
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For 2 ≤ p ≤ +∞, as each φn,ε(T ) maps Lp(µ) into itself with operator norm ≤ c | log ε|, we
still have that φε(T ) maps Lp(µ) into itself, and
(5) ∥φε(T )∥L(Lp(µ)) ≤ c | log ε|.

Let (εk) be a decreasing and summable sequence in (0, 1/2]. As |1K −φεk | ≤ εk σ–a.e., we
may write

1K = φε1 +
+∞∑
k=1

(φεk+1
− φεk) σ–a.e.,

where the series converges in the L∞(σ) norm, and the corresponding series

(6) φε1(T ) +

+∞∑
k=1

(φεk+1
(T )− φεk(T ))

converges towards πK in L(L2(µ)).
Moreover, for all k ≥ 1, as |φεk+1

− φεk | ≤ 2εk σ–a.e.,
(7) ∥φεk+1

(T )− φεk(T )∥L(L2(µ)) = ∥φεk+1
− φεk∥L∞(σ) ≤ 2εk

and, by (5),
(8) ∥φεk+1

(T )− φεk(T )∥L(L∞(µ)) ≤ 2c | log εk+1|,

Now, for p ∈ [2,+∞), we have, by (7), (8) and the Riesz-Thorin interpolation theorem,

∥φεk+1
(T )− φεk(T )∥L(Lp(µ)) ≤ (2εk)

2/p(2c | log εk+1|)1−2/p.

With εk = e−kp, we get

∥φεk+1
(T )− φεk(T )∥L(Lp(µ)) ≤ 22/p e−2k · 2c(k + 1) p ≤ 4c(k + 1)e−2k p.

Il follows that the series (6) converges in L(Lp(µ)). As Lp(µ) ⊂ L2(µ), this proves that πK
maps Lp(µ) into itself, and that

∥πK∥L(Lp(µ)) ≤ c p+ 4c
(+∞∑
k=1

(k + 1)e−2k
)
p ≤ Cp,

where C is a constant depending only on the Helson constant of K.
The last assertion of the theorem is an immediate consequence. □

Proof of Theorem 1. Assume again that G is discrete and Γ compact, and that T is ergodic.
Let f be a non-zero function in L2(µ) whose spectral measure is continuous and concentrated
on an independent Helson set K of Γ.

By theorem 3, πK maps L∞(µ) into C(µ) and thus there is a dense subspace of πK(L2(µ))
consisting of functions in C(µ). In case when K does not contain any eigenvalue of T , these
functions have continuous spectral mesures and by Theorem 2 therefore have a Gaussian
distribution. It then follows that every function in πK(L2(µ)) is Gaussian. Otherwise, as σf
is continous, we can choose a sequence (Kn) of closed subsets of Γ which do not contain any
eigenvalue such that σf (Γ \Kn) → 0. Then, each πKnf is Gaussian and it follows again that
f is Gaussian. □
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Proof of Corollary 1. In general, a subspace H of L2(µ) is Gaussian if every non–zero real
function in H has a Gaussian distribution. Under the assumptions of Theorem 1 or of
Theorem 2, every function h in Z(f) has a continuous spectral measure concentrated on
K = supp(σf ). If K is a Helson set, it follows directly from Theorem 1 that h has a Gaussian
distribution. If f ∈ C(µ), we can apply Theorem 2 to functions φ(T )f with φ ∈ A(Γ), which
all belong to C(µ), and the result follows since they are are dense in Z(f). □

5. Complements

5.1. Foiaş and Stratila measures and sets. We say that a positive continuous measure
σ on Γ is a FS measure if, whenever the measure–preserving action (Tg)g∈G on (X,B, µ) is
ergodic and f is a complex function in L2(µ) with σf = σ, then f is Gaussian, and that a
Borel subset K of Γ is a FS set if every positive continuous measure concentrated on K is a
FS measure. For symmetric sets or measures, these definitions match the definitions of [14]
and [15].

Recall that a compact subset K of Γ is a Kronecker set if every continuous function of
modulus one on K is a uniform limit of characters. By Lemma 1 (see also [14]), any positive
measure σ on Γ concentrated on a non-decreasing union of FS sets is a FS measure. It
follows that the Foiaş and Stratila theorem still holds for a weak Kronecker set in T, that
is a closed subset K such that every finite Borel measure σ on K is concentrated on a non-
decreasing union of Kronecker sets. In the same way, the assumption on σf in Theorem 1
can be weakened: it is sufficient that σf be continuous and concentrated on a non-decreasing
union of independent Helson sets.

Now, a weak Kronecker set is a Helson–1 set and conversely a Helson–1 set is the translate
of a weak Kronecker set ([16], Chap. XIII). Moreover a weak Kronecker set is independent
(in the strong sense). So, Theorem 1 extends the Foiaş and Stratila theorem, and the actual
extension consists in the case of Helson–α sets with 0 < α < 1.

Let us also recall the following result of [14] and [15] for measures on T, which shows that
in this case σf need not be concentrated on an independent set:

Proposition. (1) If σ is a FS measure and 0 < τ ≪ σ, then τ is a FS measure.
(2) Assume that σ1 and σ2 are mutually singular symmetric FS measures. Then σ1 + σ2 is a
FS measure if and only if σ2 is singular with respect to each translate of σ1.

Remark. The only difficult point in this proposition is the “if” part of (2) ([15] Corollary 10):
it is easy to see that σ1+σ2 is FS iff Tσ1 and Tσ2 are disjoint but the result then requires the
characterization of disjointness for GAG automorphisms established in [15].

5.2. Mildly mixing example. The Helson hypothesis forbids mixing for the corresponding
Gaussian systems, since the upper bound supg∈G |σ̂(g)| in the definition of a Helson set can
be replaced by the upper limit at infinity (with a different constant, [16], Chap. I, Prop. 5.2).
When α = 1, it is easy to see that, given any positive Borel measure σ on K, there are non-
trivial sequences of characters converging to 1 in L1(σ) (i.e. K is a weak Dirichlet set), which,
in our context, implies rigidity: there are sequences (Tg) where g → ∞ converging to the
identity on the factor generated by f . In [14] non rigid examples of FS sets are constructed by
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considering independent unions of Kronecker sets, but then the Gaussian system is generated
by rigid factors.

On the contrary, Theorem 1 allows mild mixing – absence of non-trivial rigid factors –,
and even a spectral form of partial mixing (usual partial mixing never occurs for Gaussian
automorphisms which are not strongly mixing). Indeed, by a result of T. Körner [11] (see
[16], Chap. XIII, Theorem 3.14), for each α in (0, 1), there exists a finite positive measure σ,
concentrated on an independent Helson–α set K of T, with the property

for every Borel set B ⊂ T, lim sup |σ̂|B(n)| = ασ(B).

Then σ is continuous, since α < 1, and σ̃ shares the same property. It follows that, for
every positive integer k and every positive measure τ ≪ (σ + σ̃)∗k, lim sup |τ̂(n)| ≤ αk∥τ∥
(by density, it is sufficient to check this inequality for τ of the form σ1|B1 ∗ · · · ∗ σk|Bk

where
σj = σ or σj = σ̃ and Bj is a Borel subset of T, for 1 ≤ j ≤ k).

Consider the Gaussian automorphism Tσ+σ̃, with spectral measure σH = σ + σ̃ on its
Gaussian space H. The spectral type of T on the n−th chaos H(n) is the n−th convolution
power σ∗nH , and the spectral type on the factor B(H) is the convolution exponential exp(σH),
so we obtain:

Corollary 2. For every α in (0, 1) there exists a FS measure σ on T such that the Gaussian
automorphism T = Tσ+σ̃ satisfies the property: for every square integrable zero–mean function
h,

lim sup |(Tnh | h)| = lim sup |σ̂h(n)| ≤ α ∥h∥22,
and in particular T is mildly mixing.

5.3. Independence in measure. Henceforth, we restrict ourselves to the action of a single
automorphism, so G = Z, and Γ = T (identified with S1).

A natural question is whether the assumption of support independence in Theorem 1 can
be replaced by a notion of independence “in measure”. Such a property appears in the spectral
analysis of Gaussian automorphisms. If σ is a continuous symmetric measure on T, then Tσ
has simple spectrum iff the following condition holds:

For all n ≥ 1, there exists a set of full σ⊗n–measure on which the product map
(z1, . . . , zn) → z1 · · · zn is one-to-one modulo permutations of coordinates.

(9)

Indeed, this is equivalent to saying that for every n ≥ 1 the cartesian power T⊗n
σ restricted to

the sub-σ-algebra of consisting of sets invariant under permutations of coordinates has simple
spectrum, hence that Tσ restricted to the n-th chaos has simple spectrum, and it also implies
that the convolution powers of σ are mutually singular (see e.g. [12]), i.e. that the chaos are
spectrally disjoint.

In [1], O. Ageev proved property (9) for the reduced spectral type (i.e. the spectral type
restricted to zero-mean functions) of a class of rank one transformations, including the classical
Chacon transformation, and it is clear that not all zero-mean functions in L2(µ) can be
Gaussian. So, Theorem 1 fails on the only assumptions that T be ergodic and σf be a
continuous measure satisfying (9).

In the other direction, Theorem 1 implies that the spectral type of the Chacon transfor-
mation cannot be concentrated on an independent Helson set. But we don’t know if it is
concentrated on an independent set, and we leave open the question whether Theorem 1 is
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valid if we only assume that σf is continuous and concentrated on an independent set. We
do not know either if the result holds under the assumption that σf is continuous, satisfies
(9) and is concentrated on a Helson set.

5.4. Poisson suspensions. Poisson suspensions are particularly interesting in our context,
because they appear together with Gaussians systems in the theory of processes with inde-
pendent increments and their spectral properties are similar. We recall briefly results already
discussed by E. Roy in his article [20], to which we refer for a detailed exposition (see also
[5]).

Let T be a measure-preserving automorphism of a standard space (X,B, µ) where µ is
σ-finite and infinite. Suppose that there is no invariant set E ∈ B with 0 < µ(E) < +∞.
This is equivalent to saying that its spectral type σ, which can be assumed to be symmetric,
is continuous. Then its Poisson suspension T∗ is ergodic and spectrally isomorphic to the
Gaussian automorphism Tσ.

More precisely, its L2-space has a similar decomposition in an orthogonal sum ⊕n≥0H
(n) of

chaos where, up to a normalizing constant, H(n) is isometric to the tensor product L2(µ)⊗n

restricted to functions invariant under coordinate permutations, the action of T∗ on H(n)

being conjugate to T⊗n and thus admitting the convolution power σ∗n as spectral type. The
spectral isomorphism with Tσ sends each chaos H(n) of the suspension onto the corresponding
chaos of the Gaussian system.

Poisson suspensions may have simple spectrum. Ageev’s proof can be extended to some in-
finite measure preserving transformations obtained by cutting and stacking, and such systems
never have invariant sets of finite positive measure. In [3], A. Danilenko and V. Ryzhikov
construct examples where moreover the Poisson suspension is mixing.

We thus obtain Poisson suspensions T∗ with simple spectrum whose spectral type restricted
to the chaos H(1) is the spectral type σ of T . However, E. Roy proves a disjointness prop-
erty between Gaussian systems and Poisson suspensions ([20], Prop. 4.11). In particular no
function from the chaos H(1) can have a Gaussian distribution, so σ cannot be a FS measure.

More generally the spectral type of a σ-finite measure preserving automorphism T must
be singular to every positive FS measure whenever there is no invariant set E ∈ B with
0 < µ(E) < +∞ ([20], Theorem 4.13). We have the following consequence:

Corollary 3. Let T be a measure-preserving automorphism of a space (X,B, µ) of σ-infinite
measure with no invariant set of non-zero finite measure, and let σ be its spectral type. Then
σ(K) = 0 for every independent Helson set K ⊂ T.

Remark. These latter results can easily be extended to actions of locally compact second
countable groups.
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