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This survey offers a unified up-to-date presentation of macroscopic models of traffic flow, pointing out their main characteristics and possible drawbacks. The presentation is completed by several pictures illustrating the models' features. Some open problems and future research directions are also given to inspire the reader.

Introduction

Macroscopic traffic flow models consist of partial differential equations derived from fluid dynamics to describe the spatio-temporal evolution of locally aggregated quantities such as the traffic density ρ and the mean velocity v. Starting from the fundamental assumption that the number of cars on a road segment is conserved, one easily recovers a mass conservation law in one space dimension, in the form [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF] ∂ t ρ + ∂ x q = 0, x ∈ R, t > 0, where ρ = ρ(t, x) ≥ 0 is number of vehicles per space unit and q = q(t, x) ≥ 0 is the flow, expressed as number of vehicles per time unit. The fundamental hydrodynamic relation q = ρv allows to rewrite (1) as

(2) , where Vmax = 100 km/h and Rmax = 150 veh/km, corresponding to the initial datum ρ 0 (x) = Rmaxχ([0.1, 0.6]) and describing queue dissolution at a traffic light located at x = 0.6 and turning to green at t = 0. Left: (t, x) plot. Right: density profile at t = 0.003 h. We can observe the upstream shock and the downstream rarefaction, which start interacting after t = 0.005 h.
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LWR model (3) allows to capture some basic features of traffic on road networks, such as congestion formation and propagation and queue dissolution, see Figure 2 for an example of solution to (3) consisting of an upstream shock interacting with a downstream rarefaction wave. Nevertheless, the assumed functional dependency of the average velocity on the traffic density, which holds at equilibrium, can be far from real behaviour in some situations. Indeed, it assumes that drivers can adjust instantaneously their velocities according to the densities they are experiencing, thus implying infinite acceleration of the vehicles. To overcome these limitations, second order models consist of an additional dynamical acceleration equation for v, thus resulting in 2 × 2 systems of balance laws, which capture traffic instabilities, capacity drop phenomena and scattered flow-density data, see e.g. [START_REF] Haut | A second order model of road junctions in fluid models of traffic networks[END_REF][START_REF] Seibold | Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models[END_REF]. The second order model proposed by Payne [START_REF] Payne | Models of freeway traffic and control[END_REF] and Whitham [START_REF] Whitham | Linear and nonlinear waves[END_REF] suffered of some drawbacks, such as the presence of negative velocities under certain circumtances [START_REF] Daganzo | Requiem for second-order fluid approximations of traffic flow[END_REF]. An alternative model was then proposed by Aw, Rascle [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF] and Zhang [START_REF] Zhang | A non-equilibrium traffic model devoid of gas-like behavior[END_REF], whose non-conservative formulation reads as

(4)    ∂ t ρ + ∂ x (ρv) = 0, ∂ t v + (v -ρp (ρ))∂ x v = v e (ρ) -v τ , x ∈ R, t > 0,
for some function p satisfying p(ρ) > 0, p (ρ) > 0 and 2p (ρ) + ρp (ρ) > 0 for ρ > 0. This pseudo-pressure accounts for drivers' anticipation of downstream density changes. The source term expresses the willing of drivers to adapt their speed to the equilibrium one, τ ≥ 0 being the relaxation time parameter. We observe that the conservative form of (4) writes ( 5)

   ∂ t ρ + ∂ x (ρv) = 0, ∂ t (ρ(v + p(ρ))) + ∂ x (ρv(v + p(ρ))) = ρ v e (ρ) -v τ , x ∈ R, t > 0,
see Figure 3 for the corresponding speed-density and flux-density fundamental diagrams. Figure 4 shows a solution corresponding to the homogeneous version of ( 5), where we have set the right-hand side to zero (letting τ → +∞). Here, we model the presence of more aggressive drivers willing to run faster, thus causing a congestion upstream the group of slower cars preceding them and resulting in a more complex dynamics than the one in Figure 2, which cannot be captured by the LWR model [START_REF] Haut | A second order model of road junctions in fluid models of traffic networks[END_REF].

ρ v 0 R max V max V min ρ ρv 0 R max
Several extensions of the above mentioned models are possible. First of all, model parameters can be space and/or time dependent, to describe heterogeneous road conditions and variable speed limits. Besides, multi-lane dynamics can be handled by systems of balance laws with suitable lane-changing terms [START_REF] Klar | A hierarchy of models for multilane vehicular traffic. I. Modeling[END_REF][START_REF] Colombo | Well posedness for multilane traffic models[END_REF][START_REF] Holden | Models for dense multilane vehicular traffic[END_REF]. Moreover, macroscopic models can be extended to describe traffic flow on road networks by introducing suitable coupling conditions at junction nodes, see e.g. [START_REF] Garavello | Models for vehicular traffic on networks[END_REF] for an overview. Also, non-local dependencies in the flux function have been proposed recently, aiming at modeling the reaction of drivers to downstream traffic conditions [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF][START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF]. These extensions will not be addressed in the present review and we invite the interested reader to refer to the corresponding literature.

Macroscopic traffic flow models

The principal macroscopic traffic models mentioned above can be cast in the following class of 2 × 2 hyperbolic systems of conservation laws, which is referred to as Generic Second Order traffic flow Models ). This situation describes queue dissolution at a traffic light located at x = 0.6 and turning to green at t = 0, with a group of more aggressive divers initially located behind slower ones, which causes a congestion formation behind the downstream group, where density almost reaches value 200. Left: (t, x) plot. Right: density profile at t = 0.001 h. We can observe the upstream shock and the downstream rarefaction, separated by an higher density region delimited by an upstream shock and a downstream contact discontinuity separating the two groups of drivers.

(GSOM) [START_REF] Lebacque | Generic second order traffic flow modelling[END_REF]:

(6) ∂ t ρ + ∂ x (ρv) = 0, ∂ t (ρw) + ∂ x (ρwv) = 0, x ∈ R, t > 0,
where the average speed of vehicles is a function of the density ρ = ρ(t, x) and a Lagrangian vehicle property w = w(t, x), namely v = V(ρ, w) for some speed function V satisfying the following hypotheses [START_REF] Fan | Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model[END_REF]:

V(ρ, w) ≥ 0, V(0, w) = w, (7a) 
2V ρ (ρ, w) + ρV ρρ (ρ, w) < 0 for w > 0, (7b)

V w (ρ, w) > 0, (7c) ∀w > 0 ∃ R(w) > 0 : V(R(w), w) = 0. (7d)
As in [START_REF] Fan | Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model[END_REF][START_REF] Chiarello | Micro-macro limit of a nonlocal generalized Aw-Rascle type model[END_REF], we observe that (7b) implies that Q(ρ, w) := ρV(ρ, w) is strictly concave and V ρ (ρ, w) < 0 for w > 0, if V is a C 2 function in ρ. For later use, we denote by ρ cr (w) ∈ ]0, R(w)[ the point of maximum of Q(ρ, w) and by Q max (w) = Q(ρ cr (w), w) the corresponding maximum. We also remark that in (7d) we can have R(w) = R max for all w > 0.

System (6) is strictly hyperbolic for ρ > 0, with eigenvalues

(8) λ 1 (ρ, w) = V(ρ, w) + ρV ρ (ρ, w), λ 2 (ρ, w) = V(ρ, w),
and corresponding eigenvectors

(9) r 1 (ρ, w) = -1 0 , r 2 (ρ, w) = V w (ρ, w) -V ρ (ρ, w) ,
with the first characteristic field being genuinely non-linear and the second linearly degenerate [19, Definition 5.2]. The associated Riemann invariants are

z 1 (ρ, w) = V(ρ, w), z 2 (ρ, w) = w.
Since shock and rarefaction curves of each family coincide, the system belongs to the Temple class [START_REF] Temple | Systems of conservation laws with invariant submanifolds[END_REF]. Notice that, setting V(ρ, w) = w -p(ρ) for a suitable "pressure" function p, system (6) corresponds to the Aw-Rascle-Zhang (ARZ) model [START_REF] Payne | Models of freeway traffic and control[END_REF]. We also remark that, taking w = w constant, we recover the classical Lighthill-Whitham-Richards (LWR) model ( 3) with v e (ρ) = V(ρ, w). We consider for [START_REF] Whitham | Linear and nonlinear waves[END_REF] an invariant domain of the form ( 10)

Ω := (ρ, w) ∈ R 2 : ρ ∈ [0, R(w max )], w ∈ [w min , w max ]
for some 0 < w min ≤ w max < +∞. Since V ρ (ρ, w) < 0 and V(0, w) = w, the range of v = V(ρ, w) is given by v ∈ [0, w] for any w ∈ [w min , w max ]. In particular, we have v = w in the vacuum. See Figure 5 for a representation of Ω in different coordinates. We recall that, for Temple class systems, general well-posedness results [START_REF] Baiti | The semigroup generated by a Temple class system with large data[END_REF][START_REF] Bianchini | Stability of L ∞ solutions for hyperbolic systems with coinciding shocks and rarefactions[END_REF][START_REF] Bressan | Stability of L ∞ solutions of Temple class systems[END_REF] (for initial data with possibly unbounded total variation) hold under the assumption of strict hyperbolicity. For system (6), we observe that

λ 1 (0, w) = V(0, w) = w = λ 2 (0, w),
showing that strict hyperbolicity is lost at vacuum. While existence of solutions can still be proved for data which are BV in the Riemann invariants [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF][START_REF] Godvik | Existence of solutions for the Aw-Rascle traffic flow model with vacuum[END_REF], uniqueness does not hold if vacuum is involved. Let us consider for example a Riemann-like initial datum of the form

(11) (ρ 0 , w 0 )(x) = (ρ L , w L ) if x < 0, (0, w R ) if x > 0, with ρ L > 0 and w L ≥ w R > 0 such that V(ρ L , w L ) < V(0, ρ R ).
One solution consists of a first family rarefaction wave followed by a contact discontinuity

(ρ 1 , w 1 )(t, x) =            (ρ L , w L ) if x < λ 1 (ρ L , w L )t, λ -1 1 (x/t) if λ 1 (ρ L , w L )t ≤ x < λ 1 (ρ M , w L )t, (ρ M , w L ) if λ 1 (ρ M , w L )t ≤ x < w R t, (0, w R ) if x ≥ w R t, where (ρ M , w L ) is an intermediate state satisfying V(ρ M , w L ) = w R .
A second one can be constructed as a first family rarefaction wave connecting the left state directly to the vacuum, followed by a vacuum wave (not visible, since it has no physical meaning), as proposed in [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF]:

(ρ 2 , w 2 )(t, x) =      (ρ L , w L ) if x < λ 1 (ρ L , w L )t, λ -1 1 (x/t) if λ 1 (ρ L , w L )t ≤ x < λ 1 (0, w L )t, (0, w L ) if x ≥ λ 1 (0, w L )t.
The two solutions are illustrated in Figure 6. Notice that they are both weak entropy solutions in the sense of Lax [START_REF] Lax | Hyperbolic systems of conservation laws[END_REF].

v w U R U L U M 0 w max w min w max w min ρ ρv U R = 0 U L U M R(w max ) R(w min ) Figure 6
. Two entropy admissible solutions to the Riemann problem ( 6)- [START_REF] Colombo | Well posedness for multilane traffic models[END_REF] in two different coordinate systems: (ρ 1 , w 1 ) is depicted in dotter red, (ρ 2 , w 2 ) in dashed blue.

The intrinsic instability at vacuum of second order models, which poses issues for their analytical and numerical treatment, has been addressed introducing the so called phase-transition models [START_REF] Colombo | Hyperbolic phase transitions in traffic flow[END_REF][START_REF] Goatin | The Aw-Rascle vehicular traffic flow model with phase transitions[END_REF]. The idea is to couple second order models describing the congested dynamics with the first order LWR equation ( 3) accounting for free flow conditions, by introducing a transition dynamics between free and congested flows. In particular, free flow and congested phases can be distinguished in model ( 6) by taking speed laws of the form v = min{V max , V(ρ, w)}, for some 0 < V max < w min as in [START_REF] Blandin | A general phase transition model for vehicular traffic[END_REF][START_REF] Colombo | A 2-phase traffic model based on a speed bound[END_REF], or

v = v e (ρ) if 0 ≤ ρ ≤ ρ f , V(ρ, w) if ρ f < ρ ≤ R max , for some ρ f ∈ ]0, R max [ such that V(ρ f , w) = v e (ρ f
) for all w ∈ [w min , w max ] to ensure continuity, as proposed by [START_REF] Fan | A collapsed generalized Aw-Rascle-Zhang model and its model accuracy[END_REF]. Such models turn out to be well posed for general BV data [START_REF] Colombo | Global well posedness of traffic flow models with phase transitions[END_REF].

Numerical approximations

The most widely used numerical scheme for traffic flow macroscopic simulations is the finite volume Godunov scheme [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF] in its Cell Transmission Model (CTM) version [START_REF] Daganzo | The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory[END_REF], where the fluxes across interfaces are given by the minimum of the sending capacity of the upstream cell and the receiving capacity at the downstream one.

Given a space step ∆x and a time step ∆t satisfying the CFL condition max

(ρ,w)∈Ω {|λ 1 (ρ, w)|, |λ 2 (ρ, w)|}∆t ≤ ∆x, let x j+1/2 =
j∆x, j ∈ Z, be the cells interfaces, and t n = n∆t, n ∈ N, the time mesh.

Denoting by U = (ρ, y) T = (ρ, ρw) T the vector of the conservative variables (where we set y = ρw), we construct a finite volume approximate solution of (6) of the form

U ∆x = (ρ ∆x , y ∆x ) T with ρ ∆x (t, x) = ρ n j and y ∆x (t, x) = y n j for (t, x) ∈ C n j = [t n , t n+1 [ ×[x j-1/2 , x j+1/2 [.
To this end, we approximate the initial data with piece-wise constant functions

ρ 0 j = 1 ∆x x j+1/2 x j-1/2 ρ 0 (x) dx, y 0 j = 1 ∆x x j+1/2
x j-1/2 y 0 (x) dx, ∀j ∈ Z, and we iterate in time according to the conservation formulas

ρ n+1 j = ρ n j - ∆t ∆x F ρ,n j+1/2 -F ρ,n j-1/2 , (12a) y n+1 j = y n j - ∆t ∆x F y,n j+1/2 -F y,n j-1/2 , (12b) 
where F ρ,n j+1/2 and F y,n j+1/2 are the the flow respectively of ρ and y at x = x j+1/2 in the time interval [t n , t n+1 [. Let us remark that, since the variable w is advected with ρv, we get

(13) F y,n j+1/2 = w n j F ρ,n j+1/2 .
in (12b). To compute F ρ,n j+1/2 , we define the corresponding demand and supply functions [START_REF] Lebacque | The Godunov scheme and what it means for first order traffic flow models[END_REF][START_REF] Lebacque | Second order traffic flow modeling: supply-demand analysis of the inhomogeneous Riemann problem and of boundary conditions[END_REF] as

D j = D(ρ j , w j ) = Q(ρ j , w j ) if ρ j ≤ ρ cr (w j ), Q max (w j ) if ρ j > ρ cr (w j ), S j+1 = S(ρ j+1 , w j+1 ; w j ) = Q max (w j ) if ρ j+1/2 ≤ ρ cr (w j ), Q(ρ j+1/2 , w j ) if ρ j+1/2 > ρ cr (w j ),
where ρ j+1/2 is the density of the intermediate state in the solution of the Riemann problem corresponding to U j and U j+1 :

ρ j+1/2 such that V(ρ j+1/2 , w j ) = V(ρ j+1 , w j+1 ) if V(ρ j+1 , w j+1 ) ≤ w j ; 0 if V(ρ j+1 , w j+1 ) > w j .
We can thus set ( 14)

F ρ,n j+1/2 = min D(ρ n j , w n j ), S(ρ n j+1 , w n j+1 ; w n j )
in [START_REF] Holden | Models for dense multilane vehicular traffic[END_REF], [START_REF] Garavello | Models for vehicular traffic on networks[END_REF]. See [START_REF] Fan | A collapsed generalized Aw-Rascle-Zhang model and its model accuracy[END_REF] for a physical interpretation of demand and supply functions, and the role of the intermediate state.

Remark 2.1. Taking w 0 j = w constant, the scheme ( 12)-( 14) boils down to the standard CTM approximation of the LWR model (3):

ρ n+1 j = ρ n j - ∆t ∆x F n j+1/2 -F n j-1/2 , with F n j+1/2 = min D(ρ n j ), S(ρ n j+1
) and

D(ρ j ) = Q(ρ j , w) if ρ j ≤ ρ cr ( w), Q max ( w) if ρ j > ρ cr ( w), S(ρ j+1 ) = Q max ( w) if ρ j+1 ≤ ρ cr ( w), Q(ρ j+1 , w) if ρ j+1 > ρ cr ( w).

Macroscopic models for heterogeneous traffic flows

The macroscopic models presented above are based on the assumption that vehicles' characteristics are homogeneous, and traffic flow is mainly impacted by drivers' behaviour (modeled by the Lagrangian marker w). In real situations, the vehicles present on a road can differ a lot by technical characteristics, like size and speed. Think for example of cars and trucks: beside their size, trucks generally run at lower speed with respect to cars (because of the imposed speed limits, but also due to their lower acceleration). Also, the foreseen deployment of autonomous vehicles on public roads is expected to impact the overall traffic conditions due to their different dynamics. For these reasons, real traffic flows can be better described accounting for possible vehicle heterogeneities.

Multi-class models

When the number of vehicles in each class is of the same order, it is still meaningful to represent each class dynamics at a macroscopic level. Denoting by ρ c , c = 1, . . . , N , the density of the c-th class, the mass conservation law holding for each class leads to the N × N system of equations ( 15)

∂ t ρ c + ∂ x (ρ c v c ) = 0, c = 1, . . . , N,
coupled by the speed functions v c , which model each class behaviour depending on the different class densities:

(16) v c = v c (ρ 1 , . . . , ρ N ).
Different coupling laws [START_REF] Lebacque | Generic second order traffic flow modelling[END_REF] are proposed in the literature, depending on the targeted application: interaction dynamics can vary greatly if we consider mixed flows of cars and trucks obeying lane discipline [START_REF] Wong | A multi-class traffic flow model-an extension of LWR model with heterogeneous drivers[END_REF][START_REF] Zhang | Kinematic wave traffic flow model for mixed traffic[END_REF][START_REF] Benzoni-Gavage | An n-populations model for traffic flow[END_REF][START_REF] Chanut | Macroscopic model and its numerical solution for two-flow mixed traffic with different speeds and lengths[END_REF], or a disordered flow of cars and two-wheelers without any lane rule [START_REF] Nair | A porous flow approach to modeling heterogeneous traffic in disordered systems[END_REF][START_REF] Fan | A heterogeneous multiclass traffic flow model with creeping[END_REF][START_REF] Gashaw | Modeling and analysis of mixed flow of cars and powered two wheelers[END_REF]. Indeed, in the latter case, we may observe creeping behaviour of cycles, stemming form the fact that jam densities (for which v c = 0) are different for cars and cycles, the latter still being able to advance when cars are stopped. Taking v c (ρ 1 , . . . , ρ N ) = V c max Ψ(r) as in [START_REF] Benzoni-Gavage | An n-populations model for traffic flow[END_REF], where r = N c=1 ρ c /R c max is the total (normalized) traffic density, V 1 max > . . . > V N max are the classes' maximal speeds and Ψ : [0, 1] → [0, 1] is a decreasing function satisfying Ψ(0) = 1 and Ψ(1) = 0, the multi-class model ( 15) is defined on the simplex

S := (ρ 1 , . . . , ρ N ) ∈ R N : N i=1 ρ i ≤ 1, ρ i ≥ 0 for i = 1, . . . , N . System ∂ t ρ c + ∂ x (V c max ρ c Ψ(r)) = 0, c = 1, . . . , N,
is hyperbolic, but lacks of strict hyperbolicity at umbilic points on the boundaries of S (with ρ i = 0 for some i = 1, . . . , N ), hindering its analytical study. Nevertheless, numerical simulations show that the model can display observed behaviour, like overtaking of slower vehicles by faster ones, see Figure 7. In ) This situation describes queue dissolution at a traffic light located at x = 0.6 and turning to green at t = 0, with a group of more aggressive divers initially located behind slower ones, which causes a congestion formation behind the downstream group, where density reaches higher levels than the initial ones. Left: (t, x) plot of the total density (ρ 1 + ρ 2 ). Right: total density profile at t = 0.001 h. We can observe the upstream shock and the downstream rarefaction, separated by an higher density region. The global behaviour is similar to the one obtained using the ARZ model in Figure 4.

this case, instead of using the multi-class equivalent of Godunov flux, as proposed by [START_REF] Fan | A heterogeneous multiclass traffic flow model with creeping[END_REF] (and which displays oscillations due to unbounded total variation), we propose the following extension of the upwind scheme first introduced by [START_REF] Hilliges | A phenomenological model for dynamic traffic flow in networks[END_REF][START_REF] Bürger | A family of numerical schemes for kinematic flows with discontinuous flux[END_REF] 

ρ c,n+1 j = ρ c,n 1,j - ∆t ∆x F c,n j+1/2 -F c,n j-1/2 , c = 1, . . . , N, with F c,n j+1/2 = V c max ρ c,n 1,j Ψ(r n j+1 ), c = 1, . . . , N.
Remark 3.1. The invariance of S for N > 2 and general existence results for N ≥ 2 are currently open problems.

Multi-scale models

If a class consists of a small number of vehicles, compared to the bulk traffic, it can be modeled microscopically by a system of Ordinary Differential Equations (ODEs) describing each vehicle's trajectory and coupled with the partial differential equations (PDEs) giving the macroscopic traffic evolution. Besides other approaches [START_REF] Lattanzio | Moving bottlenecks in car traffic flow: a PDE-ODE coupled model[END_REF][START_REF] Borsche | Mixed systems: ODEs -balance laws[END_REF], the capacity reduction due to the presence of a slow vehicle can be accounted by a moving flux inequality constraints, as proposed by [START_REF] Lebacque | Introducing buses into first-order macroscopic traffic flow models[END_REF][START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Garavello | A multiscale model for traffic regulation via autonomous vehicles[END_REF]. More precisely, equations ( 6) are coupled with the following laws

ξ(t) = min{V (t), v(t, ξ(t)+)}, (17a) lim x→ξ(t)± ρ(t, x)(v(t, x) -ξ(t)) ≤ F α ( ξ(t)), (17b) where V (t) ∈ W 1,1 loc (R + ; R + )
is the desired speed of the slow vehicle, and x = ξ(t) its position at time t > 0. The upper bound in (17b) accounts for the road capacity reduction due to the presence of the vehicle, which acts as a moving bottleneck: α ∈ ]0, 1[ is the reduction rate, and F α is the corresponding maximal flow attainable at the vehicle's position:

F α ( ξ(t)) := ρ 2 α V(ρ α , w α ),
where w α ∈ ]w min , w max [ satisfies R(w α ) = αR(w max ) and ρ α ∈ ]0, αR(w max )[ is the point of maximum of the relative flow function ψ(ρ) = ρ V(ρ, w α ) -ξ(t) , i.e.

V(ρ α , w α ) + ρ α V ρ (ρ α , w α ) = ξ(t).
Classical solutions of (6) remain admissible provided that the relative flux at x = ξ(t) does not exceed the upper bound F α ( ξ(t)). Otherwise, the enforcement of constraint (17b) causes the formation of a undercompressive shock, that is a non-classical jump discontinuity which satisfies the Rankine-Hugoniot conditions, thus guaranteeing conservation, but violates Lax entropy conditions. More precisely, let

U L = (ρ L , w L ), U R = (ρ R , w R )
∈ Ω and consider the Cauchy problem for ( 6)-( 17) corresponding to the initial data

(ρ, w)(0, x) = (ρ L , w L ) if x < 0, (ρ R , w R ) if x > 0, (18a) ξ(0) = 0, (18b)
and to the constant bottleneck speed ξ(t) = V for all t > 0. Let I(w L ) be the set

I(w L ) = {ρ ∈ [0, R(w max )] : ρV(ρ, w L ) = F α ( V ) + ρ V }.
Since the map ρ → ρ V(ρ, w L )) -V is strictly concave due to (7b), the set I(w L ) contains at most two elements. If I(w L ) = ∅, let ρ = ρ(w L ) and ρ = ρ(w L ) be the points defined by These are respectively the points with maximal and minimal density of the Lax curve of the first family passing through (ρ L , w L ) which satisfy the condition (17b) on the flux, see Figure 8. Let now R GSOM be the standard Riemann solver for [START_REF] Whitham | Linear and nonlinear waves[END_REF], see e.g. [START_REF] Fan | Data-fitted generic second order macroscopic traffic flow models[END_REF] for a detailed description, and let

ρ(w L ) = max I(w L ), ρ(w L ) = min I(w L ). 0 F α ( V ) ρ α ρ(w L ) ρ(w L ) ρ ρv R(w L ) R(w α )
ρ(U L , U R )(•) and w(U L , U R )(•)
be respectively the ρ and w components of R GSOM (U L , U R )(•), and let

f 1 (R GSOM (U L , U R )(•)) := ρ(U L , U R )(•) V (ρ(U L , U R )(•), w(U L , U R )(•))
be the first component of the flux function of the GSOM system.

An admissible Riemann solver R α GSOM for the constrained GSOM system ( 6)-( 17) can be constructed as follows.

1. If f 1 (R GSOM (U L , U R )( V )) > F α ( V ) + V ρ(U L , U R )( V ), then R α GSOM (U L , U R )(x/t) = R GSOM ((ρ L , w L ), (ρ, w L ))(x/t) if x < y(t), R GSOM ((ρ, w L ), (ρ R , w R ))(x/t) if x > y(t),
and y(t) = V t, see Figure 9.

0 ρ ρ ρ ρv R(w L ) U R U L U M U L U M U R (ρ, w L )(ρ, w L ) x t 0 Figure 9.
The constrained Riemann problem ( 6)-( 17), case 1. In this case ξ(t) = ξ(0) + V t, while the solution (ρ, w) is composed by two classical shocks of the first family separated by an undercompressive shock between (ρ, w L ) and (ρ, w L ), all followed by a contact discontinuity. The unconstrained solution would have consisted of a classical shock from U L to U M = (ρ M , w L ) with V(ρ M , w L ) = V(ρ R , w R ), followed by a contact discontinuity from U M to U R .

If

f 1 (R GSOM (U L , U R )( V )) ≤ F α ( V ) + V ρ(U L , U R )( V ) then R α GSOM (U L , U R )(x/t) = R GSOM (U L , U R )(x/t) and y(t) = min V , V ρ(U L , U R )( V ), w(U L , U R )( V ) t.
Remark that the solution R α GSOM is conservative for both the traffic density and the momentum. An alternative solution conserving only the number of vehicles is proposed in [START_REF] Villa | Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model[END_REF]. Moreover, in case 1., the solution given by R α GSOM does not satisfy the Lax entropy condition at the jump discontinuity between the left state (ρ, w L ) and the right state (ρ, w L ), because ρ < ρ and thus λ 1 (ρ, w L ) > λ 1 (ρ, w L ). Therefore, (ρ, w L ) and (ρ, w L ) are connected by a non-classical shock.

In the case w min = w max , the constrained GSOM system ( 6)-( 17) boils down to the constrained LWR model described in [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF], see Figure 11. In this case, existence and stability of solutions satisfying a suitable entropy condition has been proved in [START_REF] Garavello | A multiscale model for traffic regulation via autonomous vehicles[END_REF][START_REF] Liard | Well-posedness for scalar conservation laws with moving flux constraints[END_REF]. Also, the above construction can be extended to several, possibly interacting, moving bottlenecks, see [START_REF] Goatin | Interacting moving bottlenecks in traffic flow[END_REF].

Non-classical shocks arising at the bottleneck positions cannot be captured by classical (entropic) finite volume schemes, and they require a specific treatment, see e.g. [START_REF] Daganzo | On the numerical treatment of moving bottlenecks[END_REF][START_REF] Delle Monache | A numerical scheme for moving bottlenecks in traffic flow[END_REF][START_REF] Čičić | Front tracking transition system model with controlled moving bottlenecks and probabilistic traffic breakdowns[END_REF]. The conservative reconstruction strategy proposed in [START_REF] Villa | Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model[END_REF][START_REF] Chalons | A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem[END_REF] consists of using the classical Godunov scheme ( 12)-( 14) away from bottleneck locations. Let C n m the cell where the moving bottleneck is located at time t n , i.e. ξ n ξ(t n ) ∈ [x m-1/2 , x m+1/2 [, and we set U n j = (ρ n j , w n j ). If

f 1 (R GSOM (U n m-1 , U n m+1 )( V )) > F α ( V ) + V ρ(U n m-1 , U n m+1 )( V ),
a non-classical shock is expected to arise in cell C n m , and the left and right numerical fluxes F ρ,n m±1/2 and F y,n m±1/2 are to be recomputed as follows. We replace the (constant) cell values ρ n m and y n m by the functions

ρ n rec = ρ(w n m-1 )1 [x m-1/2 ,x ρ m [ + ρ(w n m-1 )1 [x ρ m ,x m+1/2 [ , y n rec = ŷ(w n m-1 )1 [x m-1/2 ,x y m [ + y(w n m-1 )1 [x y m ,x m+1/2 [ , where xρ m = x m-1/2 + h d ρ,n m and xy m = x m-1/2 + h d y,n m with (19) d ρ,n m = ρ n m -ρ(w n m-1 ) ρ(w n m-1 ) -ρ(w n m-1 ) ∈ [0, 1] and d y,n m = y n m -y(w n m-1 ) ŷ(w n m-1 ) -y(w n m-1 ) ∈ [0, 1],
to guarantee conservation in both the ρ and y components, see Figure 10. Above, we have set ŷ(w n m-1 ) = ρ(w n m-1 ) w n m-1 and y(w n m-1 ) = ρ(w n m-1 ) w n m-1 . Since the non-classical shock travels with speed V > 0, we denote ∆t ρ m+1/2 and ∆t y m+1/2 respectively the time needed by the ρ and the y component of the discontinuity to reach the interface x m+1/2 :

x m-1/2 x m+1/2 ρ x xρ m ρ n m-1 ρ(w n m-1 ) ρ n m ρ(w n m-1 ) ρ n m+1 x m-1/2 x m+1/2
∆t ρ m+1/2 = ∆x 1 -d ρ,n m V , ∆t y m+1/2 = ∆x 1 -d y,n m V .
Therefore, we replace the classical Godunov flux F ρ,n m+1/2 by

F ρ,n m+1/2 = 1 ∆t min(∆t ρ m+1/2 , ∆t)ρ(w n m-1 )V(ρ(w n m-1 ), w n m-1 )
+ max(∆t -∆t ρ m+1/2 , 0)ρ(w n m-1 )V(ρ(w n m-1 ), w n m-1 ) , and F y,n m+1/2 by F y,n m+1/2 = w n m-1 F ρ,n m+1/2 . Also, we replace F ρ,n m-1/2 by

F ρ,n m-1/2 = min D(ρ n m-1 , w n m-1 ), S(ρ(w n m-1 ), w n m-1 ; w n m-1 )
and F y,n m-1/2 by F y,n m-1/2 = w n m-1 F ρ,n m-1/2 . Figure 11 displays de solution computed with the above scheme in the case w min = w max (and hence w constant), where we have applied the reconstruction technique also to the classical shock. Observe that both jump discontinuities are sharply captured. 

Conclusions and perspectives

Macroscopic models can be used for estimation and prediction, but also as a basis to design control actions intended to optimize traffic flow on road networks, by improving throughput, reducing travel times and fuel consumption. Traditional optimization measures include variable message signs (such as traffic adaptive speed limits and dynamic routing), traffic-light control at intersections and ramp metering, or selective measures for specific vehicle classes (such as overtaking or circulation bans for trucks). We refer the reader to [START_REF] Treiber | Traffic Flow Dynamics[END_REF][START_REF] Ferrara | Freeway Traffic Modelling and Control[END_REF] for an overview of these approaches.

More recently, the expected deployment of Connected and Automated Vehicles (CAVs) has captured the attention of researchers as it offers the possibility to use CAVs as endogenous controls acting as moving bottlenecks, thus reducing traffic speed upstream. The benefits induced by CAV control have already been demonstrated experimentally [START_REF] Stern | Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[END_REF][START_REF] Stern | Quantifying air quality benefits resulting from few autonomous vehicles stabilizing traffic[END_REF] and make the object of model-based theoretical studies [START_REF] Čičić | Traffic regulation via individually controlled automated vehicles: a cell transmission model approach[END_REF][START_REF] Piacentini | Traffic control via moving bottleneck of coordinated vehicles[END_REF][START_REF] Čičić | Stop-and-go wave dissipation using accumulated controlled moving bottlenecks in multi-class CTM framework[END_REF][START_REF] Piacentini | Traffic control via platoons of intelligent vehicles for saving fuel consumption in freeway systems[END_REF] as well as machine learning investigations [START_REF] Vinitsky | Lagrangian control through Deep-RL: Applications to bottleneck decongestion[END_REF][START_REF] Kreidieh | Dissipating stop-and-go waves in closed and open networks via deep reinforcement learning[END_REF]. In particular, the multi-scale models presented in Section 3.2 can be used to quantify the gain that can be obtained by controlling the desired speed of small fleets of CAVs in mixed traffic flows. As an example, we illustrate in Figure 12 the result of total fuel consumption minimization algorithms using a centralized control of a small fleet of CAVs [START_REF] Daini | Centralized traffic control via small fleets of connected and automated vehicles[END_REF], supporting the perspective of regulating traffic flow by means of a small number of controlled vehicles. ) veh/h respectively. The cost function to be minimized is the Total Fuel Consumption (TFC) as described in [START_REF] Piacentini | Traffic control via moving bottleneck of coordinated vehicles[END_REF]. We can observe on the left the non controlled situation, in the middle the solution corresponding to the optimal constant speed values on 1 hour time interval, on the right the solution given a Model Predictive Control algorithm corresponding to 15 min optimization updated every 5 min. The corresponding gain in TFC is 5.6% and 3.2% respectively, but we can also observe a consistent reduction of the congestion (in red).

Figure 1 .

 1 Figure 1. Speed-density (left) and flow-density (right) fundamental diagrams corresponding to two common choices of the speed function. Top: ve(ρ) = Vmax 1 -ρ Rmax (Greenshields' fundamental diagram). Bottom: ve(ρ) = min Vmax, w Rmax ρ -1 (triangular fundamental diagram).

Figure 2 .

 2 Figure 2. Solution of (3) with ve(ρ) = Vmax 1 -ρ Rmax , where Vmax = 100 km/h and Rmax = 150 veh/km, corresponding

Figure 3 .

 3 Figure 3. Speed-density (left) and flow-density (right) fundamental diagrams for the ARZ model (5) corresponding to the choice p(ρ) = w -αρ, with w ∈ [V min , Vmax] and α > 0. We observe that the model allows for zero flux (and zero average speed) for densities belonging to the interval 1/α • [V min , Vmax], and not for a sigle (maximal) density value. This may model different types of more or less aggressive drivers, jamming at higher or lower densities when traffic is stopped.

Figure 4 .

 4 Figure 4. Solution of (5) with τ = +∞ and p(ρ) = ρ, corresponding to the initial datum ρ 0 (x) = 150χ([0.1, 0.6]) and v 0 (x) = 50χ([0.1, 0.4]) + 10χ(]0.4, 0.6]). This situation describes queue dissolution at a traffic light located at x = 0.6 and turning to green at t = 0, with a group of more aggressive divers initially located behind slower ones, which causes a congestion formation behind the downstream group, where density almost reaches value 200. Left: (t, x) plot. Right: density profile at t = 0.001 h. We can observe the upstream shock and the downstream rarefaction, separated by an higher density region delimited by an upstream shock and a downstream contact discontinuity separating the two groups of drivers.

Figure 5 .

 5 Figure 5. Invariant domain Ω (10) in the (v, w)-coordinates (left) and the (ρ, ρv)-coordinates (rigtht). Vacuum states are highlighted in red.

Figure 7 .

 7 Figure 7. Solution of (15) with V 1 max = 140 km/h, V 2 max = 100 km/h and R 1 max = R 2 max = 200 veh/km, corresponding to the initial data ρ 0 1 (x) = 0.75Rmaxχ([0.1, 0.4]) and ρ 0 2 (x) = 0.75Rmaxχ(]0.4, 0.6]) This situation describes queue dissolution at a traffic light located at x = 0.6 and turning to green at t = 0, with a group of more aggressive divers initially located behind slower ones, which causes a congestion formation behind the downstream group, where density reaches higher levels than the initial ones. Left: (t, x) plot of the total density (ρ 1 + ρ 2 ). Right: total density profile at t = 0.001 h. We can observe the upstream shock and the downstream rarefaction, separated by an higher density region. The global behaviour is similar to the one obtained using the ARZ model in Figure4.

Figure 8 .

 8 Figure 8. The definition of ρ(w L ) and ρ(w L ).

Figure 10 .

 10 Figure 10. Non-classical shock numerical reconstruction.

Figure 11 .

 11 Figure 11. Solution of (6)-(17), with V(ρ, w) = Vmax 1 -ρ Rmax , where Vmax = 100 km/h and Rmax = 150 veh/km, corresponding to the initial datum ρ 0 (x) = Rmaxχ([0.1, 0.6]) and describing queue dissolution at a traffic light located at x = 0.6 and turning to green at t = 0. The presence of a slower vehicle at ξ(0) = 0.6, running at V (t) = 30 km/h and reducing by half the capacity of the road (α = 0.5), hinders the traffic flow upstream of it (compare with Figure 2). Left: (t, x) density plot and slow vehicle trajectory (in blue). Right: density profile at t = 0.003 h. We can observe the nonclassical shock at the slow vehicle position.

Figure 12 .

 12 Figure 12. Traffic flow optimization on a 50 km road stretch by centralized control of a fleet of 10 CAVs initially equally distributed in the interval [2, 20]. Here we have used model (6)-(17), with V(ρ, w) = Vmax 1 -ρ Rmax , where Vmax = 140 km/h and Rmax = 400 veh/km, and inflow and outflow boundary conditions are given by f in (t) = 1400χ([0, 0.5]) veh/h and f out (t) = 700χ([0, 1]) veh/h respectively. The cost function to be minimized is the Total Fuel Consumption (TFC) as described in[START_REF] Piacentini | Traffic control via moving bottleneck of coordinated vehicles[END_REF]. We can observe on the left the non controlled situation, in the middle the solution corresponding to the optimal constant speed values on 1 hour time interval, on the right the solution given a Model Predictive Control algorithm corresponding to 15 min optimization updated every 5 min. The corresponding gain in TFC is 5.6% and 3.2% respectively, but we can also observe a consistent reduction of the congestion (in red).