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• A fast and versatile framework for static and dynamic clustering over sliding windows.
• Uses histogram models to represent clusters with arbitrary distributions.
• High degree of flexibility in selecting the clustering algorithm to apply.
• Efficient and high quality results are achieved by using Wasserstein distance-based two-sample statistical tests

to compare distributions.
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A B S T R A C T
In this article, we present an innovative clustering framework designed for large datasets and real-
time data streams which uses a sliding window and histogram model to address the challenge
of memory congestion while reducing computational complexity and improving cluster quality
for both static and dynamic clustering. The framework provides a simple way to characterize
the probability distribution of cluster distributions through histogram models, regardless of their
distribution type. This advantage allows for efficient use with various conventional clustering
algorithms. To facilitate effective clustering across windows, we use a statistical measure
that allows the comparison and merging of different clusters based on the calculation of the
Wasserstein distance between histograms.

1. Introduction
Machine learning [1] is a prominent field of research that focuses on learning patterns and relationships within

datasets to make intelligent predictions or analyses. It includes two main types of algorithms: supervised learning and
unsupervised learning. They are often referred to as clustering [2] and classification [3]. While both aim to separate and
group objects, there is a fundamental difference between them. In classification, the categories are predetermined and
objects are assigned to a specific category (called a label). The labels are therefore necessary to train a classification
model. In clustering, on the other hand, labels are not needed to train a clustering model; the goal is to group similar
objects based on some definition of distance or similarity. Depending on how the data is processed, clustering analysis
can be divided into two forms: conventional clustering and data stream clustering.

Conventional clustering algorithms [4, 5, 6] work on static datasets, that are fixed and remains the same throughout
the training. There are several broad categories, such as hierarchical-based, partition-based, graph-based, density-
based, model-based, and grid-based clustering. Hierarchical-based clustering iteratively divides the dataset into subsets
from top to bottom, or merges individual objects from bottom to top, forming a dendrogram; popular examples of this
type include BIRCH [7] and Agglomerative clustering [8]. Partition-based clustering aims to separate objects into K
groups by optimizing some criterion such as minimizing the total intra-cluster distance; KMeans [9] and KMedian
[10] are typical examples. Graph-based clustering, such as Spectral clustering [11], uses the concept of graphs to
represent data points and their relationships. Density-based clustering, such as OPTICS [12], DBSCAN [13], and
HDBSCAN [14], relies on notions of density within neighborhoods to determine clusters. Model-based clustering,
such as Gaussian Mixture [15], assumes that data points are derived from a combination of Gaussian distributions
with different parameters. Finally, grid-based clustering divides the data space into grids and groups data points within
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the same grid such as STING [16] and CLIQUE [17]. These clustering algorithms provide valuable insights and form
the basis for data analysis in various fields.

However, data stream clustering [18, 19, 20, 21] differs from conventional clustering. It operates on continuous data
streams, eliminating the need to wait for the entire dataset to be collected. This real-time nature allows it to dynamically
process incoming data points and adapt the clustering models to any changes in the data distribution over time. Many
data stream clustering approaches can be considered extensions or variations of conventional clustering, resulting in
different categories within the field. The first proposed data stream clustering STREAM [22] is of partition-based type.
This algorithm reads a data stream across fixed size batches or windows, applies KMedian clustering to each batch, and
merges the obtained centers into K medians to find final clusters. And few years later, the authors proposed an improved
version, STREAMLSEARCH [23], by adding local search techniques. CluStream [24], a well-known hierarchical and
partition-based approach, extends the CF tree structure of BIRCH. By using an online-offline algorithm with KMeans,
it effectively summarizes micro-clusters and preserves them at specific points in time within a pyramidal time frame.
In addition, density-based approaches have been proposed, such as DenStream [25], an extension of DBSCAN. These
types of algorithms have the ability to detect clusters of any shape without prior knowledge of the number of clusters,
and are capable of dealing with outliers. This can play an important role in real-world applications. Apart from these,
there are other types of data stream clustering, including grid-based approaches such as MR-Stream [26] and DGClust
[27], as well as model-based algorithms SWEM [28] and GCPSOM [29].

A wide variety of clustering algorithms exist for both static and dynamic datasets. However, no clustering algorithm
is universally perfect; each type of clustering algorithm has its advantages and disadvantages. For example, partition-
based algorithms have limitations: they require the number of clusters to be specified in advance and struggle with
outliers, but they work efficiently and can handle large datasets with relatively low time complexity. Meanwhile,
density-based clustering algorithms work on any kind of cluster distribution, automatically detect the number of
clusters, and handle outliers very well, but are slower and more difficult to parameterize. Therefore, the application or
choice of different algorithms is highly dependent on the specific requirements or needs of the task. In this article,
we present a fast, innovative clustering framework adapted to large datasets and data streams that operates over
sliding windows and uses histogram models to characterize cluster distributions. Histogram models provide simple
representations of clusters without requiring prior knowledge of their distribution. A major advantage of the proposed
framework is that it allows fast computational application of any clustering algorithms. To compare and merge different
clusters in different windows, we take advantage of the calculation of the Wasserstein distance between histograms [30],
facilitating effective cluster analysis and synthesis. A general scheme of the process is illustrated in Fig.1.
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Figure 1: Proposed approach

X. Qian et al.: Preprint submitted to Elsevier Page 2 of 30



Static and Dynamic Clustering using Histogram Models and Wasserstein Distance

The paper is organized as follows. In section 2, we provide a brief overview of the theoretical background, including
the construction of the histogram models, the computation of the similarities between distributions using Wasserstein
distance and the implementation of a two-sample hypothesis testing. In section 3, we delve into the details of the
approach, outlining the process of modeling clusters as histograms and the subsequent merging of different windows.
In section 4, we conduct experiments to compare the static and dynamic approaches to conventional clustering and
data stream clustering on both artificial and real datasets. Finally, in section 5, we summarize the results and discuss
potential perspectives for future research.

2. Background
In this section, we present the theoretical background on which our approach is based. In particular, an important

goal is to be able to compare the distributions of two clusters efficiently and with low computational cost in order
to determine whether they should be considered as different clusters or, on the contrary, should be merged. For this
purpose, we base our analysis on a representation of the distribution of each cluster as a set of histograms, and then
compare these distributions using a Wasserstein distance adapted to this representation. Finally, a specific two-sample
test is computed from this measure to assess the significance of the distance obtained.
2.1. Data distributions using histograms

Estimating probabilistic data distributions [31, 32, 33] is a fundamental part of data science and machine learning,
especially in unsupervised learning. Unraveling the distribution of data allows the discovery of hidden patterns in data
sets and is a powerful tool for analyzing large amounts of data in an unsupervised manner. In clustering applications
[4, 34], clusters are often assumed to be normally distributed [35] (i.e., have a multivariate Gaussian distribution) or
sometimes have a more complex distribution, such as gamma distributions [36]. All subsequent analysis is then based
on this assumption. These parametric approaches can provide good results, but they have limited applications when
it comes to representing clusters of arbitrary distributions, which is an important requirement for many real-world
scenarios. One possible solution is to model the distribution as a mixture of simple functions (usually Gaussian).
However, Gaussian mixture models [37] can be computationally expensive and slow to train, especially when the
number of mixture components is large. They are also sensitive to initialization, and choosing the number of mixture
components in the model is often challenging. Another solution, which we focus on in this paper, is to model the
cluster distributions using a set of histograms computed from the empirical distribution [38] of the data. Although this
representation can lead to a loss of fine variations of the underlying distribution depending on the number of bins, it
has the advantage of being independent of any assumptions and is fast and easy to compute. It also greatly simplifies
the computation of the Wasserstein distance [39].

The term histogram was first proposed by [40], who described a histogram as a series of rectangles of equal width
whose height could represent the number of values falling within the interval formed by their two edges. As mentioned
in [41], using histograms to represent data could be a concise and flexible case of symbolic or summarised data analysis
when faced with large amounts of data. In this case, the weight of each rectangle of the histogram is no longer the
number of observations, but the probability or proportion of values over a set of intervals, formally defined that
A histogram is a model for representing the empirical distribution of a continuous variable 𝑌 divided into a set of
contiguous 𝐼𝜙 intervals (bins) with associated 𝜋𝜙 weights. A histogram 𝐻 is thus represented by a set of Φ ordered
pairs (𝐼𝜙, 𝜋𝜙), where 𝜋𝜙 is a non-negative measure of a probability distribution on the domain of 𝑌 such that:

⎧

⎪

⎨

⎪

⎩

∑Φ
𝜙=1 𝜋𝜙 = 1 with 𝜋𝜙 ≥ 0

𝐼𝜙 ∩ 𝐼𝜙′ = ∅, 𝜙 ≠ 𝜙′
⋃

𝜙=1,...,Φ 𝐼𝜙 = [𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥]

There are two ways of displaying histograms. The first type allows each bin to have a fixed uniform length, but not
a uniform weight, expressed as : |𝐼𝜙| = 𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛

𝐻 . The second type allows each bin to have a fixed uniform weight, but
not a uniform length, expressed as : |𝜋𝜙| = 1

𝐻 . Fig.2 illustrates the difference.
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Figure 2: Two types of histogram representations which display a Gaussian distribution  (𝜇, 𝜎2) where 𝜇 is 0 and 𝜎 is 0.01

The time complexity of computing a univariate histogram depends on the number of bins Φ in the histogram and
the number of data points 𝑛 being processed which is O(𝑛 ∗ Φ), where Φ is usually much smaller than 𝑛 and need not
be proportional to 𝑛. However, computing a multivariate histogram is much more expensive because the number of
bins Φ in each dimension should be considered, with a time complexity of O(𝑛 ∗ Φ𝑣), where 𝑣 is the dimensionality of
the dataset. One way to reduce the computational cost of multivariate histograms is to compute separate independent
histogram for each variable, which reduces the complexity to O(𝑛 ∗ 𝑣 ∗ Φ), but correlation information is lost in this
approach. If some attributes are correlated, we cannot treat their histogram representation independently. For these
reasons, in this paper we focus on independent histograms and deal with the loss of correlation information by using
random projections which will be presented in section 3.1.
2.2. Distribution comparison

To increase storage efficiency and achieve more consistent clustering results, it is imperative to compare the
distributions of different clusters once they have been identified. Then, clusters with similar distributions should be
merged to achieve better clustering results. However, comparing different distributions can be challenging and requires
a suitable metric to assess the similarity between two distributions 𝜇 and 𝜐 on the same sample space  . A widely used
measure is the Kullback-Leibler divergence (KL divergence expressed in Eq.1) [42], which computes the expectation
of the logarithmic difference between the probability distributions 𝜇 and 𝜐:

𝐾𝐿(𝜇, 𝜐) = ∫
𝜇(𝑥)𝑙𝑜𝑔(

𝜇(𝑥)
𝜐(𝑥)

)𝑑𝑥. (1)

Since the KL divergence is not symmetric, the Jensen-Shannon divergence (JS divergence expressed in Eq.2) [43]
has been proposed to solve the symmetry problem, known as the total divergence to the average, the square root of the
JS divergence is a metric often referred to as the JS distance.

𝐽𝑆(𝜇, 𝜐) =
𝐾𝐿(𝜇, 𝜇+𝜐2 ) +𝐾𝐿(𝜐, 𝜇+𝜐2 )

2
(2)

The KL and JS divergences suffer from several drawbacks, as non robustness to outliers. In addition, KL and
JS are not distances and they do not satisfy triangle inequality. For all these reasons, another metric, the so called
Wasserstein distance has gained in popularity. Wasserstein distance takes into account the cost of moving the mass
from one distribution to another, which helps to mitigate the impact of outliers. The Wasserstein distance is also a
continuous function, meaning that small changes in the input distributions result in small changes in the distance
measurement. This is not the case with KL divergence, which can exhibit discontinuities and is therefore less suitable
for some applications. In addition, Wasserstein distance satisfies the properties of a metric, such as symmetry, triangle
inequality, and non-negativity. This property is not satisfied by JS and KL distances, making Wasserstein distance more
suitable for use in optimization and clustering algorithms. Finally, Wasserstein distance has a natural interpretation as
the minimum cost of transforming one distribution to another, which makes it easier to understand and explain in
comparison to other distance measures.
X. Qian et al.: Preprint submitted to Elsevier Page 4 of 30
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Originally introduced in the context of optimal transport theory [39], this metric quantifies the minimum cost
required to transform one probability distribution into another, where cost is defined as the amount of "work" required
to move a given amount of mass from one point to another. The traditional approach to estimating the Wasserstein
distance is outlined in [44] with a computational complexity of 𝑂(𝑛3𝑙𝑜𝑔(𝑛)) using the EMD definition of this distance.

𝑊𝑒𝑚𝑑 (𝜇, 𝜐) = 𝑚𝑖𝑛
𝛾∈ ∫ ‖𝑥 − 𝑦‖𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝐄

(𝑥,𝑦)∼𝛾
[‖𝑥 − 𝑦‖] (3)

where  is the set of all joint distributions Π(𝜇, 𝜐) whose marginals are 𝜇 and 𝜐 , ‖𝑥− 𝑦‖ gives the cost of transporting
a unit of mass from point x to point y. A transport plan to move 𝜇 to 𝜈 can be described by a function 𝛾(𝑥, 𝑦) which
gives the amount of mass to be moved from x to y.

The Sinkhorn distance [45] is a faster alternative to EMD for solving regularised optimal transport problems
with computational complexity up to 𝑂(𝑛2). The cost of mapping 𝜇 to 𝜐 can be quantified as ⟨ ,𝑀⟩, where M is a
squared cost matrix, and the Sinkhorn distance directly regularises the original transport problem with a regularisation
parameter 𝜆 and the entropy h defined as follow:

𝜆 > 0,𝑊 𝜆
𝑠𝑖𝑛𝑘𝑜𝑟𝑛(𝜇, 𝜐) ∶= ⟨𝜆,𝑀⟩, 𝜆 = argmin⟨ ,𝑀⟩ − 1

𝜆
ℎ() (4)

Computation of the Wasserstein distance can become exceedingly complex for large datasets, making it necessary
to explore alternative methods. One such approach, which is specifically designed for histograms, can be found in
[30]. This approach introduces an elegant formulation of the Wasserstein distance between two histograms𝐻 𝑖 and𝐻 𝑗

expressed as :

𝑊 2
ℎ𝑖𝑠𝑡(𝐻

𝑖,𝐻 𝑗) =
Φ
∑

𝜙=1
𝜋𝜙𝑑

2(𝐼 𝑖𝜙, 𝐼
𝑗
𝜙) =

Φ
∑

𝜙=1
𝜋𝜙

[

(𝑐𝑖𝜙 − 𝑐𝑗𝜙)
2 + 1

3
(𝑟𝑖𝜙 − 𝑟𝑗𝜙)

2
]

, (5)

which simply compute the sum of the differences between each pair of centres 𝐶 and radius 𝑅 of two histograms,
where 𝜋𝜙 is the probability weight associated to each bin, and 𝐼 𝑖𝜙 represents an interval ([𝑦𝑖𝜙, 𝑦𝑖𝜙]) of histogram 𝐻 𝑖, 𝐼 𝑗𝜙
represents an interval ([𝑦𝑗𝜙, 𝑦𝑗𝜙]) of histogram 𝐻 𝑗 , with:

𝑐𝑖𝜙 =
𝑦𝑖𝜙 + 𝑦𝑖𝜙

2
; 𝑐𝑗𝜙 =

𝑦𝑗𝜙 + 𝑦𝑗𝜙

2
; 𝑟𝑖𝜙 =

𝑦𝑖𝜙 − 𝑦𝑖𝜙

2
; 𝑟𝑗𝜙 =

𝑦𝑗𝜙 − 𝑦𝑗𝜙

2
.

They also propose a way to compute the Wasserstein distance between multivariate histograms. Suppose there are
p histogram variables for observation i and j (𝐻 𝑖

1⋯𝐻 𝑖
𝑝 and 𝐻 𝑗

1 ⋯𝐻 𝑗
𝑝 ), under the hypothesis that the variables are

independent, the process is expressed like:

𝑊 2
ℎ𝑖𝑠𝑡[(𝐻

𝑖
1⋯𝐻 𝑖

𝑝), (𝐻
𝑗
1 ...𝐻

𝑗
𝑝 )] =

𝑝
∑

𝑞=1
𝑊 2
ℎ𝑖𝑠𝑡(𝐻

𝑖
𝑞 ,𝐻

𝑗
𝑞 ) (6)

The proposed approach described in this paper is to compute histograms that model the data distribution before
computing the distance between the centres and the radius of each interval. The time complexity of computing
the Wasserstein distance between histograms is O(Φ𝑣) for multivariate histograms and O(Φ ∗ 𝑣) for independent
histograms. Overall, since Φ is usually chosen as a constant positive parameter, the total time complexity of this
approach for a set of 𝑣 independent histograms can be efficient compared to the complexity of multivariate histograms.
Moreover, the time complexity of an algorithm also depends on its implementation and hardware. For example,
parallelization can greatly reduce the complexity of independent histograms.

It is possible to compute the barycentre of a set of histograms by defining a distance measure between histograms.
This barycentre is essentially a single histogram that minimises the squared Wasserstein distance between itself and
each member of the set. In other words, it is the optimal representative histogram that captures the essential features of
X. Qian et al.: Preprint submitted to Elsevier Page 5 of 30
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the entire set. In the case of histograms with uniform bins weight, each one is described by the centres 𝐶 and radius 𝑅
of its bins, this involves computing new centres 𝐶𝑏 and radius 𝑅𝑏 while keeping the weight of each bin constant. The
Eq.7, mentioned in [30], shows that this simply requires computing the mean centre and radius of each bin, where 𝑁ℎis the number of histograms in the set, in our case 𝑁ℎ is set to 2:

𝐶𝑏 = 𝑁−1
ℎ

𝑁ℎ
∑

𝑗=1
𝐶𝑗 and 𝑅𝑏 = 𝑁−1

ℎ

𝑁ℎ
∑

𝑗=1
𝑅𝑗 . (7)

2.3. Wasserstein two-samples testing
Performing non parametric two sample testing allows to detect, given samples 𝑋1,⋯ , 𝑋𝑛 ∼ 𝜇 and 𝑌1,⋯ , 𝑌𝑚 ∼ 𝜈

from the two unknown distributions 𝜇 and 𝜈, if they are significantly different. One classical test is the Kolmogorov-
Smirnov test (see [46]), or K-S test, which is commonly used to compare an empirical distribution to a theoretical
distribution or to compare two empirical distributions. In the case of deciding whether two one-dimensional probability
distributions (𝜇, 𝜈) differ from each other by computing Eq.8:

𝐷𝜇,𝜈 = 𝑠𝑢𝑝
𝑥
|𝐹𝜇(𝑥) − 𝐹𝜈(𝑥)| (8)

and test the null hypothesis (𝐻0) ∶ 𝜇 = 𝜈 versus (𝐻1) ∶ 𝜇 ≠ 𝜈.
One then rejects the null hypothesis (𝐻0) and accepts (𝐻1) with significance level 𝛼 if

𝐷𝜇,𝜐 > 𝐶(𝛼)
√

𝑛 + 𝑚
𝑛 ⋅ 𝑚

, where 𝐶(𝛼) =
√

−𝑙𝑛(𝛼
2
) × 1

2
.

An alternative distribution free statistical test based on the Wasserstein distance has been proposed in [47]. This test
is based on the following preliminary result on the asymptotic empirical Wasserstein distance between two samples.
Denote 𝐹𝑛, 𝐺𝑚, the two empirical cumulative distribution functions (CDF) associated to the samples 𝑋1,⋯ , 𝑋𝑛 ∼ 𝜇
and 𝑌1,⋯ , 𝑌𝑚 ∼ 𝜈. Under the null hypothesis 𝐻0 : 𝜇 = 𝜈, one has

𝑇𝑚,𝑛 ∶=
𝑛 ⋅ 𝑚
𝑛 + 𝑚 ∫

1

0

(

𝐺𝑚
(

𝐹−1
𝑛 (𝑡) − 𝑡

)2) 𝑑𝑡 →𝑤 𝑍 ∶= ∫

1

0
𝐁(𝑡)2 𝑑𝑡 as 𝑛, 𝑚→ ∞ (9)

where 𝐵(𝑡) represents the Brownian bridge [48]. The Brownian bridge is defined as 𝐵(𝑡) = 𝑊𝑝𝑟(𝑡) −
𝑡
𝑇𝑊𝑝𝑟(𝑇 ), where

𝑡 ∈ [0, 𝑇 ] (in the assumption 𝑇 = 1) and 𝑊𝑝𝑟 is a standard Wiener process [49]. It describes a random walk from 0
to 𝑇 starting at 0 and ending at 0, such as 𝑊𝑝𝑟(0) = 𝑊𝑝𝑟(𝑇 ) = 0. We emphasize that on can simulate the Brownian
Bridge and then compute empirically the quantiles of the random variable 𝑍.

Using the test statistic 𝑇𝑚,𝑛, we then rejects𝐻0 and accepts𝐻1 if 𝑇𝑚,𝑛 > 𝑧𝛼 where 𝑧𝛼 is the 𝛼-quantile of distribution
𝑍. In short, instead of testing the vanishing of Wasserstein distance between𝐺𝑚 and 𝐹𝑛 directly, this test computes the
Wasserstein distance between 𝐺𝑚(𝐹−1

𝑛 ) and a uniform distribution U[0,1] on [0, 1] which makes it distribution free.

3. Proposed Approach
The proposed approach uses a non-overlapping sliding window model to run a clustering algorithm on batches of

data samples that are briefly held in memory. Then allowing any type of clustering algorithms to be applied across
sliding windows. This flexibility is a key strength of our approach, allowing the selection of the most appropriate
clustering method for the data at hand. The ability to remove noise using algorithms such as those in the DBSCAN
family is particularly valuable in this context, as histograms can be sensitive to extreme values and outliers. However,
our approach has shown excellent overall performance in tests with other types of clustering algorithms (see Section
4). This allows incremental clustering of large datasets and handling of data streams. The distribution of each cluster
in a window is modeled as a set of unidimensional histograms computed in a random projection space, capturing
correlation information between variables without the need to compute a costly multivariate histogram.

The newly computed clusters are compared to clusters found in previous windows using the Wasserstein distance
between histogram models Eq.6. A statistical test based on Eq.9 is then performed to discover clusters with similar
distributions to previously detected clusters. These clusters are merged and replaced by their barycentric histogram
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using a modified form of Eq.11. At the end of this process, the histogram models are stored and the data samples are
forgotten before a new window of data samples is placed in memory and processed. The main steps of the approach
are shown in Algorithm 1. The remainder of this section provides the details of each step.

Algorithm 1: Proposed approach
Input: Number of projections 𝑝, number of bins Φ, data points arriving by windows 𝐗 = {𝑋[1], 𝑋[2]...},

conventional clustering algorithm with 𝜃 parameters 𝐶𝑙𝑢𝑠(𝜃)
Output: Final clusters Θ
𝛿𝑝 ← Determine the similarity threshold 𝛿 using Algorithm 2;
Θ ← [] ; /* Histogram models stored */
/* Initialization of current window */
nb_w ← 1 ;
𝑋𝑐[𝑛𝑏_𝑤]) ← 𝐶𝑙𝑢𝑠(𝜃,𝑋[𝑛𝑏_𝑤]) ; /* Detect clusters in the first window */
𝑋𝑝
𝑐 [𝑛𝑏_𝑤] ← 𝑝 Random Projections of 𝑋𝑐[𝑛𝑏_𝑤] by Eq.10 ;

𝐻_𝑋𝑝
𝑐 [𝑛𝑏_𝑤] ← Convert all the clusters 𝑋𝑝

𝑐 [𝑛𝑏_𝑤] to histogram models as described in Section. 3.2;
Θ ← Θ.𝑎𝑑𝑑(𝐻_𝑋𝑝

𝑐 [𝑛𝑏_𝑤]) ; /* Add 𝐻_𝑋𝑝
𝑐 [𝑛𝑏_𝑤] to the entire set Θ */

𝑛𝑏_𝑤← 𝑛𝑏_𝑤 + 1;
while length(X[nb_w]) != 0 do

/* While the set of samples in the current window is not empty, do the same as
for X[1], except save 𝐻_𝑋𝑝

𝑐 [𝑛𝑏_𝑤] to the entire set Θ */
𝐻_𝑋𝑝

𝑐 [𝑛𝑏_𝑤] ← Initialization of current window ;
for each cluster 𝑖 in Θ do

for each cluster 𝑗 in 𝐻_𝑋𝑝
𝑐 [𝑛𝑏_𝑤] do

Determine similarity between 𝑖 and 𝑗 with respect to Eq.9 ; /* More details in
Section.3.3 */

if 𝑖 and 𝑗 are not significantly different then
Θ ← Θ.𝑎𝑑𝑑(𝑗) ; /* Add 𝑗 to the entire set Θ */

end
else

Update 𝑖 which is stored in Θ by the barycenter of 𝑖 and 𝑗 using Eq.11
end

end
end
𝑛𝑏_𝑤← 𝑛𝑏_𝑤 + 1;

end

3.1. Multivariate histogram extension
Multivariate histogram models to represent the data distribution can be very computationally costly when the

number of dimensions is high. Instead of using a multivariate histogram, the distribution can be modeled as a set of
univariate histograms at very low computational cost, but all correlation information is lost. One solution inspired
by Sliced Wasserstein distance proposed in [50] is to compute random projections of the data onto new axes drawn
uniformly on the unit sphere. If the number of new axes is large enough, the resulting model of the distribution is
very close to the multivariate model in terms of computing the Wasserstein distance, while reducing the computational
complexity very significantly.

The axes of the projections of the data points are obtained via the dot product between the sample vectors X and
𝑀𝑝, the intermediate matrix 𝑀𝑝 is expressed in Eq.10 as follow:

𝑀𝑝 =
𝑀2

Ψ

[
√

∑𝑣
𝑖=1(𝜓

1
𝑖 )2,⋯ ,

√

∑𝑣
𝑖=1(𝜓

𝑝
𝑖 )2]

, 𝑋𝑝 = 𝑋 ⋅𝑀𝑝 (10)

where𝑀Ψ is a matrix which follows a standard normal distribution with shape (𝑣, 𝑝), 𝑣 is the number of variables, and
𝑝 is the number of projections, and 𝜓 𝑗𝑖 ∈𝑀Ψ.
X. Qian et al.: Preprint submitted to Elsevier Page 7 of 30



Static and Dynamic Clustering using Histogram Models and Wasserstein Distance

3.2. Histograms computation
As mentioned in Section 2.1, we favor a fixed weight representation for the histograms, which greatly simplifies the

computation of the Wasserstein distance introduced in Eq.5, Eq.6. In the proposed approach, each cluster is represented
by a set of independent histograms. For this purpose, the samples of a cluster 𝑋𝑝

𝑐 obtained in the previous step must
be divided into Φ intervals by computing the 1 to Φ-th quantile of 𝑋𝑝

𝑐 along each dimension, keeping the same weight
𝜋𝜙 for each interval, which is equal to 1

Φ . This process is repeated for all clusters in the current window.
3.3. Cluster similarity test

With respect to Eq.9, the detailed procedures for defining the similarity between two cluster distributions in the
form of histograms are as follows:

1. Determine the Brownian bridge threshold 𝛿 corresponding to the dimension 𝑝 using linear regression.
2. Obtain the CDF 𝐹𝑛 and 𝐺𝑚 for each pairwise histogram distribution 𝜇 and 𝜐 of two clusters.
3. Compute the composition function of 𝐺𝑚 and the inverse function 𝐹−1

𝑛 of 𝐹𝑛 : 𝐺𝑚(𝐹−1
𝑛 ).

4. Compute the sum of WD between each 𝐺𝑚(𝐹−1
𝑛 ) and U[0,1] by using Eq.6, then multiply with 𝑛∗𝑚

𝑛+𝑚 .
5. Compare result of step 4 with the threshold 𝛿.
6. If the result < 𝛿, it means two clusters are similar and must be merged.
To define the threshold 𝛿, we used simulations of Brownian bridges for multivariate observations. Since the

threshold 𝛿 corresponds to a Wasserstein distance between a random Brownian bridge and the uniform walk 𝐵𝑡 = 0
with a probability of occurrence below 5%. The algorithm which computes the threshold 𝛿 corrspond of corrspoding
p variables could be developped as described in Algorithm 2.

Algorithm 2: Computation of threshold 𝛿 corresponding to 𝑝 dimensions
Input: 𝑝,𝑀,𝑁
Output: 𝛿𝑝
for i in 1,..,p do

/* Create M synthetic Brownian Bridges, each one includes N 1d points, i.e. a
randomly normal increase/decrease at each time step */

B[i] ← Create_Brownian_Bridge(M, N);
MeanB[i] ← mean(B[i]2, axis=1) ; /* Mean of B[i]2 by columns */

end
Sum_MeanB ← Sum_MeanB(MeanB, axis=0) ; /* Sum of MeanB by rows */
/* Extract (95%×M)-th element of sorted Sum_MeanB as threshold */
𝛿𝑝 ← sort(Sum_MeanB)[M*0.95];
Experiments show that the threshold 𝛿 has a linear relationship with the number of dimensions 𝑝. Therefore, instead

of repeating the process of Algorithm 2, a simple linear regression model trained by 𝛿1 and 𝛿2 could be applied to any
dimension p, allowing a fast computation of 𝛿𝑝. Incidentally, the values of M and N do not matter much for the definition
of the threshold; to maintain consistency, it is enough to keep them constant for the computation of 𝛿1 and 𝛿2. More
precisely, we set them both to 10000.
3.4. Merging process

Once similar clusters found, it is necessary to merge them by computing their barycenter in order to reduce the
complexity of time and space. Since some clusters may have similar distributions but large differences in the number
of data, the barycenter distributions must be computed as a weighted sum of the mean centers and radius by modifying
Eq.7:

𝐶𝑏 =

∑𝑁ℎ
𝑗=1 𝑛𝑗 ∗ 𝐶

𝑗

∑𝑁ℎ
𝑗=1 𝑛𝑗

; 𝑅𝑏 =

∑𝑁ℎ
𝑗=1 𝑛𝑗 ∗ 𝑅

𝑗

∑𝑁ℎ
𝑗=1 𝑛𝑗

(11)

At the end of this step, the process of cluster detection and subsequent merging within a current window is achieved.
By repeating this process for each window, it is possible to efficiently handle large datasets and data streams.
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4. Experimental protocol and results
4.1. Datasets

To evaluate the proposed approach, we performed a series of experiments on different datasets, including real
datasets and artificial datasets, with a variety of number of samples, dimensions and clusters (Tab.1). Detection of
clusters in arbitrary shapes plays an important role in the proposed approach, besides real popular datasets used in
recent research, artificial datasets with different cluster distributions are necessarily generated. Right after the creation
and collection of real and artificial datasets, two ways of dataset preprocessing are followed. This allows clustering in
both static and dynamic contexts, demonstrating the versatility and effectiveness of the proposed approach.

Table 1
Datasets summary

Real Datasets Nb samples Nb dimensions Nb clusters
Outdoor 3501 21 40
Gassenor 13377 128 6

IGBN 24150 33 6
IABN 52848 33 6
Rialto 82250 27 10
IIAIN 452044 33 6
IIRIN 452044 33 6

Covtype 549829 10 7

Artificial Datasets Nb samples Nb dimensions Nb clusters
Comet 3,20(*104) 50,100 15,50

Meteorite 3,20(*104) 50,100 15,50
Square 3,20(*104) 50,100 15,50

Gaussian 3,20(*104) 50,100 15,50
Moon 3,20(*104) 50,100 15,50
Circle 3,20(*104) 50,100 15,50

MixSmall 1,2,3 (*104) 50,50,50 24,36,48
MixLarge 10,20,50 (*104) 100,100,100 54,66,90

4.1.1. Artificial datasets
Generate several artificial databases in different distributions to simulate real scenarios, such as comet, meteorite,

square, moon, circular, and Gaussian, by adding orientation to some clusters to replicate the real case. For the square
distribution, the first dimension follows a univariate Gaussian distribution, then the remaining dimensions follow a
uniform distribution. Then comes the comet distribution, where the first dimension follows a gamma distribution, then
the remaining dimensions follow a univariate distribution. Similar to the comet distribution, the meteorite distribution
follows a gamma distribution for all dimensions. Another type of distribution is the circle distribution, which is based
on cosine and sine elements, and the moon distribution could be treated as a semicircle distribution. Then there is the
Gaussian distribution, best known as the multinomial Gaussian distribution. Tab.2 below summarizes the information
about each distribution, and also a short example of the visualization of all artificial distributions could be seen in Fig.3

Table 2
Artificial datasets different distributions description

Distribution name Description
First dimension Rest dimension

Square Univariate Normal/Gaussian distribution Uniform distribution
Comet Gamma distribution Univariate Normal/Gaussian distribution
Circle All the dimensions based on cosine and sine element-wise.

Meteorite All the dimensions follow a Gamma distribution
Moon A half circle

Gaussian Multinormal Gaussian distribution
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Figure 3: Artificial datasets of different distributions

4.1.2. Real datasets
We also used real datasets that are used in benchmarks for the purpose of data streams clustering, as mentioned in

[51]. Each dataset is accompanied by a summary and more detailed information can be found in the same source.
• Outdoor [52] : The dataset consists of 4000 images of 40 different objects taken with a smartphone camera in

a garden environment. The images were taken under different lighting conditions and from different distances
and positions. The dataset uses a 21-dimensional RG chromaticity histogram to represent the examples.

• Gassor [53] : This dataset contains 13,910 recordings from 16 chemical sensors measuring six pure gases
(ammonia, acetaldehyde, acetone, ethylene, ethanol and toluene) in a gas delivery platform at the University
of California, San Diego. The classification task is to identify which gas is being measured.

• Rialto [54]: This dataset contains 82,250 examples of ten colourful buildings near the Rialto Bridge in Venice.
The dataset was constructed using images extracted from time-lapse videos captured by a fixed-position webcam,
covering 20 consecutive days in May-June 2016. The classification task is to identify the correct building, and
each class has 8225 examples encoded in a normalised 27-dimensional RGB histogram.

• Covtype [55] : This dataset contains 581,012 instances with 54 attributes related to forest cover type in 30 × 30
cells obtained from the US Forest Service Region 2 Resource Information System. It includes seven class labels.

• INSECT_ [51]: Theses datasets refers to a significant public health issue that involves the identification of
disease-carrying insects using optical sensors. In consideration of the impact of temperature on the data captured
by the optical sensor and the consequent conceptual drifts, it is important to carefully evaluate the different
modifications made to the datasets, which are also responsible for their respective names. We use the following
abbreviations to refer to these datasets:

– INSECTS_abrupt_balanced_norm called IABN
– INSECTS_gradual_balanced_norm called IGBN
– INSECTS_incremental_abrupt_imbalanced_norm called IIAIN
– INSECTS_incremental_reoccurring_imbalanced_norm called IIRIN
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4.1.3. Datasets preprocessing
Since the proposed framework supports both static (batch) and dynamic (sequential) clustering, we prepared

artificial and real datasets suitable for both types of clustering. For the static clustering experiment, the goal is to
apply conventional clustering on non-overlapping windows to detect clusters, and then merge similar clusters using the
proposed approach. This result will be compared to conventional clustering applied to the entire datasets. To ensure
the validity of this experiment, each window must contain a certain number of different distributions, and the number
of data should remain constant throughout the experiment. For the dynamic clustering experiment, we selected two
typical conventional clustering algorithms to apply in our framework. We then compared the results with other popular
stream clustering algorithms. To simulate a dynamic process, each data point was assigned a timestamp, which allowed
us to set the time interval of the windows and read the data points falling in each interval based on their timestamps.

• Static clustering (Fig.4) : In order to evaluate our framework on static context, different distributions must
be divided into multiple windows. One approach to accomplish this is by randomly shuffling the datasets, and
subsequently selecting the i-th samples from the datasets for each window.

Figure 4: Static clustering

• Dynamic clustering (Fig.5) : Randomly assigning timestamps to each data point is necessary to ensure that
each cluster remains within a specified time interval during testing of the dynamic model. The data points are
then arranged based on their timestamps to allow sequential reading of the datasets, simulating a data stream.

Figure 5: Dynamic clustering
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4.2. Clustering evaluation strategy
The Ajusted Rand Index (ARI) and Purity are becoming increasingly popular for assessing the quality of clustering,

as they are regularly used in a large number of studies. Both are external indices based on a priori knowledge of the data
structure. Internal indices typically check the compactness and separability of clusters and work well to evaluate clusters
that are close to a Gaussian distribution. Due to the diversity of cluster distributions in the experimental datasets, we
decided to restrict the evaluation to external indices.

• Ajusted rand index: By considering all sample pair assignments in both the expected and actual clusterings, as
well as counting sample pair assignments in the predicted or actual clusterings. The Rand Index (RI) measures
how similar two clusterings are to each other. Thus, regardless of the number of clusters and samples, the
Adjusted Rand Index (ARI) is guaranteed to be close to 0.0 for random labeling and exactly 1.0 when the
clusterings are identical (up to one permutation).

𝐴𝑅𝐼 =
𝑅𝐼 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑅𝐼

𝑚𝑎𝑥(𝑅𝐼) − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑅𝐼
• Purity: Each cluster is given a description based on the class that makes up the majority of the cluster. Purity is

then computed as the fraction of all data points divided by the number of successfully matched class and cluster
labels. The formula is summarized as follows, where n is the number of samples and K is the number of clusters.

𝑃𝑢𝑡𝑖𝑡𝑦 =
∑𝐾
𝑘=1 𝑚𝑎𝑥(numer of majority cluster in k)

𝑛

4.3. Parameter analysis
An analysis of the impact of different parameters of the proposed approach on its quality has been carried out. In

particular, the number of bins of the histogram model, the number of random projections, and the number of windows
(also related to the number of samples in a window), which could change the quality and complexity of the clustering,
all these parameters could have an impact on the result of our approach. We ran each test 10 times and report the
average performance with the corresponding standard deviation.
4.3.1. Number of bins

As can be seen from the results in Tab.3, Tab.4 and Fig.6, Fig.7, Fig.8, the proposed approach performs quite
similarly regardless of the number of bins, on both artificial and real datasets. In fact, the quality of the clustering did
not change significantly when the number of bins was adjusted. However, it is clear that the computation time is higher
when the number of bins is increased. Therefore, in the following experiments, we set the number of bins to 10 in order
to be efficient without losing quality.

Table 3
Results with increasing the number of bins – Artificial datasets

datasets NbB ARI Purity Computation time

mean std mean std mean std

MixLarge10

10 0.9725 <1e-4 1.0000 <1e-4 40.4803 1.0068
20 0.9494 <1e-4 1.0000 <1e-4 45.5781 0.2780
50 0.9389 <1e-4 1.0000 <1e-4 58.8167 1.1234
100 0.9628 <1e-4 1.0000 <1e-4 82.6800 0.4657

MixLarge20

10 0.9366 <1e-4 0.9998 <1e-4 127.3219 7.5445
20 0.9409 <1e-4 0.9998 <1e-4 158.8744 8.2583
50 0.9401 <1e-4 0.9998 <1e-4 234.8413 5.5816
100 0.9469 <1e-4 0.9998 <1e-4 366.1205 12.2402

MixLarge50

10 0.9410 <1e-4 0.9996 <1e-4 449.9749 0.2353
20 0.9298 <1e-4 0.9996 <1e-4 571.5291 0.3471
50 0.9219 <1e-4 0.9996 <1e-4 951.9568 0.4260
100 0.9287 <1e-4 0.9996 <1e-4 1530.6935 0.4041
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Figure 6: Results with increasing the number of bins – Artificial datasets

Table 4
Results with increasing the number of bins – Real datasets

datasets NbB ARI Purity Computation time

mean std mean std mean std

Outdoor

10 0.5169 <1e-4 0.7870 <1e-4 2.7760 0.1297
20 0.5304 <1e-4 0.7849 <1e-4 3.6505 0.0690
50 0.5279 <1e-4 0.7820 <1e-4 7.1185 0.2118
100 0.5046 <1e-4 0.7817 <1e-4 13.3744 0.6726

Gassenor

10 0.0584 <1e-4 0.9787 <1e-4 49.0299 0.2895
20 0.0601 <1e-4 0.9770 <1e-4 66.8477 0.8443
50 0.0607 <1e-4 0.9777 <1e-4 121.3673 0.9275
100 0.0604 <1e-4 0.9744 <1e-4 215.2406 8.5638

IGBN

10 0.2089 <1e-4 0.4753 <1e-4 6.6979 0.8273
20 0.2429 <1e-4 0.4829 <1e-4 6.8183 0.4002
50 0.2254 <1e-4 0.4782 <1e-4 6.1710 0.1387
100 0.2235 <1e-4 0.4800 <1e-4 6.1976 0.0606

IABN

10 0.1219 <1e-4 0.3033 <1e-4 10.7201 0.6364
20 0.0884 <1e-4 0.3051 <1e-4 10.1940 0.2250
50 0.1099 <1e-4 0.3031 <1e-4 10.7351 0.6380
100 0.1124 <1e-4 0.3051 <1e-4 9.8895 0.1472

datasets NbB ARI Purity Computation time

mean std mean std mean std

Rialto

10 0.0362 <1e-4 0.3103 <1e-4 8.3314 0.5049
20 0.0370 <1e-4 0.3103 <1e-4 10.2060 0.2524
50 0.0354 <1e-4 0.3103 <1e-4 13.9765 0.8070
100 0.0354 <1e-4 0.3103 <1e-4 16.7267 0.6884

IIAIN

10 0.0080 <1e-4 0.4008 <1e-4 256.6696 18.6691
20 0.0085 <1e-4 0.4008 <1e-4 283.7149 10.1869
50 0.0089 <1e-4 0.4014 <1e-4 291.8349 11.0537
100 0.0089 <1e-4 0.4014 <1e-4 268.2696 31.4180

IIRIN

10 0.0392 <1e-4 0.4445 <1e-4 232.7974 14.1282
20 0.0440 <1e-4 0.4445 <1e-4 251.4768 11.6803
50 0.0355 <1e-4 0.4445 <1e-4 258.4078 10.4113
100 0.0410 <1e-4 0.4421 <1e-4 249.5936 11.7942

Covtype

10 -0.0097 <1e-4 0.4924 <1e-4 89.2167 1.1697
20 -0.0096 <1e-4 0.4924 <1e-4 88.9489 1.0544
50 -0.0116 <1e-4 0.4924 <1e-4 89.3247 0.9790
100 -0.0164 <1e-4 0.4924 <1e-4 94.3237 4.3868
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Figure 7: Results with increasing the number of bins – Real datasets (PART I)

Figure 8: Results with increasing the number of bins – Real datasets (PART II)

4.3.2. Number of projections
We found that the quality of clustering does not vary significantly when the number of projections is changed,

both on real and artificial datasets, according to the results shown in Tab.5, Tab.6 and in Fig.9, Fig.10, Fig.11. This
seems to indicate that even with a significant reduction in the dimensionality of the data, the richness of the histogram
representation of the cluster distributions is sufficient to efficiently detect clusters with similar distributions. In terms
of computational time, the algorithm is faster than the version without projections when the number of projections is
smaller than the number of variables in the datasets. In addition, as expected, the computation time increases as the
number of projections increases. Based on these observations, we decided to set the number of projections to 4 for
following experiments.
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Table 5
Results with increasing the number of projections - Artificial datasets

datasets NbP ARI Purity Computation time

mean std mean std mean std

MixLarge10

0 0.9671 <1e-4 0.9997 <1e-4 289.6916 13.0346
4 0.9897 <1e-4 1.0000 <1e-4 61.9560 4.2505
8 0.9718 <1e-4 1.0000 <1e-4 58.4983 2.3194
12 0.9502 <1e-4 1.0000 <1e-4 66.6776 0.5768
16 0.9685 <1e-4 1.0000 <1e-4 78.0780 1.0313
20 0.9765 <1e-4 1.0000 <1e-4 78.7753 2.0131

MixLarge20

0 0.9653 <1e-4 0.9997 <1e-4 678.6437 15.4316
4 0.9728 <1e-4 0.9998 <1e-4 144.3213 6.0264
8 0.9864 <1e-4 0.9998 <1e-4 165.5495 2.0468
12 0.9790 <1e-4 0.9998 <1e-4 183.1069 3.2795
16 0.9892 <1e-4 0.9998 <1e-4 200.9902 2.0494
20 0.9784 <1e-4 0.9998 <1e-4 229.8228 1.2519

MixLarge50

0 0.9634 <1e-4 0.9996 <1e-4 2513.5941 65.9987
4 0.9372 <1e-4 0.9998 <1e-4 543.7881 9.3786
8 0.9522 <1e-4 0.9998 <1e-4 637.2857 22.3597
12 0.9594 <1e-4 0.9998 <1e-4 693.4370 4.7394
16 0.9586 <1e-4 0.9998 <1e-4 811.1516 30.8824
20 0.9671 <1e-4 0.9998 <1e-4 854.3131 31.4934

Figure 9: Results with increasing the number of projections – Artificial datasets
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Table 6
Results with increasing the number of projections - Real datasets

datasets NbP ARI Purity Computation time

mean std mean std mean std

Outdoor

0 0.4993 <1e-4 0.7792 <1e-4 9.6239 0.2244
4 0.5578 <1e-4 0.7793 <1e-4 1.6219 0.0096
8 0.5595 <1e-4 0.7793 <1e-4 3.0240 0.0066
12 0.5574 <1e-4 0.7765 <1e-4 4.4216 0.0673
16 0.5577 <1e-4 0.7765 <1e-4 5.6090 0.0991
20 0.5644 <1e-4 0.7785 <1e-4 6.9491 0.0187

Gassenor

0 0.0945 <1e-4 0.9593 <1e-4 339.4042 3.4804
4 0.0874 <1e-4 0.9585 <1e-4 12.4324 0.0400
8 0.0910 <1e-4 0.9585 <1e-4 22.0261 0.2735
12 0.0886 <1e-4 0.9593 <1e-4 32.1096 0.6993
16 0.0859 <1e-4 0.9593 <1e-4 40.8242 0.2256
20 0.0870 <1e-4 0.9593 <1e-4 50.7802 0.1517

IGBN

0 0.3116 <1e-4 0.5980 <1e-4 5.5325 0.0672
4 0.3057 <1e-4 0.5980 <1e-4 4.5977 0.0059
8 0.3290 <1e-4 0.5980 <1e-4 4.7244 0.0538
12 0.3031 <1e-4 0.5980 <1e-4 4.9214 0.1328
16 0.3017 <1e-4 0.5980 <1e-4 4.9832 0.0221
20 0.2936 <1e-4 0.5980 <1e-4 5.1623 0.0058

IABN

0 0.1013 <1e-4 0.3080 <1e-4 10.1832 0.2239
4 0.1051 <1e-4 0.3073 <1e-4 9.0350 0.0137
8 0.1111 <1e-4 0.3051 <1e-4 9.2985 0.1772
12 0.0931 <1e-4 0.3051 <1e-4 9.2718 0.0286
16 0.0938 <1e-4 0.3055 <1e-4 9.4350 0.1233
20 0.0957 <1e-4 0.3051 <1e-4 9.4273 0.0516

datasets NbP ARI Purity Computation time

mean std mean std mean std

Rialto

0 0.0214 <1e-4 0.7164 <1e-4 1322.2720 9.9595
4 0.0505 <1e-4 0.7017 <1e-4 130.9979 0.4462
8 0.0477 <1e-4 0.7082 <1e-4 269.1912 8.6474
12 0.0490 <1e-4 0.7095 <1e-4 381.9081 2.8852
16 0.0473 <1e-4 0.7111 <1e-4 542.3676 8.2774
20 0.0456 <1e-4 0.7108 <1e-4 627.4022 9.3890

IIAIN

0 0.0079 <1e-4 0.3628 <1e-4 221.7884 1.6728
4 0.0109 <1e-4 0.3628 <1e-4 219.9474 6.8324
8 0.0070 <1e-4 0.3628 <1e-4 239.6036 14.8937
12 0.0084 <1e-4 0.3628 <1e-4 231.2133 2.7645
16 0.0101 <1e-4 0.3628 <1e-4 243.3415 3.2499
20 0.0081 <1e-4 0.3628 <1e-4 239.5649 1.6757

IIRIN

0 0.0280 <1e-4 0.4445 <1e-4 242.6675 12.3442
4 0.0487 <1e-4 0.4445 <1e-4 228.7733 2.3927
8 0.0387 <1e-4 0.4445 <1e-4 233.9548 4.3951
12 0.0390 <1e-4 0.4445 <1e-4 230.4332 4.4831
16 0.0390 <1e-4 0.4445 <1e-4 221.2432 1.8827
20 0.0388 <1e-4 0.4445 <1e-4 222.4964 7.9179

Covtype

0 -0.0053 <1e-4 0.4924 <1e-4 87.4430 0.1671
4 -0.0188 <1e-4 0.4924 <1e-4 88.1170 1.2591
8 -0.0139 <1e-4 0.4924 <1e-4 93.5260 0.8076
12 -0.0148 <1e-4 0.4924 <1e-4 94.6759 0.2335
16 -0.0112 <1e-4 0.4924 <1e-4 94.3640 0.3727
20 -0.0086 <1e-4 0.4924 <1e-4 95.0573 0.7504

Figure 10: Results with increasing the number of projections – Real datasets (PART I)
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Figure 11: Results with increasing the number of projections – Real datasets (PART II)

4.3.3. Window size
When the datasets are divided into more windows, the proposed cluster similarity test is applied more often on

clusters with few samples, potentially leading to more errors, but the process is faster. The aim of testing the effect
of changing the number of windows is the same as testing the effect of the number of samples in a window, as well
as the effect of the number of times we apply the similarity test. As can be seen in Tab.7, Tab.8 and Fig.12, Fig.13,
Fig.14, there is a gradual decrease in quality as the number of windows increases, as the number of comparisons
increases, although there is also an initial dramatic decrease in computation time followed by convergence after a
certain number of windows. Therefore, to achieve better performance, we set the number of samples or time intervals
in each window differently for different datasets. In our experiments, we carefully choose the number of data points
(or time intervals) in each batch to ensure the effectiveness of our approach. Striking a balance is essential; using too
few data points can result in scattered points, making it difficult to find clusters. Conversely, too many data points
would lead to an over-reliance on standard clustering methods within each batch, potentially obscuring the impact of
the proposed approach.

Table 7
Results with increasing the number of windows – Artificial datasets

datasets NbW ARI Purity Computation time

mean std mean std mean std

MixLarge10

20 0.9024 <1e-4 0.9758 <1e-4 68.7511 2.1029
50 0.7394 <1e-4 0.9225 <1e-4 40.1313 1.2815
80 0.7338 <1e-4 0.8740 <1e-4 31.9439 1.9729
110 0.6302 <1e-4 0.8208 <1e-4 31.3047 0.6891
140 0.5239 <1e-4 0.7629 <1e-4 30.7979 0.7231

MixLarge20

20 0.9458 <1e-4 0.9958 <1e-4 212.3783 30.5535
50 0.8601 <1e-4 0.9706 <1e-4 113.7186 5.0568
80 0.8927 <1e-4 0.9515 <1e-4 91.2998 6.8736
110 0.8368 <1e-4 0.9128 <1e-4 83.2120 3.5792
140 0.7976 <1e-4 0.8654 <1e-4 73.2229 4.4372

MixLarge50

20 0.9288 <1e-4 0.9970 <1e-4 933.1498 38.5705
50 0.9320 <1e-4 0.9864 <1e-4 372.6099 0.2560
80 0.8826 <1e-4 0.9797 <1e-4 263.3228 0.3576
110 0.8491 <1e-4 0.9746 <1e-4 219.4075 0.3878
140 0.8254 <1e-4 0.9670 <1e-4 189.6720 0.2960

X. Qian et al.: Preprint submitted to Elsevier Page 17 of 30



Static and Dynamic Clustering using Histogram Models and Wasserstein Distance

Figure 12: Results with increasing the number of windows – Artificial datasets

Table 8
Results with increasing the number of windows - Real datasets

datasets NbW ARI Purity Computation time

mean std mean std mean std

Outdoor

10 0.4367 <1e-4 0.7295 <1e-4 2.4940 0.0566
20 0.4337 <1e-4 0.6508 <1e-4 2.2888 0.0750
30 0.3364 <1e-4 0.5564 <1e-4 2.2959 0.0837
40 0.2639 <1e-4 0.4925 <1e-4 2.0966 0.0505
50 0.2656 <1e-4 0.4691 <1e-4 1.8918 0.0208

Gassenor

10 0.0462 <1e-4 0.9830 <1e-4 71.1566 4.4826
20 0.0613 <1e-4 0.9631 <1e-4 60.7260 2.8672
30 0.0687 <1e-4 0.9431 <1e-4 56.6898 3.3096
40 0.0702 <1e-4 0.8658 <1e-4 45.0002 5.6714
50 0.0778 <1e-4 0.8437 <1e-4 36.0551 2.9504

IGBN

10 0.2892 <1e-4 0.5956 <1e-4 5.5114 0.6831
20 0.3514 <1e-4 0.6697 <1e-4 3.4527 0.1802
30 0.3504 <1e-4 0.6754 <1e-4 3.5497 0.5232
40 0.2851 <1e-4 0.6592 <1e-4 3.6314 0.1029
50 0.3498 <1e-4 0.6789 <1e-4 1.8776 0.2037

IABN

10 0.1036 <1e-4 0.3011 <1e-4 19.5458 1.7214
20 0.1151 <1e-4 0.3088 <1e-4 12.1004 0.8460
30 0.1127 <1e-4 0.3145 <1e-4 9.2761 0.5667
40 0.1067 <1e-4 0.3175 <1e-4 7.3438 0.3885
50 0.1237 <1e-4 0.3199 <1e-4 6.6326 1.1436

datasets NbW ARI Purity Computation time

mean std mean std mean std

Rialto

10 0.0773 <1e-4 0.3502 <1e-4 10.2090 0.5407
20 0.0572 <1e-4 0.3206 <1e-4 9.1944 0.1972
30 0.0694 <1e-4 0.3680 <1e-4 8.6354 0.4201
40 0.0857 <1e-4 0.4282 <1e-4 9.0779 0.4252
50 0.1358 <1e-4 0.4599 <1e-4 9.5875 0.5672

IIAIN

10 0.0196 <1e-4 0.3988 <1e-4 311.4166 8.9169
20 0.0171 <1e-4 0.4184 <1e-4 207.5998 6.8795
30 0.0167 <1e-4 0.4586 <1e-4 158.4947 3.2622
40 0.0686 <1e-4 0.5964 <1e-4 129.5866 4.0756
50 0.0558 <1e-4 0.6018 <1e-4 98.1429 5.6320

IIRIN

20 0.0405 <1e-4 0.4413 <1e-4 263.9345 15.3767
50 0.0482 <1e-4 0.4478 <1e-4 221.1476 2.5597
80 0.0503 <1e-4 0.4499 <1e-4 152.4280 2.3740
110 0.0526 <1e-4 0.4523 <1e-4 130.2410 3.0180
140 0.0495 <1e-4 0.4579 <1e-4 96.4369 1.1988

Covtype

20 0.0401 <1e-4 0.6189 <1e-4 171.5827 8.3167
50 0.0059 <1e-4 0.5720 <1e-4 123.6715 10.3234
80 0.0048 <1e-4 0.5727 <1e-4 98.7537 3.2652
110 0.0032 <1e-4 0.5911 <1e-4 85.1102 2.2618
140 0.0218 <1e-4 0.6138 <1e-4 76.2572 1.7298
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Figure 13: Results with increasing the number of windows – Real datasets (PART I)

Figure 14: Results with increasing the number of windows – Real datasets (PART II)

To address this, we have developed a systematic configuration for the experiments on both static datasets and
dynamic datasets. For smaller datasets, we ensure that the number of data points in each batch is approximately 10%
of the total number. For larger datasets, this proportion is reduced to 5%. For artificial datasets, we keep the percentage
constant. However, real-world datasets may consist of varying amounts of samples, we allow for slight adjustments to
avoid inconsistent number of batches in the analysis. The number of samples in each window for the batch clustering
tests are described in Tab.9, the total duration and the chosen time intervals of the windows for the dynamic clustering
tests are described in Tab.10.
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Table 9
Number of samples in the windows for each dataset

Datasets Nb_samples Datasets Nb_samples Datasets Nb_samples Datasets Nb_samples
Comet3 3000 Comet20 10000 Meteorite3 3000 Meteorite20 10000
Square3 3000 Square20 10000 Gaussian3 3000 Gaussian20 10000
Moon3 3000 Moon20 10000 Circle3 3000 Circle20 10000

MixSmall1 1000 MixSmall2 2000 MixSmall3 3000 MixLarge10 5000
MixLarge20 10000 MixLarge30 20000 Outdoor 1500 Gassenor 2000

IGBN 3000 IABN 6000 Rialto 8000 IIAIN 8000
IIRIN 40000 Covtype 60000

Table 10
Total duration and time interval of the windows for each dataset

Datasets Total_dur Time_inter Datasets Total_dur Time_inter Datasets Total_dur Time_inter
Comet20 200 4 Meteorite20 200 4 Square20 200 4

Gaussian20 200 4 Moon20 200 4 Circle20 200 4
MixLarge10 100 5 MixLarge20 200 6 MixLarge50 500 7

Outdoor 30 6 Gassenor 50 5 IGBN 50 5
IABN 80 4 Rialto 80 4 IIAIN 150 5
IIRIN 150 5 Covtype 150 5

4.4. Quality of the distribution comparisons
We performed an experiment to confirm that the statistical test we use to identify similarity between identical

distributions works correctly, as this is important for the proposed framework. First, we create pairs of clusters drawn
from the same distribution. Each pair is constructed with different distribution types and dimensions. We then apply
the similarity test to these pairs. As expected, the results show that the percentage of similar clusters discovered for
each distribution is about 95%, in accordance with the chosen threshold 𝛿 = 5% (see Fig.15).

Figure 15: Similarity tests between similar distribution. The red line represent 95% of correct detection.

We also evaluated the robustness of the similarity detection by shifting the position of a distribution by a fraction of
its standard deviation 𝜎 over a random axis, to check at what level the two clusters are treated as not similar. therefore,
we fix a cluster distribution and shift the position of the cluster by 1+𝜎*std_per. After each shift, we compute the
similarity between the two cluster distributions (Fig.16).
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Figure 16: Example of a similarity test between two similar clusters by changing the standard deviation percentage (std_per)
to change the position of the second cluster.

Figure 17: Similarity test on distinct distributions of different dimension numbers by increasing std_per.

For datasets with different dimensions (see Fig.17), as long as the shift remains below about 10% of the standard
deviation, we observe only a slow decrease in the proportion of pairs detected as similar, from 95% to 80%. If we
further increase the shift, we observe, as expected, a sharp decrease in the proportion of pairs detected as similar.
4.5. Assessment of algorithm quality and complexity

We performed a series of experiments to evaluate the quality and complexity of the resulting clustering in
comparison to existing approaches. The proposed framework can be used with any clustering algorithm, depending on
the required cluster properties, by working on subsets (windows) of data and comparing the obtained clusters between
windows. For static datasets, we expect the proposed framework to reduce the computational speed and memory
requirements of most existing clustering algorithms, while preserving their interesting properties, with minimal loss
of quality. For dynamic datasets, we expect the proposed framework to be competitive with existing stream clustering
approaches in terms of quality and complexity, while allowing great flexibility in the choice of the clustering algorithm
to be applied.
4.5.1. Experiments on static datasets

As mentioned above, our approach relies on sliding windows and the basic idea is to first perform conventional
clustering on each window, then represent the resulting clusters in a histogram model and merge the windows to obtain
the final clustering results. This part of the test compares conventional clustering algorithms applied to the full dataset
with the proposed approach using the same clustering algorithms applied to sliding windows (illustrated in Fig.18).
The following clustering algorithms were chosen: BIRCH, Agglomerative clustering, OPTICS, KMeans, Gaussian
Mixture and HDBSCAN for the comparisons in this section. BIRCH and Agglomerative clustering are only evaluated
on short datasets due to their space requirements, while Kmeans and Gaussian Mixture are well suited to large datasets.
OPTICS and HDBSCAN both take a long time to run on large datasets. However, since HDBSCAN is still faster than
OPTICS, we decided to test OPTICS only on small datasets and HDBSCAN on large datasets. The quality of the
clustering was again evaluated using the ARI and Purity indices. The computation time is given in seconds. For all
experiments, the mean and standard deviation of the index over five replicates are shown in the tables.
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Figure 18: Experiment of clustering on static datasets

The Adjusted Rand Index (ARI) results in Tab.11, Tab.12 and Purity results in Tab.13, Tab.14 of the proposed
approach are consistently close to the results of the original clustering, in some cases the proposed approach
outperforms conventional clustering. However, the slight losses in quality observed in some cases are compensated
by a (sometimes considerable) gain in computing time, as shown in Tab.15, Tab.16. Overall, the clustering process is
greatly accelerated in the proposed framework for both real and artificial datasets, without significant loss of quality.
This appears to be consistent across a large family of clustering algorithms, allowing for great flexibility in the use
of the framework. To provide a comprehensive visualization of the overall comparison between the proposed and
the original clustering approach, we computed the mean value of each index and presented the results in the form of
histograms. The purpose was to take a general view of differences between them. The histogram results are shown in
Fig.19, Fig.20 and Fig.21.

Table 11
ARI results of static clustering experiments - small datasets

Datasets
Birch Agglomerative OPTICS

Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std

Comet3 0.9304 <1e-4 0.959 <1e-4 0.9325 <1e-4 0.9584 <1e-4 0.3366 <1e-4 0.7455 <1e-4
Meteorit3 1 <1e-4 1.0 <1e-4 1 <1e-4 0.9991 <1e-4 1 <1e-4 0.8356 <1e-4
Circle3 0.9815 <1e-4 0.9632 <1e-4 0.9811 <1e-4 0.9661 <1e-4 0.0254 <1e-4 0.9454 <1e-4

Gaussian3 1 <1e-4 0.8958 <1e-4 1 <1e-4 0.7091 <1e-4 1 <1e-4 0.9994 <1e-4
Square3 1 <1e-4 0.9779 <1e-4 1 <1e-4 1.0 <1e-4 1 <1e-4 0.9932 <1e-4
Moon3 1.0 <1e-4 0.9035 <1e-4 1.0 <1e-4 0.9043 <1e-4 0.8648 <1e-4 0.9775 <1e-4

MixSmall1 0.9818 <1e-4 0.955 <1e-4 0.9792 <1e-4 0.9563 <1e-4 0.6958 <1e-4 0.9526 <1e-4
MixSmall2 0.9272 <1e-4 0.8787 <1e-4 0.9306 <1e-4 0.8808 <1e-4 0.9881 <1e-4 0.955 <1e-4
MixSmall3 0.9944 <1e-4 0.9839 <1e-4 0.9944 <1e-4 0.9838 <1e-4 0.9957 <1e-4 0.9842 <1e-4

Outdoor 0.0032 <1e-4 0.4246 <1e-4 0.4044 <1e-4 0.4446 <1e-4 0.2483 <1e-4 0.2648 <1e-4
Gassenor 0.1266 <1e-4 0.2747 <1e-4 0.1266 <1e-4 0.2837 <1e-4 0.0126 <1e-4 0.0218 <1e-4

IGBN 0.0092 <1e-4 0.2859 <1e-4 0.0653 <1e-4 0.227 <1e-4 0.006 <1e-4 0.0127 <1e-4
IABN 0.1106 <1e-4 0.0999 <1e-4 0.1098 <1e-4 0.062 <1e-4 0.0032 <1e-4 0.0074 <1e-4

Total mean 0.6973 - 0.7386 - 0.7326 - 0.7212 - 0.552 - 0.6689 -
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Table 12
ARI results of static clustering experiments - large datasets

Datasets
KMeans GaussianMixture HDBSCAN

Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std

Comet20 1.0 <1e-4 0.931 <1e-4 0.9789 0.0149 0.9318 0.0141 0.2997 <1e-4 0.9358 <1e-4
Meteorit20 1.0 <1e-4 0.9873 0.0001 0.9983 0.0024 0.9632 0.0172 0.7406 <1e-4 0.9476 <1e-4
Circle20 1.0 <1e-4 0.7651 0.0008 0.911 <1e-4 0.7795 0.0119 0.1399 <1e-4 0.9059 <1e-4

Gaussian3 1.0 <1e-4 0.9742 <1e-4 1.0 <1e-4 0.9782 0.0038 0.9087 <1e-4 0.9823 <1e-4
Square20 1.0 <1e-4 0.9843 0.0005 1.0 <1e-4 0.9446 0.011 0.6336 <1e-4 0.9635 <1e-4
Moon20 1.0 <1e-4 0.9754 <1e-4 1.0 <1e-4 0.972 0.0048 0.2689 <1e-4 0.9635 <1e-4

MixLarge10 1.0 <1e-4 0.9764 0.0008 0.9935 0.0046 0.9319 0.0129 0.4662 <1e-4 0.9749 <1e-4
MixLarge20 0.9358 0.0018 0.8832 0.0053 0.9395 0.0026 0.8639 0.0103 0.1874 <1e-4 0.9789 <1e-4
MixLarge50 0.9479 <1e-4 0.8555 0.0039 0.9261 0.0089 0.792 0.0039 0.1769 <1e-4 0.9475 <1e-4

Outdoor 0.4108 0.0076 0.4535 0.0115 0.4322 <1e-4 0.454 0.0092 0.0 <1e-4 0.5633 <1e-4
Gassenor 0.138 <1e-4 0.2776 0.008 0.1231 <1e-4 0.3065 0.0112 0.3829 <1e-4 0.0442 <1e-4

IGBN 0.0805 0.0003 0.2171 0.0092 0.1663 <1e-4 0.2491 0.0066 0.0 <1e-4 0.306 <1e-4
IABN 0.0998 0.0175 0.0779 0.0011 0.2617 <1e-4 0.1133 0.0142 0.0 <1e-4 0.1165 <1e-4
Rialto 0.0677 <1e-4 0.0632 0.002 0.0579 <1e-4 0.048 0.0006 0.0558 <1e-4 0.0809 <1e-4
IIAIN 0.0485 0.0002 0.0213 0.0008 0.2986 <1e-4 0.0319 0.0016 0.0 <1e-4 0.0209 <1e-4
IIRIN 0.0485 0.0001 0.0369 0.0013 0.1781 <1e-4 0.0567 0.0009 0.0 <1e-4 0.0728 <1e-4

Covtype 0.0144 0.0001 0.0146 <1e-4 0.0197 <1e-4 0.0147 <1e-4 0.0 <1e-4 0.0227 <1e-4

Total mean 0.576 - 0.5585 - 0.605 - 0.5548 - 0.2506 - 0.5781 -

Table 13
Purity results of static clustering experiments - small datasets

Datasets
Birch Agglomerative OPTICS

Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std

Comet3 0.999 <1e-4 0.9996 <1e-4 0.999 <1e-4 0.9996 <1e-4 1.0 <1e-4 1.0 <1e-4
Meteorit3 1 <1e-4 1.0 <1e-4 1 <1e-4 1.0 <1e-4 1 <1e-4 1.0 <1e-4
Circle3 0.9985 <1e-4 0.9989 <1e-4 0.9985 <1e-4 0.9993 <1e-4 1.0 <1e-4 1.0 <1e-4

Gaussian3 1 <1e-4 0.9997 <1e-4 1 <1e-4 0.9997 <1e-4 1 <1e-4 1.0 <1e-4
Square3 1 <1e-4 1.0 <1e-4 1 <1e-4 1.0 <1e-4 1 <1e-4 1.0 <1e-4
Moon3 1 <1e-4 0.9977 <1e-4 1 <1e-4 0.9977 <1e-4 1 <1e-4 1.0 <1e-4

MixSmall1 0.9987 <1e-4 0.9993 <1e-4 0.9987 <1e-4 0.9993 <1e-4 1.0 <1e-4 1.0 <1e-4
MixSmall2 0.9983 <1e-4 0.9988 <1e-4 0.9983 <1e-4 0.9989 <1e-4 1.0 <1e-4 1.0 <1e-4
MixSmall3 0.999 <1e-4 0.9998 <1e-4 0.999 <1e-4 0.9998 <1e-4 1.0 <1e-4 1.0 <1e-4

Outdoor 0.0566 <1e-4 0.6174 <1e-4 0.5643 <1e-4 0.6557 <1e-4 0.9546 <1e-4 0.9314 <1e-4
Gassenor 0.4252 <1e-4 0.6797 <1e-4 0.4252 <1e-4 0.6797 <1e-4 0.9929 <1e-4 0.9866 <1e-4

IGBN 0.2349 <1e-4 0.5568 <1e-4 0.3205 <1e-4 0.6316 <1e-4 0.659 <1e-4 0.6975 <1e-4
IABN 0.3079 <1e-4 0.3743 <1e-4 0.3488 <1e-4 0.4136 <1e-4 0.6698 <1e-4 0.6466 <1e-4

Total mean 0.7706 - 0.8632 - 0.8194 - 0.875 - 0.9443 - 0.9432 -
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Table 14
Purity results of static clustering experiments - large datasets

Datasets
KMeans GaussianMixture HDBSCAN

Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std

Comet20 1.0 <1e-4 1.0 <1e-4 0.9998 0.0002 1.0 0.0001 1.0 <1e-4 1.0 <1e-4
Meteorit20 1.0 <1e-4 1.0 <1e-4 0.9999 0.0001 0.9999 <1e-4 1.0 <1e-4 1.0 <1e-4
Circle20 1.0 <1e-4 0.9999 <1e-4 0.9997 <1e-4 0.9998 0.0001 1.0 <1e-4 0.9999 <1e-4

Gaussian3 1 <1e-4 1.0 <1e-4 1 <1e-4 0.9999 <1e-4 1 <1e-4 1.0 <1e-4
Square20 1 <1e-4 1.0 <1e-4 1 <1e-4 1.0 <1e-4 1 <1e-4 1.0 <1e-4
Moon20 1 <1e-4 1.0 <1e-4 1 <1e-4 1.0 <1e-4 1 <1e-4 1.0 <1e-4

MixLarge10 1.0 <1e-4 0.9997 0.0001 0.9988 0.0008 0.9992 0.0002 1.0 <1e-4 1.0 <1e-4
MixLarge20 0.9995 <1e-4 0.9991 <1e-4 0.9991 0.0005 0.9993 0.0003 1.0 <1e-4 0.9999 <1e-4
MixLarge50 0.9997 <1e-4 0.9998 <1e-4 0.9992 0.0004 0.9996 <1e-4 1.0 <1e-4 1.0 <1e-4

Outdoor 0.573 0.0013 0.6554 0.0045 0.5886 <1e-4 0.6722 0.0071 0.0531 <1e-4 0.8765 <1e-4
Gassenor 0.4302 <1e-4 0.6685 0.0013 0.394 <1e-4 0.7273 0.0026 0.8349 <1e-4 0.9868 <1e-4

IGBN 0.3256 0.0002 0.6106 0.0048 0.4095 <1e-4 0.6878 0.0093 0.2841 <1e-4 0.5544 <1e-4
IABN 0.3351 0.0158 0.4579 0.0014 0.4547 <1e-4 0.5443 0.0081 0.2304 <1e-4 0.3002 <1e-4
Rialto 0.2242 0.0002 0.3313 0.0001 0.2053 <1e-4 0.2949 0.0018 0.8237 <1e-4 0.3354 <1e-4
IIAIN 0.3822 0.0002 0.4391 0.0012 0.6605 <1e-4 0.5633 0.0128 0.2983 <1e-4 0.4016 <1e-4
IIRIN 0.3823 <1e-4 0.4991 0.0019 0.5301 <1e-4 0.6189 0.0086 0.2983 <1e-4 0.5235 <1e-4

Covtype 0.4838 0.0001 0.631 0.0004 0.4799 <1e-4 0.6173 <1e-4 0.474 <1e-4 0.5554 <1e-4

Total mean 0.7139 - 0.7818 - 0.7482 - 0.8073 - 0.7233 - 0.7961 -

Table 15
Computation time results of static clustering experiments - small datasets

Datasets
Birch Agglomerative OPTICS

Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std

Comet3 46.3985 5.5252 7.8408 0.2432 127.4078 58.3112 5.0261 0.3873 493.3792 29.1054 163.4676 4.2873
Meteorit3 67.0437 7.5685 8.1117 0.4121 98.8683 3.322 4.8845 0.1614 918.6827 38.0698 150.9396 2.9005
Circle3 58.8365 14.6916 7.6885 0.1152 385.324 380.004 4.6353 0.0457 549.9497 93.6811 200.4851 9.3847

Gaussian3 50.6037 6.429 7.9339 0.2602 149.0743 54.4083 4.9113 0.1212 907.9354 7.8397 156.0655 15.702
Square3 48.9298 13.2206 10.005 0.3386 269.3275 26.8078 5.5559 0.3193 517.4142 57.988 183.2336 5.6596
Moon3 50.6882 8.0583 8.957 0.7769 116.288 12.7159 5.4233 0.4177 616.3526 81.1579 177.2624 2.3017

MixSmall1 10.3563 1.1373 2.0381 0.0417 11.8551 0.8239 1.266 0.0215 227.0029 9.3106 31.7193 0.9437
MixSmall2 54.2983 11.1377 6.5279 0.1404 46.1001 1.5442 4.8924 0.6459 544.6624 77.89 139.1024 4.3467
MixSmall3 90.4021 9.0464 11.9336 0.1881 173.7018 75.2559 8.8753 0.3032 762.1336 181.8225 291.2263 7.3133

Outdoor 0.0625 <1e-4 1.0264 0.0304 0.3124 <1e-4 0.8213 0.0089 4.5836 1.5515 10.9769 0.1763
Gassenor 22.9573 2.1986 3.4747 0.0463 19.5265 1.6089 2.1071 0.0456 335.5294 21.1148 225.4194 8.4252

IGBN 0.7426 0.0064 0.6852 0.0368 34.4075 3.6584 3.4804 0.1498 422.94 131.5297 161.5363 2.3473
IABN 0.9206 0.0009 1.3271 0.0074 48190.2563 3384.3683 15.9417 0.2998 974.3189 0.373 687.5644 21.508

Total mean 38.6339 - 5.9654 - 3817.1115 - 5.217 - 559.6065 - 198.3845 -
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Table 16
Computation time results of static clustering experiments - large datasets

Datasets
KMeans GaussianMixture HDBSCAN

Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std

Comet20 23.7342 2.7909 19.3367 1.4584 222.9943 78.1578 65.8177 7.7575 4213.044 171.5366 214.1387 13.7232
Meteorit20 24.1478 1.002 18.9577 0.441 132.9496 34.5254 85.2217 13.1 4406.3028 56.387 222.485 14.6033
Circle20 16.4333 1.3872 20.6704 0.5538 113.1192 2.2735 104.3281 13.3199 3383.8675 187.8437 289.1871 1.5691

Gaussian3 23.5632 0.4888 14.6609 0.2494 115.2474 1.3591 58.9519 5.7402 3979.6592 184.0601 144.8482 1.269
Square20 34.9393 1.6008 13.419 0.4361 115.2435 1.9313 57.7548 7.9632 5379.3736 519.3697 153.2965 2.101
Moon20 27.8314 4.1625 12.889 0.3042 114.9479 1.6865 44.9077 1.4486 3994.7321 237.7477 142.0085 2.0998

MixLarge10 18.3237 3.3988 14.3273 0.363 72.1962 5.9587 42.0488 6.5004 1205.1306 74.8272 49.496 0.8893
MixLarge20 50.8988 1.6117 26.4944 2.3093 391.9952 121.8181 130.6982 16.6862 5014.7048 408.9864 191.2873 4.0184
MixLarge50 95.487 27.4479 79.6922 5.5884 1076.0308 390.7638 812.5653 88.7552 18195.6259 4904.3931 787.7254 55.2137

Outdoor 0.302 0.0074 1.035 0.0493 0.7661 0.0128 1.9281 0.1739 0.2656 0.0128 2.9949 0.0866
Gassenor 0.4061 0.0663 0.5567 0.0129 19.5284 1.9068 4.7923 0.6046 16.7923 0.3322 71.8682 1.6906

IGBN 0.5071 0.0175 1.1919 0.0778 5.2655 2.509 2.4238 0.4223 12.4552 2.8957 5.7869 0.1156
IABN 0.9893 0.181 1.6901 0.0311 15.5038 1.708 11.095 0.3244 35.2257 2.4508 17.0926 0.0204
Rialto 2.7374 0.3745 3.2711 0.0336 14.2576 1.0034 14.3153 1.2942 12.315 0.1322 10.8885 0.2875
IIAIN 11.1205 0.7061 15.6908 1.4261 262.0022 2.598 220.7938 25.0763 2503.7866 263.0432 367.5863 38.6229
IIRIN 30.0352 2.5654 15.2497 1.9226 292.2506 9.6818 192.2129 15.15 2871.1593 13.8162 353.6794 11.6252

Covtype 12.7106 1.3458 6.836 0.261 88.7571 1.03 28.6675 0.561 3187.8646 138.1439 102.8748 3.6112

Total mean 22.0098 - 15.6452 - 179.5915 - 110.5013 - 3436.0179 - 183.9555 -

Figure 19: Total mean ARI of different algorithms

Figure 20: Total mean Purity of different algorithms
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Figure 21: Total mean Computation time of different algorithms

4.5.2. Experiments on dynamic datasets
In order to evaluate whether our approach works well on dynamic datasets and streams, we compared it with

traditional approaches such as CluStream and DenStream, presented in section 1, as well as two other approaches
already implemented in the Python package River [56]: SequentialKmeans [57], which is a mini-batch KMeans
clustering with a new parameter halflife that indicates the amount by which the cluster centres should be shifted.
The cluster centroid is shifted towards the most recent observation. StreamKmeans [23] is a variant of the original
STREAMLSEARCH algorithm, which uses the incremental KMeans algorithm instead of the KMedians obtained by
LSEARCH. This allows the algorithm to update KMeans without re-initialising, saving a significant amount of CPU
power. We implemented CluStream and DenStream following the parameters proposed in the corresponding paper.

Since there are several possible choices of conventional clustering for our approach, we decided to use HDBSCAN
and name this approach HistStream(HDBSCAN) to compare with DenStream, since HDBSCAN is a density-based
clustering that can achieve cluster identification for any distribution without the number of clusters as an input. In
addition, since KMeans is widely used and is the basis of most partition-based clustering, we also tested KMeans
with our framework and name this approach HistStream(KMeans), which could therefore be compared with other
partition-based algorithms such as SequentialKmeans, StreamKmeans and CluStream.

Table 17
ARI results of dynamic clustering experiments

Datasets SequentialKmeans StreamKmeans CluStream HistStream DenStream
Kmeans HDBSCAN

mean std mean std mean std mean std mean std mean std

Comet20 0.7955 <1e-4 0.677 0.0005 0.8516 0.0107 0.9713 <1e-4 0.9321 <1e-4 0.9537 <1e-4
Meteorit20 0.8112 <1e-4 0.6125 0.0034 0.8713 0.0021 0.9559 0.0002 0.933 <1e-4 0.8531 <1e-4
Circle20 0.8849 <1e-4 0.7163 0.0027 0.8174 0.0452 0.8399 <1e-4 0.9508 <1e-4 0.8059 <1e-4

Gaussian3 0.9999 <1e-4 0.9996 <1e-4 0.8892 0.0049 0.969 0.0008 0.9798 <1e-4 0.7939 <1e-4
Square20 0.9412 <1e-4 0.7284 0.0058 0.9507 0.0001 0.9784 <1e-4 0.9901 <1e-4 0.9452 <1e-4
Moon20 0.8476 <1e-4 0.5151 0.0091 0.8572 0.008 0.9741 <1e-4 0.944 <1e-4 0.9907 <1e-4

MixLarge10 0.8324 <1e-4 0.7487 0.0103 0.9236 0.0259 0.9566 0.0062 0.9823 <1e-4 0.875 <1e-4
MixLarge20 0.9369 <1e-4 0.885 0.0016 0.8841 0.0215 0.885 0.0038 0.9621 <1e-4 0.9104 <1e-4
MixLarge50 0.8576 <1e-4 0.8507 0.0022 0.0036 <1e-4 0.8696 0.0025 0.9544 <1e-4 0.875 <1e-4

Outdoor 0.0909 <1e-4 0.0477 0.0027 0.367 0.0052 0.45 <1e-4 0.5843 <1e-4 0.1301 <1e-4
Gassenor 0.0385 <1e-4 0.0425 <1e-4 0.0588 0.0002 0.402 0.0001 0.8362 <1e-4 0.1978 <1e-4

IGBN 0.0101 <1e-4 0.2069 0.0892 0.0406 0.0023 0.2076 <1e-4 0.3301 <1e-4 0.0839 <1e-4
IABN 0.0046 <1e-4 0.0605 0.0074 0.0545 0.0003 0.0698 0.0003 0.243 <1e-4 0.0714 <1e-4
Rialto 0.0017 <1e-4 0.0002 0.0001 0.0517 0.0036 0.0514 0.0002 0.0802 <1e-4 0.0655 <1e-4
IIAIN 0.0 <1e-4 0.0087 0.0043 0.0421 0.0077 0.0202 <1e-4 0.0122 <1e-4 0.0395 <1e-4
IIRIN 0.0016 <1e-4 0.0195 0.0116 0.0331 0.002 0.0331 0.0007 0.0318 <1e-4 0.0259 <1e-4

Covtype 0.0063 0.0034 0.0015 0.0004 0.0114 0.0009 0.0057 0.0015 0.0092 <1e-4 0.0 <1e-4

Total mean 0.4742 - 0.4189 - 0.4534 - 0.567 - 0.6327 - 0.5069 -
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Table 18
Purity results of dynamic clustering experiments

Datasets SequentialKmeans StreamKmeans CluStream HistStream DenStream
Kmeans HDBSCAN

mean std mean std mean std mean std mean std mean std

Comet20 0.8709 <1e-4 0.7531 0.0005 0.9627 0.006 1 <1e-4 1 <1e-4 1.0 <1e-4
Meteorit20 0.859 <1e-4 0.6799 0.0069 0.9079 0.0043 1.0 <1e-4 0.9999 <1e-4 1.0 <1e-4
Circle20 0.9549 <1e-4 0.8063 0.0051 0.9206 0.0047 0.9998 <1e-4 1.0 <1e-4 0.9998 <1e-4

Gaussian3 1.0 <1e-4 0.9997 <1e-4 0.9179 <1e-4 1.0 <1e-4 1.0 <1e-4 0.8565 <1e-4
Square20 0.9301 <1e-4 0.7653 0.0141 0.9535 <1e-4 0.9999 <1e-4 1.0 <1e-4 0.9994 <1e-4
Moon20 0.8918 <1e-4 0.6072 0.0094 0.9181 0.01 1.0 <1e-4 0.9998 <1e-4 0.995 <1e-4

MixLarge10 0.8978 <1e-4 0.833 0.0089 0.9597 0.0088 0.9996 <1e-4 1.0 <1e-4 0.9996 <1e-4
MixLarge20 0.9347 <1e-4 0.8736 0.0018 0.9437 0.0113 0.9998 <1e-4 0.9998 <1e-4 0.9992 <1e-4
MixLarge50 0.9403 <1e-4 0.9206 0.0024 0.1055 <1e-4 0.9998 <1e-4 0.9998 <1e-4 0.9996 <1e-4

Outdoor 0.2031 <1e-4 0.1724 0.0015 0.5004 0.0133 0.6786 <1e-4 0.8928 <1e-4 0.1969 <1e-4
Gassenor 0.3093 <1e-4 0.3181 <1e-4 0.3882 0.0019 0.6922 0.001 0.805 <1e-4 0.4967 <1e-4

IGBN 0.2138 <1e-4 0.3853 0.0738 0.268 0.0105 0.5453 0.0001 0.5743 <1e-4 0.3789 <1e-4
IABN 0.202 <1e-4 0.266 0.0122 0.295 0.0003 0.4523 0.0009 0.5175 <1e-4 0.2772 <1e-4
Rialto 0.1225 <1e-4 0.1086 0.001 0.1953 0.0038 0.3224 0.0001 0.3132 <1e-4 0.2115 <1e-4
IIAIN 0.298 <1e-4 0.3227 0.0075 0.3848 0.0122 0.4284 <1e-4 0.3674 <1e-4 0.4315 <1e-4
IIRIN 0.3156 <1e-4 0.3539 0.0233 0.3685 0.0011 0.5127 0.0023 0.4426 <1e-4 0.3764 <1e-4

Covtype 0.4762 0.0017 0.4742 0.0003 0.4846 0.0001 0.5318 0.0005 0.5312 <1e-4 0.474 <1e-4

Total mean 0.6129 - 0.5671 - 0.6161 - 0.7743 - 0.7908 - 0.6878 -

Table 19
Computation time results of dynamic clustering experiments

Datasets SequentialKmeans StreamKmeans CluStream HistStream DenStream
Kmeans HDBSCAN

mean std mean std mean std mean std mean std mean std

Comet20 601.1789 0.8627 4173.0255 5.8701 111.1533 10.8181 20.0096 0.0576 136.5564 1.9086 103.7651 2.658
Meteorit20 598.7418 0.3835 4048.359 0.5028 99.2521 4.647 20.7868 0.1174 127.1455 1.1586 9854.3365 87.156
Circle20 612.8237 3.016 4321.1806 116.6523 100.8072 5.9999 29.4217 0.5364 494.6203 7.7403 141.2185 0.5147

Gaussian3 603.9073 0.2887 4199.7799 3.861 107.0685 9.2846 24.4203 0.4745 76.8281 0.503 3105.9656 6.6823
Square20 602.799 0.6457 4173.3107 3.6656 106.2824 11.4305 25.6883 2.3608 82.2653 0.9315 4769.8329 32.2027
Moon20 637.8218 3.3549 4435.9815 18.294 93.5763 5.8634 25.0204 3.4944 96.8381 1.1616 85.1582 2.9777

MixLarge10 343.2683 0.5161 2501.5632 5.0294 56.7119 4.6763 14.6774 0.6988 52.6882 1.3952 15544.6931 345.2638
MixLarge20 841.1053 1.8018 7051.6518 51.9163 137.4155 9.9892 33.4324 2.2048 179.6185 11.3344 2597.6667 59.2815
MixLarge50 2867.8369 7.7141 32481.0794 1056.8821 318.0409 8.9821 117.0566 10.4723 483.7691 17.7896 15544.6931 345.2638

Outdoor 1.9826 0.0119 12.0543 0.0459 18.3913 0.9477 1.3999 <1e-4 3.128 <1e-4 0.3405 0.0117
Gassenor 7.6274 0.2071 19.1491 0.7072 1.0658 0.0581 0.6815 0.2587 4.3237 0.0406 8.5452 0.099

IGBN 3.7845 0.2189 6.1328 0.1192 2.9484 2.3777 0.699 0.1686 9.8378 0.0485 2.9768 0.1999
IABN 8.4413 0.2436 14.6793 0.5363 4.2191 0.8793 1.6813 0.1438 14.7541 0.0692 2.6717 0.1316
Rialto 15.5729 0.0744 47.5999 0.2665 12.239 1.1187 2.8241 0.1433 11.8558 0.0565 8.0523 0.1978
IIAIN 70.0952 3.2963 125.4809 3.5934 30.6166 0.1338 10.3653 <1e-4 312.6661 <1e-4 82.7187 0.2978
IIRIN 68.3161 0.9216 123.9349 0.8913 30.1934 0.0635 24.901 0.784 378.9039 12.6035 103.2595 1.5032

Covtype 32.2408 0.4028 86.62 1.5781 43.3229 1.1053 12.2326 1.1983 142.838 3.6063 21.7024 0.1732

Total mean 465.7379 - 3989.5049 - 74.9003 - 21.4881 - 153.4492 - 3057.5057 -

The results shown in Tab.17, Tab.18, and Tab.19 provide compelling evidence of the superiority of Hist-
Stream(KMeans) over other algorithms in terms of clustering quality across multiple scenarios, consistently main-
taining competitive performance. In particular, HistStream(KMeans) exhibits significantly faster running time com-
pared to both SequentialKmeans and StreamKmeans, while still being slightly faster than CluStream. Similarly,
HistStream(HDBSCAN) consistently achieves better clustering quality than DenStream and shows faster speed,
although the difference occasionally appears small. Another interesting observation is that the stability of Den-
Stream seems worse, especially when dealing with larger datasets, compared to the consistent performance of
HistStream(HDBSCAN). To gain a more complete understanding of the overall performance differences between
the algorithms, we performed calculations for the mean value of each index. The results, as shown in Fig.22, clearly
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highlight the better performance of the proposed approach over other methods in terms of clustering quality, without any
significant compromise in computational efficiency. Moreover, interestingly, the application of the proposed framework
with HDBSCAN and KMeans reveals noticeable differences, although not statistically significant. These differences
highlight the distinct advantages of each conventional clustering method, such as the efficiency of KMeans and the
better clustering quality of HDBSCAN on arbitrary clusters. This observation shows the exceptional flexibility of the
proposed framework in adapting to different tasks by judiciously selecting different conventional clustering algorithms.

Figure 22: Total mean ARI & Purity & Computation time of different algorithms

5. Conclusion
A significant advancement in clustering, especially for large datasets, is the modelling of cluster distributions

using innovative representations. In this research, we present a novel approach designed for both static and dynamic
clustering, based on a histogram representation and the use of Wasserstein distance to compare distributions. The
proposed framework can be used with any clustering algorithm, depending on the required cluster properties, by
working on subsets of data and comparing the obtained clusters between subsets. The main goal is to reduce
computation time and improve clustering quality. Specifically, experiments on real and artificial datasets show that
the proposed framework can reduce the computational speed and memory requirements of most traditional clustering
algorithms with minimal loss of quality. For dynamic datasets, the proposed framework is competitive with existing
stream clustering approaches in terms of quality and complexity, while allowing great flexibility in the choice of
clustering algorithm to be applied.

However, we observed that the clustering quality depends on the size of the data subsets (windows) and may start
to degrade as the size decreases, with occasional sharp drops, while the computational time decreases significantly
with smaller windows. This observation suggests that the proposed approach is sensitive to the number of samples in
each window. Furthermore, the critical window size seems to vary between datasets. Therefore, a critical focus for our
future studies will be to automatically determine the optimal number of samples for each window to obtain the best
trade-off between quality and speed, and to propose more robust clustering results.

In conclusion, our research highlights a promising new technique that uses histogram modelling with Wasserstein
distance for clustering in both static and dynamic scenarios. It provides an efficient option for real-world applications,
offering significant advantages in terms of computational time and clustering quality.
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