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Bayesian networks are graphical first-order probabilistic models that allow for a compact representation of
large probability distributions, and for efficient inference, both exact and approximate. We introduce a higher-
order programming language—in the idealized form of a _-calculus—which we prove sound and completew.r.t.
Bayesian networks: each Bayesian network can be encoded as a term, and conversely each (possibly higher-
order and recursive) program of ground type compiles into a Bayesian network.

The language allows for the specification of recursive probability models and hierarchical structures. More-
over, we provide a compositional and cost-aware semantics which is based on factors, the standard mathemati-
cal tool used in Bayesian inference. Our results rely on advanced techniques rooted into linear logic, intersec-
tion types, rewriting theory, and Girard’s geometry of interaction, which are here combined in a novel way.
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1 INTRODUCTION

This paper is a foundational study, taking a cost-aware approach to the semantics of higher-order
probabilistic programming languages. Probabilistic models play a crucial role in several fields such
as machine learning, cognitive science, and applied statistics, with applications spanning from fi-
nance to biology. A prominent example of suchmodels are Bayesian networks (BNs) [Pearl 1988], a
(first-order, static) graphical formalism able to represent complex systems in a compact way and en-
abling efficient inference algorithms. BNs decompose large joint distributions into smaller factors.
These are used in inference algorithms, both exact (such as message passing and variable elimina-
tion) and approximate (sampling-based). Despite their significant strengths, the task of modeling
using Bayesian networks is comparable to the task of programming using logical circuits.
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84:2 Claudia Faggian, Daniele Pautasso, and Gabriele Vanoni

Probabilistic Programming Languages. A different approach is taken by probabilistic program-

ming languages (PPLs), where statistical models are specified as programs. The fundamental idea
behind PPLs is to separate the model description—the program—from the computation of the prob-
ability distribution specified by the program—the inference task. This separation aims at making
stochastic modeling as accessible as possible, hiding the underlying inference engines, which typ-
ically encompass various sampling methods such as importance sampling, Markov Chain Monte
Carlo, and Gibbs sampling. In this paper, we specifically focus on functional PPLs, which allow for
first-class higher-order functions and compositional semantics (e.g. Church [Goodman et al. 2008],
Anglican [Wood et al. 2014] and Venture [Mansinghka et al. 2014]).

Bayesian Networks and PPLs. Bayesian networks and PPLs are closely interconnected. On the
one hand, Bayesian networks can be easily represented as simple, first-order, probabilistic pro-
grams [Gilks et al. 1994; Koller et al. 1997]. On the other hand, several first-order PPLs (such as
BUGS, a widely used declarative language, and Infer.NET) compile programs into a graphical
model, specifically a Bayesian network, which is then utilized for performing inference tasks. For
a detailed tutorial and an analysis of the involved subtleties, we refer to [van de Meent et al. 2018]
(Ch.3).

Towards a Foundational Understanding. The research community is devoting considerable effort
to establish a solid foundational understanding of functional PPLs. A central concept is compo-
sitionality, which is the key to reason in a modular (and scalable) way about programs. Such an
understanding is crucial for the development of robust formal methods to facilitate the analysis of
probabilistic programs, the construction of Bayesian models, and the verification of inference cor-
rectness. Pioneering works by Jacobs and Zanasi [2016, 2020] have paved the way for a logical and
semantical comprehension of Bayesian networks and inference from a categorical perspective. The
majority of foundational papers, e.g. [Dahlqvist et al. 2018; Heunen et al. 2017; Ścibior et al. 2018;
Stein and Staton 2021; Vákár et al. 2019], have adopted an approach based on category theory,
which has yielded remarkable insights, enabling denotational proofs of correctness and composi-
tionality principles. This line of research however does not take into account the raison d’être of
Bayesian networks, namely the space and time efficiency of inference. In the literature, composi-
tional semantics and efficiency are typically explored as separate entities. This dichotomy stands
in stark contrast to Bayesian networks, where the representation, its semantics (the defined joint
distribution), and the inference algorithms are deeply intertwined.

This paper. Our foundational investigation adopts a cost-aware perspective. We introduce a se-
mantical framework that integrates the efficiency of Bayesian networks with the expressiveness of
higher-order functional programming, and the compositional nature of type systems. We adopt
an idealized functional PPL, namely an untyped _-calculus enriched with probabilistic primitives.
Our language faithfully encompasses conventional Bayesian networks (expressed here by first-
order terms in normal form), and comes equipped with a semantics and formal methods which
are resources-sensitive. The core of our approach lies in semantical techniques, including rewriting
theory and type systems. These form the groundwork for a compilation scheme that translates
higher-order terms into Bayesian networks, which serve as a low-level language. We list below
our main contributions:
• A higher-order language for BNs. We introduce a probabilistic call-by-push-value _-calculus
that we prove sound and complete for BNs: not only any Bayesian network can be encoded as a
term (which is standard), but also—conversely—any higher-order (possibly recursive) program
of ground typewill eventually reduce to a first-order normal form, corresponding to a Bayesian
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Higher Order Bayesian Networks, Exactly 84:3

network (Thm. 4.6 and Thm. 7.1). Our language also supports the encoding of advanced stochas-
tic models, including template Bayesian networks, and the specification of recursive probability
models. Notably, the operational semantics we define corresponds to the process of unrolling
the template into an actual BN, in line with the intended semantics of the templates.
• A factor-based semantics. We endow each term of ground type with a factor-based semantics.
Factors, indeed, are the mathematical structure which give semantics to BNs. Technically, com-
puting this factor-based semantics requires tracking the generation and sharing of random
variables—this task is achieved using non-idempotent intersection types. This technique al-
lows us to extract a Bayesian network BC from the type derivation of a ground term C , and to
prove that the semantics (in the sense of Bayesian networks theory) of BC coincides with the
semantics of C .
• The factor semantics is compositional. The main technical achievement of the paper is to estab-
lish the compositionality of the factor semantics for typed terms (Sect. 6 and Sect. 7.2). This
is particularly noteworthy since operations on factors do not exhibit this property, in general.
The design of the type system plays a crucial role in ensuring compositionality, thereby en-
abling the modular reasoning that one expects in a high-level programming language.
• The factor semantics is resource-sensitive. Our semantics takes resource consumption into account—
its computational complexity (both in terms of space and time) is similar to that for Bayesian
networks. Additionally, the type system offers a precise estimate of the cost associated with
computing the semantics of a term (i.e., the cost of calculating the exact distribution defined
by the term).
• Proof techniques. The proof of our results incorporates sophisticated techniques that have their
foundation in linear logic, leveraging significant advancements made over the past 15 years.
Specifically, we employ intersection types, rewriting theory, linear logic, and concepts inspired
by Girard’s geometry of interaction in a novel and synergistic manner.

Proofs and more examples are in the Appendix.

2 ABOUT BAYESIAN NETWORKS, SHARING, AND THE _-CALCULUS, INFORMALLY

Bayesian Reasoning. In the Bayesian interpretation, probabilities describe degrees of belief in
events, and inference allows for reasoning under uncertainty. One challenge in Bayesian reason-
ing is how to represent joint probability distributions. Indeed, these can quickly become very large:
in general, a probability distribution over = boolean variables requires storing 2= values. Bayesian
networks are able to express a joint probability distribution over several variables in a compact
way (factorized representation), allowing for efficient inference, without ever needing to reconstruct
the full joint distribution.

An Example of Bayesian Network. Let us start with an informal example. We want to model the
fact that the lawn being Wet in the morning may depend on either Rain or the Sprinkler being
on. In turn, both Rain and the regulation of the Sprinkler depend on being or not in the Dry

Season. The dependencies between these four variables (shortened to D, S, R, W) are represented
as arrows in Fig. 1, while (for each variable) the strength of the dependencies is quantified by a
conditional probability table (CPT). Assume we wonder: did it rain last night? Given that we are
in DrySeason, our prior belief is that Rain happens with probability 0.2. However, if we observe
that the lawn is Wet, our confidence increases. The updated belief is called posterior. The model in
Fig. 1 allows us to infer the posterior probability of Rain, given the evidence that the lawn is Wet,
i.e. Pr(R = t|W = t). Posteriors are typical queries which can be answered by Bayesian inference,
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WetGrass
W

Sprinkler
S

DrySeason
D

Rain
R

D R Pr(R|D)
t t 0.2
t f 0.8
f t 0.75
f f 0.25

D Pr(D)
t 0.6
f 0.4

D S Pr(S|D)
t t 0.8
t f 0.2
f t 0.1
f f 0.9

S R W Pr(W|S, R)
t t t 0.99
t t f 0.01
f t t 0.7
f t f 0.3
t f t 0.9
t f f 0.1
f f t 0.01
f f f 0.99

Fig. 1. An example of Bayesian network (from [Darwiche 2009]).

Joint distribution over D, S, R, W Marginal over R, W
D S R W Pr(3, B, A , F)
t t t t 0.09504
t f t t 0.0168
f t t t 0.0297
f f t t 0.189
t t t f 0.00096
t f t f 0.0072
f t t f 0.0003
f f t f 0.081

. . . . . .

=⇒

summing out D, S

R W Pr(A, F)
t t 0.33
t f 0.09
. . . . . .

Pr(A, F) =
∑

3,B∈{t,f}

Pr(3, B, A , F)

Fig. 2. Joint distribution corresponding to the Bayesian network in Fig. 1, and marginalization.

which has at its core Bayes conditioning, often condensed in the following informal formula:

Posterior = Prior × Likelihood÷ Evidence

Concretely, in our example:

Pr(Rain = t|Wet = t) =
Pr(Wet = t|Rain = t) Pr(Rain = t)

Pr(Wet = t)
=
Pr(Rain = t, Wet = t)

Pr(Wet = t)

So, to compute the posterior Pr(Rain = t|Wet = t), we have to compute themarginal Pr(Rain =

t, Wet = t), which can be obtained by summing out the other variables from the joint probabil-
ity. Marginalization is illustrated in Fig. 2 (all rows which agree on the value of Rain and Wet are
merged into a single row, summing up the probabilities). We remark that the joint distribution
over D, S, R, W has 24 entries, although here we only display a subset of them.
The marginal probability Pr(Wet = t) of the evidence is computed in a similar way (yielding

0.69). Then, we obtain the posterior by normalizing: Pr(Rain = t|Wet = t) = 0.33/0.69 = 0.48.
Further evidence (for example, the Sprinkler is broken) would once again update our belief. In
practice, the numerator of Bayes theorem (the unnormalized marginal) often suffices, since the
actual posterior is proportional to it:

Posterior ∝ Prior × Likehood

Summing up, the key step in exact inference is the computation of marginals.
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Bayesian Networks as Terms. In probabilistic programming, it is standard to describe a Bayesian
network with a term (see e.g. [Gordon et al. 2014] for a brief tutorial). We can encode our initial
example into a rather standard probabilistic call-by-value _-calculus, as follows:

let dry = bernoulli0.6 in

let rain = case 〈dry〉 of {t⇒bernoulli0.8; f⇒bernoulli0.1} in
let sprinkler = case 〈dry〉 of {t⇒bernoulli0.2; f⇒bernoulli0.75} in
let wet = case 〈rain, sprinkler〉 of {〈t, t〉 ⇒bernoulli0.99; 〈t, f〉 ⇒bernoulli0.7;

〈f, t〉 ⇒bernoulli0.9; 〈f, f〉 ⇒bernoulli0.01}
in wet

(1)

The idea is that any CPT can be encoded with a case construct, together with a probabilistic
primitive sample3 , which returns a value sampled from a (countably supported) probability distri-
bution 3 . In this example we sample from a Bernoulli distribution. This way, all Bayesian networks
can be encoded in a very basic fragment of the simply typed call-by-value _-calculus (this will be
discussed in the next sections). What if we allow for a richer, non linear, _-calculus?

Beyond Ground Bayesian Networks. Standard Bayesian networks describe probabilistic models
in an intuitive and compact way, but have some inherent limitations. They are a first-order model,
lackingmodularity and compositionality. A well-established way to increase the expressive power
of Bayesian networks are templates1 , which allow for the description of hierarchical models and
for taking into account temporality. Dynamic Bayesian networks [Dean and Kanazawa 1989] (in
Fig. 4) are an instance extensively used in real-world applications—e.g. mobile robotics. A more
structured approach is indeed essential when models become large and complex. While standard
Bayesian networks have a precise mathematical definition, rooted in graph theory and statistics,
templates are a more informal notion. We show that techniques from functional programming
language theory can provide a neat and mathematically sound framework, founded on the theory
of lambda calculus, exactly matching the intended semantics of templates.

Repeated Coin Tosses. Let us consider the following experiment, where repetition is involved.

1. Sample a bias A8 from a discrete distribution (for simplicity, let us assume there are only two
possible choices: A1 or A2).

2. Toss< times a coin of bias A8 .
3. Return the results of the< (biased) coin tosses.
It is standard to graphically describe such an experiment bymeans of the plate notation [Buntine

1994; Gilks et al. 1994] (see Fig. 3), a graphical meta-formalism for representing models with re-

peated structures and shared parameters. A rectangular plate grouping random variables indicates
multiple copies of the sub-graph. A number (<) is drawn to represent the number of repetitions.
Unrolling the plate < times defines a ground Bayesian network. Please notice that the intended
Bayesian network is the unrolled one. In Fig. 3, we show the template which models our experi-
ment (a), and the ground Bayesian network resulting from its unrolling (b).

Repetitions, Sharing, and PPL. How can we describe this experiment as a _-term? Let us assume
< = 2. It is tempting to encode the template in the following way:

let bias = sample3 in

let coin = case 〈bias〉 of {A1 ⇒bernoulliA1 ; A2 ⇒bernoulliA2}
in 〈coin, coin〉

1We refer to [Koller and Friedman 2009], Ch. 6, for a detailed presentation and pointers to the vast literature.
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coin

bias

<

(a) Plate

coin1

bias

coin2 coin<...

(b) Unrolling< times

Fig. 3. Modeling< coin tosses.

S S′

O′

time C = 0 time C + 1

(a) Template

S0 S1

O1

S2

O2

(b) Unrolling (2 times)

Fig. 4. Discrete Time Dynamic Bayesian network.

let bias = sample3 in

let coin = ! (c〈bias〉) in
let ~1 = der coin in

let ~2 = der coin

in 〈~1, ~2〉

→

let bias = sample3 in

let ~1 = der !(c〈bias〉) in
let ~2 = der !(c〈bias〉)
in 〈~1, ~2〉

→∗

let bias = sample3 in

let ~1 = c〈bias〉 in

let ~2 = c〈bias〉

in 〈~1, ~2〉

Fig. 5. The _-term correctly modeling two coin tosses, and its reduction to normal form. c〈bias〉 stands for

the conditional expression case 〈bias〉 of {A1 ⇒bernoulliA1 ; A2 ⇒bernoulliA2 }. The result stored in bias is

correctly shared, while coin is copied before performing the toss, thus giving two independent and identically

distributed values to ~1 and ~2.

Unfortunately, the call-by-value policy makes sure that all the instances of coin have the same

shared value, so the possible outcomes are only 〈t, t〉 and 〈f, f〉. Indeed, since only values can be
substituted for variables, all expressions, even the probabilistic ones, have to be evaluated before
being substituted. Switching the evaluation order to call-by-name does not solve the problem: now
all the probabilistic primitives are copied before being evaluated. This means that all coin tosses
are independent, this way not belonging necessarily to the same coin: some could have bias A1 and
some others A2. We need a finer evaluation mechanism that allows the programmer to say when
values have to be shared, and when instead we want to actually duplicate unevaluated expressions.

Call-by-Push-Value. More than 20 years ago Levy [1999] introduced call-by-push-value as a sub-
suming paradigm and functional/imperative synthesis, refining the computational _-calculus by
Moggi [1989]. The slogan was: “a value is, a computation does”, as this language tries to unify
call-by-name and call-by-value, providing two new primitives. The former thunks a computation
inside a value, and the latter forces the evaluation of a value as a computation. Similar ideas have
been independently developed in the linear logic community, using Girard’s translations. There,
linear _-calculi use the ! to thunk, and der(eliction) to force [Benton and Wadler 1996; Egger et al.
2014; Ehrhard 2016; Melliès and Tabareau 2010; Simpson 2005]. Having all of this in mind, we
encode our experiment as the leftmost term of Fig. 5.

Operational Semantics. The simplest operational semantics for probabilistic programs is in terms
of sampled values. A standard approach in probabilistic _-calculi (including [Ehrhard and Tasson
2019]) is to give the operational semantics via Markov chains: sequential evaluation produces dis-
tributions over execution paths. Here, we follow a different route, because we want to model the
unrolling of a higher-order term into a ground Bayesian Network, as shown in Fig. 5. By firing
all the redexes but the probabilistic choices, the term C reduces to a normal form that represents a
standard, ground Bayesian network, exactly matching the unrolling of the template in Fig. 3.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 84. Publication date: January 2024.
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3 PRELIMINARIES ON CALCULUS AND TYPES

This section presents the probabilistic programming language we are going to use throughout this
paper. The language includes constructs for describing sampling and conditioning. We have already
argued why we opted for a language that is able to thunk computations and force values.

3.1 Syntax

Our language, dubbed _!-calculus, is a fragment of [Ehrhard and Tasson 2019] probabilistic call-
by-push-value. For ease of presentation, in this paper we limit ground types to booleans. This way,
all random variables are assumed binary, and as a consequence, we only sample from Bernoulli
distributions. Generalizing the language to discrete r.v.s is straightforward.

Terms. LetV be a countable set of variables. _!-terms are defined by the following grammar:

Terms C,D ::= E
�� sample3 �� case E of {E8 ⇒sample38 } �� obs(G = b)

let G = D in C
�� letp 〈G,~〉 = E in C �� CE �� _G.C �� der E

Values E,F ::= G ∈ V
�� 〈E,F〉 �� !C �� b

Booleans b ::= t
�� f

Following [Ehrhard 2016; Ehrhard and Tasson 2019], we use Linear Logic inspired notations: !C cor-
responds to thunk(C) and der C to force(C). The probabilistic primitive sample3 samples a boolean
value from a (Bernoulli) distribution 3 . The case construct is just a generalized if/then/else—please
notice that the case expression is restricted, because we reserve it to the encoding of CPT’s, as we
have informally described in Sect. 2. Observed data (the evidence) are specified syntactically using
an observe construct, written obs—for example obs(wet = t); we will give several examples of its
use in Sect. 8.
Free and bound variables are defined as usual: _G.C binds G in C , and the same for let and letp.

A term is closed when there are no free occurrences of variables in it. Terms are considered modulo
U-equivalence, and capture-avoiding (meta-level) substitution of all the free occurrences of G for
D in C is noted C{G ← D}.

Syntactic Sugar. The grammar of the calculus is rather restricted, reminiscent of A-normal forms
(and similarly to [Levy 1999]). It is standard to recover general constructs as follows:

CD , let I = D in CI

〈D1,D2〉 , let I1 = D1 in let I2 = D2 in 〈I1, I2〉

derD , let I = D in derI

letp 〈~1, ~2〉 = D in C , let I = D in letp 〈~1,~2〉 = I in C

case D of {E8 ⇒ C8 } , let I = D in case I of {E8 ⇒C8 }

obs(D = b) , let I = D in obs(I = b)

Notation 3.1. We often write 〈E1, . . . , E=〉 for a =-tuple, ignoring the tree order. In particular, we
write b for tuples of booleans 〈b1, . . . , b=〉.

(Call-by-Push-Value) Simple Types. In the actual technical development of this paper, we will use
intersection types. However, we prefer to first give the intuitions about typing in the more famil-
iar setting of simple types. The ground types are (tensors of) booleans. Following Levy [1999] and
Ehrhard and Tasson [2019], we then define by mutual induction two kinds of types: positive types
and general types. Only positive types can be assigned to variables in the type environment and

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 84. Publication date: January 2024.
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Higher-Order _!-Calculus

First-Order Rules

P ⊢ sample3 : B
s-sample

P ⊢ E : ⊗= B

P ⊢ case E of {b⇒sample3
b
}
b∈{t,f}=

: B
s-cond

P, G : B ⊢ obs(G = b) : B
s-obs

P, G : % ⊢ G : %
s-var

P ⊢ b : B
s-bool

P ⊢ D : % P, G : % ⊢ C : �
P ⊢ let G = D in C : �

s-let

P ⊢ E : !1 P ⊢ F : !2
P ⊢ 〈E,F〉 : !1 ⊗ !2

s-pair
P ⊢ E : !1 ⊗ !2 P, G : !1, ~ : !2 ⊢ C : �

P ⊢ letp 〈G,~〉 = E in C : �
s-letp

P, G : % ⊢ C : �

P ⊢ _G.C : % ⊸ �
s-abs

P ⊢ C : % ⊸ � P ⊢ E : %
P ⊢ CE : �

s-app

P ⊢ C : �
P ⊢ !C : !�

s-bang
P ⊢ E : !�
P ⊢ der E : �

s-der

Fig. 6. The simply typed _!-calculus.

can appear in the left hand side of an arrow.

Ground Types !, ::= B
�� ! ⊗  

Positive Types %,& ::= !
�� !�

Types �, � ::= %
�� % ⊸ �

The typing rules are in Fig. 6, where a context P is a sequence of assignments of positive types %
to variables G . As usual, a judgment P ⊢ C : � indicates that C has type � given typing context P .
We write c ⊲P ⊢ C : � to indicate that c is a type derivation of the given judgment. All the rules in
Fig. 6 are standard but s-cond. Notice that in rule s-cond by {b⇒sample3

b
}
b∈{t,f}= we mean that

for each possible =-tuple of booleans b ∈ {t, f}= there is a corresponding sample clause. For the
sake of brevity, from now on we will often shorten a case expression depending on = variables
G1, . . . , G= as follows:

c〈G1,...,G= 〉 , case 〈G1, . . . , G=〉 of {b⇒sample3
b
}
b∈{t,f}=

Remark 3.2 (Additive Contexts). The reader familiar with Linear Logic and calculi based on it
(such as [Benton et al. 1993]) may be surprised by the fact that here (as in [Ehrhard 2016; Levy
1999]) the context is managed additively. This is because the only types which are allowed in a
context are positive, hence either of the form !�, or booleans, coded by additives.2 Notice that
proper linear types, such as � ⊸ �, are not allowed in the context (if allowed, their management
would be multiplicative).

The Higher-Order and the Low-Level Language. It is standard to encode a ground Bayesian net-
work with a simple let-term of ground type. The reader can easily realize that every ground
Bayesian network can be described in a simple, first-order fragment of the _!-calculus, as we have

2Positive types can be contracted and weakened. This is clear for types of the form !�, but holds also for ground types.
Indeed a boolean type corresponds to the additive formulas 1 ⊕ 1. Notice that ⊥&⊥ = (1 ⊕ 1)⊥ can be weakened and
contracted.
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done in the examples in Sect. 2. In particular, there is no need for themodalities ! and der, which are
instead the key to implement higher-order behaviors. Abstraction and application are not neces-
sary, as well. We refer to such a fragment as _low-calculus. Formally, the grammar for _low-terms is:

Low-level Terms C,D ::= E
�� sample3 �� case E of {b⇒sample3

b
}
�� obs(G = b)

��
let G = D in C

�� letp 〈G,~〉 = E in C
Low-level Values E,F ::= G ∈ V

�� 〈E,F〉 �� t �� f
It is easy to check that a _low-term is typable with a ground context if and only if it has ground
type and is typable with first-order rules (those highlighted in Fig. 6), only. Going back to our intro-
ductory intuitions, we see the _!-calculus as the target high-level language in which the statistical
model is designed by the programmer, and the _low-calculus as the low-level language, closer to
ground Bayesian networks. Compiling _!-terms into _low-terms is taken care of by semantical tools.
The first of such tools is the reduction relation, which we introduce next.

3.2 Operational Semantics

In Sect. 2 we have anticipated that the operational semantics of our calculus formalizes the un-
rolling of a template into a ground Bayesian network, which is its intended meaning. Formally,
every _!-term of ground type compiles (i.e., rewrites) into a _low-term.

Root Rules. Since the goal is to produce a term describing a Bayesian network, here reduction
does not fire probabilistic redexes, i.e. we do not actually sample from distributions. As a conse-
quence, a term of shape sample3 never reduces to a value. This feature of our language forces
us to opt for a notion of reduction, dubbed reduction at a distance [Accattoli and Kesner 2010;
Milner 2006], which is a bit more sophisticated than usual, and reminiscent of reduction on graphs,
such as proof-nets and bigraphs. Precisely, our reduction is similar to that in [Arrial et al. 2023;
Bucciarelli et al. 2020]. Reduction is called at a distance because in some of the rules the interacting
parts of a redex can be separated by an arbitrarily long (possibly empty) list of let constructs—i.e.
they are distant. Formally, we need the notion of substitution list, i.e. a sequence of nested let

constructors:

Substitution Lists S ::= 〈〈·〉〉 | let G = D in S
�� letp 〈G,~〉 = E in S

We are now able to define the rewriting rules which are the base of our reduction relation. We
call the term on the left-hand side a redex.

Root Rules

〈〈_G.C〉〉S E ↦→db 〈〈C{G ← E}〉〉S let G = 〈〈E〉〉S in C ↦→dsub 〈〈C{G ← E}〉〉S

der !C ↦→der! C letp 〈G,~〉 = 〈E,F〉 in C ↦→pm C{G ← E}{~ ← F}

〈〈C〉〉S stands for the term obtained from S by replacing the hole 〈〈·〉〉 with C (possibly capturing the
free variables of C ). The rule ↦→db fires a (possibly distant) beta-redex. The rule ↦→dsub fires a (pos-
sibly distant) let, provided that its argument is a value. The rule ↦→der! defrosts a frozen term. The
rule ↦→pm performs pattern matching with pairs. We set ↦→ , ↦→db ∪ ↦→dsub ∪ ↦→der! ∪ ↦→pm.

Reduction. A reduction step→ is the closure of ↦→ under evaluation context. Reduction→r (for
r ∈

{
db, dsub, der!, pm

}
) is defined similarly. Evaluation contexts, which are terms containing ex-

actly one occurrence of a special symbol—the hole L·M— are defined as follows:

Evaluation Contexts E ::= L·M
�� EE �� let G = E in C

�� let G = D in E

ELCM stands for the term obtained from E by replacing the hole L·Mwith C (possibly capturing the free
variables of C ). As it is standard with programming languages, we adopt a weak notion of reduction,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 84. Publication date: January 2024.



84:10 Claudia Faggian, Daniele Pautasso, and Gabriele Vanoni

which here means that we do not reduce inside the scope of a ! (a thunk), nor in the scope of a _.
Please notice that given a term of shape let G = D in C , reduction can be performed inside either
D or C . This is essential to make possible a reduction such as the one in Fig. 5. As a consequence,
reduction is not deterministic. However, the choice of redex is irrelevant, in the following sense.

Proposition 3.3 (Confluence).

1. The reduction→ is confluent.

2. Every normalizing term is strongly normalizing.

3. All maximal reduction sequences from a term C have the same length.

Proof. Consequences of a diamond-like property, essentially as in [Bucciarelli et al. 2020]. �

Progress and BN Normal Forms. We say that a term C is in normal form if no reduction applies
(C 6→). It is well-known that simply typed _-calculi are strongly normalizing. Here we prove that
every _!-term of ground type reduces to a normal form which is a low-level term, that we dub BN
normal form. The idea—which we will make formal in Sect. 7.1—is that normal forms of ground
type directly correspond to ground Bayesian networks, hence the name.

Proposition 3.4 (Progress). Let C be a _!-term in normal form and c ⊲L ⊢ C : ! a type derivation,
where all types in the context L are ground. Then C is a _low-term, and c contains first order rules, only.

Proof. By induction on the structure of the derivation c . (In the Appendix). �

The proposition above allows us to describe the shape of BN normal forms, i.e. the normal forms
of ground type. If we restrict our attention to closed terms, the BN normal forms are the subset of
closed low-level terms generated by the following set of productions3:

n ::= let G = B in n
�� E �� B B ::= let G = B in B

�� sample3 �� c〈G1,...,G= 〉 �� obs(G = b)

Please notice that BN normal forms are not values, in general. This is because we do not reduce
probabilistic primitives.

4 THE INTERSECTION TYPE SYSTEM

Simple type systems guarantee termination, but are poor in expressiveness. In this work we want
to specify rich behaviors, such as recursion, and this is why we switch to the untyped _-calculus.
However, this is not enough to obtain the results we want, and we still do need a form of typing.
Since we are interested in giving a Bayesian network semantics to terms, we need to keep track of
the random variables defined by a term, and to handle the fact that recursive programs generate a
finite but unbounded number of random variables. Random variables are associated to the sampling
and conditional primitives, so we need to take into account how many times these primitives are
duplicated during the reduction. A quite natural option (especially when using a calculus inspired
by linear logic, as we do) is to consider a type system that explicitly takes into account how many
times a sub-term is copied during the evaluation. Non-idempotent intersection types for the untyped
_-calculus do precisely that. This approach has several advantages:
• Tracking random variables: ground types now correspond precisely to random variables, as we
discuss in Sect. 4.1 below.
• Distinguishing copies: non-idempotent intersection types intrinsically take into account how
many times a (sub-)term is copied. This is of fundamental importance for us, since we want
to keep track of all the random variables generated by our typed program. Think for example
of a single (thunked) sample3 instruction that is duplicated several times during execution.

3Please notice that the converse is not true: not all terms generated by this grammar are typable.
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Non-idempotent intersection type derivation duplicate in advance each use of a sub-term, and
give each a (possibly different) type.
• Enforcing termination: Bayesian networks are representations for finite probabilistic models.
Therefore we are interested in terminating programs, only. Intersection types provide such a
guarantee, still allowing for complex behaviors such as general recursion.
• Ruling out ill-formed terms: as a by-product, intersection types act as a traditional type system
discarding terms which “go wrong”.
We highlight that we could have proceeded differently. We could have considered a typed PCF-

like language, as in [Ehrhard and Tasson 2019]. Still—for the reasons described above—we would
have needed to add, on top of its type system, an intersection type system, like in [Dal Lago and Gaboardi
2011; Ehrhard 2016]. However, dealing with two layers of types is heavy, and we preferred keeping
the syntax as simple as possible. This way, from now on we will consider just the intersection type
system for the (untyped) _!-calculus which we have presented in Sect. 3.1. In Sect. 10 we sketch
how the (two-layered) type system for the call-by-push-value PCF would look like.

Remark 4.1 (Intersection Types and Turing Completeness). Type systems ensure safety and de-
sirable properties such as termination, or deadlock-freeness. Intersection types for the untyped
_-calculus [Coppo and Dezani-Ciancaglini 1978; Coppo et al. 1981] bring this idea to its extreme
consequence. Intersection types not only guarantee termination, but also characterize it, providing
a compositional presentation of all and only the terminating programs. They can indeed be seen as
a semantical tool for higher-order languages. Being the untyped _-calculus Turing-complete, the
price to pay is that intersection type systems are inherently undecidable. This is not typically con-
sidered an issue because such systems have a semantic nature: they are used to give denotational
models. However, please notice that the first-order fragment of our system is decidable.

4.1 Towards Bayesian Networks: Named Types

Before presenting the intersection type system, we need to introduce one more ingredient, namely
named booleans, which we use to track random variables. In this subsection we give some simple
examples to convey the intuitions, which we then formalize in Sect. 4.2.
Describing a Bayesian network (or a marginal distribution) by means of a term of type ⊗=B is

a standard, easy task. However, retrieving a Bayesian network from a term of type ⊗=B is less
immediate, even with low-level terms. Does a low-level term of ground type define a marginal dis-
tribution? If yes, over howmany random variables? And what is the underlying Bayesian network,
if any?

Example 4.2. Let us consider the term C , where c〈~〉 , case ~ of {b⇒sample3b}.

C , let G = bernoulli0.2 in let ~ = G in let I = c〈~〉 in 〈G,~〉 : B ⊗ B

We know that the term C defines two r.v.s (say X and Y), because there are two probabilistic con-
structs. We also know that the output is a probability distribution over tuples in B⊗B. It is however
not obvious which variables are involved in the final marginal distribution. We can track which
random variables are involved in the term by naming the booleans and assigning a distinct name
to the subject of each probabilistic axiom (we will formalize this in Sect. 4.2).

⊢ sample3 : BX

G : BX ⊢ G : BX

~ : BX ⊢ c〈~〉 : BY

G : BX ⊢ G : BX ~ : BX ⊢ ~ : BX
G : BX, ~ : BX, I : BY ⊢ 〈G, ~〉 : BX ⊗ BX

G : BX, ~ : BX ⊢ let I = c〈~〉 in 〈G,~〉

G : BX ⊢ let ~ = G in let I = c〈~〉 in 〈G,~〉 : BX ⊗ BX

⊢ let G = sample3 in let ~ = G in let I = c〈~〉 in 〈G,~〉 : BX ⊗ BX
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We now realize that the marginal distribution defined by the term C is in fact Pr(X = b, X = b),
for b ∈ {t, f}. This is a redundant version of Pr(X = b), the distribution over the single variable X.
The probabilities associated to the tuple of values in BX ⊗ BX are indeed 〈t, t〉 ↦→ 0.2, 〈f, f〉 ↦→ 0.8.
Necessarily, the tuples 〈t, f〉 and 〈f, t〉 have probability 0. Please contrast the term C above with
the term let G = bernoulli0.2 in let ~ = c〈G 〉 in 〈G,~〉 : BX × BY, which instead defines a
distribution over two variables.

In the following we formalize these ideas, exploiting named types to associate a Bayesian net-
work to a ground term. We write only the names X, Y, but please think of them as named booleans
BX,BY.

4.2 The Type System

In this section, we introduce the type system, which will be the base for the factor semantics in
Sect. 6. In order to focus on the main ideas, we postpone the treatment of the evidence, namely
of the construct obs(G = b) to Sect. 8. This is because while being conceptually easy, it requires
some fine tuning of the type system, that would make its description harder to understand.

The Type System. The grammar of intersection types is derived from the one for simple types,
and for this reason we keep the same meta-variables. Indeed, we shall not use simple types any-
more in the rest of the paper, so no confusion can occur. We assume a countable set Names =

{X, Y, Z . . . } of symbols, called names, which play the role of atomic types. The grammar of types
includes ground types, multisets of types (the proper intersection types), and functional types.

Ground Types  , ! ::= X ∈ Names
��  ⊗ !

Positive Types %,& ::= !
�� [�1, . . . , �=]

Types �, � ::= %
�� % ⊸ �

Here [. . . ] denotes the multiset constructor. Please notice that the empty multiset [] is a positive
type, as well. Two changes are present w.r.t. the definition of simple types:
1. Named Booleans : the type B of booleans has been substituted by a countable set of names. This

means that each use of a boolean variable has now a distinct type (name). Morally, different
names correspond to different random variables.

2. Multisets for Thunks : types of shape !� have been replaced by multisets of types. As usual in
non-idempotent intersection types, the idea is that every type inside a multiset corresponds to
a single use of the typed term (see Sect. 4.4 for an example).

The typing rules are in Fig. 7; typing contexts, which we separate in ground contexts (denoted by
Λ) and multiset contexts (denoted by Γ or Δ), are defined in the next paragraph. Given a type�, we
denote by Nm(�) the set of names which appear in �. The definition extends to typing contexts
(e.g. Nm(Λ)) and type derivations (Nm(c)).

Contexts. A typing context Σ is a (total) map from variables to positive types such that only
finitely many variables are not mapped to the empty multiset []. The domain of Σ is the set
dom(Σ) , {G | Σ(G) ≠ []}. A context Σ is empty if dom(Σ) = ∅. A typing context Σ is de-
noted by G1 : %1, . . . , G= : %= if dom(Σ) ⊆ {G1, . . . , G=} and Σ(G8) = %8 for all 1 ≤ 8 ≤ =. Given two
typing contexts Σ1 and Σ2 such that dom(Σ1) ∩ dom(Σ2) = ∅, the typing context Σ1, Σ2 is defined
as (Σ1, Σ2) (G) , Σ1(G) if G ∈ dom(Σ1), (Σ1, Σ2) (G) , Σ2(G) if G ∈ dom(Σ2), and (Σ1, Σ2) (G) , []

otherwise. Observe that Σ, G : [] is equal to Σ. Given a context Σ, it is convenient to partition it into
a ground and a multiset context. We call ground context (denoted by Λ) the restriction of Σ to the
variables which are mapped to ground types, and we call multiset context (denoted by Γ or Δ) its
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Higher-Order Calculus

First-Order Rules

X ∉ Nm(Λ)

Λ ⊢ sample3 : X
i-sample

X ∉ {Y1, . . . , Y=} and X ∉ Nm(Λ)

Λ, ~1 : Y1, . . . , ~= : Y= ⊢ c〈~1,...,~= 〉 : X
i-cond

Λ, G : % ⊢ G : %
i-var

Λ, Γ1 ⊢ D : % Λ, Γ2, G : % ⊢ C : �
Λ, Γ1 ⊎ Γ2 ⊢ let G = D in C : �

i-let

Λ ⊢ E : !1 Λ ⊢ F : !2
Λ ⊢ 〈E,F〉 : !1 ⊗ !2

i-pair
Λ ⊢ E : !1 ⊗ !2 Λ, G : !1, ~ : !2, Γ ⊢ C : �

Λ, Γ ⊢ letp 〈G,~〉 = E in C : �
i-letp

Λ, Γ, G : % ⊢ C : �

Λ, Γ ⊢ _G.C : % ⊸ �
i-abs

Λ, Γ1 ⊢ C : % ⊸ � Λ, Γ2 ⊢ E : %
Λ, Γ1 ⊎ Γ2 ⊢ CE : �

i-app

(
Λ, Γ8 ⊢ C : �8

)=
8=1

Λ,
⊎
8 Γ8 ⊢ !C : [�1, . . . , �=]

i-bang
Λ, Γ ⊢ E : [�]

Λ, Γ ⊢ der E : �
i-der

Fig. 7. The intersection type system iTypes.

complement, i.e. the restriction of Σ to the variables which are mapped to multisets. Multiset union
⊎ is extended to multiset contexts point-wise, i.e. (Γ ⊎ Δ) (G) , Γ(G) ⊎ Δ(G), for each variable G .

Remark 4.3. Please notice that in Fig. 7 we have operated a few simplifications in the presenta-
tion of the type system. In particular, we do not type boolean constants anymore—this simplifies
the i-cond rule, that now is an axiom. Moreover, notice that tuples always have the multiset con-
text empty.As we aforementioned, we postpone the treatment of obs(G = b) to Sect. 8.

Type Derivations. We write c ⊲ Λ, Γ ⊢ C : � to indicate that c is a type derivation (using the full
type system in Fig. 7), proving that C has type � given typing context Λ (ground) and Γ (multiset).
We write c ⊲low Λ ⊢ C : ! for a derivation c which uses first order rules, restricted to ground
contexts, only.

Naming Condition. We call main names those which type the subject of an i-cond or i-sample
rule. Given a type derivation c , we assume that all the main names are pairwise distinct. So, each
i-cond or i-sample rule is uniquely identified by a name X. This requirement is easy to imple-
ment. Indeed, it is a sort of Barendregt convention, but for types. One could consider the name
introduced by a probabilistic axiom as the address of the axiom in the type derivation.

The First-Order Fragment. Notice that the first-order fragment in Fig. 7 is the same as the first-
order fragment of simple types (Fig. 6), the only difference being that now the booleans are named.
Clearly this fragment is decidable, since any first-order simply typed derivation of L ⊢ C : ⊗=B
(where every type in the context L is ground) can easily be named, by assigning a distinct name
to the subject of every probabilistic axioms, and to every occurrence of boolean type in L.

4.3 Properties of the Type System

The intersection type system satisfies all the properties one would expect—proofs are in the Ap-
pendix. First, types are stable under reduction and expansion (the latter property not holding for
simple types).

Proposition 4.4 (Subject Reduction/Expansion). Let C be a _!-term such that C → D. Then

Σ ⊢ C : � if and only if Σ ⊢ D : �.
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Subject reduction can be strengthened, showing that there is a measure that decreases along
each reduction sequence. This gives a combinatorial proof that typable terms are strongly normal-
izing.

Theorem 4.5. Let C be a _!-term. If C is typable, then C is strongly normalizing.

Crucially, the progress lemma, stated for simple types, still holds for intersection types. This
means that every (higher-order, possibly recursive) _!-term which is typable with ground type in
a ground context, eventually reduces to a BN normal form.

Theorem 4.6 (Compiling into the low-level). Let C be a _!-term such that c ⊲ Λ ⊢ C : !. Then
C →∗ D, where D is a _low-term in normal form (a BN normal form).

Notice that the normal formD has necessarily a type derivation c ′⊲lowΛ ⊢ D : ! (using first-order
rules only). Finally, we highlight that the type system is syntax driven. As a consequence:

Proposition 4.7 (Uniqe Derivation). Let C be a _!-term, and Λ a ground context. Then there

exists at most one type derivation c such that c ⊲ Λ ⊢ C : !.

This means that for each _!-term C and ground context Λ, there exists at most one ground type
! such that Λ ⊢ C : ! admits a type derivation. In particular, the type derivation for a term in BN
normal form is uniquely determined. By subject expansion we have:

Theorem 4.8. Let C be a closed _!-term C . If C reduces to BN normal form, then a type derivation

c⊲ ⊢ C : ! exists and is unique.

4.4 Pu�ing the Calculus and the Type System at Work

We illustrate with some examples the expressiveness of the calculus, and the use of the type system.

Expressiveness. Since we have access to the full expressiveness of the untyped _-calculus (Re-
mark 4.1), we can use a standard encoding (in its call-by-push-value flavor) of integers, arithmetic,
if/then/else, and fixed point combinators.

Example 4.9 (Encoding Recursive Behavior). We are now able to encode Dynamic Bayesian net-
works, such us the one depicted in Fig. 4 (from [Koller and Friedman 2009], Ch.6). The idea behind
this model is that a system evolves with time in a stochastic way. At each time step, one random
variable S8+1, which depends only on the previous state S8 , represents the new state, while the
observation O8+1 depends only on the current state S8+1. A typical query in these kinds of models is

Pr(S= = s | O1 = o1, . . . , O= = o=)

which intuitively means: after = time steps, what is the probability of being in a certain state,
knowing all the observations? We can write the template of Fig. 4 as follows:

C , _=.let B0 = bernoulli? in D = B0
D , fix !( _G._=._B.if isZero(=) then B

else let B′ = c
S
〈B 〉 in

let > ′ = c
O
〈B′ 〉 in

let< = pred(=) in

let A = (derG) < B′

in 〈> ′, A 〉 )

Then C=—where = is an encoding of the integer =—represents the template that is to be unrolled
= times. Operationally, we have exactly that the fixed point operator is unfolded = times generat-
ing the unrolled Bayesian network. From the point of view of the type system, we have that the
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type of C= depends on the integer =:

⊢ C= : O1 ⊗ · · · ⊗ O= ⊗ S=

The Intersection Types, in use. The term which encodes the BN of Fig. 1 is easily typed in the
first-order fragment—the reader can find the derivation in Example 7.2. Here we give an example
of type derivation where multiple copies are involved, so that we need to use the multiset type.
First, observe that a type of shape [�1, . . . , �=] can be thought of as an informative refinement of
the thunk type !�. Sub-terms are typed several times, once for each copy that will be produced
during the reduction. This feature is crucial to handle random variables. We stress that the in-
ability to deal with an unbounded number of random variables is the key issue which limits to
first-order the compilation of programs into BNs, or data flow analysis (see e.g. [Gorinova et al.
2022; van de Meent et al. 2018]).

Example 4.10 (Multiple Coin Tosses). Consider a term D similar to that in Fig. 5, modeling two
tosses of the same (biased) coin: D , let G = sample3 in let ~ = !(c〈G 〉) in 〈G, der~, der~〉.
For readability, here we use some syntactic sugar. The (unique) type derivation for D is

⊢ sample3 : X

G : X ⊢ c〈G〉 : Y1 G : X ⊢ c〈G〉 : Y2

G : X ⊢ !(c〈G〉) : [Y1, Y2 ]

G : X ⊢ G : X

G : X, ~ : [Y1 ] ⊢ ~ : [Y1 ]

G : X, ~ : [Y1 ] ⊢ der ~ : Y1

G : X, ~ : [Y2 ] ⊢ ~ : [Y2 ]

G : X, ~ : [Y2 ] ⊢ der ~ : Y2

G : X, ~ : [Y1, Y2 ] ⊢ 〈der ~, der ~〉 : Y1 ⊗ Y2

G : X, ~ : [Y1, Y2 ] ⊢ 〈G, der ~, der ~〉 : X ⊗ Y1 ⊗ Y2

G : X ⊢ let ~ = !(c〈G〉) in 〈G, der ~, der ~〉 : X ⊗ Y1 ⊗ Y2

c⊲ ⊢ D : X ⊗ Y1 ⊗ Y2

5 THE SEMANTICS OF BAYESIAN NETWORKS

In this section we formally define the semantics of Bayesian networks. First, let us briefly revise
the language of Bayesian modeling. For more details, we refer to [Darwiche 2008] for a concise
presentation, and to standard texts for an exhaustive treatment [Darwiche 2009; Neapolitan 2003;
Pearl 1988].

5.1 Random Variables

Bayesian methods provide a formalism for reasoning about partial beliefs under conditions of un-
certainty. Since we cannot determine for certain the state of some features of interest, we settle
for determining how likely it is that a particular feature is in a particular state. Random variables
represent features of the system being modeled. For the purpose of modeling, a random variable
can be seen as a name for an atomic proposition (e.g. "Wet") which assumes values from a set of
states (e.g. {t, f}). The system is modeled as a joint probability distribution on all possible values of
the variables of interest – an element in the sample space represents a possible state of the system.

Example 5.1. The canonical sample space sketched in Fig. 2 consists of 24 tuples (only some
entries are displayed); to each tuple x is associated a probability. The event (' = t) contains 23

tuples, the event (R = t, W = t) contains 22 tuples, and has probability 0.33.

Remark 5.2. Notice that in Bayesian modeling, random variables are identified first, and only
implicitly become functions on a sample space. We refer to the excellent textbook by Neapolitan
[Neapolitan 2003] (Ch. 1) for a formal treatment relating the notion of random variable as used in
Bayesian inference, with the classical definition of function on a sample space.

Given a countable set Names, we associate to each name X ∈ Names a set of values, denoted
by Val(X) (typically Val(X) = {t, f}). From now on, we silently identify a name X with the pair
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(X,Val(X)), which effectively defines a random variable (r.v.). A finite set of namesX = {X1, . . . , X=}

defines a "compound" r.v. whose value set Val(X) is the Cartesian product Val(X1) × · · · × Val(X=).

Notation 5.3. ThemetavariablesX,Y,Z range over finite sets of names (r.v.s). As standard, a low-
ercase letter x denotes a generic value x ∈ Val(X), and x denotes a tuple in the cartesian product
Val(X) , Val(X1) × · · · × Val(X=). Moreover, we use juxtaposition as a tuple constructor, e.g. if
x ∈ Val(X) and y ∈ Val(Y1) × · · · × Val(Y=), then xy ∈ Val(X) × Val(Y1) × · · · × Val(Y=). Given a
subset Y ⊆ X, we denote by x|

Y
the restriction of x to Y (so, x|

Y
∈ Val(Y) ). Given two sets of

names X and Y, we say that x ∈ Val(X) and y ∈ Val(Y) agree on the common names (x ∼ y for
short) whenever x|

X∩Y
= y|

X∩Y
.

5.2 Factors, Sum and Product Operations

Inference algorithms rely on basic operations on a class of functions known as factors, which gen-
eralize the notions of probability distribution and of conditional distribution. Factors will be the
key ingredients also in our semantics.

Definition 5.4 (Factor). A factor
X

q over a set of names (r.v.s) X is a function
X

q : Val(X) → R≥0
mapping each tuple x ∈ X to a non-negative real.

When X is clear from the context, we simply write q (omitting the superscript X); then Nm(q)

denotes X. Letters q,k range over factors. Please notice that in the literature about BNs, q (x) is
often written qx. We adopt this convenient notation when making explicit calculations.

Example 5.5. Factors generalize familiar concepts from probability theory.
• A joint probability distribution over the set X is a factor q which maps each tuple x ∈ Val(X)
to a probability q (x) such that

∑
x∈Val(X) q (x) = 1.

• A conditional probability table (CPT) for X given Y is a factor
{X}∪Y

q which maps each tuple
xy ∈ Val({X} ∪ Y) to a probability q (xy) such that for each y ∈ Y,

∑
x∈Val(X) q (xy) = 1.4

Factors come with two important operations: sum (out) and product. Summing out a name (r.v.)
Z from a factor means that we are removing Z, thus obtaining a smaller factor. As depicted in Fig. 2,
intuitively we do so by merging all tuples which agree on all the other variables but Z.

Definition 5.6 (Sum Out). The sum out of Z ⊆ X from
X

q is a factor
∑
Z q over Y , X−Z, defined

as:

©­
«
∑
Z

q
ª®
¬
(y) ,

∑
z∈Val(Z)

q (z y)

Multiplication of factors is defined in such a way that only “coherent“ pairs are multiplied.

Definition 5.7 (Product). The product of
X

q1 and
Y

q2 is a factor q1 ⊙ q2 over Z , X∪Y, defined as:

(q1 ⊙ q2) (z) , q1(x)q2(y) where x = z|
X
and y = z|

Y
.

We denote =-ary products by
⊙

= q=. We denote by 1Y ,
Y

1 the factor over the set of names Y,

sending every tuple of Val(Y) to 1. Observe that
X

q ⊙
Y

1 =

X

q if Y ⊆ X. Factors over an empty set of

4Please notice that here, and in the following definition of sum out, we slightly abuse the notation. In fact, as standard, we
consider the tuples as sequences indexed by the set of random variables. Every time, we present the tuples ordered in the
most convenient way for a compact definition.
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variables are allowed, and called trivial. In particular, we write 1∅ ,
∅
1 for the trivial factor assign-

ing 1 to the empty tuple. Product and summation are both commutative, product is associative,
and—crucially—they distribute under suitable conditions:

If Z ∩Nm(q1) = ∅ then
∑
Z

(q1 ⊙ q2) = q1 ⊙
©­
«
∑
Z

q2
ª®
¬

(2)

This distributivity is the key property on which exact inference algorithms rely. CPT’s being fac-
tors, they admit sum and product operations. Please notice that the result of such operations is not
necessarily a CPT, but, of course, it is a factor.

Remark 5.8 (Cost of Operations on Factors). Summing out any number of variables from a factor
q demands O(exp(F)) time and space, whereF is the number of variables over which q is defined.
Multiplying : factors demands O(: · exp(F)) time and space, whereF is the number of variables
in the resulting factor.

5.3 The Semantics of Bayesian Networks

Bayesian networks are graph-theoretic objects able to represent large probability distributions
compactly, via a factorized representation. Inference algorithms then implement factorized compu-

tations.

Definition 5.9. A Bayesian network B over the set of r.v.s X is a pair (G,T) where:
• G is a directed acyclic graph (DAG) over the set of nodes X.
• T assigns, to each variable X ∈ X a conditional probability table (a CPT), which is a factor qX

over variables {X} ∪ Pa(X), where Pa(X) denotes the set of parents of X in G.

The graph structure and independence assumptions on it yield the correctness of the semantics.

Theorem 5.10 (Pearl [1986]). A Bayesian network B over the set of r.v.s X defines a unique prob-

ability distribution over X (its semantics):

JBK ,
⊙
X∈X

qX.

Please notice also that, given a Bayesian network B defining a probability distribution over X,
the marginal distribution of JBK over a subset Y ⊆ X is defined by

∑
X−YJBK.

6 THE SEMANTICS OF TYPED TERMS

This section contains the main result of this paper, namely the fact that we can endow terms of
ground typewith a factor-based semantics that reflects the probabilistic behavior of the term.More-
over, we prove that the semantics is compositional, in the sense that it can be computed following
the structure of intersection type derivations.

Semantics of the Probabilistic Axioms. The intuition guiding the definition of our semantics is the
very definition of the semantics of a BN, as we have just seen in Sect. 5.3. In general, this depends
only on the CPT’s which are assigned to each random variable. We apply the same principle in the
realm of (intersection) typed _!-terms. The idea is that we can associate a CPT to each probabilistic
axiom in a type derivation, and then we define the semantics of the typed term as their product (as
factors), summing out the names not occurring in the final type judgment to obtain the marginal
which is specified by the term. We start by formally defining the factor which is associated to a
probabilistic axiom. We give an example of how the following definitions work in Fig. 8.
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Definition 6.1 (Probabilistic Axioms). Recall thatwe identify each name Xwith the pair (X,Val(X)),
effectively defining a r.v. (see Sect. 5.1).
• i-sample. We associate to the axiom Λ ⊢ sample3 : X the factor q over the r.v. {X} such that
q (x) , 3 (x) for each x ∈ Val(X).
• i-cond. Let us consider the following instance of the i-cond axiom.

X ∉ {Y1, . . . , Y=} and X ∉ Nm(Λ)

Λ,~1 : Y1, . . . ~= : Y= ⊢ case 〈~1, . . . ,~=〉 of {b⇒ sample3
b
}
b∈{t,f}=

: X
i-cond

We associate to this axiom the factor q over the set of r.v.s {Y1, . . . , Y=, X}, such that q (bx) ,
3
b
(x), for each bx ∈ Val(Y1) × · · · × Val(Y=) × Val(X)

5.

Semantics of a Type Derivation. Once given the interpretation of the probabilistic axioms, it is
straightforward to extend the interpretation to any type derivation of ground type. We multiply
all the factors associated to the axioms, and then sum out all the names not appearing in the con-
clusion.

Definition 6.2 (Semantics of a Type Derivation). Let c ⊲ � be a type derivation, Cpts(c) the set of
factors associated to its probabilistic axioms, and X =

⋃
q ∈Cpts(c ) Nm(q). Then the semantics of

c is:

JcK ,
∑

X−Nm( � )

©­
«

⊙
q ∈Cpts(c )

q
ª®
¬

Remark 6.3. If c is a type derivation such that Cpts(c) = ∅, then JcK = 1∅ . Notice, in particular,
that this is the case for each i-var axiom.

On Compositionality. One immediately notices that the above definition of semantics does not
look compositional. Indeed, the semantics of a type derivation c is computed looking globally at
c , in particular at its probabilistic axioms. We ask ourselves, and we answer in the positive, if it
is possible to give a more local, modular way, of computing the very same semantics. Informally,
given a type derivation c obtained from the composition of c1, . . . , c= , such as

c ,

c1 . . . c=
�

5Please notice that we are a bit informal here, because we assume that Y1, . . . , Y= are pairwise distinct. This is not an
obligation, so the actual definition is more involved. This is, however, just a technical point that does not affect the meaning
of the definition. For the sake of completeness, we provide the technically precise definition in the Appendix.

Λ ⊢ bernoulli0.2 : R
i-sample

q1 ,

R Pr(R)
t 0.2
f 0.8

Λ, A : R ⊢ case A of {t⇒bernoulli0.7; f⇒bernoulli0.01} : W
i-cond

q2 ,

R W Pr(W|R)
t t 0.7
t f 0.3
f t 0.01
f f 0.99

Fig. 8. The factor associated to this i-sample axiom is q1 . The factor associated to this i-cond axiom is q2.

For example, q2 (tf) , bernoulli0.7 (f).
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we would like to obtain JcK from Jc1K, . . . , Jc=K. In particular, following the pattern of Defini-
tion 6.2, we could write:

JcK =
∑
Z

(⊙
8

Jc8K

)
where Z =

⋃
8

Nm(Jc8K) − Nm(� ) (3)

In words, composition is obtained by first performing the product
⊙

8Jc8K—which yields a factor
over the names

⋃
8 Nm(Jc8K)— and then marginalizing, by summing out the names which do not

appear in the conclusion � . Such a notion of composition is yet a variant of the pervasive paradigm

composition = parallel composition + hiding.

The problem now is that the equation 3 is not a priori true. This is because sum out and product
do not distribute in general, but only under suitable conditions. The type system design is crucial
to guarantee that the factors semantics is indeed compositional. We illustrate this fact with an
example.

Example 6.4 (Types and Compositionality.). Consider the following derivation, which is non well-
typed because the names introduced by the first and third probabilistic axiom are not distinct. Be-
low, c1, c3 are sample terms, and c

2
〈I〉, c4〈I′ 〉 are case expressions. The terms C,D are those typed

by c1, d1, respectively. The premise d2 is the obvious derivation of G : X,~ : . ⊢ 〈G,~〉 : X ⊗ Y.

⊢ c1 : Z⋄
{Z}

q1 I : Z ⊢ c2〈I〉 : X⋄
{Z,X}

q2

c1 ⊲ let I = c
1 in c

2〈I〉 : X

G : X ⊢ c3 : Z⋄
{Z}

q3 G : X, I′ : Z ⊢ c4〈I′ 〉 : Y⋄
{Z,Y}

q4

d1 ⊲ G : X ⊢ let I′ = c
3 in c

4〈I′ 〉 : Y d2

c2 ⊲ G : X ⊢ let ~ = D in 〈G,~〉 : X ⊗ Y

c⊲ ⊢ let G = C in let ~ = D in 〈G,~〉 : X ⊗ Y

We annotate each of the four probabilistic axioms with the corresponding CPT. It is easy to check
that compositionality (Eq. (3)) does not hold, because JcK =

∑
Z (q

1 ⊙ q2 ⊙ q3 ⊙ q4) ≠ (
∑

Z q
1 ⊙

q2) ⊙ (
∑

Z q
3 ⊙ q4) = Jc1K ⊙ Jc2K. Observe that JcK is a factor over {X, Y}, Jc1K over {X}, and Jc1K

over {Y}. So for example we have:

JcKtt = q1t · q
2
tt · q

3
t · q

4
tt + q

1
f
· q2

ft
· q3

f
· q4

ft
Jc1Kt = q1t · q

2
tt + q

1
f
· q2

ft
Jc2Kt = q3t · q

4
tt + q

3
f
· q4

ft

Therefore JcKtt ≠

(
q1
t
· q2

tt
+ q1

f
· q2

ft

)
·
(
q3
t
· q4

tt
+ q3

f
· q4

ft

)
= Jc1Kt · Jc2Kt = (Jc1K ⊙ Jc2K)tt .

Proving Compositionality. We are ready to prove that JcK can be compositionally defined for
every typed derivation c ⊲Λ ⊢ C : !. The crucial property—guaranteed by the type system—is that
c is well-formed, in the technical sense given below. Such a property is the key ingredient in the
proof of compositionality, because it ensures the distributivity of the sum over the product.

Definition 6.5 (Well-Formedness).

1. The type derivations c1 ⊲ �1, . . . , c= ⊲ �= are compatible if

exists 9 s.t. Z ∈ Nm(c 9 ) and Z ∉ Nm(� 9 ) ⇒ Z ∉ Nm(c8 ) for any 8 ≠ 9 .

2. A type derivation c is well-formed if for every rule in c , its premises are compatible.

Lemma 6.6 (Well-Formed Derivations). Every type derivation c ⊲ Λ ⊢ C : ! is well-formed.

We postpone to Sect. 7 the discussion of the proof, which relies on a fine analysis of the flow of
the computation. Using this result, we are able to prove that the semantics—that we have defined
in a global way—can indeed be computed compositionally, validating Eq. (3).
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Proposition 6.7 (Compositionality). Let c ⊲ � be the following type derivation:

c1 ⊲ �1 . . . c= ⊲ �=
c ⊲ �

If c1, . . . , c= are compatible, then:

JcK =
∑
Z

(⊙
8

Jc8K

)
where Z ,

⋃
8

Nm(Jc8K) − Nm(� )

Proof. Wlog, consider = = 2. Let us set Φc ,
⊙

q ∈Cpts(c ) q for each derivation c . By Def. 6.2,

we can write Jc8K =
∑
W8

Φc8 , whereW8 = Nm(Φc8 ) − Nm(�8 ) (8 ∈ {1, 2}). Crucially, since c1 and
c2 are compatible,W1 ∩ Nm(c2) = ∅ andW2 ∩ Nm(c1) = ∅. Hence, by Eq. (2), sum and product
distribute, and we have:

Jc1K ⊙ Jc2K =
∑
W1

Φc1 ⊙
∑
W2

Φc2 =

∑
W1

∑
W2

(Φc1 ⊙ Φc2 ) =
∑
W1

∑
W2

Φc (4)

where we used the fact that Cpts(c) = Cpts(c1) ∪ Cpts(c2). Now let Y8 , Nm(Jc8K); since
Nm(Φc8 ) = Y8 ⊎W8 and, by the compatibility of c1 and c2,W8 ∩ Nm(Φc 9 ) = ∅ for 8 ≠ 9 , we have

Nm(Φc ) = (Y1 ∪ Y2) ⊎ (W1 ⊎W2). (5)

LetZ , (Y1∪Y2)−Nm(� ); by Eq. (5) and compatibility,Nm(Φc )−Nm(� ) = Z⊎W1⊎W2 . Therefore∑
Z

(
Jc1K ⊙ Jc2K

)
=

∑
Z

∑
W1

∑
W2

Φc =

∑
Nm(Φc )−Nm( � )

Φc , JcK

where we sum out Z from both sides of Eq. (4). �

Inductive Interpretation of Type Derivations. Now that we have proved that our semantics is com-
positional, we are able to compute it inductively, starting from the axioms, and then following the
structure of the type derivation. Probabilistic axioms are assigned a CPT as indicated in Def. 6.1.
The i-var axioms are assigned the trivial factor 1∅ (see Remark 6.3). Then the semantics of each sub-
derivation is inductively obtained following Prop. 6.7. In Fig. 9 we decorate the intersection type
system with factors, according to this process. A decorated type judgment is written Σ ⊢ C : �⋄k ,
wherek is the inductively computed factor.

Lemma 6.8. Let c ⊲ � ⋄k be a well-formed type derivation. Then JcK = k .

Proof. By induction on the derivation. The property trivially holds for all axioms. Assume that
c ⊲ � ⋄k8 is obtained from derivations c8 (1 ≤ 8 ≤ =). Since c is well-formed, by definition of
well-formedness also the derivations c8 are well-formed. Then by i.h., k8 = Jc8K. Thus, by letting
Z ,

⋃
8 Nm(k8 ) − Nm(� ), we have

k :=
∑
Z

(⊙
8

k8

)
=

∑
Z

(⊙
8

Jc8K
)
= JcK

where the last equality follows from Prop. 6.7. �

Since derivations of ground type are always well-formed (Lemma 6.6), we have proved that:

Theorem 6.9. Let c ⊲ Λ ⊢ C : ! ⋄k be a derivation of ground type. Then JcK = k .

This theorem states that the semantics JcK (as in Def. 6.2) of a type derivation c can be induc-
tively computed, as described in Fig. 9.
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Higher-Order _!-Calculus

First-Order Rules

X ∉ Nm(Λ) (q as in Def. 6.1)

Λ ⊢ sample3 : X⋄
{X}

q

i-sample
X ∉ {Y1, . . . , Y=} and X ∉ Nm(Λ) (q as in Def. 6.1)

Λ, ~1 : Y1, . . . , ~= : Y= ⊢ c〈~1,...,~= 〉 : X⋄
{Y1,...,Y= ,X}

q

i-cond

Λ, G : % ⊢ G : % ⋄
∅
1

i-var
Λ, Γ1 ⊢ D : % ⋄

Y1

k1 Λ, Γ2, G : % ⊢ C : �⋄
Y2

k2 Z=(Y1∪Y2 )−Nm(Λ,Γ1,Γ2,�)

Λ, Γ1 ⊎ Γ2 ⊢ let G = D in C : �⋄
(Y1∪Y2)−Z∑
Zk1 ⊙k2

i-let

Λ ⊢ E : !1 ⋄
∅
1 Λ ⊢ F : !2 ⋄

∅
1

Λ ⊢ 〈E,F〉 : !1 ⊗ !2 ⋄
∅
1

i-pair
Λ ⊢ E : !1 ⊗ !2 ⋄

∅
1 Λ, Γ, G : !1, ~ : !2 ⊢ C : �⋄

Y

k

Λ, Γ ⊢ letp 〈G, ~〉 = E in C : �⋄
Y

k

i-letp

Λ, Γ, G : % ⊢ C : �⋄
Y

k

Λ, Γ ⊢ _G.C : % ⊸ � ⋄
Y

k

i-abs
Λ, Γ1 ⊢ C : % ⊸ �⋄

Y1

k1 Λ, Γ2 ⊢ E : % ⋄
Y2

k2 Z=(Y1∪Y2 )−Nm(Λ,Γ1,Γ2,�)

Λ, Γ1 ⊎ Γ2 ⊢ CE : �⋄
(Y1∪Y2)−Z∑
Zk1 ⊙k2

i-app

(
Λ, Γ8 ⊢ C : �8 ⋄

Y8

k8
)=
8=1 = ≥ 0

Λ,
⊎=
8=1 Γ8 ⊢ !C : [�1, . . . , �=] ⋄

⋃
8 Y8⊙
8 k8

i-bang
Λ, Γ ⊢ E : [�] ⋄

Y

k

Λ, Γ ⊢ der E : � ⋄
Y

k

i-der

Fig. 9. Inductive Interpretation of typed terms (judgments are annotated—in blue—with their interpretation).

Invariance of the Semantics. The semantics is invariant under reduction and expansion. This is
due to the fact that probabilistic axioms are stable w.r.t. reduction and expansion. Indeed, non-
idempotent intersection derivations somehow internalize the process of rewriting.

Theorem 6.10 (Invariance). Let C be a _!-term and C → D. Then: Λ ⊢ C : ! ⋄k ⇔ Λ ⊢ D : ! ⋄k .

Semantics Completion. We conclude with a remark. The reader may expect that the interpre-
tation of a type derivation c ⊲ � were a factor over Nm(� ). For example, one could expect the

interpretation of an identity axiom to be ~ : Y ⊢ ~ : Y⋄
{Y}

1 instead of ~ : Y ⊢ ~ : Y⋄
∅
1. The

fact is that our semantics focuses only on the probabilistic content of the derivation c ⊲ � . Please
notice that the non-probabilistic information is already fully contained in the type judgment � ,
because intersection types carry such information. Indeed, an interpretation of c ⊲ � as a factor
over Nm(� ) is easily obtained by a form of completion. We give more details in the Appendix. We
mention also that the completed interpretation is a needed step to bridge the gap between our se-
mantics and weighted relational models/probabilistic coherence spaces such as [Ehrhard et al. 2014;
Ehrhard and Tasson 2019; Laird et al. 2013].

7 BAYESIAN NETWORKS GOWITH THE FLOW

In this section we prove two results which we have already anticipated:
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• we show that every (closed) term C of ground type corresponds to a Bayesian network BC , and
that the two have the same semantics.6

• we prove the central result making the semantics of terms compositional, namely that every
type derivation c ⊲ Λ ⊢ C : ! is well-formed (Lemma 6.6).

The key ingredient underlying both results is the same: we associate to each type derivation c
a directed graph—flow(c)—which essentially describes the flow of the computation in c . The cru-
cial fact is proving that flow(c) is acyclic. Our argument exploits sophisticated techniques bor-
rowed from the theory of Linear Logic, and in particular from Girard’s Geometry of Interaction
[Accattoli et al. 2020a, 2021a,b; Dal Lago et al. 2017; Girard 1989]. In order to convey more clearly
the basic ideas, here we give the definitions only for the low-level fragment. Recall that this frag-
ment suffices to type every BN normal form. The development for the full higher-order calculus
is in the Appendix.

The Flow Graph of a Type Derivation is a DAG. Intuitively, the graph we are going to build tracks
the occurrences of atomic types (i.e. the random variables) throughout the type derivation. We in-
dicate a specific occurrence of an atom inside a ground type ! by means of a (type) context, i.e. a
type with a hole, as follows:

Ground Type Ctxs  , ! ::= L·M
��  ⊗ ! ��  ⊗ !

So ! denotes an occurrence of atom (here X) inside the type ! , !LXM. Notice for example that the
type (X ⊗ X) ⊗ Y contains three occurrences of atoms. Given a type derivation c , we assume given
a distinct label to each occurrence of atom appearing in each judgment of c . We call such a label
a position. We can now build a graph that has all the positions of c as vertices, and that tracks the
flow of each name X.

Definition 7.1 (Flow Graph). Let c ⊲ Λ ⊢ C : !. The flow graph flow(c) of c is the directed graph
which has as vertices all the positions occurring in c , and edges as indicated in Fig. 10.

Example 7.2. We show the type derivation for the term (1) encoding our initial example, anno-
tated with the flow graph. The reader can already notice that the flow exactly matches the DAG
corresponding to the Bayesian network in Fig. 1.

⊢ bernoulli0.6 : D

3 : D ⊢ cS〈3 〉 : S

3 : D ⊢ cR〈3 〉 : R

B : S, A : R ⊢ cW〈B,A 〉 : W F : W ⊢ F : W

B : S, A : R ⊢ let F = c
W〈B,A 〉 in F : W

3 : D, B : S ⊢ let A = c
R〈3 〉 in let F = c

W〈B,A 〉 in F : W

3 : D ⊢ let B = c
S〈3 〉 in let A = c

R〈3 〉 in let W = c
W〈B,A 〉 in F : W

⊢ let 3 = bernoulli0.6 in let B = c
S〈3 〉 in let A = c

R〈3 〉 in let F = c
W〈B,A 〉 in F : W

We will exploit the fact that the flow graph of a type derivation of ground type is acyclic.

Proposition 7.3 (The Flow is Acyclic). Let c ⊲ Λ ⊢ C : !. Then flow(c) is a DAG.

Proof Sketch. If C is in normal form, it is immediate to verify (by induction on the derivation
c) that flow(c) is acyclic. If C is not in normal form, by Thm. 4.6 we know that there exists a term
D in normal form such that C →∗ D. It is then enough to prove that cycles are preserved along a
reduction sequence, which we do by strengthening the subject reduction statement. �

6Precisely, the joint distribution underlying C and BC is exactly the same. We then have to take into account that, in general,
the term C encodes also a query, defining a marginal of the full joint distribution (Thm. 7.1).
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Λ ⊢ sample3 : X
i-sample

Λ, ~1 : Y1, . . . , ~: : Y: ⊢ c〈~1,...,~: 〉 : X
i-cond

Λ, G : !LXM ⊢ G : !LXM
i-var

Λ ⊢ E : !1LXM Λ ⊢ F : !2LYM

Λ ⊢ 〈E, F〉 : !1LXM ⊗ !2LYM
i-pair

Λ ⊢ E :  1LXM ⊗  2LYM Λ, ~ :  2LYM, G :  1LXM ⊢ C : !LZM

Λ ⊢ letp 〈G, ~〉 = E in C : !LZM
i-letp

Λ ⊢ D :  LXM Λ, G :  LXM ⊢ C : !LYM

Λ ⊢ let G = D in C : !LYM
i-let

Ground Contexts:

Λ, G : !LXM ⊢ . . . Λ, G : !LXM ⊢ . . .

Λ, G : !LXM ⊢ . . .

Fig. 10. Flow graph on the low-level fragment. The flow graph for the full calculus is defined in the Appendix.

7.1 Terms and Bayesian Networks: Soundness and Completeness

We can encode any Bayesian network B with a low-level term CB , in the standard way; it is imme-
diate to check thatB and CB have the same semantics. Conversely, the flow graph gives us a way to
extract a Bayesian network BC from every term C of ground type. Indeed, each probabilistic axiom
corresponds to a random variable, and the dependencies between probabilistic axioms in the flow
graph correspond to the edges in the Bayesian network. We have already illustrated this process
in Example 7.2. More formally, we extract a Bayesian network as follows. For clarity, we focus on
closed terms. If the term is not closed, what we would extract is a conditional Bayesian network.

Definition 7.4 (BN Extraction). Let C be a closed _!-term of ground type. The derivation c ⊲ ⊢ C : !
defines a Bayesian network BC = (G,T) over Nm(c) where:
• T maps each name X ∈ Nm(c) to the factor which is associated to the axiom introducing X.
• G is obtained from flow(c) by collapsing all the vertices labeled by the same name.

This extraction process is correct, in the following sense (the proof is straightforward by unfold-
ing the definition of JcK and JBC K).

Theorem 7.1 (From Ground Type Terms to BNs). Let c ⊲ ⊢ C : ! be a derivation of ground type,
and BC the Bayesian network associated to it, as in Def. 7.4. Then

JcK =
∑

Nm(c )−Nm(!)

JBC K.

7.2 From DAGs to Compositionality

We use the technology of the flow graph also to prove the fundamental result which we used to de-
termine compositionality, namely that all derivations of ground type are well-formed (Lemma 6.6).
The crucial property is the following, which is remarkably reminiscent of the characterizing prop-
erty of jointrees, the data structure underlying the message passing algorithm for exact inference
on BNs. The proof (obtained from the fact that the flow graph is a DAG) is in the Appendix.

Lemma 7.5 (Named Paths). Let c ⊲ Λ ⊢ C : !, and let X be the main name of a probabilistic axiom

UX. Then in flow(c), each position with name X is connected to the occurrence of X in UX by a path

where all positions have name X.

Then, we are finally able to give the proof of Lemma 6.6.

Proof of Lemma 6.6. We prove that each rule in c ⊲ Λ ⊢ C : ! has compatible premises. Let
c1 ⊲ �1, . . . , c= ⊲ �= be the premises of a rule in c . Assume there exists a c 9 such that X ∈ Nm(c 9 ) and
X ∉ Nm(� 9 ). It is easy to see that X is necessarily themain name of a probabilistic axiom UX in c 9 . By
Lemma 7.5, each position with name X in flow(c) is connected to the occurrence of X inUX by a path
where all positions have name X. Since X ∉ Nm(� 9 ), it is impossible that X ∈ Nm(c8 ) for 8 ≠ 9 . �
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8 DEALING WITH EVIDENCE, AKA COMPUTING THE POSTERIOR

Quoting [Gordon et al. 2014], inference is the task of “computing an explicit representation of the
probability distribution implicitly specified by a probabilistic program”. So far, we have focused
on the computation of marginals, without explicitly dealing with evidence. Admittedly, the most
interesting inference problem is to compute a posterior distribution, such as Pr(Rain|Wet = t). We
know that this is the same as Pr(Rain, Wet = t)/Pr(Wet = t) (as recalled in Sect. 2). In standard
practice, to compute a posterior means to compute the unnormalized posterior

Pr(Rain, Wet = t). (6)

We can then normalize (6) by dividing for Pr(Wet = t), which is also available—for free—from (6),
just by adding up all the probabilities appearing in it. Indeed, Pr(Wet = t) =

∑
Rain Pr(Rain, Wet =

t).
Technically, in the setting of BNs (and in our setting), there is no essential difference between

computing a marginal like Pr(Rain, Wet = t) or amarginal like Pr(Rain, Wet). The key to deal with
evidence (such as Wet = t) is to update each CPT in the model, by zeroing out those rows that are
inconsistent with the observed data. The resulting factors are no longer normalized, but are still
valid factors, and their product gives the unnormalized posterior distribution. We illustrate this
with an example, referring to [Darwiche 2009] (Ch. 6.7) or [Koller and Friedman 2009] (Ch. 9.3.2)
for the details.

Example 8.1 (Basic). Consider a simple BN of graph Rain→ Wet. The factors associated to Rain
and Wet are respectively q1 and q2, as given in Fig. 8. We know (Sect. 5.3) that Pr(Rain, Wet) =
q1 ⊙ q2. Assume we have evidence e , (Wet = t). The (unnormalized) posterior distribution
Pr(Rain, Wet = t) is again the product of the factors associated to the nodes of the BN (as in
Thm. 5.10) but this time starting from the updated factors qe

1 and qe
2 . In our case, qe

1 = q1, while
qe
2 is modified as in Fig. 11. So Pr(Rain, Wet = t) = qe

2 ⊙ q
e
1 (the result is in Fig. 11). Hence, we

qe2 =

R W Pr(W = t|R)

t t 0.7
f t 0.01

qe2 ⊙ q
e
1 =

R W Pr(R, W = t)

t t 0.14
f t 0.008

qe2 ⊙ q
e
1

0.148
=

R W Pr(R|W = t)

t t 0.14/0.148 = 0.946
f t 0.008/0.148 = 0.054

Fig. 11. Dealing with evidence

immediately have:
• Pr(Wet = t) = 0.148, which is obtained by adding up all the entries in Pr(Rain, Wet = t);
• Pr(Rain|Wet = t), which is obtained by normalizing Pr(Rain, Wet = t), as depicted in Fig. 11.

So, for example, we have the posterior Pr(Rain = t|Wet = t) = 0.14/0.148 = 0.946, a huge increase
from our prior belief Pr(Rain = t) , q1(t) = 0.2.

8.1 The Semantics of Terms, with Evidence

Themain ingredients being the same, our approach is easily adapted to deal with evidence, syntac-
tically encoded by the construct obs(G = b). To express evidence, we enrich the definition of inter-
section types with two more sets of atomic types, namely {Xt | X ∈ Names} and {Xf | X ∈ Names}.

Atomic Types X ::= X
�� Xt �� Xf

Ground Types  , ! ::= X
��  ⊗ !

Positive Types %,& ::= !
�� [�1, . . . , �=]

Types �, � ::= %
�� % ⊸ �

Technically, we require the atomic types appearing in a type derivation to be pairwise consistent,
meaning that if two atomic types X1,X2 have the same name X, then they are both either X or Xt
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or Xf. It is easy to check that for this property to hold for a type derivation c ⊲ � , it just suffices to
require that it holds for the atomic types in the conclusion � .
Given a derivation c and a name X, we define Val(X) = {t} if X occurs in c as Xt, Val(X) = {f}

if X occurs in c as Xf, and Val(X) = {t, f} otherwise. Essentially, we treat an observed r.v. as unary,
akin to factor reduction in [Koller and Friedman 2009].

Types and Semantics. We can now complete Fig. 7 (and Fig. 9) with the typing rule for obs(G = b):

Λ, G : Xb ⊢ obs(G = b) : Xb ⋄
∅
1

i-obs

where we annotated the rule with the semantics indicated by Def. 6.2 (a remark similar to 6.3
applies). The typing rules for i-sample and i-cond in Fig. 7 (and Fig. 9) are updated as follows:

X ∉ Nm(Λ)

Λ ⊢ sample3 : X⋄
{X}

q

i-sample
X ∉ {Y1, . . . , Y=} and X ∉ Nm(Λ)

Λ, ~1 : Y1, . . . , ~= : Y= ⊢ c〈~1,...,~= 〉 : X⋄
{Y1,...,Y= ,X}

q

i-cond

where we annotate the rules with the factor q indicated by Def. 6.1, taking into account the def-
inition of Val(X) given above (see Example 8.2). Everything else stays the same: all definitions
and results in Sections 6 and 7 remain valid. An example will clarify what happens, and how the
evidence is reflected into the semantics, via the type derivation.

Example 8.2 (Basic). Consider a term modeling the BN of Example 8.1, i.e. Rain→ Wet:

let rain = bernoulli0.2 in let wet = c〈rain〉 in 〈rain,wet〉 : R ⊗ W.

where c〈rain〉 , case rain of {t⇒bernoulli0.7; f⇒bernoulli0.01}. To express the evidence W = t,
we use the construct obs(wet = t), yielding the (sugared) term

let rain = bernoulli0.2 in let wet = c〈rain〉 in 〈rain, obs(wet = t)〉 : R ⊗ Wt

Let us see how the evidence is reflected into the semantics, thanks to the type derivation c .

⊢ bern0.2 : R ⋄
{R}

q1

A : R ⊢ c〈A 〉 : Wt ⋄
{R,W}

k

i-cond A : R ⊢ A : R⋄1∅ F : Wt ⊢ obs(F = t) : Wt ⋄1∅
i-obs

A : R,F : Wt ⊢ 〈A, obs(F = t)〉 : R ⊗ Wt ⋄1∅

A : R ⊢ let F = c〈A 〉 in 〈A, obs(F = t)〉 : R ⊗ Wt ⋄k
i-let

c⊲ ⊢ let A = bern0.2 in let F = c〈A 〉 in 〈A, obs(F = t)〉 : R ⊗ Wt ⋄q1 ⊙k

The i-obs axiom forces the type Wt. In turn, Wt is propagated to the i-cond axiom, via the i-let rule.
What is the semantics of the i-cond axiom? Spelling out Def. 6.1, and recalling that here Val(W) =
{t}, we have that the factork associates a scalar to each of the two tuples in Val(R) × Val(W):

k (tt) , bernoulli0.7 (t) andk (ft) , bernoulli0.01 (t).

That is,k is exactly the factor qe
2 in Fig. 11. Please observe that the difference in the interpretation

is entirely due to the type Wt. With the same definitions as in Sect. 6 , we have JcK = q1 ⊙k , which
is exactly qe

1 ⊙ q
e
2 = Pr(Rain, Wet = t).

A very similar reasoning would apply to express Pr(Rain|Wet = t) in a model with several
variables, like the one in Fig. 1; marginalization is taken care by the semantics exactly as before. It
is more interesting to revisit Example 4.10, to illustrate how we deal with evidence together with
copies.

Example 8.3 (Coin Tosses). Consider again the term D of Example 4.10, modeling two tosses of
the same (biased) coin. Assume we want to infer (learn) the bias of the coin from the result of the
tosses. For example, if we observe that both the coin tosses yield t, this would increase our confi-
dence that the coin is biased toward t. Indeed the semantics of the updated term changes in this
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sense, as we show here. The following term7 D′ expresses the evidence, given the model encoded
by D. Notice the modularity in the encoding.

D′ , letp 〈G,~1, ~2〉 = D in 〈G, obs(~1 = t), obs(~2 = t)〉

Once again, each observation obs(~8 = t) forces the type Yt8 , so recording the evidence t for
each Y8 ; the type derivation takes care of propagating the evidence, as shown below:

c ′ ⊲ D : X ⊗ Yt1 ⊗ Yt2

G : X ⊢ G : X

~1 : Yt1 ⊢ obs(~1 = t) : Yt1 ~2 : Yt2 ⊢ obs(~2 = t) : Yt2

~1 : Yt1, ~2 : Y
t
2 ⊢ 〈obs(~1 = t), obs(~2 = t)〉 : Yt1 ⊗ Yt2

G : X, ~1 : Yt1, ~2 : Y
t
2 ⊢ 〈G, obs(~1 = t), obs(~2 = t)〉 : X ⊗ Yt1 ⊗ Yt2

i-letp
d⊲ ⊢ letp 〈G, ~1, ~2〉 = D in 〈G, obs(~1 = t), obs(~2 = t)〉 : X ⊗ Yt1 ⊗ Yt2

The derivation c ′ ⊲ D (highlighted in red) is the same as the derivation c ⊲ D of Example 4.10,
but with each type Y8 replaced by Yt8 (as forced by the i-letp typing rule). The semantics changes
as expected, reflecting that the evidence increases our confidence that the coin is biased toward t.
The reader can find the computation of the semantics developed in full in the Appendix.

9 A COST-AWARE SEMANTICS

In this section we examine the cost of computing the semantics of a term C of ground type, that
is the cost of inferring the marginal distribution defined by C . We assume c to be an arbitrary
derivation of a judgment � of shape Λ ⊢ C : !. Looking at Def. 6.2 one easily realizes the following:

Proposition 9.1 (Cost Upper Bound). The cost of computing JcK according to Def. 6.2 is O(<c ·

2=), where = = |Nm(Cpts(c)) | is the number of names which appear in Cpts(c), and<c ≤ = is the

number of probabilistic axioms in c .

This is the upper bound to the cost of computing the semantics of c . But there is more to the story.
Non-idempotent type systems are known to provide quantitative information about the typed
term, such as bounds on the execution time. There is a rich literature on systems which capture
(possibly tight) complexity bounds in different styles of computation [Accattoli et al. 2022, 2020b;
de Carvalho 2018], including the expected runtime of probabilistic computations [Dal Lago et al.
2021]. However, in the setting of Bayesian modeling and exact inference, the runtime, and even
the expected runtime, has little relevance, because the dominating cost (in time and space) is due to
the computation of the probability distribution. Such a cost is what interests us—our type system
is able to provide accurate bounds.

On the Cost of Inductively Computing JcK. Let us point out the differences, computationally, be-
tween the definition of Jc ⊲ �K according to Def. 6.2—which only considers the probabilistic axioms
and the names occurring in the conclusion �—and the inductive definition illustrated in Fig. 9. The
latter, which computes the semantics following the structure of the type derivation, allows for a
more efficient computation, in general. This is because summing out step-by-step yields interme-
diate factors of smaller size. This indeed is exactly the way algorithms for exact inference work.

Example 9.2. Consider a Bayesian network whose DAG is a chain X1 → X2 → · · · → X= . The
following term defines the marginal over the single variable X= .

c ⊲ let G1 = sample3 in let G2 = c
2
〈G1 〉 in . . . let G= = c

=
〈G=−1 〉 in G= : X=

7As usual, we use some syntactic sugar.
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• Computing JcK according to Def. 6.2 has cost O(= · 2=). Indeed, we first compute the product
of = factors—that is the full joint distribution over X1, . . . , X=—and then sum out all the variables
but X= .
• Regardless of the number of variables in the chain, the cost of computing the semantics follow-
ing the structure of the derivation is O(= ·23), as one can easily verify by trying to write down the
derivation: we do not actually need to explicitly build a distribution over = random variables.

Clearly, there is no guarantee that the cost of inductively computing the semantics of c is always
strictly less than computing JcK directly.

If we examine the cost of computing the semantics of c inductively, we obtain a better upper
bound than in Prop. 9.1—please observe that the latter essentially corresponds to computing the
full joint distribution underlying the model.

Proposition 9.3 (Inductive Cost). Let c be a type derivation, <c the number of probabilistic

axioms in c , and = = |Nm(Cpts(c)) | the number of names which appear in Cpts(c) (as in Prop. 9.1).

The cost of inductively computing the semantics of c following the structure of the derivation is

O(<c · 2
, )

where, ≤ = is the maximal cardinality of any set of names Y appearing in the derivation, when

decorated as in Fig. 9.

Remark 9.4. The reader familiar with inference algorithms will realize that inductively comput-
ing the semantics following the structure of the derivation implements inference by a form of the
Variable Elimination algorithm, and indeed such an observation can be made formal. The needed
technical details, however, are beyond the scope of this paper.

Remark 9.5 (Observed Variables). Both bounds—in Prop. 9.1 and Prop. 9.3— can be made tighter
by restricting = to the set Ŷ of non observed names. The set E of observed variables does not actu-
ally contribute to the number of entries in a factor, since each one has a single possible value. So
Val(Ŷ) × Val(E) is isomorphic to Val(Ŷ).

Exact Bounds. Given that the type system is resource-sensitive by design, it is not difficult to
refine type derivations by decorating c with the number of elementary steps needed to compute
its semantics. We stress that this information can be retrieved without performing calculations on
factors—it is enough to keep track of the relevant names occurring in each judgment. It is straight-
forward to fine-tune the complexity measure and provide bounds with different granularity.
In Fig. 12 we give a minimalist example, limited to the decidable first-order system, where the

weight on the turnstile counts the number of multiplications performed during the computation
(the cost of sums being negligible w.r.t. the cost of products). Here, given a judgment � ⋄ X, we
write X̂ for the restriction of X to the names that are not observed in � : this is to take into account
that observed names do not actually contribute to the factor size, hence to the overall cost, as
remarked above.

Same Model, Different Cost. Since the cost of computing the semantics (i.e. the cost of exact infer-
ence) depends on the structure of the term itself, different terms describing the very samemarginal
distribution may have different costs. Indeed, a term encodes not only a Bayesian network and a
marginal, but also a way to compute it, in agreement with the ideas which underlay exact infer-
ence on terms, as proposed by Koller and Pfeffer [1997]. Our type system detects such a difference.
The following example illustrates this point.

Example 9.6 (Same BN, Different Cost). Consider the following two terms, both in normal form,
and both corresponding to the same Bayesian network whose graph is the chain X→ Y→ Z.
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X ∉ Nm(Λ)

Λ
0
⊢ sample3 : X ⋄ {X}

i-sample
X ∉ {Y1, . . . , Y=} and X ∉ Nm(Λ)

Λ, ~1 : Y1, . . . , ~= : Y=
0
⊢ c〈~1,...~= 〉 : X ⋄ {Y1,...,Y= ,X}

i-cond

Λ, G : %
0
⊢ G : % ⋄ ∅

i-var

Λ, G : Xb
0
⊢ obs(G = b) : Xb ⋄ ∅

i-obs

Λ
=1
⊢ D : % ⋄Y1 Λ, G : %

=2
⊢ C : � ⋄Y2 Z=(Y1∪Y2 )−Nm(Λ,�)

Λ
=1+=2+<
⊢ let G = D in C : � ⋄ (Y1∪Y2 )−Z

i-let < =



2 |Ŷ1∪Ŷ2 | if Y1,Y2 ≠ ∅

0 otherwise.

Λ
0
⊢ E : !1 ⋄ ∅ Λ

0
⊢ F : !2 ⋄ ∅

Λ
0
⊢ 〈E,F〉 : !1 ⊗ !2 ⋄ ∅

i-pair
Λ

0
⊢ E : !1 ⊗ !2 ⋄ ∅ Λ, G : !1, ~ : !2

=
⊢ C : � ⋄Y

Λ
=
⊢ letp 〈G, ~〉 = E in C : � ⋄Y

i-letp

Fig. 12. First-order type system annotated with the cost of computing the factor.

1. C1 , let G = sample3 in let ~ = c
Y
〈G 〉 in let I = c

Z
〈~〉 in I : Z

2. C2 , let I = (let ~ = (let G = sample3 in c
Y
〈G 〉) in c

Z
〈~〉) in I : Z

Both terms define the same marginal distribution over Z. However, inductively computing such a
distribution has a different cost8: 12 multiplications for C1, and 8 for C2.

Cost and Reduction. The upper bound in Prop. 9.1 is invariant by reduction, because the number
of probabilistic axioms in a type derivation is invariant. On the other hand, the cost of inductively
computing the semantics of a type derivation c (Prop. 9.3) is not stable by reduction, because the
structure of the derivation changes, and so the size, of the largest factor to be inductively com-
puted may grow or shrink. This is indeed the rationale behind the program transformations which
correspond to the Variable Elimination algorithm performed on terms [Ehrhard et al. 2023b]. Start-
ing from a normal form, the efficiency may be improved via expansion (the reverse of reduction).

Cost of Factors Product vs. Matrices Product. We stress how much the product of factors differs
from the product of matrices. In this difference lies the efficiency of a factors-based semantics w.r.t.
to a categorical [Jacobs and Zanasi 2020] or relational [Ehrhard et al. 2014; Ehrhard and Tasson
2019] one, where a central role is played by a product ⊗ which behaves as the tensor product of
matrices.

Example 9.7. Let C1, C2 be case expressions, respectively encoding twoCPTsqX1 = Pr(X1 |Y1, Y2, Y3)
and qX2 = Pr(X2 |Y1, Y2, Y3), where two distinct r.v.s (X1 and X2, respectively) are conditioned to the
same set of r.v.s Y1, Y2, Y3. We can see each qX8 interpreting C8 as a stochastic matrix (of size 24). One
easily realizes that computing the tensor product qX1 ⊗qX2 of the two matrices, requires to compute

and store 24 · 24 = 28 entries. In contrast, the factor product qX1 ⊙ qX2 computes 25 entries. Indeed,
in a categorical or relational model, to compute the semantics of the term 〈C1, C2〉 will (in general)
pass via qX1 ⊗ qX2 . On this basis, it is easy to build a term which encodes a BN over the 5 variables
X1, X2, Y1, Y2, Y3, and whose inductive interpretation (in a categorical or relational model) requires
to compute and store 28 values—one such a term is given in the Appendix. This is somehowweird—
from the point of view of BNs—given that the full joint distribution over 5 variables has size 25.

8The reader can find the explicit computations in the Appendix.
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X ∉ Nm(Λ)

Λ ⊢ sample3 : B : X
p-sample

X ∉ {Y1, . . . , Y=} and X ∉ Nm(Λ)

Λ,~1 : B : Y1, . . . , ~= : B : Y= ⊢ c〈~1,...,~= 〉 : B : X
p-cond

Λ, Γ1 ⊢ D : % : & Λ, Γ2, G : % : & ⊢ C : � : �
Λ, Γ1 ⊎ Γ2 ⊢ let G = D in C : � : �

p-let

Λ ⊢ n : N : n
Λ, Γ1 ⊢ E : N : 0 Λ, Γ2 ⊢ C : � : �
Λ, Γ1 ⊎ Γ2 ⊢ ifZero E C D : � : �

Λ, Γ1 ⊢ E : N : n + 1 Λ, Γ2 ⊢ D : � : �
Λ, Γ1 ⊎ Γ2 ⊢ ifZero E C D : � : �

Λ, Γ0, G : !� : [�1, . . . ,�=] ⊢ C : � : � (Λ, Γ8 ⊢ fix G.C : � : �8)
=
8=1

Λ,
⊎=
8=0 Γ8 ⊢ fix G.C : � : �

Fig. 13. The type system for call-by-push-value PCF (selected rules).

10 LIFTING THE TYPE SYSTEM TO CALL-BY-PUSH-VALUE PCF

To streamline the presentation, we carried out our analysis in the setting of the untyped _-calculus,
on top of which we have defined an intersection type system. As mentioned in Sect. 4.2, all
ourmethods can be lifted to amore user friendly PCF-like sintax, similar to that in [Ehrhard and Tasson
2019]. Terms of a call-by-push-value PCF are those of the _-calculus in Sect. 3 plus some operations
needed to handle natural numbers (including a constant n for each number =) and a fixed point
combinator:

Terms C,D ::= . . .
�� succ E �� pred E �� ifZero E C D �� fix G.C

Values E,F ::= . . .
�� n

The reduction rules are as expected. As standard, PCF types (represented in red) are the simple
types of Sect. 3 extended with the ground type of natural numbers:

Ground Types !,  ::= . . .
�� N

The fact that PCF is a typed calculus does not mean that we can get rid of intersection types (here
represented in blue) to give semantics to the terms. Indeed, we still need to keep track of the names
which are generated during the computation. As usual with PCF, ground intersection types need
to be extended with a type constant n for each natural number =:

Ground Intersection Types !,  ::= . . .
�� n

At this point we need to type PCF terms. A PCF term will come with two types: a standard type,
and an intersection type, as in [Dal Lago and Gaboardi 2011; Ehrhard 2016; Ehrhard et al. 2014].
For example, the term sample3 is typed as ⊢ sample3 : B : X. The idea is that in a judgment
⊢ C : � : � , the intersection type� refines the standard PCF type �. In the example, X refines B, be-
ing X the name of a boolean variable. In Figure 13, we report a selection of the typing rules for this
language. One can notice that the rules p-sample, p-cond, and p-let are obtained by overlapping
the ones for simple types with the ones for intersection types. The typing rules which are specific
to PCF constructs are standard, and have been adapted from [Ehrhard 2016].

11 RELATED WORK

Theoretical research on functional PPLs, pioneered by [Saheb-Djahromi 1978] is a very active
area. Early investigation [Friedman et al. 1998; Koller et al. 1997; Park 2003; Park et al. 2005; Pless and Luger
2001; Ramsey and Pfeffer 2002] has evolved in a large body of work, to support the growing devel-
opment of software. Landmark foundational work aiming at providing sound and compositional
methods for higher-order Bayesian inference includes [Borgström et al. 2015] and [Ścibior et al.
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2018]. The former is based on operational techniques, while the latter on a modular denotational
semantics. Our work is inspired by both. The importance of capturing the data flow of higher-order
probabilistic programs, is stressed in [Castellan and Paquet 2019; Paquet 2021], which rely on event
structures. Relevantly, Bayesian networks are at the core of Paquet [2021] game semantics proposal,
motivated by the fact that—in practice—most modern inference engines do not manipulate directly
the program syntax but rather some graph representation of it. We share this view, and the goal
of providing reasoning tools for such implementations. We also mention [Gorinova et al. 2022],
which introduces an information flow type system, in a first-order, imperative setting. As already re-
called in the introduction, the theory of Bayesian networks has been investigated extensively from
a categorical viewpoint by Jacobs and Zanasi [Jacobs 2023; Jacobs et al. 2019; Jacobs and Zanasi
2016, 2020].
The foundational studies based on Bayesian networks which we have cited above focus on ex-

pressiveness and compositionality. However, they do not take into account space and time con-
sumption of probabilistic reasoning, which is the very motivation for the introduction [Pearl
1986] and development of BNs. As a matter of fact, the cost of actually computing the seman-

tics explodes when taking a categorical [Jacobs and Zanasi 2020] or relational [Ehrhard et al. 2014;
Ehrhard and Tasson 2019] approach, because of the product ⊗, which behaves as the tensor prod-
uct of matrices (see Example 9.7); inductively computing the semantics of = binary r.v.s easily
leads to intermediate computations whose size is much larger than 2= (the size of the full joint
distribution). This fact has already been pointed out in a recent paper by Ehrhard et al. [2023a],
which advocates the need for a new approach to quantitative semantics, more attentive to the
resource consumption. That paper imports factors techniques into the setting of multiplicative

linear logic, essentially a linear _-calculus with tuples (roughly, our first-order fragment)—the au-
thors leave as an open challenge the treatment of linear logic exponentials (roughly, the calculus
of Fig. 6). Our framework, indeed, is able to deal with a fully-fledged _-calculus, thanks to the
intersection type system and the flow-graph techniques built on top of it. Actually, our factor-
based semantics can be seen as an optimized version of semantics based on the weighted rela-
tional model, such as [Laird et al. 2013] and Probabilistic Coherence Space [Danos and Ehrhard
2011; Danos and Harmer 2002; Ehrhard et al. 2014; Ehrhard and Tasson 2019]. Finally, we mention
that Chiang et al. [2023] also use techniques inspired from linear logic to provide a denotational
semantics and exact inference procedures to recursive probabilistic programs.
The idea that programming languages provide a way to overcome the limitations of standard

Bayesian networks has been actively propounded by Koller and Pfeffer [1997]; Pfeffer and Koller
[2000], which introduced a modeling framework based on Object-Oriented programming. This
approach has eventually led to the object-oriented language Figaro [Pfeffer 2016].

12 CONCLUSIONS

We have presented a higher-order probabilistic programming language which allows for the spec-
ification of recursive probability models and hierarchical structures. Higher-order programs are
compiled into standard Bayesian networks operationally, via rewriting, and denotationally, via an
intersection type system. The novelty of our contribution is that (1) the compositional semantics
is based on factors, the very mathematical notion which is used to give semantics to Bayesian net-
works, and which is the basis of exact inference algorithms, and (2) our semantics and type system
are resource-sensitive. The notion of resource appears here in two forms: (1) we precisely track gen-
eration and sharing of random variables, and (2) we account for the actual cost of inference—the
cost of computing the semantics of a typed term. We obtain these quantitative results relying on
advanced semantic techniques rooted into linear logic, intersection types, rewriting theory, and
Girard’s geometry of interaction, which are here combined in a novel way.
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The fact that our semantics is factor-based implies that standard algorithms for exact inference
(which are acting on factors) can be applied. A further natural direction is to investigate inference
techniques based on term transformations, in the spirit of [Ehrhard et al. 2023b; Koller et al. 1997].
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APPENDIX

We include here proofs that have been omitted in the body of the article, and some more examples.

Reduction, in the notation of Explicit Substitutions

Since let-terms can be quite heavy to manage, in the Appendix we usually employ the notation

of explicit substitutions, which allows for more concise proofs:

C [G ← D] , let G = D in C,

C [〈G,~〉 ← E] , letp 〈G,~〉 = E in C .

Substitution lists S, evaluation contexts E, and root reduction rules can therefore be written as
follows. As before:
• 〈〈C〉〉S stands for the term obtained from S by replacing the hole 〈〈·〉〉 with C ,
• ELCM stands for the term obtained from E by replacing the hole L·M with C ,

possibly capturing the free variables of C .

Substitution Lists S ::= 〈〈·〉〉 | [G ← D]S
�� [〈G,~〉 ← E]S

Evaluation Contexts E ::= L·M
�� EE �� C [G ← E]

�� E[G ← D]

Root Rules

〈〈_G.C〉〉S E ↦→db 〈〈C [G ← E]〉〉S C [G ← 〈〈E〉〉S] ↦→dsub 〈〈C{G ← E}〉〉S

der !C ↦→der! C C [〈G,~〉 ← 〈E,F〉] ↦→pm C [G ← E] [~ ← F]

Please notice that here we use a formulation for the ↦→db and ↦→pm rules which is slightly dif-
ferent but equivalent to that in Sect. 3.2. The advantage (at the level of proofs) is that actual sub-
stitution is now carried by the ↦→dsub rule only.

A COMPLEMENTS TO SECT. 3 (THE CALCULUS)

We write c⊲low when c contains first-order rules, only.

Lemma (3.4, Progress). Let C be a _!-term in normal form such that c ⊲ L ⊢ C : !, where ! and

all types in the context L are ground. Then c only uses first-order rules , i.e. c ⊲low L ⊢ C : !.

Proof. We will prove a more general result, namely that if C is a _!-term in normal form and
c ⊲L ⊢ C : � , where all types in the context L are ground, then the following properties hold:
1. if � = !� then C = 〈〈!D〉〉S;
2. if � = % ⊸ � then C = 〈〈_G.D〉〉S;
3. if � = !1 ⊗ !2 then C = 〈〈E〉〉S;
4. if � = ! then C is a low-level term, i.e. c ⊲low L ⊢ C : !.
The proof proceeds by induction on the type derivation c , considering its last rule.
• Case s-var is immediate. Since we assume that the typing context only contains ground types,
necessarily:

c ⊲ L′, G : ! ⊢ G : !

• Case s-pair. Immediate by i.h.:

L ⊢ E1 : !1 L ⊢ E2 : !2
c ⊲ L ⊢ 〈E1, E2〉 : !1 ⊗ !2

s-pair

• Case s-sample and s-cond are immediate.
• Case s-obs is immediate.
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• Case s-bang is immediate:
L ⊢ D : �

c ⊲ L ⊢ !D : !�
s-bang

• Case s-abs. Immediate:
L, G : % ⊢ D : �

c ⊲ L ⊢ _G.D : % ⊸ �
s-abs

• Case s-let. The derivation c has shape:

L ⊢ B : % L, G : % ⊢ D : �
c ⊲ L ⊢ D [G ← B] : �

s-let

Observe that % is necessarily a ground type. Indeed, % = !� is not possible, because by i.h. we
would have B = 〈〈!A 〉〉S, making D [G ← B] a redex. By i.h., all the claims hold for both D and B ,
hence they hold for D [G ← B].
• Case s-letp. Necessarily, C , D [〈G,~〉 ← E] in normal form implies E = I (a single variable),
because D [〈G,~〉 ← 〈E1, E2〉] would be a redex. So we have

L ⊢ I : !1 ⊗ !2
s-var

L, G : !1, ~ : !2 ⊢ D : �

c ⊲ L ⊢ D [〈G,~〉 ← I] : �
s-letp

By i.h., the claim holds for D, and therefore for D [〈G,~〉 ← I].
The following cases never apply because of the assumption that C is normal:
• Case s-app. We have

L ⊢ D : % ⊸ � L ⊢ E : %
c ⊲ L ⊢ DE : �

s-app

where by i.h. D = 〈〈_G.B〉〉S, which is not possible, because DE would be a redex.
• Case s-der. This case does not apply, because by i.h. we would have D = !B , making derD a
redex.

L ⊢ D : !�
c ⊲ L ⊢ derD : �

s-der

�

By Progress and the fact that typable terms are strongly normalizing, we have

Corollary A.1. If c ⊲ L ⊢ C : !, then C →∗ D, where D is a low-level term in normal form (with

type derivation c ′ ⊲low L ⊢ D : !).

B COMPLEMENTS TO SECT. 4 (THE TYPE SYSTEM)

B.1 The Full Type System

For convenience, we give explicitly the full type system, here denoted iTypes+, which takes into
account also the construct obs(G = b), as we have described in Sect. 8.
The grammar of types is as follows, where X ∈ Names:

Atomic Types X ::= X
�� Xt �� Xf

Ground Types  , ! ::= X
��  ⊗ !

Positive Types %,& ::= !
�� [�1, . . . , �=]

Types �, � ::= %
�� % ⊸ �

The typing rules for the full system iTypes+ are in Fig. 14.
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Higher-order calculus

First-order rules

X ∉ Nm(Λ)

Λ ⊢ sample3 : X
i-sample

X ∉ {Y1, . . . , Y=} and X ∉ Nm(Λ)

Λ, ~1 : Y1, . . . , ~= : Y= ⊢ c〈~1,...,~= 〉 : X
i-cond

b ∈ {t, f}

Λ, G : Xb ⊢ obs(G = b) : Xb
i-obs

Λ, G : % ⊢ G : %
i-var

Λ, Γ1 ⊢ D : % Λ, Γ2, G : % ⊢ C : �
Λ, Γ1 ⊎ Γ2 ⊢ let G = D in C : �

i-let

Λ ⊢ E : !1 Λ ⊢ F : !2
Λ ⊢ 〈E,F〉 : !1 ⊗ !2

i-pair
Λ ⊢ E : !1 ⊗ !2 Λ, G : !1, ~ : !2, Γ ⊢ C : �

Λ, Γ ⊢ letp 〈G,~〉 = E in C : �
i-letp

Λ, Γ, G : % ⊢ C : �

Λ, Γ ⊢ _G.C : % ⊸ �
i-abs

Λ, Γ1 ⊢ C : % ⊸ � Λ, Γ2 ⊢ E : %
Λ, Γ1 ⊎ Γ2 ⊢ CE : �

i-app

(
Λ, Γ8 ⊢ C : �8

)=
8=1

Λ,
⊎
8 Γ8 ⊢ !C : [�1, . . . , �=]

i-bang
Λ, Γ ⊢ E : [�]

Λ, Γ ⊢ der E : �
i-der

Fig. 14. The full intersection type system: iTypes+

B.2 Properties of the Type System

Subject Reduction, Subject Expansion, Termination and Prograss. The extensive proofs of Subject
Reduction and Subject Expansion are in Appendix G andAppendix H, respectively. The statements
are strengthened to obtain several other properties we need. The proof of Progress is very simi-
lar to the proof in Appendix A. Please notice that the results mentioned above hold both for the
system in Fig. 7 and for the full system iTypes+ in Fig. 14. The proofs are carried out in the latter.

Unique type derivation. A separate treatment in needed for the property of unique type deriva-
tion in Prop. 4.7: this property—in the way it is stated in Sect. 4—only holds for the system in Fig. 7,
that is a system with no observed types, but not for the full system (Fig. 14). In Appendix B.4 we
generalize the property of "unique derivation", providing a form which holds in general.

B.3 Unique Derivation (Prop. 4.7), holding for the system in Fig. 7

The interest of Prop. 4.7 (and its immediate corollary Thm. 4.8) is that given a term C in BN normal
form, then its semantics is uniquely determined, because its type derivation c is uniquely deter-
mined. The same holds for any term C which reduces to BN normal form. In fact, if C is closed, we
can simply (and uniquely) write JCK for JcK.
To prove Prop. 4.7 we need a preliminary lemma.

Lemma B.1. Let C be a _low-term, and Λ a ground context. If there exists a type derivation c ⊲lowΛ ⊢

C : !, then it is unique.

Proof. The proof proceeds by induction on C . Remark that c does not contain i-obs rules, nor
observed types.
• Case C = G . Necessarily Λ = Λ

′, G : !, therefore the derivation c ⊲ Λ
′, G : ! ⊢ G : ! is uniquely

determined.
• Cases C = sample3 and C = c〈G1,...,G= 〉 are immediate, as the derivation c is uniquely determined
by the choice of Λ.
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• Case C = 〈E1, E2〉. By i.h. there are is at most one !8 such that c8 ⊲ Λ ⊢ E8 : !8 (8 ∈ {1, 2});
moreover, if they exists, c1 and c2 are both unique. Then there is only one way to obtain the
derivation c ⊲ Λ ⊢ 〈E1, E2〉 : !, where ! = !1 ⊗ !2, by rule i-pair.
• Case C = let G = D in B. By i.h. there is at most one  such that c1 ⊲ Λ ⊢ D :  . Similarly, by
i.h. there is at most one ! such that c2 ⊲ Λ, G :  ⊢ B : !, Moreover, if they exist, both c1 and c2
are unique. Then there is only one way to obtain the derivation c ⊲ Λ ⊢ let G = D in B : !, by
rule i-let.
• Case C = letp 〈~1, ~2〉 = E in D. Similar to the previous case.

�

Proposition (4.7, Uniqe Derivation). Let C be a _!-term, and Λ a ground context. Then there

exists at most one type derivation c such that c ⊲ Λ ⊢ C : !.

Proof. Let us suppose C is typable as c ⊲ Λ ⊢ C : !. We prove that c is unique. By Thm. 4.5, we
have that C is strongly normalizing. Then we argue by induction on the number of steps = needed
to reach its normal form.
• If = = 0, then C is in normal form. In particular, by Thm. 4.6, we have that C is low-term and
therefore by Lemma B.1 satisfies the claim.
• If = > 0, then we have C → D →=−1 A , where A is in normal form. By Prop. 4.4 C is typable as
c ⊲ Λ ⊢ C : ! if and only if D is typable as c ′ ⊲ Λ ⊢ D : !. Then, we apply the i.h. to D, obtaining
that if there exists c ′ ⊲ Λ ⊢ D : !, then c ′ is unique. We conclude by Thm. H.3.

�

B.4 Unique General Derivation, holding for the full type system (with observe)

When we consider the full system iTypes+ (in Fig. 14), which includes observed types, then Sub-
ject Reduction, Subject Expansion, Progress, and Thm. 4.6 still hold, in the same formulation of
Sect. 4.3. The unique derivation property in Prop. 4.7 instead does not hold as stated. For example,
the term sample3 can be typed in three valid ways:

⊢ sample3 : X ⊢ sample3 : Xt ⊢ sample3 : Xf

We notice however that all the three derivations above have the same shape ⊢ sample3 : X,
for X ∈ {X, Xt, Xf}, and that the type X can be seen as “more general” than Xt and Xf. This remark
turns out to be a property of all derivations of ground type, and allows us to generalize Prop. 4.7
in a way that holds for the full type system.

B.4.1 Unique General Derivation. Recall that an atomic type X may assume two forms: either as
observed type (Xt, Xf), or as unobserved type X. Since the type system is syntax driven, the term
itself can stipulate that some types are observed, via the construct obs(G = b), which is reflected
in a i-obs-rule. We prove that if a closed term C is typable, it admits exactly one derivation c which
is general, in the sense that (intuitively) it contains no more information than that provided by the

term C (Prop. B.3). Moreover, all the other valid type derivations for the same term C are obtained
as refinement of c (Prop. B.4).

Let us first formalize the intuitive notion that a type derivation is general if it declares as ob-
served all and only the types that the term prescribes as observed.

Definition B.2 (General Derivation). A type derivation c in system iTypes+ is general if each
atomic type which appears in c and which does no type the subject of any i-obs rule, is unob-
served (i.e., has form X and not Xb).
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The proposition below (that we prove in Sect. B.4.2) allows us to recover uniqueness. Please
notice that any derivation in the type system of Fig. 7 is general. This way, Prop. 4.7 is a special
case of Prop. B.3.

Proposition B.3 (Uniqe general derivation). Let C be a closed _!-term. In system iTypes+,

if there exists a derivation c⊲ ⊢ C : !, then there exists a unique general derivation c ′⊲ ⊢ C : !′.

If C is a closed term, and c⊲ ⊢ C : ! is its general derivation, then any other type derivation for
C is obtained by refinement, in the following sense. We define an order relation on atomic types:

X � Xb (X is more general than Xb), for each X ∈ Names.

The order extends to all types, and to type derivations, in the natural way, point-wise.

Proposition B.4 (Most general derivation). Let C be a closed _!-term and c⊲ ⊢ C : ! its general
derivation. Then c � c ′ for any derivation c ′⊲ ⊢ C : !′.

B.4.2 Proof of Prop. B.3.

Existence. We first establish the existence of a general derivation, for every term which has a
type derivation. The following property is immediate to check by inspecting the typing rules.

Lemma B.5 (Generalization). Let c ⊲ Σ ⊢ C : � be a type derivation, and let Obs(c) be the set of

the atomic types which occur as the subject of an i-obs rule. Replacing in c all occurrences of atom Xb

with X, for each atom which appears in c but does not belong to Obs(c) yields a valid type derivation,

written c∗ ⊲ Σ∗ ⊢ C : �∗. Moreover, the derivation c∗ is general; we call c∗ the generalization of c .

Uniqueness. To prove that a closed term of ground type has a unique general derivation, we rely
on %A>?. 4.7. We first need the notion of skeleton, and some technical lemmas.
We write �̂ for the type obtained form � by replacing all occurrences of the atom Xb with X, for

each X ∈ Names. We write Ĉ for the term obtained from C by replacing all occurrence of subterm
obs(G = b) with G , for each G ∈ V .

Lemma B.6 (Skeleton). Let c ⊲ Σ ⊢ C : � be a type derivation. Replacing in c each judgment

ΣD ⊢ D : �D with the judgment Σ̂D ⊢ D̂ : �̂D yields a type derivation ĉ ⊲ Σ̂ ⊢ Ĉ : �̂, which we call the

skeleton of c .

By construction, all derivations with the same skeleton are identical, modulo quotienting X and
Xb. In fact, we can be more precise.

Lemma B.7 (Main). Let c1 ⊲ Σ1 ⊢ C : !1 and c2 ⊲ Σ2 ⊢ C : !2 be type derivations with the same

skeleton ĉ1 = ĉ2. The two derivations may only differ on the atoms which do not type an i-obs-rule.

Proof. By induction on the term C . �

Corollary B.8. Two type derivations with the same skeleton have the same generalization:

ĉ1 = ĉ2 ⇒ c∗1 = c∗2 .

By using Prop. 4.7, we have

Proposition B.9 (Uniqeness). Let C be a closed _!-term. If C has two general derivations of
ground type c1 ⊲ C : !1 and c2 ⊲ C : !2 then c1 = c2.

Proof. By observing that the skeleton of a type derivation only uses the rules in Fig. 7, and
therefore satisfies Prop. 4.7, we have that all the ground type derivations of the same term have the
same skeleton. Hence the claim (notice that if c8 is general, then c∗8 = c8). �
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C COMPLEMENTS TO SECT. 6 (THE SEMANTICS OF TYPED TERMS)

C.1 Interpretation of the Probabilistic Axioms, Formally

In the paper, we are a slightly informal when describing how to associate a factor to a i-cond

axiom. Let us describe how to associate a CPT to each probabilistic axiom, formally, and what are
the subtleties.
• To a i-sample axiom of shape:

Λ ⊢ sample3 : X⋄
{X}

q

we associate the factor q over the singleton {X} such that, for all x ∈ Val(X):

q (x) = 3 (x)

• To a i-cond axiom of shape:

X ∉ {Y1, . . . , Y=} and X ∉ Nm(Λ)

Λ,~1 : Y1, . . . ,~= : Y= ⊢ case 〈~1, . . . , ~=〉 of {b⇒sample3
b
}
b∈{t,f}=

: X⋄
Y∪{X}

q

we associate a factor q over the set of names Y ∪ {X}, where Y = {Y1, . . . , Y=}. Remark that
Y1, . . . , Y= need not to be pairwise distinct, hence Y is a set whose cardinality |Y| = : may be
less than =. The factor q is defined as follows, for all x ∈ Val(X) and y ∈ Val(Y) (please observe
that y is a tuple of : elements):

q (yx) = 3
b
(x)

where b = 〈y|
Y1
, . . . , y|

Y=
〉, recalling that (by Notation 5.3) y|

Y8
∈ Val(Y8) is the value that Y8

assumes in y ∈ Val(Y).
The subtlety in the definition is that if the same names Y occurs several times in the context
(say, Y1 = Y2 = Y4) then the same value will be repeated several times in the tuple b, at the
corresponding positions. We give two examples to clarify.

Example C.1. Taking the Bayesian network in Fig. 1 as reference, we provide an example of a
case expression and the associated CPT. In the term, G : S and ~ : R are two variables of suitable
type.

case 〈G, ~〉 of

{ 〈t, t〉 ⇒ bernoulli0.99
〈f, t〉 ⇒ bernoulli0.7

〈t, f〉 ⇒ bernoulli0.9
〈f, f〉 ⇒ bernoulli0.01 } : W

S R W Pr(W|S, R)
t t t 0.99
t t f 0.01
f t t 0.7
f t f 0.3
t f t 0.9
t f f 0.1
f f t 0.01
f f f 0.99

Example C.2. Let us also give an example where the same name appear several times. If we have
~1 : Y,~2 : Y ⊢ case 〈~1,~2〉 of {b⇒sample3

b
}
b∈{t,f}2

: X the factor over the names {Y, X} associates
to 〈t, t〉 ∈ Val(Y) ×Val(X) the value 3t,t (t), to 〈f, t〉 ∈ Val(Y) ×Val(X) the value 3f,f (t), and so on.

C.2 Invariance of the Semantics

The factor semantics we have defined is invariant under reduction and expansion, as expected.
This is due to the fact that probabilistic axioms are stable w.r.t. reduction and expansion.
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Theorem (6.10, Invariance). Let C be a _!-term and C → D. Then Λ ⊢ C : ! ⋄k if and only if

Λ ⊢ D : ! ⋄k .

Proof. Invariance of the semantics is a consequence of Thm. 6.9, together with the Subject
Reduction and Subject Expansion (Appendix G, Appendix H): in the proof of such properties it
suffices to observe that Cpts(c) = Cpts(c ′). Then JcK = Jc ′K by Thm. 6.9. �

Example C.3. To better understand the invariance of Cpts(c) under reduction, recall that only
values can be duplicated and deleted. One can see the consequences of this fact by considering the
two following terms, and their type derivation. Observe that the first term is in normal form, pre-
cisely because only values can be deleted. By contrast, the subterm !sample3 , which is going to be
deleted, can only be assigned an empty type.

⊢ sample3 : X ⋄
{X}

q

G : X,~ : Y ⊢ ~ : Y

G : X ⊢ _~.~ : Y ⊸ Y ⋄
∅
1

⊢ let G = sample3 in _~.~ : Y ⊸ Y ⋄
∅
1 9

⊢ !sample3 : [] ⋄
∅
1

~ : Y ⊢ ~ : Y

G : [] ⊢ _~.~ : Y ⊸ Y ⋄
∅
1

⊢ let G = !sample3 in _~.~ : Y ⊸ Y ⋄
∅
1 →

~ : Y ⊢ ~ : Y

⊢ _~.~ : Y ⊸ Y ⋄
∅
1

C.3 Completion of the Semantics

As briefly discussed in Sect. 6, the reader may expect that the interpretation of a type derivation
c ⊲ � were a factor over Nm(� ). For example, one would expect to interpret an identity axiom U as

~ : Y ⊢ ~ : Y⋄
{Y}

1 instead of ~ : Y ⊢ ~ : Y⋄
∅
1

The fact is that our semantics focuses on the probabilistic content of a derivation c ⊲ � , only. Please
notice that the non-probabilistic information is already fully contained in the type judgment �
(because intersection types carry such information). Indeed, an interpretation of c ⊲ � as a factor
over Nm(� ) is easily obtained by a form of completion, which is simply a multiplication for the
trivial factor:

JcK , JcK ⊙
Nm( � )
1

In the case of the identity axiom, this gives JUK =
∅
1 ⊙

Y

1 =
Y

1. This completion commutes with
composition. We give some more details below.

Definition C.4 (Completion). Given a type derivation c ⊲ � , the completion of JcK is the factor
over the set of names Nm(� ) defined as:

JcK , JcK ⊙
Nm( � )
1
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Example C.5 (Completed factor). The example below shows, respectively, the factor semantics
and its completion for i-var and i-sample axioms.

c1 ⊲ ~ : Y ⊢ ~ : Y c2 ⊲ ~ : Y ⊢ bernoulli? : X

Jc1K = 1∅

Y Jc1Ky
f 1
t 1

X Jc2Kx
f ?

t (1 − ?)

Y X Jc2Kyx
f f ?

f t (1 − ?)
t f ?

t t (1 − ?)

Example C.6 (Completed derivation). Below we annotate the same derivation c with JcK (l.h.s.)

and with its completion JcK (r.h.s.).

⊢ sample3 : X⋄
{X}

q

G : X, ~ : Y ⊢ ~ : Y⋄
∅
1

G : X ⊢ _~.~ : Y ⊸ Y⋄
∅
1

⊢ let G = sample3 in _~.~ : Y ⊸ Y⋄
∅
1

⊢ sample3 : X⋄
{X}

q

G : X, ~ : Y ⊢ ~ : Y⋄
{X,Y}
1

G : X ⊢ _~.~ : Y ⊸ Y⋄
{X,Y}
1

⊢ let G = sample3 in _~.~ : Y ⊸ Y⋄
{Y}
1

C.3.1 Bridging with the Relational Models. The completed interpretation is a key step in order to
bridge the gap between our semantics andweighted relational models/probabilistic coherence spaces

such as [Ehrhard et al. 2014; Ehrhard and Tasson 2019; Laird et al. 2013].
The other observation we need is the following, suggested by Example 4.2.

Remark C.7 (On Redundancy). Looking at Example 4.2 one notice an interesting fact, which then
shines in our semantics: to memorize the probability distribution over the (four) tuples in BX ⊗ BX,
we only need the distribution over the (two) values of BX, since (as one see in the example) recon-
structing the former from the latter is trivial. For example:
• Val(BX) → R: t ↦→ 0.2, f ↦→ 0.8.
• Val(BX) ⊗ Val(BX) → R: 〈t, t〉 ↦→ 0.2, 〈f, f〉 ↦→ 0.8, 〈t, f〉 ↦→ 0, 〈f, t〉 ↦→ 0.

A similar process allows us to retrieve the relational model from the completed semantics.

D COMPLEMENTS TO SECT. 7 (THE FLOW GRAPH)

D.1 The Flow Graph

To define the flow graph for a general type derivation in iTypes, we need to specify what are the
positions (i.e. the vertexes), what are the edges, and how the edges are oriented.

Orientation and Polarity. The edges of the flow graph are oriented according to the input/output
polarity of the positions: the orientation is upwards on inputs, and downwards on outputs.
In a judgment of ground type Λ ⊢ C : !, all occurrence of atoms in Λ are seen as input, and all

occurrences of atoms in ! are seen as output. However, when considering a generic type deriva-
tion in iTypes, we need to take into account arrow types: note for example that the occurrence Y
is an input in the judgment ⊢ C : Y ⊸ X. The definition of polarity given below is rather standard
in proof-theory.

Definition D.1 (Input and Output Polarity). To each occurrence of atom X ∈ {X, Xt, Xf} in a
judgment is associated either an input polarity (denoted X↑) or output popularity (denoted X↓),
according to the following definition.

%>; (G : %1, . . . , G= : %= ⊢ C : �) , G : (%1)
−, . . . , G= : (%=)

− ⊢ C : (�)+
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(X)− , X↑

(� ⊗ �)− , (�)− ⊗ (�)−

(� ⊸ �)− , (�)+ ⊸ (�)−

( [�1, . . . , �=])
−
, [(�1)

−, . . . , (�=)
−]

(X)+ , X↓

(� ⊗ �)+ , (�)+ ⊗ (�)+

(� ⊸ �)+ , (�)− ⊸ (�)+

( [�1, . . . , �=])
+
, [(�1)

+, . . . , (�=)
+]

Polarized Positions. Similarly to what we have already done for ground types, we indicate a spe-
cific occurrence of an atom inside a type � by means of a (type) context, i.e. types with a hole, as
follows:

Ground Type Ctxs  , ! ::= L·M
��  ⊗ ! ��  ⊗ !

Positive Type Ctxs %,& ::= !
�� [�1, . . . , �, . . . �=]

Type Ctxs �, � ::= %
�� % ⊸ �

�� % ⊸ �

The definition can be extended to ground and exponential contexts in a straightforward way; we
will use ΛLXM and ΓLXM to refer to a specific atom occurrence in Λ and Γ, respectively. We assume
that each atom occurrence appearing in a sequent of a derivation c is given a distinct label. We
call such a label a position; each position has the polarity of the corresponding atom.

Flow Graph. The flow graph associated to a type derivation c is the directed graph that has for
vertexes the positions of c , and edges as indicated in Fig. 15. The orientation of the edges is given
by the polarity of the positions: each edge enters and exits an input position X↑ going upwards

(i.e., going from the conclusion of a rule to its premises). Similarly, edges enter and exit an output

position X↓ going downwards (i.e., going from the premises to the conclusion).

Proposition (7.3, The Flow is Acyclic). Let c ⊲ Λ ⊢ C : !. Then flow(c) is a DAG.

Proof. If C is in normal form, it is immediate to verify, by induction on the derivation c , that
flow(c) is acyclic. If C is not in normal form, by Thm. 4.6 we know that there exists a term D in
normal form such that C →∗ D. Therefore it is enough to prove that cycles are preserved along a
reduction sequence; this can be done by strengthening the subject reduction statement (see Ap-
pendix G). �

D.2 From DAGs to Compositionality

We say that a position ? has underlying name X (resp. underlying atom X) if ? denotes an occur-
rence of the atomX ∈ {X, Xt, Xf}. The main position of a probabilistic axiom is the one correspond-
ing to the type of the subject.

Lemma (7.5, Named paths). Let c ⊲Λ ⊢ C : !, and let X be the main name of a probabilistic axiom

UX. Then in flow(c), each position with underlying name X is connected to the main position in UX

by a path in which all positions have underlying name X.

Proof. Let us start with two easy observations. Notice that both also holds by replacing "un-
derlying name" with "underlying atom"
1. By inspecting Fig. 15 and taking into account the orientation of the edges , we realize that in

flow(c) each position has at most one parent with the same underlying name (resp., the same

atom). Observe that the only positions which do not have any parent with the same name
(resp., the same atom), are either the main position of a probabilistic axiom, or those in the
context of the conclusion Λ ⊢ C : ! (which have no parent at all).
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X ∉ Nm(Λ)

Λ ⊢ sample3 : X
i-sample

X ∉ {Y1, . . . , Y=} and X ∉ Nm(Λ)

Λ, ~1 : Y1, . . . ,~: : Y: ⊢ c〈~1,...,~: 〉 : X
i-cond

Λ, G : X
b
⊢ obs(G = b) : X

b
i-obs

Λ, G : %LXM ⊢ G : %LXM
i-var

Λ ⊢ E : !1LXM Λ ⊢ F : !2LYM

Λ ⊢ 〈E,F〉 : !1LXM ⊗ !2LYM
i-pair

Λ ⊢ E : !1LXM ⊗ !2LYM Λ, Γ,~ : !2LYM, G : !1LXM ⊢ C : �LZM

Λ, Γ ⊢ letp 〈G,~〉 = E in C : �LZM
i-letp

Λ, Γ1 ⊢ D : %LXM Λ, Γ2, G : %LXM ⊢ C : �LYM

Λ, Γ1 ⊎ Γ2 ⊢ let G = D in C : �LYM
i-let

Λ, Γ, G : %LXM ⊢ C : �LYM

Λ, Γ ⊢ _G.C : %LXM ⊸ �LYM
i-abs

Λ, Γ1 ⊢ C : %LXM ⊸ �LYM Λ, Γ2 ⊢ D : %LXM

Λ, Γ1 ⊎ Γ2 ⊢ CD : �LYM
i-app

Λ, Γ1 ⊢ C : �1LX1M . . . Λ, Γ= ⊢ C : �=LX=M

Λ,
⊎=
8=1 Γ8 ⊢ !C : [�1LX1M, . . . , �=LX=M]

i-bang
Λ, Γ ⊢ C : [�LXM]

Λ, Γ ⊢ der C : �LXM
i-der

Contexts:

ΛLXM, Γ1LY1M ⊢ C1 : �1 . . . ΛLXM, Γ=LY=M ⊢ C= : �=

ΛLXM, Γ1LY1M ⊎ · · · ⊎ Γ=LY=M ⊢ C : �

Fig. 15. Flow graph of a iTypes derivation.

2. From (1), by recalling that a DAGwhere each node has at most one parent is a tree, we have the
following key observation: if we partition flow(c) into maximal connected subgraphs whose
vertexes are positions with the same name X, then each such subgraph is a directed tree, whose
root corresponds either to the main type of a probabilistic axiom, or to a position in the context
Λ of the conclusion.
The same holds true if we partition flow(c) into maximal connected subgraphs whose vertexes
are positions with the same atom X,
Now let X be the main name of a probabilistic axiom. One can easily verify that X ∉ Nm(Λ)

(because ground contexts are additive, and because of the conditions on the axioms names). Since
we require the main names of c to be pairwise distinct, we conclude that in flow(c) there is exactly
one connected component of positions with the same name X. �

An immediate consequence is that if a name X is summed out, then necessarily it is a main name.
We isolate two useful properties which we have shown as part of the proof of Lemma 7.5, be-

cause we will use in the following.
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Fact D.2 (Main Names). Let c ⊲ Λ ⊢ C : ! be a type derivation, and let X be the main name of a
probabilistic axiom. One can easily verify that X ∉ Nm(Λ).

Fact D.3 (Atoms). Let c ⊲ Λ ⊢ C : ! be a type derivation. Then in flow(c), each position with
underlying atomX is connected either to the main typeX of a probabilistic axiom or to an atomX
occurring in Λ (in the conclusion of c), by a path in which all positions have underlying atom X.

E COMPLEMENTS TO SECT. 8 (DEALING WITH EVIDENCE)

Let us complete the coin tosses example (Example 8.3), using actual probabilities. Assume that the
tossed coin is biased either towards t (bias 0.7), or towards false (bias 0.4). Since we lack knowl-
edge, our prior belief is that either coin could be tossed with equal probability. We want to infer
the bias of the coin from the result of the tosses.

Example (8.3, cont.). In the term D of Example 4.10 modeling two tosses of the same (biased) coin

D , let G = sample3 in let ~ = !(c〈G 〉) in 〈G, der~, der~〉

we assume c〈G 〉 stands for the conditional expression case 〈G〉 of {A1 ⇒bernoulli0.7; A2 ⇒bernoulli0.4}
and sample3 = bernoulli0.5.

Assume that we observe that both the coin tosses yield t, which is encoded as follows (Example 4.10)

D′ , letp 〈G,~1,~2〉 = D in 〈G, obs(~1 = t), obs(~2 = t)〉

Let us compare the type derivation c for the term D with the type derivation d for the term D′ and

see how the semantics changes. In both cases, the semantics is the product of the factors associated

to the probabilistic axioms.

• Jc ⊲ D : X ⊗ Y1 ⊗ Y2K. The probabilistic axioms in c (see Example 4.10) are the following

⊢ sample3 : X⋄k G : X ⊢ c〈G 〉 : Y1 ⋄k1 G : X ⊢ c〈G 〉 : Y2 ⋄k2

where we have annotated the respective interpretations, which are

k ,

X Pr(X)
t 0.5
f 0.5

k8 ,

X Y8 Pr(Y8 |X)
t t 0.7
t f 0.3
f t 0.4
f f 0.6

• Jd ⊲ D : X ⊗ Yt1 ⊗ Yt2K. The probabilistic axioms in d (see Example 8.3)are the following three

⊢ sample3 : X⋄k G : X ⊢ c〈G 〉 : Yt1 ⋄k
e
1 G : X ⊢ c〈G 〉 : Yt2 ⋄k

e
2

where

ke
8 =

X Y8 Pr(Y8 = t|X)

t t 0.7
f t 0.4

Proceeding like in Example 8.2, JdK = ke
1 ⊙ k

e
2 ⊙ k is exactly Pr(X, Y1 = t, Y2 = t). From it, we

have Pr(Y1 = t, Y2 = t) = 0.325 and Pr(X|Y1 = t, Y2 = t).

ke
1 ⊙k

e
2 ⊙k =

X Y1 Y2 Pr(X, Y1 = t, Y2 = t)

t t t 0.245
f t t 0.08

X Y1 Y2 Pr(X|Y1 = t, Y2 = t)

t t t 0.753
f t t 0.246

Notice how the evidence has increased our confidence that the coins is biased towards t from 0.5 to

0.753.
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F COMPLEMENTS TO SECT. 9 (COST)

In Fig. 16 we give the cost-annotated type derivation for the terms in Example 9.6, according to
the system in Fig. 12.

0
⊢ sample3 : X ⋄ {X}

G : X
0
⊢ cY〈G 〉 : Y ⋄ {X,Y}

~ : Y
0
⊢ cZ〈~〉 : Z ⋄ {Y,Z} I : Z

0
⊢ I : Z ⋄ ∅

~ : Y
0
⊢ let I = c

Z〈~〉 in I : Z ⋄ {Y,Z}

G : X
2|{X,Y,Z}|
⊢ let ~ = c

Y〈G 〉 in let I = c
Z〈~〉 in I : Z ⋄ {X,Z}

23+2|{X,Y}|
⊢ let G = sample3 in let ~ = c

Y〈G 〉 in let I = c
Z〈~〉 in I : Z ⋄ {Z}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0
⊢ sample3 : X ⋄ {X} G : X

0
⊢ cY〈G 〉 : Y ⋄ {X,Y}

2|{X,Y}|
⊢ let G = sample3 in c

Y
〈G 〉 : Y ⋄ {Y} ~ : Y

0
⊢ cZ〈~〉 : Z ⋄ {Y,Z}

22+2|{Y,Z}|
⊢ let ~ = (let G = sample3 in c

Y〈G 〉) in c
Z〈~〉 : Z ⋄ {Z} I : Z

0
⊢ I : Z ⋄ ∅

22+22
⊢ let I = (let ~ = (let G = sample3 in c

Y〈G 〉) in c
Z〈~〉) in I : Z ⋄ {Z}

Fig. 16. Type derivations for the terms in Example 9.6, cost-annotated.

F.1 Cost of Inductively Computing the Interpretation of a Derivation

We now analyze the cost of inductively computing the semantics of c following the structure of
the derivation. We prove that the inductive computation admits a better upper bound than the one
in Prop. 9.1.

Proposition (9.3 Inductive cost). Let c be a type derivation, <c the number of probabilistic

axioms in c , =c = |Nm(Cpts(c)) | the number of names which appear in Cpts(c) (as in Prop. 9.1).

The cost of inductively computing the semantics of c following the structure of the derivation is

O(<c · 2
, )

where, ≤ =c is the maximal cardinality |Y| of any set of namesY appearing in the derivation when

decorated as in Fig. 9.

Remark F.1. Notice that given a type derivation c , we can easily establish, = |Y| (the larger

size of any factor
Y

k which will be inductively computed) without actually performing any factor
computation. This is easily obtained by restricting the decoration in Fig. 9 to the set of names, only.

We prove Prop. 9.3 by counting separately the number of multiplications and additions needed
to compute the semantics of c . In the rest of the section, we set c ⊲ �c to be an arbitrary but fixed
type derivation.

Counting Multiplications. We first restrict our attention only tomultiplications, ignoring the cost
of summing out. To each judgment � occurring in c , we assign a number fcts(� ). Intuitively, fcts(� )
is the maximal number of non-empty factors we need to multiply to compute the semantics asso-
ciated to � , given the semantics of its premises. Notice that the product for an empty factor ( q ⊙ 1)
demands no actual computation.
• Case of � axiom.
• fcts(� ) = 0 if � is conclusion of i-var
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• fcts(� ) = 1 if � is conclusion of i-sample or i-cond.

• Case of � conclusion of a rule with ℎ ≥ 1 premises:
�1 . . . �ℎ

�
'

• fcts(� ) is the number of premises �8 such that fcts(�8 ) ≠ 0.

Lemma F.2 ( Nodes vs leaves, weighted). Let c ⊲ �c be a type derivation, and<c the number

of probabilistic axioms in c . Let

Ac ,
∑
�

(fcts(� ) − 1)

where � ranges over all judgments in c such that fcts(� ) ≠ 0. Then

Ac = 0 =<c , if fcts(�c ) = 0
Ac =<c − 1, otherwise.

Proof. By induction on the structure of c . If c consists of a single axiom, the property holds
trivially: for i-var<c = 0 = Ac , for a probabilistic axiom<c = 1 and Ac = 0.
Assume c ⊲ �c has last rule ':

c1 ⊲ �1 . . . cℎ ⊲ �ℎ
c ⊲ �c

'

• Case fcts(�c ) = 0 is immediate, observing that fcts(�c ) = 0 iff fcts(�8 ) = 0 for each 8 , and so
fcts(�c ) = 0 iff<c = 0 (i.e., the derivation of �c contains no probabilistic axiom).
• Case fcts(�c ) = : > 0. By assumption, there are : premises such that fcts(�8 ) ≠ 0. By i.h., for
each such premise Ac8 =<c8 −1. Hence Ac = (

∑:
1 Ac8 ) + (:−1) = (

∑:
1<c8 ) −:+ (:−1) =<c −1.

�

Lemma F.3 (Multiplications). With the same notations as above, the total number of multipli-

cations to compute the semantics of a derivation c is

O(<c · 2
, ).

Proof. Immediate consequence of LemmaF.2, recalling that tomultiply: factors requires (: − 1) · 2w

multiplications, where w is the number of names in the resulting factor.
Assume we are inductively computing the semantics of c , following Fig. 9. Let, ≤ =c be the

largest number of names involved in the computation of any factor. To compute the semantics of
a sub-derivation c ′ ⊲ � given the interpretation of its premises, we need to compute the product of
fcts(� ) factors, which has cost 0 if fcts(� ) = 0, and otherwise has cost at most (fcts(� ) − 1) · 2, . So
(using Lemma F.2) the total number of multiplications to compute the semantics of c is bounded by

Ac · 2
,

= (<c − 1) · 2
,

�

Counting Additions. The cost of summing out any number of (binary) r.v.s from a factor of size
, is O(2, )9. Notice that, when computing the semantics of c following Fig. 9, we perform a sum
out when (in a rule i-let or i-app) some names appear in the premisses, but not in the conclusion.
By the observations in Appendix D.2, a name can be summed out at most once in the derivation
c , and moreover, only main names are summed out. Therefore the number of possible sum outs
is bounded by the number< of probabilistic axioms in c . We immediately have the following.

9Summing out observed variable does not imply any actual computation, because—as we have already remarked in Sect. 9—

the setE of observed variable does not actually contribute to the number of entries in a factor:Val(Ŷ)×Val(E) is isomorphic

to Val(Ŷ) .
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Lemma F.4 (Additions). With the same notations as above, the total number of additions to com-

pute the semantics of a derivation c is

O(<c · 2
, ).

Remark F.5 (Reduction and Cost of the Semantics). The upper bound in Prop. 9.1 is invariant by
reduction (because the number of probabilistic axioms axiom in a type derivation is invariant).
Instead, the cost of inductively computing the semantics of a type derivation c is not stable by
reduction, because as the derivation changes, the size , of the largest factor to be inductively
computed may grow or decrease. Notice that both cases are possible, so given a term C , the cost of
inductively computing the semantics of its normal form may be larger than the cost for C .

F.2 On the Product of Factors vs. Product of Matrices.

We stress how much the product of factors is different from the product of matrices. In this dif-
ference lies the efficiency of a factors-based semantics w.r.t. to a categorical [Jacobs and Zanasi
2020] or relational [Ehrhard et al. 2014; Ehrhard and Tasson 2019] one, where the tensor product
⊗ (which behaves as the tensor product of matrices) plays instead a central role.

Example F.6 (Factors are compact). Let C1, C2 be case expressions, respectively encoding two CPTs
qX1 = Pr(X1 |Y1, Y2, Y3) and qX2 = Pr(X2 |Y1, Y2, Y3) conditioned to the same variables. We can see
each qX8 interpreting C8 as a stochastic matrix (of size 24). One easily realizes that computing the
tensor product of matrices qX1 ⊗ qX2 requires to compute and store 24 · 24 = 28 entries, while the
factor product qX1 ⊙ qX2 computes 25 entries. In a categorical or relational model, to compute the
semantics of the term 〈C1, C2〉 will (in general) require to compute qX1 ⊗qX2 . On this basis, it is easy
to build a term C such as the following one

let ~1 = sample31 in let ~′1 = ~1 in

let ~2 = sample32 in let ~′2 = ~2 in

let ~3 = sample33 in let ~′3 = ~3 in

let G1 = c
X1〈~1,~2,~3 〉 in

let G2 = c
X2〈~′1,~

′
2,~
′
3 〉 in 〈G1, G2〉.

which encodes a BN over the 5 variables X1, X2, Y1, Y2, Y3, where computing the inductive inter-
pretation of C in a categorical or relational model requires to compute and store 28 values. This
is somehow weird, since the full joint distribution over 5 variables has size 25. In contrast, as we
have stressed in this section, the cost of computing our semantics is never larger than the cost of
computing the joint distribution.

G SUBJECT REDUCTION

We strengthen Subject Reduction statement, in order to have the properties we need to prove also
the strong normalization of typable terms, the invariance of the factor-based semantics, and the
acyclicity of the flow graph of a ground derivation. In the present section and in the following one
we use the symbolm to refer to a (possibly empty) multiset without explicitly naming its elements.

Definition G.1. The measure of a derivation, denoted meas(c), is obtained by counting the num-
ber of rules i-let, i-der, i-app, i-letp occurring in c , giving them weight 1, 1, 2, 3 respectively. All
the other rules have 0 weight.

Lemma G.2. If c ⊲ Λ, Γ ⊢ E : ! then Γ is an empty context and meas(c) = 0. Moreover c contains

no probabilistic axioms, and flow(c) is acyclic.

Proof. Since E : !, then either E = G or E = 〈E1, E2〉. We reason by induction on c .
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• Case E = G . Then c ⊲ Λ ⊢ G : ! where Λ = Λ
′, G : !, and the result immediately follows.

• Case E = 〈E1, E2〉. By inductive hypothesis the property holds both for c1 ⊲ Λ ⊢ E1 : !1 and
c2 ⊲ Λ ⊢ E2 : !2; then it immediately follows that c ⊲ Λ ⊢ E : !1 ⊗ !2 satisfies the property, as
the flow goes towards the axioms in Λ, and towards the conclusion in !1 ⊗ !2.

�

Lemma G.3 (split). Let c ⊲Λ, Γ ⊢ E : m1 ⊎ · · · ⊎m=. Then there exist c8 ⊲Λ, Γ8 ⊢ E : m8 (1 ≤ 8 ≤ =)
such that Γ =

⊎=
8=1 Γ8 and meas(c) =

∑=
8=1 meas(c8 ). Moreover, if c ⊲ Λ, Γ ⊢ E : [], then Γ is empty,

meas(c) = 0 and flow(c) is acyclic.

Proof. By observing that the subject can be assigned a multiset type either by a rule i-var or by
a rule i-bang; in both cases we can choose a suitable partition of the multiset. Note that E = !D : []
can only be obtained by rule i-bang with = = 0 premises, hence Γ is empty and flow(c) is trivially
acyclic. �

Lemma G.4 (substitution lemma). Let c E ⊲ Λ, Γ ⊢ E : % and c ⊲ Λ,Δ, G : % ⊢ C : �. Then there

exists c ′ ⊲ Λ, Γ ⊎ Δ ⊢ C{G ← E} : � such that meas(c ′) = meas(c E) + meas(c). Moreover, consider

the rewriting:

c E ⊲ Λ, Γ ⊢ E : % c ⊲ Λ,Δ, G : % ⊢ C : �

clet ⊲ Λ, Γ ⊎ Δ ⊢ C [G ← E] : �
i-let

 c ′ ⊲ Λ, Γ ⊎ Δ ⊢ C{G ← E} : �

The following properties hold:

1. clet and c ′ contain the same probabilistic axioms, modulo renaming of free variables;

2. if flow(clet) contains a directed cycle, then flow(c ′) contains a directed cycle;

3. if there is a directed path between two positions 8 and 9 in the conclusion of clet, then there is a

path between 8 and 9 in the conclusion of c ′ .

Proof. By induction on the derivation c , considering its last rule.
• Case i-var. Two subcases:

1. If C = G , then � = % , that is c ⊲ Λ, G : % ⊢ G : % . Observe that Δ is empty. We have:

c E ⊲ Λ, Γ ⊢ E : % c ⊲ Λ, G : % ⊢ G : %
i-var

clet ⊲ Λ, Γ ⊢ G [G ← E] : %
i-let

 c ′ := c E ⊲ Λ, Γ ⊢ E : %

Clearly meas(c ′) = meas(c E) = meas(c E) + meas(c) and the probabilistic axioms con-
tained in clet and c ′ are the same. Lastly, even if we delete c , the flow remains essentially
unaltered, as c contains no cyclic path.

2. If C = ~ ≠ G then c ⊲ Λ
′, G : %,~ : � ⊢ ~ : �, and Λ = Λ

′, ~ : � if � is ground, Λ = Λ
′ other-

wise. It is immediate to check that meas(c E) = 0, Γ is empty, c E contains no probabilistic
axioms and flow(c E) is acyclic: indeed, either % = ! is ground, and we use Lemma G.2, or
% = [], and we resort to Lemma G.3. Therefore we have:

c E ⊲ Λ ⊢ E : % c ⊲ Λ
′, G : %,~ : � ⊢ ~ : �

i-var

clet ⊲ Λ′,~ : � ⊢ ~ [G ← E] : �
i-let

 c ′ ⊲ Λ′,~ : � ⊢ ~ : �
i-var

Clearly meas(c ′) = 0 = meas(c E) + meas(c). Observe that erasing c E has no effect on the
flow, because c E does not contain cyclic paths; similarly, there are no probabilistic axioms
in clet nor in c ′ , as c E contains no probabilistic axioms.

• Case i-sample is similar to the second subcase of i-var.
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• Case i-cond. Let � = X; the only interesting subcase that differs from the second subcase of
i-var is:

c E ⊲ Λ′,~ : Y ⊢ ~ : Y
i-var

c ⊲ Λ
′, ~ : Y, G : Y ⊢ c〈...,G,...〉 : X

i-cond

clet ⊲ Λ′,~ : Y ⊢ c〈...,G,...〉 [G ← ~] : X
i-let

 

c ′ ⊲ Λ′,~ : Y ⊢ c〈...,~,...〉 : X
i-cond

Note that both Γ and Δ are empty contexts, and that the free variable G has been renamed.
Again we have meas(c ′) = 0 = meas(c E) + meas(c); moreover the requirements on cyclic
paths and probabilistic axioms are trivially satisfied, as c E contains neither of them.
• Case i-obs. Similarly to what happens with case i-var, we distinguish two subcases. The first
one is c ⊲Λ, G : Xb ⊢ obs(G = b) : Xb, that is � = % = Xb; observe that necessarily c E ⊲Λ ⊢ ~ : Xb,
so that c ′ ⊲ Λ,~ : Xb ⊢ obs(~ = b) : Xb is immediately otained by variable renaming. The other
subcase is c ⊲ Λ

′, G : %,~ : Xb ⊢ obs(~ = b) : Xb, that is Λ = Λ
′, ~ : Xb; the proof proceeds as

in the second subcase of i-var, yielding c ′ ⊲ Λ′,~ : Xb ⊢ obs(~ = b) : Xb. Clearly in both cases
one has meas(c ′) = 0 = meas(c) + meas(c E), no probabilistic axiom is involved, and the flow,
after rewriting clet into c ′, is essentially unchanged because c E contains no cyclic paths.
• Case i-pair. Posing � = !1 ⊗ !2, we have:

c E ⊲ Λ ⊢ E : %

c1 ⊲ Λ, G : % ⊢ F1 : !1 c2 ⊲ Λ, G : % ⊢ F2 : !2

c ⊲ Λ, G : % ⊢ 〈F1,F2〉 : !1 ⊗ !2
i-pair

clet ⊲ Λ ⊢ 〈F1,F2〉[G ← E] : !1 ⊗ !2
i-let

 

c E ⊲ Λ ⊢ E : % Λ, G : % ⊢ F1 : !1

clet1 ⊲ Λ ⊢ F1 [G ← E] : !1
i-let

c E ⊲ Λ ⊢ E : % Λ, G : % ⊢ F2 : !2

clet2 ⊲ Λ ⊢ F2 [G ← E] : !2
i-let

 

c ′1 ⊲ Λ ⊢ F1{G ← E} : !1
8 .ℎ.

c ′2 ⊲ Λ ⊢ F2{G ← E} : !2
8 .ℎ.

c ′ ⊲ Λ ⊢ 〈F1,F2〉{G ← E} : !1 ⊗ !2
i-pair

By Lemma G.2, % is either ground or the empty multiset []; we also deduce that meas(c E) =
meas(c) = meas(c ′) = 0, that both Γ and Δ are empty, and that clet contains no probabilistic
axiom. Since all the types involved are ground (with the possible exception of % = []), both
flow(clet) and flow(c ′) are clearly acyclic, and paths between positions in the conclusion are
trivially preserved.
• Case i-abs. By letting � = �1 ⊸ �2, we have:

c E ⊲ Λ, Γ ⊢ E : %

c1 ⊲ Λ,Δ, G : %,~ : �1 ⊢ D : �2

c ⊲ Λ,Δ, G : % ⊢ _~.D : �1 ⊸ �2
i-abs

clet ⊲ Λ, Γ ⊎ Δ ⊢ _~.D [G ← E] : �1 ⊸ �2
i-let

 

Λ, Γ ⊢ E : % Λ,Δ, G : %,~ : �1 ⊢ D : �2

clet1 ⊲ Λ, Γ ⊎ Δ,~ : �1 ⊢ D [G ← E] : �2
i-let

 

c ′1 ⊲ Λ, Γ ⊎ Δ,~ : �1 ⊢ D{G ← E} : �2
i.h.

c ′ ⊲ Λ, Γ ⊎ Δ ⊢ _~.D{G ← E} : �1 ⊸ �2
i-abs
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Alpha conversion ensures ~ ∉ dom(Γ), and the i.h. guarantees there exists c ′1 ⊲ Λ, Γ ⊎ Δ,~ :
�1 ⊢ D{G ← E} : �2 containing the same probabilistic axioms as clet1 and such that meas(c ′1) =
meas(c E) + meas(c1); observe that meas(c1) = meas(c) and meas(c ′1) = meas(c ′). The i.h.

also ensures that cycles and paths between positions of the conclusion are preserved when
one rewrites clet1 into c ′1.
• Case i-app. We have:

cE ⊲ Λ, Γ ⊢ E : %

c1 ⊲ Λ,Δ1, G : %1 ⊢ D1 : & ⊸ � c2 ⊲ Λ,Δ2, G : %2 ⊢ D2 : &

c ⊲ Λ, Δ, G : % ⊢ D1D2 : �
i-app

clet ⊲ Λ, Γ ⊎ Δ ⊢ D1D2 [G ← E] : �
i-let

 

cE1 ⊲ Λ, Γ1 ⊢ E : %1 Λ,Δ1, G : %1 ⊢ D1 : & ⊸ �

clet1 ⊲ Λ, Γ1 ⊎ Δ1 ⊢ D1 [G ← E] : & ⊸ �
i-let

cE2 ⊲ Λ, Γ2 ⊢ E : %2 Λ,Δ2, G : %2 ⊢ D2 : &

clet2 ⊲ Λ, Γ2 ⊎ Δ2 ⊢ D2 [G ← E] : &
i-let

 

c ′1 ⊲ Λ, Γ1 ⊎ Δ1 ⊢ D1{G ← E} : & ⊸ �
i.h.

c ′2 ⊲ Λ, Γ2 ⊎ Δ2 ⊢ D2{G ← E} : &
i.h.

c ′ ⊲ Λ, Γ ⊎ Δ ⊢ D1D2{G ← E} : �
i-app

We distinguish to subcases:
• case % = %1 = %2 is ground, i.e. c E = c E1 = c E2 . The result follows by Lemma G.2, which
guarantees meas(c E) = 0 and Γ empty, and by i.h., ensuring there exist c ′1 ⊲Λ,Δ1 ⊢ D1{G ←

E} : & ⊸ � and c ′2 ⊲ Λ,Δ2 ⊢ D2{G ← E} : & such that meas(c ′8 ) = meas(c E) + meas(c8 ) =

meas(c8 ), for 8 ∈ {1, 2}. Indeed, meas(c ′) = meas(c ′1) +meas(c
′
2) + 2 = meas(c E) +meas(c).

• case %1 = m1, %2 = m1 and % = m1 ⊎ m2. By Lemma G.3, there exist c E8 ⊲ Λ, Γ8 ⊢ E : m8

(8 ∈ {1, 2}) such that Γ = Γ1 ⊎ Γ2 and meas(c E) = meas(c E1 ) + meas(c
E
2 ). Moreover, by i.h.

there are c ′1 ⊲ Λ, Γ1 ⊎ Δ1 ⊢ D1{G ← E} : & ⊸ � and c ′2 ⊲ Λ, Γ2 ⊎ Δ2 ⊢ D2{G ← E} : &
such that meas(c ′8 ) = meas(c E8 ) + meas(c8 ) for 8 ∈ {1, 2}. Therefore meas(c

′) = meas(c ′1) +

meas(c ′2) + 2 = meas(c E1 ) + meas(c
E
2 ) + meas(c1) + meas(c2) + 2 = meas(c E) + meas(c).

In both cases, the i.h. ensures that clet8 and c ′8 (8 ∈ {1, 2}) contain the same probabilistic axioms.
Lastly we examine the flow. Observe that:
• any path or cycle in c E appears in c E1 or in c E2 .
• any (possibly cyclic) path in clet and be partitioned into paths in c E , paths in c1, paths in
c2, the edges between c1 and c2 via & , the paths between c E and c8 via %8 (8 ∈ {1, 2}), plus
the trivial paths between the border of clet and the borders of c E , c1 and c2.

Consider a (possibly cyclic) path W in clet:
• If W does not use & , then necessarily it is composed of subpaths {W 9 } 9∈�1 in c

E
1 and c1, pos-

sibly via %1, or paths {W 9 } 9∈�2 in c E2 and c2, possibly via %2. In the first case, for each W 9
( 9 ∈ �1), a path with the same behaviour appears in clet1 and, by i.h., in c ′1: consequently
it appears also in c ′ . Similarly for the second case.
• If W does use & , we consider the subpaths using c E1 and c1, possibly via %1, and those using
c E2 and c2, possibly via %2. By i.h., we find all of them in clet1 and clet1 , and therefore in c ′1
and c ′2. Hence in c

′ , using the edges via & , we find again a cycle if W was a cycle, or a path
between the positions 8 and 9 in the conclusion of c ′, if W was a path between the positions
8 and 9 in the conclusion of clet .

• Case i-let. We have:

cE ⊲ Λ, Γ ⊢ E : %

c1 ⊲ Λ, Δ1, G : %1 ⊢ B : & c2 ⊲ Λ,Δ2, G : %2, ~ : & ⊢ D : �

c ⊲ Λ, Δ, G : % ⊢ D [~← B] : �
i-let

clet ⊲ Λ, Γ ⊎ Δ ⊢ D [~ ← B] [G ← E] : �
i-let
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cE1 ⊲ Λ, Γ1 ⊢ E : %1 Λ, Δ1, G : %1 ⊢ B : &

clet1 ⊲ Λ, Γ1 ⊎ Δ1 ⊢ B [G ← E] : &
i-let

cE2 ⊲ Λ, Γ2 ⊢ E : %2 Λ,Δ2, G : %2, ~ : & ⊢ D : �

clet2 ⊲ Λ, Γ2 ⊎ Δ2, ~ : & ⊢ D [G ← E] : �
i-let

 

c ′1 ⊲ Λ, Γ1 ⊎ Δ1 ⊢ B{G ← E} : &
8.ℎ.

c ′2 ⊲ Λ, Γ2 ⊎ Δ2, ~ : & ⊢ D{G ← E} : �
8.ℎ.

c ′ ⊲ Λ, Γ ⊎ Δ ⊢ D [~ ← B]{G ← E} : �
i-let

The reasoning is similar to case i-app, with two subcases:
• case % = %1 = %2 is ground. Again Lemma G.2 assures meas(c E) = 0 and Γ empty. By i.h.

there exist c ′1 ⊲ Λ,Δ1 ⊢ B{G ← E} : & and c ′2 ⊲ Λ,Δ2,~ : & ⊢ D{G ← E} : � such that
meas(c ′8 ) = meas(c E) + meas(c8 ) = meas(c8 ), for 8 ∈ {1, 2}; the result follows observing
that meas(c ′) = meas(c ′1) + meas(c

′
2) + 1 = meas(c E) + meas(c).

• case %1 = m1, %2 = m1 and % = m1 ⊎m2. We use Lemma G.3 and the inductive hypothesis
to obtain c ′1 ⊲ Λ, Γ1 ⊎ Δ1 ⊢ B{G ← E} : & and c ′2 ⊲ Λ, Γ2 ⊎ Δ2,~ : & ⊢ D{G ← E} : � such that
meas(c ′8 ) = meas(c E8 )+meas(c8 ) for 8 ∈ {1, 2}. Therefore meas(c

′) = meas(c ′1)+meas(c
′
2)+

1 = meas(c E1 ) + meas(c
E
2 ) + meas(c1) + meas(c2) + 1 = meas(c E) + meas(c).

As in case i-app, the i.h. ensures that clet8 and c ′8 (8 ∈ {1, 2}) contain the same probabilistic
axioms; the analysis of the flow is also analogous to the aforementioned case.
• Case i-letp.

cE ⊲ Λ, Γ ⊢ E : %

c1 ⊲ Λ, G : %1 ⊢ F :  1 ⊗  2 c2 ⊲ Λ, Δ, G : %2, ~2 :  2, ~1 :  1, ⊢ D : �

c ⊲ Λ,Δ, G : % ⊢ D [〈~1, ~2〉 ← F] : �
i-letp

clet ⊲ Λ, Γ ⊎ Δ ⊢ D [〈~1, ~2〉 ← F] : �
i-let

 

cE1 ⊲ Λ ⊢ E : %1 Λ, G : %1 ⊢ F :  1 ⊗  2

clet1 ⊲ Λ ⊢ F [G ← E] :  1 ⊗  2
i-let

cE2 ⊲ Λ, Γ ⊢ E : %2 Λ,Δ, G : %2, ~1 :  1, ~2 :  2 ⊢ D : �

clet2 ⊲ Λ, Γ ⊎ Δ,~ :  1 ⊗  2 ⊢ D [G ← E] : �
i-let

 

c ′1 ⊲ Λ ⊢ F{G ← E} :  1 ⊗  2
8 .ℎ.

c ′2 ⊲ Λ, Γ ⊎ Δ,~2 :  2, ~1 :  1 ⊢ D{G ← E} : �
8.ℎ.

c ′ ⊲ Λ, Γ ⊎ Δ ⊢ D [〈~1, ~2〉 ← F]{G ← E} : �
i-letp

There are two subcases:
• case %1 = %2 = % is ground. Lemma G.2 assures meas(c E) = 0 and Γ empty. By i.h. there
are c ′1 ⊲ Λ ⊢ F{G ← E} :  1 ⊗  2 and c ′2 ⊲ Λ,Δ,~1 :  1, ~2 :  2 ⊢ D{G ← E} : � such
that meas(c ′8 ) = meas(c E) + meas(c8 ) = meas(c8 ), for 8 ∈ {1, 2}; observe that meas(c1) =
meas(c ′1) = 0, therefore meas(c ′) = meas(c ′2) + 3 = meas(c E) + meas(c).
• case %1 = [] and %2 = % . By Lemma G.3 and the i.h. we obtain c ′1 ⊲Λ ⊢ F{G ← E} :  1 ⊗  2

and c ′2 ⊲Λ, Γ ⊎Δ,~1 :  1,~2 :  2 ⊢ D{G ← E} : � such that meas(c ′8 ) = meas(c E8 ) + meas(c8 )

for 8 ∈ {1, 2}. Remark that meas(c1) = meas(c ′1) = meas(c E1 ) = 0, hence meas(c ′) =

meas(c ′2) + 3 = meas(c E2 ) + meas(c2) + 3 = meas(c E) + meas(c).
The analysis of both the probabilistic axioms and of the flow proceeds as usual.
• Case i-bang. Let � = [�1, . . . , �=]; then we have:

c E ⊲ Λ, Γ ⊢ E : %

(
c8 ⊲ Λ,Δ8, G : %8 ⊢ D : �8

)=
8=1

c ⊲ Λ,Δ, G : % ⊢ !D : [�1, . . . , �=]
i-bang

clet ⊲ Λ, Γ ⊎ Δ ⊢ !D [G ← E] : [�1, . . . , �=]
i-let
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( c E8 ⊲ Λ, Γ8 ⊢ E : %8 Λ,Δ8, G : %8 ⊢ D : �8

clet8 ⊲ Λ, Γ8 ⊎ Δ8 ⊢ D [G ← E] : �8
i-let

)=
8=1

 (
c ′8 ⊲ Λ, Γ8 ⊎ Δ8 ⊢ D{G ← E} : �8

)=
8=1

i.h.

c ′ ⊲ Λ, Γ ⊎ Δ ⊢ !D{G ← E} : [�1, . . . , �=]
i-bang

As always, consider the two subcases:
• case % = %8 is ground, i.e. c E = c E8 for all 8 . By Lemma G.2 we know that meas(c E) = 0 and

Γ is an empty context. Moreover, by i.h. there exist c ′8 ⊲ Λ,Δ8 ⊢ D{G ← E} : �8 such that
meas(c ′8 ) = meas(c E) + meas(c8 ) = meas(c8 ) (1 ≤ 8 ≤ =).
• case %8 = m8 and % =

⊎=
8=1m8 . Then by Lemma G.3 there exist Λ, Γ8 ⊢ E : m8 (1 ≤ 8 ≤ =)

such that
⊎=
8=1 Γ8 = Γ and meas(c) =

∑=
8=1 meas(c8 ). By i.h. there are c

′
8 ⊲Λ, Γ8 ⊎Δ8 ⊢ D{G ←

E} : �8 such that meas(c ′8 ) = meas(c E8 ) + meas(c8 ) (1 ≤ 8 ≤ =).
In both cases, i.h. guarantees that clet8 and c ′8 (1 ≤ 8 ≤ =) contain the same probabilistic axioms.
The analysis of the flow is straightforward, as every path between the positions of % in clet

can be recovered via the paths between the positions of %8 in clet8 .
• Case i-der.

c E ⊲ Λ, Γ ⊢ E : %

c1 ⊲ Λ,Δ, G : % ⊢ D : [�]

c ⊲ Λ,Δ, G : % ⊢ derD : �
i-der

clet ⊲ Λ, Γ ⊎ Δ ⊢ derD [G ← E] : [�]
i-let

 

Λ, Γ ⊢ E : % Λ,Δ, G : % ⊢ D : [�]

c ′1 ⊲ Λ, Γ ⊎ Δ ⊢ D [G ← E] : [�]
i-let

 

c ′1 ⊲ Λ, Γ ⊎ Δ ⊢ D{G ← E} : [�]
i.h.

c ′ ⊲ Λ, Γ ⊎ Δ ⊢ derD{G ← E} : �
i-der

By i.h. there exists c ′1 ⊲ Λ, Γ ⊎ Δ ⊢ D{G ← E} : [�] such that meas(c ′1) = meas(c E) + meas(c1);
note that meas(c1) = meas(c) and meas(c ′1) = meas(c ′). Moreover, i.h. guarantees that the
probabilistic axioms contained in clet1 and c ′1 are the same, and that both cycles and path be-
tween positions of the conclusion are preserved when transforming the former derivation into
the latter.

�

Lemma G.5 (Subject reduction). If c ⊲ Λ, Γ ⊢ C : � and C ↦→ C ′ , then c ′ ⊲ Λ, Γ ⊢ C ′ : � .

Moreover:

1. meas(c) > meas(c ′);

2. c and c ′ contain the same probabilistic axioms, modulo renaming of free variables;

3. if flow(c) contains a directed cycle, then flow(c ′) contains a directed cycle;

4. if there is a directed path between two positions 8 and 9 in the conclusion of c , then there is a path

between 8 and 9 in the conclusion of c ′.

Proof. The proof is by induction on the reduction context � in which the reduction takes place.
For the sake of space we focus on the base case � = 〈〈·〉〉, the inductive cases being easy to check
using the i.h.. There is one case per rewriting rule.
• Rule db. In this casewe have C = (_G.B)SD and C ′ = 〈〈B [G ← D]〉〉S. Thuswe proceed by induction
on S.
• Case S = 〈〈·〉〉. The derivation c has shape:
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Λ, Γ1, G : % ⊢ B : �
i-abs

Λ, Γ1 ⊢ _G.B : % ⊸ � Λ, Γ2 ⊢ D : %
i-app

c ⊲ Λ, Γ ⊢ (_G.B)D : �

We conclude with
Λ, Γ2 ⊢ D : % Λ, Γ1, G : % ⊢ B : �

i-let
c ′ ⊲ Λ, Γ ⊢ B [G ← D] : �

Observe that meas(c) = meas(c ′) + 1. Clearly the rewriting rule does not affect proba-
bilistic axioms nor the paths between positions in the conclusion; cyclic paths are trivially
preserved too.
• Case S = S′ [~ ← A ]. The derivation c is:

c1 ⊲ Λ, Γ1 ⊢ A : % c2 ⊲ Λ, Γ2, ~ : % ⊢ 〈〈_G.B〉〉S′ : & ⊸ �
i-let

Λ, Γ1 ⊎ Γ2 ⊢ 〈〈_G.B〉〉S : & ⊸ � c3 ⊲ Λ, Γ3 ⊢ D : &
i-app

c ⊲ Λ, Γ ⊢ 〈〈_G.B〉〉SD : �

Looking at c , we can safely assume that ~ ∉ dom(Γ3); then one can build

c2 ⊲ Λ, Γ2,~ : % ⊢ 〈〈_G.B〉〉S′ : & ⊸ � c3 ⊲ Λ, Γ3 ⊢ D : &
i-app

d ⊲ Λ, Γ2 ⊎ Γ3, ~ : % ⊢ 〈〈_G.B〉〉S′D : �

By i.h. there exists d ′ ⊲ Λ, Γ2 ⊎ Γ3, ~ : % ⊢ 〈〈B [G ← D]〉〉S′ : � preserving probabilistic axioms
and such that meas(d) > meas(d ′); hence one can build

c1 ⊲ Λ, Γ1 ⊢ A : % d ′ ⊲ Λ, Γ2 ⊎ Γ3,~ : % ⊢ 〈〈B [G ← D]〉〉S′ : �
i-let

c ′ ⊲ Λ, Γ ⊢ 〈〈B [G ← D]〉〉S : �

Note that meas(c) = meas(d)+meas(c1)+1 > meas(d ′)+meas(c1)+1 = meas(c ′). We now
examine the flow in detail. Any (possibly cyclic) path W in c can be partitoned into paths
inside c1, c2, c3, those connecting c2 and c3 via & , the edges connecting c1 and c2 via % ,
and the trivial edges between the border of c and the borders of the three subderivations.
Any path in c which does not use % nor Γ1 appears in d and consequently, by i.h., in d ′.
Therefore if c has a a cycle or a path between two positions 8 and 9 in its conclusion, we
are able to recover a cycle or a path between positions 8 and 9 also in c ′, possibly by using
the edges between % in c ′ .

• Rule dsub. Then C = B [G ← 〈〈E〉〉S] and C ′ = 〈〈B{G ← E}〉〉S. Again, we proceed by induction on
S.
• S = 〈〈·〉〉. Then c is:

c1 ⊲ Λ, Γ1 ⊢ E : & c2 ⊲ Λ, Γ2, G : & ⊢ B : �
i-let

c ⊲ Λ, Γ ⊢ B [G ← E] : �

and we conclude by Lemma G.4, assuring there exists c ′ ⊲ Λ, Γ ⊢ B{G ← E} : � such that
meas(c ′) = meas(c1) + meas(c2). The same Lemma guarantees that probabilistic axioms,
paths between positions in the conclusion and cycles are preserved.
• S = S′ [~ ← A ]. The derivation c ha shape:

c1 ⊲ Λ, Γ1 ⊢ A : % c2 ⊲ Λ, Γ2,~ : % ⊢ 〈〈E〉〉S′ : &
i-let

Λ, Γ1 ⊎ Γ2 ⊢ 〈〈E〉〉S : & c3 ⊲ Λ, Γ3, G : & ⊢ B : �
i-let

c ⊲ Γ ⊢ B [G ← 〈〈E〉〉S] : �

We start by building
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c2 ⊲ Λ, Γ2,~ : % ⊢ 〈〈E〉〉S′ : & c3 ⊲ Λ, Γ3, G : & ⊢ B : �
i-let

d ⊲ Λ, Γ2 ⊎ Γ3,~ : % ⊢ B [G ← 〈〈E〉〉S′] : �

By i.h. there exists d ′ ⊲ Λ, Γ2 ⊎ Γ3,~ : % ⊢ 〈〈B{G ← E}〉〉S′ : � preserving probabilistic axioms
and such that meas(d) > meas(d ′). Therefore we can conclude with

c1 ⊲ Λ, Γ1 ⊢ A : % d ′ ⊲ Λ, Γ2 ⊎ Γ3, ~ : % ⊢ 〈〈B{G ← E}〉〉S′ : �
i-let

c ′ ⊲ Λ, Γ ⊢ 〈〈B{G ← E}〉〉S : �

It is easy to check that meas(c) = meas(d) + meas(c1) + 1 > meas(d ′) + meas(c1) + 1 =

meas(c ′). The reasoning on the flow is similar to case db.
• Rule der!. In this case C = der !B and C ′ = B . We simply have:

c ′ ⊲ Γ ⊢ B : �
i-bang

Γ ⊢ !B : [�]
i-der

c ⊲ Γ ⊢ der (!B) : �

Clearly meas(c) = meas(c ′) + 1, and the probabilistic axioms contained in c and c ′ are the
same. Moreover, since cyclic paths can only be in c ′ , they are trivially preserved; a similar
argument applies to the paths between positions in the conclusion.
• Rule pm. In this case C is letp 〈G1, G2〉 = 〈E1, E2〉 in B and C ′ is B [G1 ← E1] [G2 ← E2]. The
derivation c is

Λ ⊢ E1 : !1 Λ ⊢ E2 : !2
i-pair

Λ ⊢ 〈E1, E2〉 : !1 ⊗ !2 Λ, Γ, G1 : !1, G2 : !2 ⊢ B : �
i-letp

c ⊲ Λ, Γ ⊢ letp 〈G1, G2〉 = 〈E1, E2〉 in B : �
and it is easy to build

Λ ⊢ E2 : !2

Λ ⊢ E1 : !1 Λ, Γ, G1 : !1, G2 : !2 ⊢ B : �
i-let

Λ, Γ, G2 : !2 ⊢ B [G1 ← E1] : �
i-let

c ′ ⊲ Λ, Γ ⊢ B [G1 ← E1] [G2 ← E2] : �

Observe that meas(c) = meas(c ′) + 1. Since we only need to rearrange the subderivations, it
is easy to verify that probabilistic axioms, the paths between positions in the conclusion, and
cyclic paths, are indeed preserved.

�

H SUBJECT EXPANSION

We strengthen the statement of Subject Expansion, in order to have the elements we need to prove
also Prop. 4.7.

Lemma H.1 (Anti-split). Let c8 ⊲ Λ, Γ8 ⊢ E : m8 (1 ≤ 8 ≤ =). Then there exists c ⊲ Λ, Γ ⊢ E : m
such that Γ =

⊎=
8=1 Γ8 and m =

⊎=
8=1m8 . Moreover, if all c8 (1 ≤ 8 ≤ =) are unique, then c is unique.

Proof. We distinguish two cases:
• E = G . Then c8 ⊲ Λ, G : m8 ⊢ G : m8 , and there is only one way to build c ⊲ Λ, G : m ⊢ G : m, by
using rule var. Observe that Γ is empty.
• E = !C . Letm8 = [�81, . . . , �8:8 ]; then c8 is obtained from :8 subderivations of shape c8 9 ⊲Λ, Γ8 9 ⊢
C : �8 9 (1 ≤ 9 ≤ :8 ), and it is possible to build c by combining all of the c8 9 via rule i-bang.
Therefore the uniqueness of all c8 implies the uniqueness of c .

�

Lemma H.2 (Anti-substitution). If c ⊲ Λ, Γ ⊎ Δ ⊢ C{G ← E} : �, then there exist cC ⊲ Λ, Γ, G :
% ⊢ C : � and c E ⊲ Λ,Δ ⊢ E : % . Moreover, if c is unique, both cC and c E are unique.

Proof. By induction on C .
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1. Case C = G . Then % = �, the derivation cC is necessarily cC ⊲ Λ, G : � ⊢ G : � (observe that Γ is
empty), and c E = c .

2. Case C = ~ ≠ G . Then cC is necessarily cC ⊲ Λ′,~ : � ⊢ ~ : � where Λ = Λ
′, ~ : � if � is ground,

Λ = Λ
′ otherwise. We distinguish two subcases:

• Λ
′
= Λ

′′, G : % , i.e. % is ground. Then by Lemma G.2 Δ is empty; observe that there is a
unique way of constructing c E ⊲ Λ ⊢ E : % , using rules i-var and i-pair only.
• otherwise % = [], therefore E = !D and c E ⊲ Λ ⊢ E : % can only be obtained by rule i-bang
posing = = 0.

3. Case C = sample3 . Similar to case (2).
4. Case C = c〈~1,...,~= 〉 where G = ~8 (1 ≤ 8 ≤ =). This scenario is similar to case (1), with
cC ⊲ Λ, G : Y8 ⊢ c〈~1,...,~= 〉 : X and c E ⊲ Λ ⊢ E : Y8 , where E = I is a variable.

5. Case C = c〈~1,...,~= 〉 where G ≠ ~8 (1 ≤ 8 ≤ =). Similar to to case (2).
6. Case C = obs(G = b). Similar to case (1): necessarily cC ⊲ Λ, G : Xb ⊢ obs(G = b) : Xb and
c E ⊲ Λ ⊢ E : Xb, where E = I is a variable.

7. Case C = obs(~ = b) where ~ ≠ G . Necessarily cC ⊲ Λ, G : % ⊢ obs(~ = b) : Xb, and for
c E ⊲ Λ ⊢ E : % we distinguish the subcases % ground or % = [], as in case (2).

8. Case C = 〈F1,F2〉. Then c has shape:

Λ ⊢ F1{G ← E} : !1 Λ ⊢ F2{G ← E} : !2
c ⊲ Λ ⊢ 〈F1,F2〉{G ← E} : �

i-pair

Observe that since � = !1 ⊗ !2, all exponential contexts are empty (by Lemma G.2). By i.h.

there are cF1 ⊲ Λ, G : % ⊢ F1 : !1 and c E1 ⊲ Λ ⊢ E : % , together with c
F2 ⊲ Λ, G : % ⊢ F2 : !2 and

c E2 ⊲ Λ ⊢ E : % ; remark that % is ground (again, by Lemma G.2). Since all the aforementioned
derivations are built from rules i-var and i-pair only, they are necessarily unique. Clearly cC

is obtained from cF1 and cF2 by rule i-pair, and c E = c E1 = c E2 .
9. Case C = _~.D. The derivation c has shape:

Λ, Γ ⊎ Δ,~ : & ⊢ D{G ← E} : �

c ⊲ Λ, Γ ⊎ Δ ⊢ _~.D{G ← E} : �
i-abs

where � = & ⊸ �. Note that, by definition of substitution, ~ cannot occur free in E ; therefore
the i.h. assures there exist cD ⊲ Λ, Γ,~ : &, G : % ⊢ D : � and c E ⊲ Λ,Δ ⊢ E : % . One can easily
construct cC starting from cD , via rule i-abs. Lastly, note that c unique implies its premise is
unique; in turn, by i.h., this implies cD (and consequently cC ) and c E are unique.

10. Case C = BD. Then c is:

Λ, Γ1 ⊎ Δ1 ⊢ B{G ← E} : & ⊸ � Λ, Γ2 ⊎ Δ2 ⊢ D{G ← E} : &

c ⊲ Λ, Γ ⊎ Δ ⊢ BD{G ← E} : �
i-app

By i.h. there are cB ⊲ Λ, Γ1, G : %1 ⊢ B : & ⊸ � and c E1 ⊲ Λ,Δ1 ⊢ E : %1, together with
cD ⊲ Λ, Γ2, G : %2 ⊢ D : & and c E2 ⊲ Λ,Δ2 ⊢ E : %2. Clearly we can build the cC from cB and
cD via rule i-app; for c E we distinguish two cases:
• If % = %1 = %2 is ground, then Δ is empty; consequently c E = c E1 = c E2 .
• Otherwise % = %1 ⊎ %2 is a multiset; then by Lemma H.1 we can build c E ⊲ Λ,Δ ⊢ E : % ,
where Δ = Δ1 ⊎ Δ2, starting from c E1 and c E2 .

Remark that c unique means that both its premises are unique; in turn, by i.h., this implies cB ,
cD (and consequently cC ), c E1 , c

E
2 (and consequently c E ) are unique.

11. Case C = let ~ = D in B . The derivation c has shape:

Λ, Γ1 ⊎ Δ1 ⊢ D{G ← E} : & Λ, Γ2 ⊎ Δ2,~ : & ⊢ B{G ← E} : �

c ⊲ Λ, Γ ⊎ Δ ⊢ (let ~ = D in B){G ← E} : �
i-let
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Observe that ~ cannot occur free in E , by definition of substitution. Then by i.h. there are
cD ⊲ Λ, Γ1, G : %1 ⊢ D : & and c E1 ⊲ Λ,Δ1 ⊢ E : %1, together with cB ⊲ Λ, Γ2,~ : &, G : %2 ⊢ B : � and
c E2 ⊲ Λ,Δ2 ⊢ E : %2. Again, cC is obtained from cD and cB via rule i-let; for what concerns c E

and the claims about uniqueness, the same considerations we made in case (10) apply.
12. Case C = letp 〈~1, ~2〉 = F in B . The derivation c is:

Λ ⊢ F{G ← E} : !1 ⊗ !2 Λ, Γ ⊎ Δ,~1 : !1, ~2 : !2 ⊢ B{G ← E} : �

c ⊲ Λ, Γ ⊎ Δ ⊢ (letp 〈~1,~2〉 = F in B){G ← E} : �
i-letp

By definition of substitution, ~1 and ~2 cannot occur free in E . Then by i.h. there are cF ⊲Λ, G :
%1 ⊢ F : !1 ⊗ !2 and c E1 ⊲ Λ ⊢ E : %1, together with cB ⊲ Λ, Γ,~1 : !1,~2 : !2, G : %2 ⊢ B : �
and c E2 ⊲ Λ,Δ ⊢ E : %2. Clearly c

C is obtained from cF and cB via rule i-letp. Regarding c E and
uniqueness, the reasoning is again similar to case (10), the only relevant difference being that
either % = %1 = %2 is ground or %1 = [] and % = %2.

13. Case C = !D. The derivation c is:(
Λ, Γ8 ⊎ Δ8 ⊢ D{G ← E} : �8

)=
8=1

c ⊲ Λ, Γ ⊎ Δ ⊢ (!D){G ← E} : �
i-bang

where Γ ⊎ Δ =
⊎=
8=1(Γ8 ⊎ Δ8) and � = [�1, . . . , �=]. By i.h. we have cD8 ⊲ Λ, Γ8, G : %8 ⊢ D : �8

and c E8 ⊲ Λ,Δ8 ⊢ E : %8 for 1 ≤ 8 ≤ =. Clearly c
C can be obtained from all cD8 (1 ≤ 8 ≤ =) by rule

i-bang, while for c E we follow the same reasoning of case (10):
• If % = %8 , i.e. % is ground, then Δ is empty; consequently c E = c E8 for all 8 .
• Otherwise % =

⊎=
8=1 %8 is a multiset; then by Lemma H.1 we can build c E ⊲ Λ,Δ ⊢ E : % ,

where Δ =
⊎=
8=1 Δ8 , starting from all c E8 (1 ≤ 8 ≤ =).

The result on uniqueness follows by generalizing the argument presented in case (10) to =
premises. In the special case = = 0, the derivation cC ⊲ Λ, G : % ⊢ !D : [] must be obtained by
using no premises; therefore both cC and c E ⊲ Λ ⊢ E : % (observe that % is necessarily ground)
are uniquely determined.

14. Case C = derD. Then c has shape:

Λ, Γ ⊎ Δ ⊢ D{G ← E} : [�]

c ⊲ Λ, Γ ⊎ Δ ⊢ (derD){G ← E} : �
i-der

The result immediately follows by i.h.: indeed, there exist cD ⊲Λ, Γ, G : % ⊢ D : �, fromwhich we
obtain cC via rule i-der, and c E ⊲Λ,Δ ⊢ E : % . The considerations on uniqueness are analogous
to case (9).

�

Theorem H.3 (Subject Expansion). If c ′ ⊲ Λ, Γ ⊢ C ′ : � and C ↦→ C ′, then there exists c ⊲ Λ, Γ ⊢

C : �. Moreover, if c ′ is unique, then c is unique.

Proof. The proof is by induction on the reduction context � in which the reduction takes place.
Here we examine the base case, in which the reduction context is empty; the inductive cases follow
by i.h.. There is one subcase per rewriting rule.
• Rule db. We have C = (_G.B)SD and C ′ = 〈〈B [G ← D]〉〉S; we proceed by induction on S.
• Case S = 〈〈·〉〉. The derivation c ′ has shape:

Λ, Γ2 ⊢ D : % Λ, Γ1, G : % ⊢ B : �
i-let

c ′ ⊲ Λ, Γ ⊢ B [G ← D] : �

clearly it is possible to build c as follows:
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Λ, Γ1, G : % ⊢ B : �
i-abs

Λ, Γ1 ⊢ _G.B : % ⊸ � Λ, Γ2 ⊢ D : %
i-app

c ⊲ Λ, Γ ⊢ (_G.B)D : �

Observe that c ′ unique means that the two premises of the i-let rule are unique; from this
we immediately get that c is unique too.
• Case S = S′ [~ ← A ]. The derivation c ′ has shape:

Λ, Γ1 ⊢ A : % d ′ ⊲ Λ, Γ2 ⊎ Γ3, ~ : % ⊢ 〈〈B [G ← D]〉〉S′ : �
i-let

c ′ ⊲ Λ, Γ ⊢ 〈〈B [G ← D]〉〉S : �

By i.h. there exists a derivation d of shape:

Λ, Γ2, ~ : % ⊢ 〈〈_G.B〉〉S′ : & ⊸ � Λ, Γ3 ⊢ D : &
i-app

d ⊲ Λ, Γ2 ⊎ Γ3,~ : % ⊢ 〈〈_G.B〉〉S′D : �

where we can safely assume that ~ ∉ dom(Γ3) by hypothesis of rule db. Therefore one can
construct c as follows:

Λ, Γ1 ⊢ A : % Λ, Γ2, ~ : % ⊢ 〈〈_G.B〉〉S′ : & ⊸ �
i-let

Λ, Γ1 ⊎ Γ2 ⊢ 〈〈_G.B〉〉S : & ⊸ � Λ, Γ3 ⊢ D : &
i-app

c ⊲ Λ, Γ ⊢ 〈〈_G.B〉〉SD : �

Observe that c ′ unique means that its two premises, one of which is d ′, are unique; this by
i.h. implies that d is unique, and the uniqueness of c follows.
• Rule dsub. Then C = B [G ← 〈〈E〉〉S] and C ′ = 〈〈B{G ← E}〉〉S. Again, we proceed by induction
on S.
• S = 〈〈·〉〉. Starting from c ′ ⊲ Λ, Γ ⊢ B{G ← E} : �, Lemma H.2 guarantees there exist c1
and c2 from which we can construct c :

c1 ⊲ Λ, Γ1 ⊢ E : & c2 ⊲ Λ, Γ2, G : & ⊢ B : �
i-let

c ⊲ Λ, Γ ⊢ B [G ← E] : �

The same Lemma provides the result about uniqueness.
• S = S′ [~ ← A ]. Then c ′ is:

Λ, Γ1 ⊢ A : % d ′ ⊲ Λ, Γ2 ⊎ Γ3, ~ : % ⊢ 〈〈B{G ← E}〉〉S′ : �
i-let

c ′ ⊲ Λ, Γ ⊢ 〈〈B{G ← E}〉〉S : �

and by i.h. there exists d :

Λ, Γ2,~ : % ⊢ 〈〈E〉〉S′ : & Λ, Γ3, G : & ⊢ B : �
i-let

d ⊲ Λ, Γ2 ⊎ Γ3, ~ : % ⊢ B [G ← 〈〈E〉〉S′] : �

where ~ ∉ dom(Γ3) by hypothesis of rule dsub. Hence we conclude by building:

Λ, Γ1 ⊢ A : % Λ, Γ2,~ : % ⊢ 〈〈E〉〉S′ : &
i-let

Λ, Γ1 ⊎ Γ2 ⊢ 〈〈E〉〉S : & Λ, Γ3, G : & ⊢ B : �
i-let

c ⊲ Γ ⊢ B [G ← 〈〈E〉〉S] : �

The reasoning about uniqueness is similar to case db.
• Rule der!. In this case C = der !B and C ′ = B . Starting from c ′⊲Λ, Γ ⊢ B : �, we can easily build:

c ′ ⊲ Λ, Γ ⊢ B : �
i-bang

Λ, Γ ⊢ !B : [�]
i-der

c ⊲ Λ, Γ ⊢ der (!B) : �

One immediately sees that c ′ unique implies c unique.
• Rule pm. In this case C is let 〈G1, G2〉 = 〈E1, E2〉 in B and C ′ is B [G1 ← E1] [G2 ← E2]. The
derivation c ′ has shape:
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Λ ⊢ E2 : !2

Λ ⊢ E1 : !1 Λ, Γ, G1 : !1, G2 : !2 ⊢ B : �
i-let

Λ, Γ, G2 : !2 ⊢ B [G1 ← E1] : �
i-let

c ′ ⊲ Λ, Γ ⊢ B [G1 ← E1] [G2 ← E2] : �

By using the very same subderivations, and only changing the rules, it is easy to obtain c :

Λ ⊢ E1 : !1 Λ ⊢ E2 : !2
i-pair

Λ ⊢ 〈E1, E2〉 : !1 ⊗ !2 Λ, Γ, G1 : !1, G2 : !2 ⊢ B : �
i-letp

c ⊲ Λ, Γ ⊢ letp 〈G1, G2〉 = 〈E1, E2〉 in B : �

Again, it easy to check that c ′ unique implies c unique.
�
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