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Abstract

This survey offers a unified up-to-date presentation of macroscopic models of traffic flow, pointing out their main
characteristics and possible drawbacks. The presentation is completed by several pictures illustrating the models’ features.
Some open problems and future research directions are also given to inspire the reader.
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1. Introduction

Macroscopic traffic flow models consist of partial differential equations derived from fluid dynamics
to describe the spatio-temporal evolution of locally aggregated quantities such as the traffic density ρ
and the mean velocity v. Starting from the fundamental assumption that the number of cars on a road
segment is conserved, one easily recovers a mass conservation law in one space dimension, in the form

(1) ∂tρ+ ∂xq = 0, x ∈ R, t > 0,

where ρ = ρ(t, x) ≥ 0 is number of vehicles per space unit and q = q(t, x) ≥ 0 is the flow, expressed as
number of vehicles per time unit. The fundamental hydrodynamic relation q = ρv allows to rewrite (1)
as

(2) ∂tρ+ ∂x(ρv) = 0, x ∈ R, t > 0,

where we assume homogeneous road conditions with ρ = ρ(t, x) ∈ [0, Rmax] and v = v(t, x) ∈ [0, Vmax],
Rmax and Vmax denoting respectively the maximal density and the maximal speed that can be attained
on the considered road.

To close equation (2), one needs to add information on the speed function v. In the mid 1950’s,
Lighthill, Whitham [1] and Richard [2] proposed a functional dependence on the density, assuming v =
ve(ρ), thus providing the first order LWR model

(3) ∂tρ+ ∂x(ρve(ρ)) = 0, x ∈ R, t > 0,

according to which the traffic density ρ solves a scalar conservation law. The function ve : [0, Rmax] →
[0, Vmax] is commonly assumed to be non-increasing, with ve(0) = Vmax and ve(Rmax) = 0, modeling the
fact that, when the road is empty, drivers can run at the maximal allowed speed, while they have to stop
at maximal (bumper-to-bumper) traffic density. Of course, different choices of the speed function lead to
different flux functions, see for example Figure 1, but qe(ρ) = ρve(ρ) is usually required to have a unique
point of maximum ρcr, referred to as the critical density, so that qe is increasing on [0, ρcr[ and decreasing
on ]ρcr, Rmax]: q′e(ρ)(ρcr − ρ) ≥ 0 for ρ ∈ [0, Rmax].
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Figure 1. Speed-density (left) and flow-density (right) fundamental diagrams corresponding to two common choices

of the speed function. Top: ve(ρ) = Vmax

(
1− ρ

Rmax

)
(Greenshields’ fundamental diagram). Bottom: ve(ρ) =

min

{
Vmax, w

(
Rmax

ρ
− 1

)}
(triangular fundamental diagram).

Figure 2. Solution of (3) with ve(ρ) = Vmax

(
1− ρ

Rmax

)
, where Vmax = 100 km/h and Rmax = 150 veh/km, corresponding

to the initial datum ρ0(x) = Rmaxχ([0.1, 0.6]) and describing queue dissolution at a traffic light located at x = 0.6 and
turning to green at t = 0. Left: (t, x) plot. Right: density profile at t = 0.003 h. We can observe the upstream shock and the
downstream rarefaction, which start interacting after t = 0.005 h.

LWR model (3) allows to capture some basic features of traffic on road networks, such as congestion
formation and propagation and queue dissolution, see Figure 2 for an example of solution to (3) con-
sisting of an upstream shock interacting with a downstream rarefaction wave. Nevertheless, the assumed
functional dependency of the average velocity on the traffic density, which holds at equilibrium, can be
far from real behaviour in some situations. Indeed, it assumes that drivers can adjust instantaneously
their velocities according to the densities they are experiencing, thus implying infinite acceleration of the
vehicles. To overcome these limitations, second order models consist of an additional dynamical acceler-
ation equation for v, thus resulting in 2 × 2 systems of balance laws, which capture traffic instabilities,
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capacity drop phenomena and scattered flow-density data, see e.g. [3,4]. The second order model proposed
by Payne [5] and Whitham [6] suffered of some drawbacks, such as the presence of negative velocities
under certain circumtances [7]. An alternative model was then proposed by Aw, Rascle [8] and Zhang [9],
whose non-conservative formulation reads as

(4)

∂tρ+ ∂x(ρv) = 0,

∂tv + (v − ρp′(ρ))∂xv =
ve(ρ)− v

τ
,

x ∈ R, t > 0,

for some function p satisfying p(ρ) > 0, p′(ρ) > 0 and 2p′(ρ) +ρp′′(ρ) > 0 for ρ > 0. This pseudo-pressure
accounts for drivers’ anticipation of downstream density changes. The source term expresses the willing
of drivers to adapt their speed to the equilibrium one, τ ≥ 0 being the relaxation time parameter.
We observe that the conservative form of (4) writes

(5)

∂tρ+ ∂x(ρv) = 0,

∂t(ρ(v + p(ρ))) + ∂x(ρv(v + p(ρ))) = ρ
ve(ρ)− v

τ
,

x ∈ R, t > 0,

see Figure 3 for the corresponding speed-density and flux-density fundamental diagrams. Figure 4 shows

ρ

v

0 Rmax

Vmax

Vmin

ρ

ρv

0 Rmax

Figure 3. Speed-density (left) and flow-density (right) fundamental diagrams for the ARZ model (5) corresponding to the
choice p(ρ) = w − αρ, with w ∈ [Vmin, Vmax] and α > 0. We observe that the model allows for zero flux (and zero average
speed) for densities belonging to the interval 1/α · [Vmin, Vmax], and not for a sigle (maximal) density value. This may model
different types of more or less aggressive drivers, jamming at higher or lower densities when traffic is stopped.

a solution corresponding to the homogeneous version of (5), where we have set the right-hand side to
zero (letting τ → +∞). Here, we model the presence of more aggressive drivers willing to run faster, thus
causing a congestion upstream the group of slower cars preceding them and resulting in a more complex
dynamics than the one in Figure 2, which cannot be captured by the LWR model (3).

Several extensions of the above mentioned models are possible. First of all, model parameters can
be space and/or time dependent, to describe heterogeneous road conditions and variable speed limits.
Besides, multi-lane dynamics can be handled by systems of balance laws with suitable lane-changing
terms [10–12]. Moreover, macroscopic models can be extended to describe traffic flow on road networks
by introducing suitable coupling conditions at junction nodes, see e.g. [13] for an overview. Also, non-local
dependencies in the flux function have been proposed recently, aiming at modeling the reaction of drivers
to downstream traffic conditions [14,15].
These extensions will not be addressed in the present review and we invite the interested reader to refer
to the corresponding literature.

2. Macroscopic traffic flow models

The principal macroscopic traffic models mentioned above can be cast in the following class of 2× 2
hyperbolic systems of conservation laws, which is referred to as Generic Second Order traffic flow Models
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Figure 4. Solution of (5) with τ = +∞ and p(ρ) = ρ, corresponding to the initial datum ρ0(x) = 150χ([0.1, 0.6]) and
v0(x) = 50χ([0.1, 0.4]) + 10χ(]0.4, 0.6]). This situation describes queue dissolution at a traffic light located at x = 0.6 and
turning to green at t = 0, with a group of more aggressive divers initially located behind slower ones, which causes a
congestion formation behind the downstream group, where density almost reaches value 200. Left: (t, x) plot. Right: density
profile at t = 0.001 h. We can observe the upstream shock and the downstream rarefaction, separated by an higher density
region delimited by an upstream shock and a downstream contact discontinuity separating the two groups of drivers.

(GSOM) [16]:

(6)

{
∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = 0,
x ∈ R, t > 0,

where the average speed of vehicles is a function of the density ρ = ρ(t, x) and a Lagrangian vehicle prop-
erty w = w(t, x), namely v = V(ρ, w) for some speed function V satisfying the following hypotheses [17]:

V(ρ, w) ≥ 0, V(0, w) = w,(7a)

2Vρ(ρ, w) + ρVρρ(ρ, w) < 0 for w > 0,(7b)

Vw(ρ, w) > 0,(7c)

∀w > 0 ∃ R(w) > 0 : V(R(w), w) = 0.(7d)

As in [17,18], we observe that (7b) implies thatQ(ρ, w) := ρV(ρ, w) is strictly concave and Vρ(ρ, w) < 0
for w > 0, if V is a C2 function in ρ. For later use, we denote by ρcr(w) ∈ ]0, R(w)[ the point of maximum
of Q(ρ, w) and by Qmax(w) = Q(ρcr(w), w) the corresponding maximum. We also remark that in (7d) we
can have R(w) = Rmax for all w > 0.

System (6) is strictly hyperbolic for ρ > 0, with eigenvalues

(8) λ1(ρ, w) = V(ρ, w) + ρVρ(ρ, w), λ2(ρ, w) = V(ρ, w),

and corresponding eigenvectors

(9) r1(ρ, w) =

(
−1
0

)
, r2(ρ, w) =

(
Vw(ρ, w)
−Vρ(ρ, w)

)
,

with the first characteristic field being genuinely non-linear and the second linearly degenerate [19, Defi-
nition 5.2]. The associated Riemann invariants are

z1(ρ, w) = V(ρ, w), z2(ρ, w) = w.
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Since shock and rarefaction curves of each family coincide, the system belongs to the Temple class [20].
Notice that, setting V(ρ, w) = w − p(ρ) for a suitable “pressure” function p, system (6) corresponds to
the Aw-Rascle-Zhang (ARZ) model (5). We also remark that, taking w = w̄ constant, we recover the
classical Lighthill-Whitham-Richards (LWR) model (3) with ve(ρ) = V(ρ, w̄).

We consider for (6) an invariant domain of the form

(10) Ω :=
{

(ρ, w) ∈ R2 : ρ ∈ [0, R(wmax)], w ∈ [wmin, wmax]
}

for some 0 < wmin ≤ wmax < +∞. Since Vρ(ρ, w) < 0 and V(0, w) = w, the range of v = V(ρ, w) is given
by v ∈ [0, w] for any w ∈ [wmin, wmax]. In particular, we have v = w in the vacuum. See Figure 5 for a
representation of Ω in different coordinates.

v

w

0 wmaxwmin

wmax

wmin

ρ

ρv

0 R(wmax)R(wmin)

Figure 5. Invariant domain Ω (10) in the (v, w)-coordinates (left) and the (ρ, ρv)-coordinates (rigtht). Vacuum states are
highlighted in red.

We recall that, for Temple class systems, general well-posedness results [21–23] (for initial data with
possibly unbounded total variation) hold under the assumption of strict hyperbolicity. For system (6),
we observe that

λ1(0, w) = V(0, w) = w = λ2(0, w),

showing that strict hyperbolicity is lost at vacuum. While existence of solutions can still be proved for
data which are BV in the Riemann invariants [24,25], uniqueness does not hold if vacuum is involved.
Let us consider for example a Riemann-like initial datum of the form

(11) (ρ0, w0)(x) =

{
(ρL, wL) if x < 0,

(0, wR) if x > 0,

with ρL > 0 and wL ≥ wR > 0 such that V(ρL, wL) < V(0, ρR). One solution consists of a first family
rarefaction wave followed by a contact discontinuity

(ρ1, w1)(t, x) =


(ρL, wL) if x < λ1(ρL, wL)t,

λ−1
1 (x/t) if λ1(ρL, wL)t ≤ x < λ1(ρM , wL)t,

(ρM , wL) if λ1(ρM , wL)t ≤ x < wRt,

(0, wR) if x ≥ wRt,

where (ρM , wL) is an intermediate state satisfying V(ρM , wL) = wR. A second one can be constructed
as a first family rarefaction wave connecting the left state directly to the vacuum, followed by a vacuum
wave (not visible, since it has no physical meaning), as proposed in [24]:

(ρ2, w2)(t, x) =


(ρL, wL) if x < λ1(ρL, wL)t,

λ−1
1 (x/t) if λ1(ρL, wL)t ≤ x < λ1(0, wL)t,

(0, wL) if x ≥ λ1(0, wL)t.
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The two solutions are illustrated in Figure 6. Notice that they are both weak entropy solutions in the
sense of Lax [26].

v

w

UR

UL UM

0 wmaxwmin

wmax

wmin

ρ

ρv

UR = 0

UL

UM

R(wmax)R(wmin)

Figure 6. Two entropy admissible solutions to the Riemann problem (6)-(11) in two different coordinate systems: (ρ1, w1)
is depicted in dotter red, (ρ2, w2) in dashed blue.

The intrinsic instability at vacuum of second order models, which poses issues for their analytical
and numerical treatment, has been addressed introducing the so called phase-transition models [27,28].
The idea is to couple second order models describing the congested dynamics with the first order LWR
equation (3) accounting for free flow conditions, by introducing a transition dynamics between free and
congested flows. In particular, free flow and congested phases can be distinguished in model (6) by taking
speed laws of the form

v = min{Vmax,V(ρ, w)},

for some 0 < Vmax < wmin as in [29,30], or

v =

{
ve(ρ) if 0 ≤ ρ ≤ ρf ,
V(ρ, w) if ρf < ρ ≤ Rmax,

for some ρf ∈ ]0, Rmax[ such that V(ρf , w) = ve(ρf ) for all w ∈ [wmin, wmax] to ensure continuity, as
proposed by [31]. Such models turn out to be well posed for general BV data [32].

2.1. Numerical approximations

The most widely used numerical scheme for traffic flow macroscopic simulations is the finite volume
Godunov scheme [33] in its Cell Transmission Model (CTM) version [34], where the fluxes across interfaces
are given by the minimum of the sending capacity of the upstream cell and the receiving capacity at the
downstream one.

Given a space step ∆x and a time step ∆t satisfying the CFL condition

max
(ρ,w)∈Ω

{|λ1(ρ, w)|, |λ2(ρ, w)|}∆t ≤ ∆x,

let xj+1/2 = j∆x, j ∈ Z, be the cells interfaces, and tn = n∆t, n ∈ N, the time mesh.

Denoting by U = (ρ, y)T = (ρ, ρw)T the vector of the conservative variables (where we set y = ρw), we
construct a finite volume approximate solution of (6) of the form U∆x = (ρ∆x, y∆x)T with ρ∆x(t, x) = ρnj
and y∆x(t, x) = ynj for (t, x) ∈ Cnj = [tn, tn+1[×[xj−1/2, xj+1/2[. To this end, we approximate the initial
data with piece-wise constant functions

ρ0
j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0(x) dx, y0
j =

1

∆x

∫ xj+1/2

xj−1/2

y0(x) dx, ∀j ∈ Z,

6
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and we iterate in time according to the conservation formulas

ρn+1
j = ρnj −

∆t

∆x

(
F ρ,nj+1/2 − F

ρ,n
j−1/2

)
,(12a)

yn+1
j = ynj −

∆t

∆x

(
F y,nj+1/2 − F

y,n
j−1/2

)
,(12b)

where F ρ,nj+1/2 and F y,nj+1/2 are the the flow respectively of ρ and y at x = xj+1/2 in the time interval

[tn, tn+1[. Let us remark that, since the variable w is advected with ρv, we get

(13) F y,nj+1/2 = wnj F
ρ,n
j+1/2.

in (12b). To compute F ρ,nj+1/2, we define the corresponding demand and supply functions [35,36] as

Dj = D(ρj , wj) =

{
Q(ρj , wj) if ρj ≤ ρcr(wj),
Qmax(wj) if ρj > ρcr(wj),

Sj+1 = S(ρj+1, wj+1;wj) =

{
Qmax(wj) if ρj+1/2 ≤ ρcr(wj),
Q(ρj+1/2, wj) if ρj+1/2 > ρcr(wj),

where ρj+1/2 is the density of the intermediate state in the solution of the Riemann problem corresponding
to Uj and Uj+1:

ρj+1/2 such that V(ρj+1/2, wj) = V(ρj+1, wj+1) if V(ρj+1, wj+1) ≤ wj ;
0 if V(ρj+1, wj+1) > wj .

We can thus set

(14) F ρ,nj+1/2 = min
{
D(ρnj , w

n
j ), S(ρnj+1, w

n
j+1;wnj )

}
in (12), (13). See [31] for a physical interpretation of demand and supply functions, and the role of the
intermediate state.

Remark 2.1. Taking w0
j = w̄ constant, the scheme (12)-(14) boils down to the standard CTM approxi-

mation of the LWR model (3):

ρn+1
j = ρnj −

∆t

∆x

(
Fnj+1/2 − F

n
j−1/2

)
,

with
Fnj+1/2 = min

{
D(ρnj ), S(ρnj+1)

}
and

D(ρj) =

{
Q(ρj , w̄) if ρj ≤ ρcr(w̄),

Qmax(w̄) if ρj > ρcr(w̄),
S(ρj+1) =

{
Qmax(w̄) if ρj+1 ≤ ρcr(w̄),

Q(ρj+1, w̄) if ρj+1 > ρcr(w̄).

3. Macroscopic models for heterogeneous traffic flows

The macroscopic models presented above are based on the assumption that vehicles’ characteristics
are homogeneous, and traffic flow is mainly impacted by drivers’ behaviour (modeled by the Lagrangian
marker w). In real situations, the vehicles present on a road can differ a lot by technical characteristics, like
size and speed. Think for example of cars and trucks: beside their size, trucks generally run at lower speed
with respect to cars (because of the imposed speed limits, but also due to their lower acceleration). Also,
the foreseen deployment of autonomous vehicles on public roads is expected to impact the overall traffic
conditions due to their different dynamics. For these reasons, real traffic flows can be better described
accounting for possible vehicle heterogeneities.
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3.1. Multi-class models

When the number of vehicles in each class is of the same order, it is still meaningful to represent each
class dynamics at a macroscopic level. Denoting by ρc, c = 1, . . . , N , the density of the c-th class, the
mass conservation law holding for each class leads to the N ×N system of equations

(15) ∂tρ
c + ∂x(ρcvc) = 0, c = 1, . . . , N,

coupled by the speed functions vc, which model each class behaviour depending on the different class
densities:

(16) vc = vc(ρ
1, . . . , ρN ).

Different coupling laws (16) are proposed in the literature, depending on the targeted application: interac-
tion dynamics can vary greatly if we consider mixed flows of cars and trucks obeying lane discipline [37–40],
or a disordered flow of cars and two-wheelers without any lane rule [41–43]. Indeed, in the latter case, we
may observe creeping behaviour of cycles, stemming form the fact that jam densities (for which vc = 0)
are different for cars and cycles, the latter still being able to advance when cars are stopped.

Taking vc(ρ1, . . . , ρ
N ) = V c

maxΨ(r) as in [39], where r =
∑N

c=1 ρ
c/Rcmax is the total (normalized) traffic

density, V 1
max > . . . > V N

max are the classes’ maximal speeds and Ψ : [0, 1]→ [0, 1] is a decreasing function
satisfying Ψ(0) = 1 and Ψ(1) = 0, the multi-class model (15) is defined on the simplex

S :=

{
(ρ1, . . . , ρ

N ) ∈ RN :

N∑
i=1

ρi ≤ 1, ρi ≥ 0 for i = 1, . . . , N

}
.

System
∂tρ

c + ∂x(V c
max ρ

cΨ(r)) = 0, c = 1, . . . , N,

is hyperbolic, but lacks of strict hyperbolicity at umbilic points on the boundaries of S (with ρi = 0 for
some i = 1, . . . , N), hindering its analytical study. Nevertheless, numerical simulations show that the
model can display observed behaviour, like overtaking of slower vehicles by faster ones, see Figure 7. In

Figure 7. Solution of (15) with V 1
max = 140 km/h, V 2

max = 100 km/h and R1
max = R2

max = 200 veh/km, corresponding to
the initial data ρ01(x) = 0.75Rmaxχ([0.1, 0.4]) and ρ02(x) = 0.75Rmaxχ(]0.4, 0.6]) This situation describes queue dissolution
at a traffic light located at x = 0.6 and turning to green at t = 0, with a group of more aggressive divers initially located
behind slower ones, which causes a congestion formation behind the downstream group, where density reaches higher levels
than the initial ones. Left: (t, x) plot of the total density (ρ1 +ρ2). Right: total density profile at t = 0.001 h. We can observe
the upstream shock and the downstream rarefaction, separated by an higher density region. The global behaviour is similar
to the one obtained using the ARZ model in Figure 4.

this case, instead of using the multi-class equivalent of Godunov flux, as proposed by [42] (and which

8
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displays oscillations due to unbounded total variation), we propose the following extension of the upwind
scheme first introduced by [44,45]

ρc,n+1
j = ρc,n1,j −

∆t

∆x

(
F c,nj+1/2 − F

c,n
j−1/2

)
, c = 1, . . . , N,

with
F c,nj+1/2 = V c

max ρ
c,n
1,j Ψ(rnj+1), c = 1, . . . , N.

Remark 3.1. The invariance of S for N > 2 and general existence results for N ≥ 2 are currently open
problems.

3.2. Multi-scale models

If a class consists of a small number of vehicles, compared to the bulk traffic, it can be modeled micro-
scopically by a system of Ordinary Differential Equations (ODEs) describing each vehicle’s trajectory and
coupled with the partial differential equations (PDEs) giving the macroscopic traffic evolution. Besides
other approaches [46,47], the capacity reduction due to the presence of a slow vehicle can be accounted
by a moving flux inequality constraints, as proposed by [48–50]. More precisely, equations (6) are coupled
with the following laws

ξ̇(t) = min{V (t), v(t, ξ(t)+)},(17a)

lim
x→ξ(t)±

(
ρ(t, x)(v(t, x)− ξ̇(t))

)
≤ Fα(ξ̇(t)),(17b)

where V (t) ∈ W1,1
loc(R+;R+) is the desired speed of the slow vehicle, and x = ξ(t) its position at time

t > 0. The upper bound in (17b) accounts for the road capacity reduction due to the presence of the
vehicle, which acts as a moving bottleneck: α ∈ ]0, 1[ is the reduction rate, and Fα is the corresponding
maximal flow attainable at the vehicle’s position:

Fα(ξ̇(t)) := ρ2
αV(ρα, wα),

where wα ∈ ]wmin, wmax[ satisfies R(wα) = αR(wmax) and ρα ∈ ]0, αR(wmax)[ is the point of maximum

of the relative flow function ψ(ρ) = ρ
(
V(ρ, wα)− ξ̇(t)

)
, i.e.

V(ρα, wα) + ραVρ(ρα, wα) = ξ̇(t).

Classical solutions of (6) remain admissible provided that the relative flux at x = ξ(t) does not exceed
the upper bound Fα(ξ̇(t)). Otherwise, the enforcement of constraint (17b) causes the formation of a
undercompressive shock, that is a non-classical jump discontinuity which satisfies the Rankine-Hugoniot
conditions, thus guaranteeing conservation, but violates Lax entropy conditions. More precisely, let UL =
(ρL, wL), UR = (ρR, wR) ∈ Ω and consider the Cauchy problem for (6)-(17) corresponding to the initial
data

(ρ, w)(0, x) =

{
(ρL, wL) if x < 0,

(ρR, wR) if x > 0,
(18a)

ξ(0) = 0,(18b)

and to the constant bottleneck speed ξ̇(t) = V̄ for all t > 0. Let I(wL) be the set

I(wL) = {ρ ∈ [0, R(wmax)] : ρV(ρ, wL) = Fα(V̄ ) + ρV̄ }.

Since the map ρ 7→ ρ
(
V(ρ, wL))− V̄

)
is strictly concave due to (7b), the set I(wL) contains at most two

elements. If I(wL) 6= ∅, let ρ̂ = ρ̂(wL) and ρ̌ = ρ̌(wL) be the points defined by

ρ̂(wL) = max I(wL), ρ̌(wL) = min I(wL).

9
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0

Fα(V̄ )

ρα ρ̂(wL)ρ̌(wL) ρ

ρv

R(wL)R(wα)

Figure 8. The definition of ρ̌(wL) and ρ̂(wL).

These are respectively the points with maximal and minimal density of the Lax curve of the first family
passing through (ρL, wL) which satisfy the condition (17b) on the flux, see Figure 8.
Let now RGSOM be the standard Riemann solver for (6), see e.g. [51] for a detailed description, and let

ρ̄(UL, UR)(·) and w̄(UL, UR)(·)

be respectively the ρ and w components of RGSOM (UL, UR)(·), and let

f1(RGSOM (UL, UR)(·)) := ρ̄(UL, UR)(·) V (ρ̄(UL, UR)(·), w̄(UL, UR)(·))

be the first component of the flux function of the GSOM system.
An admissible Riemann solver RαGSOM for the constrained GSOM system (6)-(17) can be constructed

as follows.

1. If f1(RGSOM (UL, UR)(V̄ )) > Fα(V̄ ) + V̄ ρ̄(UL, UR)(V̄ ), then

RαGSOM (UL, UR)(x/t) =

{
RGSOM ((ρL, wL), (ρ̂, wL))(x/t) if x < y(t),

RGSOM ((ρ̌, wL), (ρR, wR))(x/t) if x > y(t),

and y(t) = V̄ t, see Figure 9.

0 ρ̂ρ̌ ρ

ρv

R(wL)

UR

UL
UM

UL
UM

UR

(ρ̂, wL)(ρ̌, wL)

x

t

0

Figure 9. The constrained Riemann problem (6)-(17), case 1. In this case ξ(t) = ξ(0) + V̄ t, while the solution (ρ,w) is
composed by two classical shocks of the first family separated by an undercompressive shock between (ρ̂, wL) and (ρ̌, wL),
all followed by a contact discontinuity. The unconstrained solution would have consisted of a classical shock from UL to
UM = (ρM , wL) with V(ρM , wL) = V(ρR, wR), followed by a contact discontinuity from UM to UR.

2. If f1(RGSOM (UL, UR)(V̄ )) ≤ Fα(V̄ ) + V̄ ρ̄(UL, UR)(V̄ ) then

RαGSOM (UL, UR)(x/t) = RGSOM (UL, UR)(x/t)

and y(t) = min
{
V̄ ,V

(
ρ̄(UL, UR)(V̄ ), w̄(UL, UR)(V̄ )

)}
t.
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Remark that the solution RαGSOM is conservative for both the traffic density and the momentum. An
alternative solution conserving only the number of vehicles is proposed in [52]. Moreover, in case 1., the
solution given by RαGSOM does not satisfy the Lax entropy condition at the jump discontinuity between
the left state (ρ̂, wL) and the right state (ρ̌, wL), because ρ̌ < ρ̂ and thus λ1(ρ̌, wL) > λ1(ρ̂, wL). Therefore,
(ρ̂, wL) and (ρ̌, wL) are connected by a non-classical shock.

In the case wmin = wmax, the constrained GSOM system (6)-(17) boils down to the constrained LWR
model described in [49], see Figure 11. In this case, existence and stability of solutions satisfying a suitable
entropy condition has been proved in [50,53]. Also, the above construction can be extended to several,
possibly interacting, moving bottlenecks, see [54].

Non-classical shocks arising at the bottleneck positions cannot be captured by classical (entropic)
finite volume schemes, and they require a specific treatment, see e.g. [55–57]. The conservative recon-
struction strategy proposed in [52,58] consists of using the classical Godunov scheme (12)-(14) away
from bottleneck locations. Let Cnm the cell where the moving bottleneck is located at time tn, i.e.
ξn ' ξ(tn) ∈ [xm−1/2, xm+1/2[, and we set Unj = (ρnj , w

n
j ). If

f1(RGSOM (Unm−1, U
n
m+1)(V̄ )) > Fα(V̄ ) + V̄ ρ̄(Unm−1, U

n
m+1)(V̄ ),

a non-classical shock is expected to arise in cell Cnm, and the left and right numerical fluxes F ρ,nm±1/2 and

F y,nm±1/2 are to be recomputed as follows. We replace the (constant) cell values ρnm and ynm by the functions

ρnrec = ρ̂(wnm−1)1[xm−1/2,x̄
ρ
m[ + ρ̌(wnm−1)1[x̄ρm,xm+1/2[,

ynrec = ŷ(wnm−1)1[xm−1/2,x̄
y
m[ + y̌(wnm−1)1[x̄ym,xm+1/2[,

where

x̄ρm = xm−1/2 + h dρ,nm and x̄ym = xm−1/2 + h dy,nm

with

(19) dρ,nm =
ρnm − ρ̌(wnm−1)

ρ̂(wnm−1)− ρ̌(wnm−1)
∈ [0, 1] and dy,nm =

ynm − y̌(wnm−1)

ŷ(wnm−1)− y̌(wnm−1)
∈ [0, 1],

to guarantee conservation in both the ρ and y components, see Figure 10. Above, we have set ŷ(wnm−1) =
ρ̂(wnm−1)wnm−1 and y̌(wnm−1) = ρ̌(wnm−1)wnm−1. Since the non-classical shock travels with speed V̄ > 0,

xm−1/2 xm+1/2

ρ

xx̄ρm

ρnm−1
ρ̌(wnm−1)

ρnm

ρ̂(wnm−1)

ρnm+1

xm−1/2 xm+1/2

y

xx̄ym

ynm−1

y̌(wnm−1)

ynm

ŷ(wnm−1)

ynm+1

Figure 10. Non-classical shock numerical reconstruction.

we denote ∆tρm+1/2 and ∆tym+1/2 respectively the time needed by the ρ and the y component of the
discontinuity to reach the interface xm+1/2:

∆tρm+1/2 = ∆x
1− dρ,nm
V̄

, ∆tym+1/2 = ∆x
1− dy,nm
V̄

.
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Therefore, we replace the classical Godunov flux F ρ,nm+1/2 by

F̃ ρ,nm+1/2 =
1

∆t

[
min(∆tρm+1/2,∆t)ρ̌(wnm−1)V(ρ̌(wnm−1), wnm−1)

+ max(∆t−∆tρm+1/2, 0)ρ̂(wnm−1)V(ρ̂(wnm−1), wnm−1)
]
,

and F y,nm+1/2 by F̃ y,nm+1/2 = wnm−1 F̃
ρ,n
m+1/2. Also, we replace F ρ,nm−1/2 by

F̃ ρ,nm−1/2 = min
{
D(ρnm−1, w

n
m−1), S(ρ̂(wnm−1), wnm−1;wnm−1)

}
and F y,nm−1/2 by F̃ y,nm−1/2 = wnm−1 F̃

ρ,n
m−1/2.

Figure 11 displays de solution computed with the above scheme in the case wmin = wmax (and hence
w constant), where we have applied the reconstruction technique also to the classical shock. Observe that
both jump discontinuities are sharply captured.

Figure 11. Solution of (6)-(17), with V(ρ,w) = Vmax

(
1− ρ

Rmax

)
, where Vmax = 100 km/h and Rmax = 150 veh/km,

corresponding to the initial datum ρ0(x) = Rmaxχ([0.1, 0.6]) and describing queue dissolution at a traffic light located at
x = 0.6 and turning to green at t = 0. The presence of a slower vehicle at ξ(0) = 0.6, running at V (t) = 30 km/h and
reducing by half the capacity of the road (α = 0.5), hinders the traffic flow upstream of it (compare with Figure 2). Left:
(t, x) density plot and slow vehicle trajectory (in blue). Right: density profile at t = 0.003 h. We can observe the nonclassical
shock at the slow vehicle position.

4. Conclusions and perspectives

Macroscopic models can be used for estimation and prediction, but also as a basis to design control
actions intended to optimize traffic flow on road networks, by improving throughput, reducing travel times
and fuel consumption. Traditional optimization measures include variable message signs (such as traffic
adaptive speed limits and dynamic routing), traffic-light control at intersections and ramp metering, or
selective measures for specific vehicle classes (such as overtaking or circulation bans for trucks). We refer
the reader to [59,60] for an overview of these approaches.

More recently, the expected deployment of Connected and Automated Vehicles (CAVs) has captured
the attention of researchers as it offers the possibility to use CAVs as endogenous controls acting as moving
bottlenecks, thus reducing traffic speed upstream. The benefits induced by CAV control have already been
demonstrated experimentally [61,62] and make the object of model-based theoretical studies [63–66]
as well as machine learning investigations [67,68]. In particular, the multi-scale models presented in
Section 3.2 can be used to quantify the gain that can be obtained by controlling the desired speed of
small fleets of CAVs in mixed traffic flows. As an example, we illustrate in Figure 12 the result of total fuel
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consumption minimization algorithms using a centralized control of a small fleet of CAVs [69], supporting
the perspective of regulating traffic flow by means of a small number of controlled vehicles.

Figure 12. Traffic flow optimization on a 50 km road stretch by centralized control of a fleet of 10 CAVs initially equally

distributed in the interval [2, 20]. Here we have used model (6)-(17), with V(ρ,w) = Vmax

(
1− ρ

Rmax

)
, where Vmax = 140

km/h and Rmax = 400 veh/km, and inflow and outflow boundary conditions are given by fin(t) = 1400χ([0, 0.5]) veh/h
and fout(t) = 700χ([0, 1]) veh/h respectively. The cost function to be minimized is the Total Fuel Consumption (TFC) as
described in [64]. We can observe on the left the non controlled situation, in the middle the solution corresponding to the
optimal constant speed values on 1 hour time interval, on the right the solution given a Model Predictive Control algorithm
corresponding to 15 min optimization updated every 5 min. The corresponding gain in TFC is 5.6% and 3.2% respectively,
but we can also observe a consistent reduction of the congestion (in red).
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57. M. Čičić, I. Mikolášek, and K. H. Johansson, Front tracking transition system model with con-
trolled moving bottlenecks and probabilistic traffic breakdowns, IFAC-PapersOnLine, vol. 53, no. 2,
pp. 14990–14996, 2020. 21st IFAC World Congress.

58. C. Chalons, M. L. Delle Monache, and P. Goatin, A conservative scheme for non-classical solutions
to a strongly coupled PDE-ODE problem, Interfaces Free Bound., vol. 19, no. 4, pp. 553–570, 2017.

59. M. Treiber and A. Kesting, Traffic Flow Dynamics. Berlin Heidelberg: Springer-Verlag, 2013.

60. A. Ferrara, S. Sacone, and S. Siri, Freeway Traffic Modelling and Control. Berlin Heidelberg: Springer,

15

https://doi.org/10.1017/S0956792503005266
https://doi.org/10.1017/S0956792503005266
https://doi.org/10.1017/S0956792503005266
https://doi.org/10.1017/S0956792503005266
https://doi.org/10.1017/S0956792503005266
https://doi.org/10.1017/S0956792503005266
https://www.sciencedirect.com/science/article/pii/S1877042811010937
https://www.sciencedirect.com/science/article/pii/S1877042811010937
https://www.sciencedirect.com/science/article/pii/S1877042811010937
https://www.sciencedirect.com/science/article/pii/S1877042811010937
https://doi.org/10.1137/140977977
https://doi.org/10.1137/140977977
https://doi.org/10.1137/140977977
https://doi.org/10.1137/140977977
https://doi.org/10.1137/140977977
https://doi.org/10.1137/140977977
https://www.sciencedirect.com/science/article/pii/S0968090X18301505
https://www.sciencedirect.com/science/article/pii/S0968090X18301505
https://www.sciencedirect.com/science/article/pii/S0968090X18301505
https://www.sciencedirect.com/science/article/pii/S0968090X18301505
https://www.sciencedirect.com/science/article/pii/0191261595000189
https://www.sciencedirect.com/science/article/pii/0191261595000189
https://www.sciencedirect.com/science/article/pii/0191261595000189
https://www.sciencedirect.com/science/article/pii/0191261595000189
https://www.sciencedirect.com/science/article/pii/0191261595000189
https://www.sciencedirect.com/science/article/pii/0191261595000189
https://doi.org/10.1007/s10665-007-9148-4
https://doi.org/10.1007/s10665-007-9148-4
https://doi.org/10.1007/s10665-007-9148-4
https://doi.org/10.1007/s10665-007-9148-4
https://doi.org/10.1007/s10665-007-9148-4
https://doi.org/10.1016/j.jde.2011.08.051
https://doi.org/10.1016/j.jde.2011.08.051
https://doi.org/10.1016/j.jde.2011.08.051
https://doi.org/10.1016/j.jde.2011.08.051
https://doi.org/10.1016/j.jde.2011.08.051
https://doi.org/10.1016/j.jde.2011.08.051
https://doi.org/10.3141/1644-08
https://doi.org/10.3141/1644-08
https://doi.org/10.3141/1644-08
https://doi.org/10.3141/1644-08
https://doi.org/10.3141/1644-08
http://dx.doi.org/10.1016/j.jde.2014.07.014
http://dx.doi.org/10.1016/j.jde.2014.07.014
http://dx.doi.org/10.1016/j.jde.2014.07.014
http://dx.doi.org/10.1016/j.jde.2014.07.014
http://dx.doi.org/10.1016/j.jde.2014.07.014
https://doi.org/10.1016/j.jde.2020.04.031
https://doi.org/10.1016/j.jde.2020.04.031
https://doi.org/10.1016/j.jde.2020.04.031
https://doi.org/10.1016/j.jde.2020.04.031
https://doi.org/10.1016/j.jde.2020.04.031
https://doi.org/10.3934/dcdsb.2017202
https://doi.org/10.3934/dcdsb.2017202
https://doi.org/10.3934/dcdsb.2017202
https://doi.org/10.3934/dcdsb.2017202
https://doi.org/10.3934/dcdsb.2017202
https://doi.org/10.1137/18M1172211
https://doi.org/10.1137/18M1172211
https://doi.org/10.1137/18M1172211
https://doi.org/10.1137/18M1172211
https://doi.org/10.1137/18M1172211
https://doi.org/10.1007/s00574-016-0172-8
https://doi.org/10.1007/s00574-016-0172-8
https://doi.org/10.1007/s00574-016-0172-8
https://doi.org/10.1007/s00574-016-0172-8
https://doi.org/10.1007/s00574-016-0172-8
https://doi.org/10.1007/s00574-016-0172-8
https://www.sciencedirect.com/science/article/pii/S2405896320326288
https://www.sciencedirect.com/science/article/pii/S2405896320326288
https://www.sciencedirect.com/science/article/pii/S2405896320326288
https://www.sciencedirect.com/science/article/pii/S2405896320326288
https://www.sciencedirect.com/science/article/pii/S2405896320326288
https://doi.org/10.4171/IFB/392
https://doi.org/10.4171/IFB/392
https://doi.org/10.4171/IFB/392
https://doi.org/10.4171/IFB/392
https://doi.org/10.4171/IFB/392


P. Goatin

2018.

61. R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamilton,
R. Haulcy, H. Pohlmann, F. Wu, B. Piccoli, B. Seibold, J. Sprinkle, and D. B. Work, Dissipation
of stop-and-go waves via control of autonomous vehicles: Field experiments, Transportation Research
Part C: Emerging Technologies, vol. 89, pp. 205–221, 2018.

62. R. E. Stern, Y. Chen, M. Churchill, F. Wu, M. L. Delle Monache, B. Piccoli, B. Seibold, J. Sprinkle,
and D. B. Work, Quantifying air quality benefits resulting from few autonomous vehicles stabilizing
traffic, Transportation Research Part D: Transport and Environment, vol. 67, pp. 351–365, 2019.
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