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Abstract

In this paper, we investigate the use of multilevel Monte Carlo (MLMC) methods for es-
timating the expectation of discretized random fields. Specifically, we consider a setting in
which the input and output vectors of the numerical simulators (models) have inconsistent
dimensions across the multilevel hierarchy. This requires the introduction of grid transfer op-
erators borrowed from multigrid methods. Starting from a simple one-dimensional illustration,
we demonstrate numerically that the resulting MLMC estimator deteriorates the estimation
of high-frequency (small-scale) components of the discretized expectation field compared to a
(single-level) Monte Carlo (MC) estimator. By adapting mathematical tools initially developed
for multigrid methods, we perform a theoretical spectral analysis of the MLMC estimator of the
expectation of discretized random fields, in the specific case of linear, symmetric and circulant
simulators. This analysis provides a spectral decomposition of the variance into contributions
associated with each scale component of the discretized field. We then propose improved MLMC
estimators using a filtering mechanism similar to the smoothing process of multigrid methods.
The filtering operators improve the estimation of both the small- and large-scale components
of the variance, resulting in a reduction of the total variance of the estimator. These improve-
ments are quantified for the specific class of simulators considered in our spectral analysis. The
resulting filtered MLMC (F-MLMC) estimator is applied to the problem of estimating the dis-
cretized variance field of a diffusion-based covariance operator, which amounts to estimating the
expectation of a discretized random field. The numerical experiments support the conclusions
of the theoretical analysis even with non-linear simulators, and demonstrate the improvements
brought by the proposed F-MLMC estimator compared to both a crude MC and an unfiltered
MLMC estimator.

Keywords: Multilevel Monte Carlo, multigrid method, random field, spectral analysis, filtering,
diffusion operator.
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1 Introduction

Monte Carlo (MC) estimation refers to a class of statistical methods that rely on the sampling of
random quantities to construct so-called MC estimators. Such estimators are popular and widely-
used owing to their simplicity and flexibility. However, their slow convergence in terms of their
root mean square error (RMSE) with respect to the sample size makes them inefficient or even
unaffordable for the estimation of statistics of outputs of computationally expensive numerical sim-
ulators. Alternative techniques often rely on the use of surrogate models, which typically consist
of an approximate functional representation of the mapping between the inputs and the output of
interest of a numerical simulator. Commonly used surrogate models include, among others, poly-
nomial chaos expansions [34, 37, 42, 62], Gaussian processes [46, 47] or neural networks [54]. Once
constructed, such surrogate models are inexpensive to evaluate, so that accurate MC estimators of
their output can be obtained at limited computational cost. However, the resulting estimators suffer
from model error (bias) coming from the approximation error of the surrogate model with respect
to the actual simulator, which may be significant for complex, highly non-linear simulators. In
addition, surrogate models generally suffer from the so-called curse of dimensionality, which makes
their construction cost grow exponentially with the stochastic input dimension. This curse can, in
principle, be mitigated by resorting to model order reduction techniques to lower the dimensionality
of the input [45, 51], but this comes at the expense of increasing model error even further.

Another avenue consists of modifying the original, inefficient MC methods to reduce their RMSE.
A first class of techniques relies on improving the space-covering of the stochastic input space. Such
techniques include Latin hypercube sampling [40] and quasi Monte Carlo methods [35, Chapter 5].
A second class is that of so-called variance reduction techniques [35, Chapter 4], which consist of
rewriting the original MC estimator into a transformed estimator with smaller variance (and hence
RMSE, provided the bias remains unchanged) for an equivalent computational cost. In recent
years, many multilevel/multifidelity estimation methods relying on variance reduction techniques
have been proposed in the literature [18, 20, 43, 50]. Among them, the multilevel Monte Carlo
(MLMC) method [18, 19, 29] relies on a collection of simulators of different fidelities. In MLMC
methods, such fidelities typically correspond to different discrete resolutions, so that the collection
of fidelities can be structured as a hierachy of so-called levels, consisting of simulators of increasing
discrete resolution, and hence of increasing accuracy and computational cost. MLMC estimators are
constructed by combining samples (or ensembles) from different levels in a particular manner that,
under certain assumptions, reduces the variance of the resulting multilevel estimator, while leaving
the bias unchanged. The closely-related multilevel best linear unbiased estimators (MLBLUEs) were
recently proposed to combine more general multifidelity samples to provide an optimal reduction
of the variance [49, 50]. Originally designed for the estimation of the expected value of scalar,
real-valued random variables, the MLMC methodology has since been extended to the estimation
of higher-order statistical moments [2, 3] and variance-based global sensitivity measures [41]. The
analysis of MLMC estimators has also been extended to the estimation of statistics of random
variables with values in separable Hilbert spaces [2, 3]. Likewise, strategies for extending MLBLUEs
to the estimation of statistical moments of multiple simulator outputs were proposed in [10, 13, 14].

The estimation of a covariance matrix is a prominent example where MLMC approaches have
started to emerge, especially in the field of ensemble data assimilation [13, 24, 30]. Another example,
which will constitute the motivating example of this paper, is embedded in the general approach
of using a discretized linear differential operator to represent the application of a parametric form
of a covariance matrix. In particular, we focus on an approach that uses a discretized diffusion
operator to represent a covariance operator with a parametric kernel from the Matérn family [53].
Diffusion operators are commonly used for modelling spatial covariances in ocean data assimilation
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[58] and are closely related to other techniques for modelling spatial covariances in atmospheric data
assimilation [44], geostatistical modelling [36], inverse problems [8] and uncertainty quantification
[15]. Central to the approach is the need to extract the diagonal elements (intrinsic variances)
of the diffusion-modelled covariance matrix so that they can be used to normalize the matrix,
to transform it into a (unit-diagonal) correlation matrix. Once the covariance matrix is properly
normalized, a desired variance field, different from the intrinsic variance field, can be imposed. The
standard method for estimating the intrinsic variances of the diffusion-based covariance matrix is
the randomization method [58, 59]. This method relies on the MC estimation of the expectation of
a discretized random field, which, in a more abstract formulation, may be viewed as the output of
a numerical simulator, whose input is also a discretized random field.

In this paper, we are interested in applying the MLMC methodology to improve the efficiency
of estimating the expectation of discretized random fields in the abstract setting described above.
To achieve this, certain adaptations of the original MLMC formulation must be made. First, the
input and output of the abstract numerical simulator considered in our study are discretized fields,
typically represented as n-dimensional vectors for practical, numerical reasons. While multilevel ap-
proaches have been proposed in the literature to tackle the case of numerical simulators with vector
inputs and outputs [10, 14], such vectors are simply used as a means to collect scalar quantities.
However, the components of discretized fields should not be considered as individual, separate scalar
quantities, precisely because they encapsulate physical and spatial information on the underlying
continuous fields that are discretized. We stress that the vectors at hand represent discretized fields
and should be thought of as discrete signals. Second, because the input and output discretized
fields have dimensions that depend on the discrete resolution of the numerical simulator, designing
a multilevel estimator requires the introduction of grid transfer operators, which may be borrowed
from multigrid methods [6, 7, 26, 55]. These considerations raise crucial questions about the effect
of grid transfer operators on the different scales (or, equivalently, frequencies) of the discretized
fields (or signals) that are transferred between grids of different resolutions, and their impact on
the resulting multilevel estimator. We address these important questions that, to the best of our
knowledge, have not been previously considered in the literature. In particular, we present a nu-
merical illustration of the effects of grid transfer operators on the variance of the MLMC estimator,
based on the spectral decomposition of the estimator’s variance in a Fourier-like basis. This leads
us to propose a novel, filtered MLMC (F-MLMC) estimator that mitigates the negative effects of
the grid transfer operators on the multilevel estimator. The introduction of filtering is supported by
a theoretical spectral analysis of the MLMC and F-MLMC estimators in a simplified setting where
the numerical simulators are considered to be linear, symmetric and circulant operators. Finally,
the proposed F-MLMC approach is successfully tested on a 2D instance of our motivating example.

The remainder of this paper is organized as follows. Section 2 presents the description of the
motivating problem of estimating the normalization coefficients of a diffusion-based covariance op-
erator. This problem will be used as an illustration and test case throughout the paper. Section 3
introduces the MLMC estimator of the expectation of discretized random fields, and illustrates
its capabilities and limitations on a one-dimensional (1D) test case of the normalization problem.
Following the conclusions of this experiment, an F-MLMC estimator is introduced in section 4 and
compared to the unfiltered MLMC estimator on the same 1D test problem. A spectral analysis
of the MLMC and F-MLMC estimators is then carried out in section 5 to investigate the effects
of grid transfer and filtering operators on their variance, in the specific case of linear, symmetric
and circulant numerical simulators. In section 6, we apply the MLMC and F-MLMC estimators to
the 2D problem of estimating the normalization coefficients of a two-dimensional (2D), heteroge-
neous, diffusion-based covariance operator. General conclusions are drawn in section 7, along with
prospective avenues for future work.
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2 Motivation and problem description

As discussed in the introduction, one area where the estimation of the expectation of discretized
random fields arises is covariance modelling, specifically when estimating the intrinsic variances
of a diffusion-based covariance operator using a randomization method [58, 59]. This particular
problem, which is outlined in this section, will be our motivating example throughout the paper.

Let u : D → R and b : D → R be square-integrable functions on the domain D ⊂ Rd where
d ∈ {1, 2, 3} is the spatial dimension. We consider numerical solutions of the following elliptic
equation, subject to application-dependent boundary conditions (BCs):

(I −∇ ·K∇)mu = b, (1)

where m is a positive integer, I is the identity operator, and K : D → Rd×d is a symmetric, positive-
definite (SPD) tensor field with entries [Kij ]i,j=1,...,d. Equation (1) can be interpreted as a semi-
discrete representation of a diffusion equation integrated over m time-steps where the temporal
derivative is discretized with a backward Euler (implicit) scheme, the time-step is equal to unity, K
is a diffusivity tensor, and the initial condition is b [56]. If K is constant then the integral solution
on Rd defines a covariance operator whose kernel is a covariance function from the Matérn class [25,
60].

We assume that the operator in eq. (1) is discretized in space on a (not necessarily structured)
grid of n cells. We can then deduce the covariance matrix associated with the numerical solution
of eq. (1) as

L := (I−∆)−mW−1, (2)

where ∆ is the matrix representing a spatial discretization of the differential operator ∇ ·K∇,
and W ∈ Rn×n is an SPD Gram matrix that encodes the geometrical and structural information
related to the discrete approximation of the diffusive term on the grid. Specifically, W is such
that ∆ is self-adjoint with respect to the inner product whose weighting matrix is W, i.e., W∆ =
∆TW. Consequently, the matrix L is self-adjoint (symmetric) with respect to the canonical inner
product. In the experiments, we consider only a diagonal diffusivity tensor Kij = Kijδij where
δij is the Kronecker delta. Specifically, we define the diagonal elements according to the relation
Kii(x) = (2m− d− 2)−1(Dii(x))

2 where the elements [Dii(x)]i=1,...,d correspond to the directional
correlation length-scales at the spatial location x, and m > d/2 + 1 [56, section 3].

The matrix L is SPD but does not define a covariance matrix with meaningful variances for
applications like data assimilation. As such, L must be normalized by its diagonal so that the
desired variances can be applied. Thus, we define the covariance matrix of interest as B = ΣΓLΓΣ,
where Γ = Diag(diag(L))−1/2 is a normalizing diagonal matrix such that Diag(diag(ΓLΓ)) = In,
and Σ2 = ΣΣ is the diagonal matrix with entries corresponding to the desired variances, i.e.,
diag(B) = diag(Σ2) = (σ2

1, . . . , σ
2
n). In these expressions, the operator diag(·) maps a matrix to

the vector consisting of the diagonal elements of that matrix, while the operator Diag(·) maps a
vector to the diagonal matrix whose diagonal consists of the entries of that vector. For large-scale
problems, the matrix L is not assembled, and only applications of L to vectors are accessible. Thus,
its diagonal entries diag(L) = θ = (θ1, . . . , θn) are not explicitly stored and need to be determined
differently [59]. A direct way would be to recover these by applying L to the canonical basis vectors
of Rn, i.e., θk = (Lek)k, for k = 1, . . . , n. For large n, this approach is not computationally tractable.

An alternative strategy is to approximate θ by randomization. Taking m = 2q and introducing
the factorization W = VVT, then L can be subsequently factored as L = AAT, where

A := (I−∆)−q(V−1)T, (3)
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which, as for L itself, cannot be explicitly assembled in large-scale applications. This decomposition
of L implies that, for any random vector X with E[X] = 0n and E[XXT] = In,

θ = diag(L) = diag(AE[XXT]AT) = diag(C[AX]) = V[AX] = E[AX⊙AX], (4)

where ⊙ denotes the Schur product (a.k.a. the Hadamard or element-wise product).
A classical method for estimating the expectation θ of the Rn-valued random vector Y := AX⊙AX

is through Monte Carlo (MC) random sampling. Given a random M -sample X = (X(i))Mi=0 of X,
an unbiased estimator θ̂ of θ is the sample mean

θ̂ =
1

M

M∑
i=1

(AX(i))⊙ (AX(i)). (5)

We remark that the estimator θ̂ only requires M applications of A to a vector, typically with
M ≪ n in large-scale applications. Furthermore, by construction, the MC estimator defined by
eq. (5) yields non-negative estimates, which is a fundamental requirement for the problem under
consideration. Alternative MC estimators have been proposed in the literature for estimating the
diagonal of a general (not necessarily symmetric) matrix [1, 27], which do not employ a factored
form of the matrix and hence do not guarantee non-negative estimates. In all cases, the MC sample
mean estimator is known to converge slowly with respect to the sample size M ; specifically, its
root-mean-square error (RMSE) is O(M−1/2) [48]. Here, we investigate the use of the MLMC
methodology [18, 19] to improve (in terms of RMSE) the estimation of θ and hence the efficiency
of determining accurate normalization coefficients for defining Γ.

3 MLMC estimation of the expectation of discretized random fields

In this section, we introduce the MLMC ingredients used in the subsequent spectral analysis, focus-
ing on the estimation of the expectation of discretized random fields. The notations introduced here
are then used throughout the remainder of this paper. First, general definitions and notations are
introduced, then, grid transfer operators are presented as well as their use in the MLMC expectation
estimator for discretized fields. Finally, a 1D illustration showcases the MLMC estimator and its
benefits compared to a standard MC estimator.

The MLMC method aims to reduce the variance, or sampling error, of MC estimators by com-
bining samples of different fidelities. In favorable cases, many cheap, low-fidelity samples are used
to improve the sampling, while fewer are required at finer and more expensive resolutions to correct
the bias. Under certain assumptions, [18, Theorem 1] and [9, Theorem 1] ensure that there exists
an allocation of samples on a finite number of levels such that the computational cost of the MLMC
estimator decreases at a faster rate as a function of the mean square error (MSE), than that of the
crude MC estimator. In practice, MLMC is typically implemented as a sequential algorithm, whose
main idea is to start with a limited number of coarse fidelity levels, and add as many finer levels
as needed to reach a target MSE, with a prescribed variance/bias balance. In the present work,
however, we adopt a multilevel approach that is closer to multifidelity methods. Specifically, a fine,
high-fidelity level is fixed (and thus so is the bias), while coarser, low-fidelity levels are considered
to reduce the variance, for a prescribed computational budget.

3.1 Preliminary notations and definitions

We first describe the MLMC setting for discretized random fields. Let {nℓ}Lℓ=0 be an increasing
sequence of positive integers corresponding to the size of L + 1 grids. Those grids of different
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resolutions define the hierarchy of levels needed for the MLMC approach. Specifically, level 0
corresponds to the coarsest level, while level L is the finest. To each level ℓ, we associate the
SPD Gram matrix Wℓ = VℓV

T
ℓ ∈ Rnℓ×nℓ that encodes the structural information related to the

approximation of continuous functions as a vector of Rnℓ on this specific discrete grid. For each
level ℓ, we define the weighted inner product ⟨·, ·⟩Wℓ

between elements of Rnℓ as

∀u,v ∈ Rnℓ , ⟨u,v⟩Wℓ
= uTWℓv = ⟨VT

ℓ u,V
T
ℓ v⟩Inℓ

, (6)

where ⟨·, ·⟩Inℓ
denotes the canonical (Euclidean) dot product between vectors of Rnℓ . The norm

induced by ⟨·, ·⟩Wℓ
is denoted by ∥ · ∥Wℓ

. The inner product space Hℓ := (Rnℓ , ⟨·, ·⟩Wℓ
) is a

separable Hilbert space.
Let XL be the RnL-valued random vector corresponding to a discretized random field at discrete

resolution nL. We define abstract numerical models fℓ : RnL → RnL of increasing resolution (fidelity)
nℓ and hence computational cost. We are interested in estimating the expectation of the output of
the finest (highest-fidelity) model, E[fL(XL)]. The MLMC estimator µ̂MLMC

L of E[fL(XL)] using
L+ 1 independent Mℓ-samples of XL, {X (ℓ)

L = (X
(ℓ,i)
L )Mℓ

i=1}Lℓ=0, is defined as

µ̂MLMC
L =

1

M0

M0∑
i=1

f0(X
(0,i)
L ) +

L∑
ℓ=1

1

Mℓ

Mℓ∑
i=1

[
fℓ(X

(ℓ,i)
L )− fℓ−1(X

(ℓ,i)
L )

]
. (7)

However, in many applications, the different fidelity models are defined on grids of different resolu-
tions so that their input and output are vectors of Rnℓ , instead of RnL as required by the definition
of fℓ. We denote such abstract numerical models by f̃ℓ : Rnℓ → Rnℓ , for ℓ = 0, . . . , L, and we are
interested in the expectation of the finest output, E[f̃L(XL)].

3.2 Grid transfer operators

Because the models f̃ℓ have different domains and codomains depending on the resolution, it is not
possible to use the MLMC estimator eq. (7) directly. Grid transfer operators are needed to transfer
the inputs and outputs between the coarse grids of resolution nℓ, ℓ = 0, . . . , L − 1, and the finest
grid of resolution nL. In order to ease the spectral analysis presented in this paper, we restrict
ourselves to linear grid transfer operators, although in principle non-linear transfer operators may
be used.

Operators that transfer a discretized field from a coarse grid onto a finer grid are classically
referred to as prolongation operators. We denote by P ℓ′

ℓ : Rnℓ → Rnℓ′ the prolongation operator
from level ℓ to a finer level ℓ′ > ℓ (i.e., with nℓ′ > nℓ). For linear operators, we may identify P ℓ′

ℓ with
the matrix Pℓ′

ℓ ∈ Rnℓ′×nℓ such that P ℓ′
ℓ (xℓ) = Pℓ′

ℓ xℓ for any xℓ ∈ Rnℓ . Besides, so-called restriction
operators Rℓ

ℓ′ : R
nℓ′ → Rnℓ are used to perform the “reverse” operation of transferring discretized

fields defined on level ℓ′ to a coarser level ℓ < ℓ′. Again, a linear restriction operator Rℓ
ℓ′ may be

identified with the appropriate matrix Rℓ
ℓ′ ∈ Rnℓ×nℓ′ . We may now define fℓ from f̃ℓ as

fℓ = PL
ℓ ◦ f̃ℓ ◦Rℓ

L, (8)

for ℓ = 0, . . . , L, so that the MLMC expression eq. (7) can be applied. These numerical models
involve transfer operators between a given level and the finest level L. In practice, these operators
may be defined from transfer operators between successive levels, as

PL
ℓ := PL

L−1 · · ·Pℓ+2
ℓ+1P

ℓ+1
ℓ and Rℓ

L := Rℓ
ℓ+1 · · ·RL−2

L−1R
L−1
L , ∀ℓ = 0, . . . , L− 1, (9)

and RL
L = PL

L = InL , so that f̃L = fL.
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3.3 The MLMC estimator

Considering a separable Hilbert space H equipped with the inner product ⟨·, ·⟩H and induced norm
∥ · ∥H , the space of second-order H-valued random variables,

L2(Ω, H) := {ξ : Ω → H |
∫
Ω ∥ξ(ω)∥2H dP(ω) < +∞}, (10)

is a Hilbert space when equipped with the inner product ⟨·, ·⟩L2(Ω,H) defined as

∀ξ, η ∈ L2(Ω, H), ⟨ξ, η⟩L2(Ω,H) :=

∫
Ω
⟨ξ(ω), η(ω)⟩H dP(ω). (11)

The induced norm is denoted by ∥ · ∥L2(Ω,H), and, for convenience, we will from now on use the
shorthand notation ∥ · ∥L2(Ω,H) = E[∥ · ∥2H ]1/2. In this paper, we are particularly interested in the
spaces L2(Ω, Hℓ), for ℓ = 0, . . . , L, with Hℓ defined as in section 3.1. In what follows, we assume
that XL ∈ L2(Ω, HL) and that, for any X ∈ L2(Ω, Hℓ),

• f̃ℓ(X) ∈ L2(Ω, Hℓ), for ℓ = 0, . . . , L;

• P ℓ
ℓ−1(X) ∈ L2(Ω, Hℓ), for ℓ = 1, . . . , L;

• Rℓ
ℓ+1(X) ∈ L2(Ω, Hℓ), for ℓ = 0, . . . , L− 1.

It follows that Yℓ := fℓ(XL) ∈ L2(Ω, HL) for ℓ = 0, . . . , L. A convergence analysis of the MLMC
method in such Hilbert spaces was proposed in [2], from which we reuse here certain definitions and
properties.

In particular, we are interested in this work in the normwise MSE of the MLMC estimator with
respect to the exact expectation µ, defined by

MSE(µ̂MLMC
L ,µ) := ∥µ̂MLMC

L − µ∥2L2(Ω,HL)
. (12)

As shown in [2, Theorem 3.1]), the MSE admits the decomposition

MSE(µ̂MLMC
L ,µ) = V(µ̂MLMC

L ) + ∥E[YL]− µ∥2WL
, (13)

where
∀Y ∈ L2(Ω, HL), V(Y) := ∥Y − E[Y]∥2L2(Ω,HL)

= E[∥Y∥2WL
]− ∥E[Y]∥2WL

. (14)

The first term in eq. (13) is referred to as the variance of the multilevel estimator, while the second
term corresponds to the squared bias. We note that the multilevel estimator is unbiased with respect
to the expectation of the output at the finest level µ = E[YL]. Furthermore, the variance part of
the MSE, V(µ̂MLMC

L ), can be further decomposed level-wise into

V(µ̂MLMC
L ) =

1

M0
V(Y0) +

L∑
ℓ=1

1

Mℓ
V(Yℓ −Yℓ−1). (15)
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3.4 1D illustration

The variance estimation problem described in section 2 is considered here in a 1D setting. We
consider cell-centered discretizations of the diffusion operator on the domain D := [0, 1], with
periodic boundary conditions. Specifically, we consider uniform grids composed of nℓ cells of size
n−1
ℓ , with the associated Gram matrices Wℓ = n−1

ℓ Inℓ
, corresponding to a piecewise constant

approximation of the solution. It follows immediately that Vℓ = n
−1/2
ℓ Inℓ

= W
1/2
ℓ . We define

hierarchies of different depth, corresponding to L ∈ {0, . . . , 5}, with a fixed finest discretization
corresponding to nL = 512. For ℓ = 0, . . . , L − 1, a constant refinement factor nℓ+1/nℓ = 2 is
defined, so that nℓ = 2ℓ−LnL. The inter-level prolongation and restriction operators are defined as

Pℓ
ℓ−1 :=


1
1

1
1

. . .

 ∈ Rnℓ×nℓ−1 , Rℓ−1
ℓ := V−1

ℓ−1(P
ℓ
ℓ−1)

TVℓ =
1√
2
(Pℓ

ℓ−1)
T, (16)

respectively, and grid transfer operators between an arbitrary level and the finest level are defined
as in eq. (9). This particular choice of grid transfer operators implies that

∀xℓ ∈ Rnℓ , ∥Pℓ′
ℓ xℓ∥Wℓ′ = ∥xℓ∥Wℓ

, and ∀Xℓ′ ∼ N (0nℓ′ , Inℓ′ ), R
ℓ
ℓ′Xℓ′ ∼ N (0nℓ

, Inℓ
), (17)

for ℓ′ > ℓ. Further detail on the motivation for this choice is given in appendix A.
The diffusion tensor field K (which actually reduces to a scalar field in 1D) is taken to be

constant, by setting D11(x) = D for all x ∈ D (see section 2). The scalar value D ∈ R will be
referred to as the length-scale and, unless stated otherwise, it will be set to D = 0.06 ≈ 30n−1

L .
Furthermore, we choose a fixed value of m = 10, implying that q = 5. As described in section 2,
the statistic of interest is E[fL(XL)] = E[(ALXL)⊙ (ALXL)], and where XL is a standard normal
random vector, i.e., XL ∼ N (0nL , InL). The abstract numerical models fℓ are defined by eq. (8),
with f̃ℓ : Xℓ 7→ (AℓXℓ)⊙ (AℓXℓ), and Aℓ defined as in eq. (3) on the appropriate grid of level ℓ. For
this experiment, we rely on the optimal sample allocation that minimizes, for a given computational
budget η, the variance of the multilevel estimator [41],

Mℓ =

⌊
η

SL

√
Vℓ

Cℓ + Cℓ−1

⌋+
, Vℓ := V(Yℓ −Yℓ−1), SL :=

L∑
ℓ=0

√
Vℓ(Cℓ + Cℓ−1), (18)

where Cℓ denotes the computational cost of one evaluation of fℓ and ⌊·⌋+ := max(1, ⌊·⌋), where
⌊·⌋ denotes the floor function. It should be noted that, by convention, the quantities indexed by
ℓ = −1 vanish, so that C−1 = 0 and V0 = V(Y0). In addition, we remark that, with eq. (18),
the prescribed computational budget η may actually be exceeded by an additional cost lower than
CL. However, this extra cost should be negligible provided η ≫ CL. In what follows, we assume a
linear computational cost model, specifically Cℓ = O(nℓ), consistent with a fixed number of sparse
(banded) matrix-vector applications required for the evaluation of fℓ. The variances Vℓ are estimated
in a preprocessing stage with a pilot sample of size 1000, and the multilevel estimation is conducted
with a computational budget η = 100CL.

The sample allocation obtained with these parameters and the total variance of different MLMC
estimators is shown in fig. 1a. Instead of requiring 100 fine-grid evaluations like a single-level Monte
Carlo estimator, the 2-, 4- and 6-level MLMC estimators only require a few evaluations on the finest
level, while more than 900 evaluations are used on the coarsest grid for the 6-level MLMC. The
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Figure 1: Optimal sample allocation across levels and resulting total variance of the MC estimator
(L = 0) and different MLMC estimators (L ∈ {1, 3, 5}), for the estimation problem described in
section 2, with length-scale D = 0.06. The finest level L always corresponds to a discretization
with nL = 512 cells, and the total budget is set to η = 100CL. The variance is estimated from 1000
estimators.

optimal allocation allows for MLMC estimators to reach a lower total variance than the crude MC
estimator, as shown in fig. 1b. The minimum variance is achieved with a 4-level MLMC (L = 3),
with a variance reduction of about 70% compared to MC (L = 0). The addition of two coarser
levels with 32 and 16 cells, respectively, actually deteriorates the total variance.

The results above suggest that the MLMC estimators in eq. (7) have a lower variance than
the single-level MC estimator. However, the variance of the estimator, according to the definition
eq. (14), stands here in a normwise (integral) sense, and we cannot infer any information for a
specific scale (frequency). In fact, the variance of the estimator associated with a given frequency
could provide valuable information for the analysis of multilevel estimators involving discretized
fields. In particular, the small-scale (high-frequency) components of a signal on the fine grid cannot
be represented on coarser grids.

To study the error at different scales, we decompose the MSE in the Hartley basis [4, 5, 28].
The Hartley basis is a Fourier-like basis, commonly used in circulant embedding techniques for
generating stationary Gaussian random fields with prescribed covariance structure [22, 23, 31]. Its
main advantage is that it consists of purely real basis vectors, as opposed to the Fourier basis
(whose basis vectors are complex), thus easing interpretation and visualization. On level ℓ, the nℓ

cell-centered Hartley basis vectors {hℓ
k}

nℓ−1
k=0 correspond to the columns of the Hartley matrix Hℓ

with entries

(Hℓ)j,k :=
1

√
nℓ

(
cos

2(j + 1
2)kπ

nℓ
+ sin

2(j + 1
2)kπ

nℓ

)
, ∀j, k = 0, . . . , nℓ − 1. (19)

The matrices Hℓ are orthogonal, i.e., for any ℓ = 0, . . . , L, HT
ℓ Hℓ = HℓH

T
ℓ = Inℓ

(see appendix B).
The MSE eq. (12) can thus be decomposed into contributions of the individual Hartley modes,

MSE(µ̂MLMC
L ,µ) = E[∥µ̂MLMC

L − µ∥2WL
] = E[∥HT

LW
1/2
L (µ̂MLMC

L − µ)∥2InL
], (20)

which, exploiting the linearity of the expectation operator and the fact that WL = n−1
L InL , may be

9



compactly written as

MSE(µ̂MLMC
L ,µ) = ∥ν∥1 :=

nL−1∑
k=0

νk, νk := n−1
L E[((hL

k )
T(µ̂MLMC

L − µ))2], (21)

where ν = (νk)
nL−1
k=0 denotes the spectral MSE. In what follows, we take µ = E[YL] as a reference,

so that the MSE coincides with the variance V(µ̂MLMC
L ), and νk = n−1

L V[(hL
k )

Tµ̂MLMC
L ]. We thus

refer to ν as the spectral variance of the estimator. Furthermore, we define the cumulative variance,
νcml = (νcml

k )nL−1
k=0 , such that νcml

k =
∑k

k′=0 νk′ , implying that the total variance is given by νcml
nL−1 =

∥ν∥1.
In fig. 2, we plot the spectral variance ν, as well as the corresponding cumulative variance νcml,

associated with the 2-, 4- and 6-level MLMC estimators (L ∈ {1, 3, 5}) and with the single-level MC
estimator (L = 0), for the estimation problem described in section 2, with length-scale D = 0.06.
Note that, in this and the following figures, the Hartley basis vectors {hℓ

k}
nℓ−1
k=0 are reordered by

increasing representable frequency (see appendix C). Figure 2a shows that, for the single-level MC
estimator, most of the error arises from the first Hartley modes, which are associated with the large
scales, or low frequencies, of the discretized field. This is confirmed in fig. 2b, where the cumulative
variance of the MC estimator rapidly increases before reaching a plateau, showing that the variance
is concentrated on the first few modes. The spectral variances of the MLMC estimators exhibit a
similar behavior, but its decay in the high frequencies is less pronounced. For the 2-level MLMC
estimator, the spectral variance starts with a similar decay as that of the MC estimator in the
low frequencies, before increasing again in the high frequencies. Nevertheless, the variance is still
concentrated on the first few modes, and the low-frequency components of the spectral variance
are lower than those of the single-level MC estimator. This translates into a lower plateau reached
by the cumulative variance, as shown in Figure 2b. Moreover, the variance increase in the high-
frequencies translates into a noticeable increase in the cumulative variance in the last few Hartley
modes, which, in turn, results in a non-negligible increase in the total variance. As more levels are
added, the spectral variance significantly deteriorates in the high-frequencies. While for the 4-level
MLMC estimator, this deterioration is compensated by a lower variance in the low frequencies, this
is no longer the case for the 6-level MLMC estimator, whose cumulative variance eventually gets
larger than that of the 4-level MLMC estimator, thus resulting in a larger total variance, as already
evidenced in fig. 1.

It should be noted that the length-scale D = 0.06 used for the experiments presented above in-
duces output fields mostly composed of large scales (low frequencies). Decreasing its value increases
the frequencies of the output field, thus introducing smaller scales. Figure 3 shows the spectral and
cumulative variance of the MC and MLMC estimators for a reduced length-scale D = 0.01 ≈ 5n−1

L .
We observe that the decay of the spectral variance of the MC estimator as the frequency increases
is slower than for D = 0.06, so that the variance is concentrated on a wider low-frequency range.
For the multilevel estimators, we see that the significant deterioration of the variance in the high-
frequencies is no longer compensated by a better estimation in the low frequencies, except for the
2-level estimator, which remains slightly better than the single-level estimator in terms of total
variance.

4 The filtered MLMC method

The spectral variance of the MLMC estimator for the 1D variance estimation problem shows a
significant deterioration of the variance in the high frequencies. Inspired by multigrid methods [7,
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Figure 2: Spectral and cumulative variance of the MC estimator (L = 0) and different MLMC
estimators (L ∈ {1, 3, 5}), for the estimation problem described in section 2, with length-scale
D = 0.06. The finest level L always corresponds to a discretization with nL = 512 cells, and the
total budget is set to η = 100CL. The variance is estimated from 1000 estimators.
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Figure 3: Same as fig. 2 but with length-scale D = 0.01.

55, 61], we propose an improvement of the MLMC estimator for discretized random fields by adding
pre- and post-filtering (or, in multigrid terminology, smoothing). The objective is to filter out the
smaller scales, which cannot be represented on the coarse grids, before using a restriction operator
and after using a prolongation operator.

4.1 Filtered grid transfer operators

Filtering the small-scale components out of a signal on level ℓ is achieved using a low-pass filtering
operator Sℓ : Rnℓ → Rnℓ . In what follows, we resort to linear filtering operators Sℓ, which can thus
be identified with matrices Sℓ. Filtered grid transfer operators P̄L

ℓ and R̄ℓ
L are defined through their

corresponding matrices P̄L
ℓ and R̄ℓ

L by

P̄L
ℓ := P̄L

L−1 · · · P̄ℓ+2
ℓ+1P̄

ℓ+1
ℓ and R̄ℓ

L := R̄ℓ
ℓ+1 · · · R̄L−2

L−1R̄
L−1
L , ∀ℓ = 0, . . . , L− 1 (22)

11



where
R̄ℓ−1

ℓ := Rℓ−1
ℓ Sℓ, and P̄ℓ

ℓ−1 := SℓP
ℓ
ℓ−1 ∀ℓ = 1, . . . , L, (23)

and R̄L
L = P̄L

L = InL . The filtered MLMC estimator, hereafter referred to as the F-MLMC estimator,
then reads

µ̂F-MLMC
L =

1

M0

M0∑
i=1

f̄0(X
(0,i)
L ) +

L∑
ℓ=1

1

Mℓ

Mℓ∑
i=1

[f̄ℓ(X
(ℓ,i)
L )− f̄ℓ−1(X

(ℓ,i)
L )], (24)

where f̄ℓ = P̄L
ℓ ◦ f̃ℓ ◦ R̄ℓ

L, for ℓ = 0, . . . , L. In what follows, we resort to the second-order Shapiro
filter [16, 17, 52] defined as

Sℓ :=
1

4


2 1 1
1 2 1

. . .
. . .

. . .

1 2 1
1 1 2

 . (25)

With the specific grid transfer operators defined in eq. (16), the operator P̄ℓ
ℓ−1 corresponds to the

linear interpolation operator between the levels ℓ− 1 and ℓ.
The idea of smoothing highly oscillatory signals within the MLMC framework was also recently

exploited in [31], in a setting where the input of the considered simulator is a discretized random
field, but where the output is a scalar quantity. Consequently, prolongation operators are not needed,
and only restriction operations are required. In fact, because the Cartesian, node-centered, finite
element discretization considered in [31] produces nested meshes, the restriction operator reduces
to a selection operator, which selects the vector entries associated with the desired nodal unknowns.
The pre-smoothing (or pre-filtering) operation proposed in [31] is based on a spectral truncation of
the high-frequency components of the input signal, and designed for each MLMC level such that the
truncation error matches the discretization error, so that the MLMC properties are best exploited.
The combination of this pre-filtering technique with spectral post-filtering, along the lines of [13,
section 4.4], may be investigated in future work.

4.2 1D illustration

The 1D variance estimation problem described in section 2 and used in section 3 is again used to
illustrate the effects of filtering. The optimal sample allocation, obtained from eq. (18), is reported
in fig. 4a for the 6-level (L = 5) MLMC and F-MLMC estimators, for a length-scale D = 0.06.
We observe that the filtered estimator allocates smaller sample sizes to the finer grids than the
unfiltered one, while a more than 50% larger sample size is allocated to the coarsest level. This
may be explained by the fact that, in the absence of filtering, more effort needs to be made on
the finer levels, due to the large high-frequency components of the variance. This change in the
optimal allocation has a significant impact on the total variance, as shown by fig. 4b. The F-
MLMC estimators achieve a lower total variance than their unfiltered counterpart regardless of the
hierarchy, with the 6-level F-MLMC (L = 5) achieving the lowest variance. The addition of filters
allows the two coarsest grids to reduce the total variance of the estimator further, while the variance
of the unfiltered MLMC estimator deteriorates when including these levels.

Figure 5 shows the spectral variance ν and the cumulative variance νcml of the F-MLMC esti-
mators with different grid hierarchies corresponding to L ∈ {1, . . . , 3}. The effects of the filters are
especially visible on the spectral variance (fig. 5a), which is significantly reduced, not only in the
high frequencies, but also in the lowest ones (i.e., corresponding to the first few Hartley modes),
as compared to the unfiltered MLMC (fig. 2a). The reduced error in the high frequencies (small
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Figure 4: Optimal sample allocation across levels for the 6-level (L = 5) MLMC and F-MLMC
estimators, and total variance of the MC estimator (L = 0) and different MLMC and F-MLMC
estimators (L = 1, . . . , 5), for the estimation problem described in section 2, with length-scale
D = 0.06. The finest level L always corresponds to a discretization with nL = 512 cells, and the
total budget is set to η = 100CL. The variance is estimated from 1000 estimators.

scales) allows the cumulative variance not to be impacted in the last few Hartley modes (fig. 5b),
as opposed to the unfiltered MLMC (fig. 2b). Furthermore, the reduced error in the low frequencies
(large scales) translates into a lower plateau of the cumulative variance, hence a lower total variance,
than for the unfiltered MLMC. Specifically, the addition of filters leads to a 90% reduction in total
variance of the F-MLMC estimator compared to the single-level MC estimator, corresponding to a
70% reduction compared to the best, 4-level unfiltered MLMC estimator. The same quantities are
plotted in fig. 6 for a length-scale D = 0.01. Again, the addition of filters improves the multilevel
estimation in both the low and the high frequencies, which in turn benefits the cumulative and thus
the total variance. Filtering is here even more beneficial than for D = 0.06, in the sense that the
F-MLMC estimator has a significantly lower variance than the single-level MC estimator, which
the unfiltered MLMC estimator failed to achieve. Specifically, the variance of the 2-level F-MLMC
estimator is reduced by about 40% compared to the single-level MC estimator, and that of the
4-level F-MLMC is reduced by more than 50%, while its unfiltered counterpart actually produced
a higher variance than the single-level MC estimator.

These experiments highlight that the effect of spurious high frequencies caused by grid transfer
operations is detrimental to the MLMC estimator. The addition of pre- and post-filtering operations
to mitigate these effects is necessary for the multilevel estimator to reach its full potential.

5 Spectral analysis

In this section, we conduct a spectral analysis of the MLMC estimator eq. (7) and F-MLMC esti-
mator eq. (24) to study more closely the effects of grid transfer operators and filters on the variance
of the multilevel estimator at different scales. The analysis is conducted in a 1D setting similar to
that of section 3.4, with Gram matrices Wℓ = n−1

ℓ Inℓ
, for ℓ = 0, . . . , L, corresponding to a cell-

centered, piecewise constant approximation of the solution on uniform grids. The setting is further
simplified to the case where the numerical simulators are linear, and that their associated matrices
are symmetric and circulant.

13



0 128 256 384 512
k

10 22

10 18

10 14

10 10

10 6

10 2
k

L=0 (MC)
L=1 (F-MLMC)
L=3 (F-MLMC)
L=5 (F-MLMC)

(a) Spectral variance ν.

0 128 256 384 512
k

0.0

0.2

0.4

0.6

0.8

cm
l

k

L=0 (MC)
L=1 (F-MLMC)
L=3 (F-MLMC)
L=5 (F-MLMC)

(b) Cumulative variance νcml.

Figure 5: Spectral and cumulative variance of the MC estimator (L = 0) and of different F-MLMC
estimators (L ∈ {1, 3, 5}), for the estimation problem described in section 2, with length-scale
D = 0.06. The finest level L always corresponds to a discretization with nL = 512 cells, and the
total budget is set to η = 100CL. The variance is estimated from 1000 estimators.
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Figure 6: Same as Figure 5 but with length-scale D = 0.01.

5.1 MLMC with linear simulators

We consider linear numerical simulators of the form f̃ℓ : xℓ 7→ F̃ℓxℓ, where F̃ℓ ∈ Rnℓ×nℓ , so that, for
a given random vector XL corresponding to a discretized random field on the finest level L,

Yℓ = FℓXL, Fℓ := PL
ℓ F̃ℓR

ℓ
L ∈ RnL×nL , ∀ℓ = 0, . . . , L, (26)

with PL
L = RL

L = InL . For now, we make no further assumption on F̃ℓ. Exploiting the linearity of
the simulators, and letting G := E[(XL − E(XL)(XL − E(XL)

T] be the covariance matrix of XL,
the variance eq. (15) of the multilevel estimator reduces to

V(µ̂MLMC
L ) =

1

M0
∥F0G

1/2∥2F,WL
+

L∑
ℓ=1

1

Mℓ
∥(Fℓ − Fℓ−1)G

1/2∥2F,WL
, (27)

where ∥ · ∥F,W : M 7→ tr(MTWM)1/2 denotes the W-weighted Frobenius norm, for any SPD
weighting matrix W (see appendix D for the derivation of eq. (27)). The variance in eq. (27)
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emphasizes that the variance reduction is closely related to the similarity of successive fidelity
models. Again, the orthogonality of the Hartley matrix HL can be invoked to decompose the
variance into contributions of the individual Hartley modes,

V(µ̂MLMC
L ) =

1

M0
∥HT

LF0G
1/2∥2F,WL

+

L∑
ℓ=1

1

Mℓ
∥HT

L(Fℓ − Fℓ−1)G
1/2∥2F,WL

. (28)

5.2 Two-level MLMC with linear, symmetric, circulant simulators

For the remainder of this analysis, we focus on 2-level MLMC estimators (L = 1), with n0 cells
on the coarse grid and n1 = 2n0 cells on the fine grid. Figure 7 depicts the basis vectors h1

k and
h0
k of the fine- and coarse-grid Hartley bases, discretized on grids with n1 = 16 and n0 = 8 cells,

respectively. These plots highlight that, because of aliasing, the basis vectors exhibit a discrete
frequency that is different from their continuous counterpart. Specifically, for ℓ ∈ {0, 1}, the vectors
indexed by k close to 0 or nℓ − 1 are discrete signals with low frequency, while their frequency
increases as k tends to nℓ/2.

We now examine the effects of the grid transfer operators on the Hartley basis vectors. Such
effects have been studied extensively for multigrid methods [7, 55, 61] using different bases. We
succinctly present here results for the specific, cell-centered Hartley basis eq. (19). With the pro-
longation operator P := P1

0 defined in eq. (16), we have (see appendix E)

Ph0
k =

√
2(ckh

1
k − cn0+kh

1
n0+k), ∀k = 0, . . . , n0 − 1, (29)

where the coefficients ck := cos(kπ/(2n0)) are strictly decreasing with k = 0, . . . , 2n0 − 1, i.e.,

1 = c0 > c1 > · · · > (cn0 = 0) > · · · > c2n0−1 > −1. (30)

Prolongating a coarse-grid basis vector h0
k, with k = 0, . . . , n0 − 1, produces a (fine-grid) vector

consisting of a linear combination of two fine-grid basis vectors h1
k and h1

n0+k. Figure 7 shows that,
for k ≤ n0/2, the fine-grid signal h1

k has the same frequency as the original, coarse-grid signal h0
k,

while h1
n0+k has higher frequency. Conversely, for k > n0/2, the fine-grid signal h1

n0+k has the same
frequency as the coarse-grid signal h0

k, while h1
k has higher frequency. In both cases, the prolon-

gation of a coarse-grid signal introduces spurious high-frequency (i.e., small-scale) components to
the prolongated signal. Fortunately, both h1

k and h1
n0+k are damped by a factor which is closer to

zero for the spurious, high-frequency signals than for the consistent, low-frequency signals. Specifi-
cally, ck tends to 1 and cn0+k tends to 0 as k tends to 0, thus damping more severely the spurious,
high-frequency signals h1

n0+k than the consistent, low-frequency signals h1
k. Conversely, ck tends to

0 and cn0+k tends to 1 as k tends to n0, thus damping more severely the spurious, high-frequency
signals h1

k than the consistent, low-frequency signals h1
n0+k.

For the restriction operator R := R0
1 defined in eq. (16), we have (see appendix F)

Rh1
k = ckh

0
k, and Rh1

n0+k = −cn0+kh
0
k, ∀k = 0, . . . , n0 − 1. (31)

Restricting a fine-grid basis vector h1
k, with k = 0, . . . , n0 − 1, produces a (coarse-grid) vector

proportional to the corresponding coarse-grid basis vector h0
k, specifically, reduced by a factor

ck ≤ 1. For n0/2 < k < n0, the restricted signal has lower frequency than the original, fine-grid
signal, as illustrates fig. 7. Similarly, restricting a fine-grid basis vector h1

k, with k = n0, . . . , 2n0−1,
produces a (coarse-grid) vector proportional to the complementary coarse-grid basis vector h0

k−n0
,

specifically reduced by a factor −ck < 1. Again, high-frequency fine-grid signals h1
k corresponding

15



0.6

0.4

0.2

0.0

0.2

0.4

0.6
k =  0 k =  1 k =  2 k =  3

0.6

0.4

0.2

0.0

0.2

0.4

0.6
k =  4 k =  5 k =  6 k =  7

0.6

0.4

0.2

0.0

0.2

0.4

0.6
k =  8 k =  9 k =  10 k =  11

0.00 0.25 0.50 0.75 1.00
0.6

0.4

0.2

0.0

0.2

0.4

0.6
k =  12

0.00 0.25 0.50 0.75 1.00

k =  13

0.00 0.25 0.50 0.75 1.00

k =  14

0.00 0.25 0.50 0.75 1.00

k =  15

Figure 7: The vectors h0
k (orange) and h1

k (blue) of a coarse-grid Hartley basis H0 with n0 = 8 and
of a fine-grid Hartley basis with n1 = 16. They are represented on cell-centered grids of size 8 and
16 that discretize the domain [0, 1].

to n0 ≤ k < 3n0/2 are restricted to a signal with lower frequency. In conclusion, high-frequency
fine-grid basis vectors that cannot be represented on the coarse grid are thus restricted to lower-
frequency signals. Fortunately, such signals are the most damped, since they correspond to ranges
of k where ck is closer to 0.

Remark 1. Denoting C :=
[
Diag({ck}n0−1

k=0 ) Diag({−cn0+k}n0−1
k=0 )

]
∈ Rn0×2n0, the identities

eqs. (29) and (31) may be compactly recast as

PH0 =
√
2H1C

T, RH1 = H0C, HT
1 P =

√
2CTHT

0 HT
0 R = CHT

1 , (32)

where the last two identities follow from the first two by exploiting the orthogonality of H0 and H1.

We now assume that the operators F̃ℓ are symmetric, circulant matrices. Such matrices can be
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diagonalized in the Hartley basis [4] (see appendix G for the proof with the cell-centered basis), i.e.,

F̃ℓ = HℓΛℓH
T
ℓ , Λℓ := Diag({λℓ

k}
nL−1
k=0 ), for ℓ ∈ {0, 1}. (33)

This property, along with the identities in eq. (32), allows F0 := PF̃0R = PH0Λ0H
T
0 R to be

decomposed as F0 = H1MHT
1 , where M := CTΛ0C =

[
M11 M12

M21 M22

]
, with

M11 :=
√
2Diag({c2kλ0

k}
n0−1
k=0 ), (34)

M22 :=
√
2Diag({c2n0+kλ

0
k}

n0−1
k=0 ), (35)

M12 :=
√
2Diag({−ckcn0+kλ

0
k}

n0−1
k=0 ) = M21. (36)

As a consequence, eq. (28) becomes

V(µ̂MLMC
1 ) =

1

M0
∥MHT

1 G
1/2∥2F,W1

+
1

M1
∥(Λ1 −M)HT

1 G
1/2∥2F,W1

. (37)

To reduce the variance of the correction term in eq. (37), the difference between M and Λ1 needs
to be as small as possible. First, we note that the two off-diagonal blocks M12 and M21, which
are themselves diagonal matrices, contribute to increasing this difference. On the main diagonal,
i.e., in the diagonal blocks M11 and M22, scaled eigenvalues of F̃0 appear twice. To compare these
diagonal blocks to the eigenvalues of F̃1 in Λ1, further assumptions on F̃0 are required. We thus
introduce the Galerkin coarse-grid operator, which is an algebraic way of constructing the coarse-
grid operator F̃0 from the fine-grid operator F̃1, and which is widely used in multigrid methods and
their analysis [55]. Specifically, the Galerkin operator is defined as

F̃0 :=
1

2
RF̃1P ∈ Rn0×n0 . (38)

This Galerkin operator is the optimal operator in terms of minimizing ∥F̃1 − PF̃0R∥2F,W1
for

W1 = n−1
1 In1 and the grid transfer operators defined by eq. (16) (see appendix H). It follows

from eqs. (32) and (38) that the Galerkin operator F̃0 can be diagonalized in the Hartley basis as
F̃0 = H0Λ0H

T
0 with Λ0 = 1√

2
CΛ1C

T. In other words, the eigenvalues {λ0
k}

n0−1
k=0 of the Galerkin

operator F̃0 can be expressed from the eigenvalues {λ1
k}

n1−1
k=0 of F̃1,

λ0
k =

1√
2

(
c2kλ

1
k + c2n0+kλ

1
n0+k

)
, ∀k = 0, . . . , n0 − 1. (39)

The resulting blocks of M then read

M11 = Diag({c4kλ1
k + c2kc

2
n0+kλ

1
n0+k}

n0−1
k=0 ), (40)

M22 = Diag({c4n0+kλ
1
n0+k + c2kc

2
n0+kλ

1
k}

n0−1
k=0 ) = Diag({c4kλ1

k + c2k−n0
c2kλ

1
k−n0

}2n0−1
k=n0

), (41)

M12 = Diag({−c3kcn0+kλ
1
k − ckc

3
n0+kλ

1
n0+k}

n0−1
k=0 ) = M21. (42)

Using elementary trigonometric identities, we remark that ck−n0 = cn0+k−2n0 = −cn0+k. Therefore,
the main diagonal of M deviates from Λ1 by a multiplicative damping factor c4k ≤ 1 for k =
0, . . . , 2n0 − 1, on the one hand, and by the addition of a spurious, complementary eigenvalue,
though also damped by c2kc

2
n0+k < 1 for k = 0, . . . , 2n0 − 1. The off-diagonal blocks M12 and M21

introduce spurious terms that contribute to the difference Λ1 −M and thus increase the variance

17



0 8 16 24 32
k

0.00

0.25

0.50

0.75

1.00
c4

k

c2
kc2

n0 + k

|ckcn0 + k|

(a) Damping factors in M.

0 8 16 24 32
k

0.00

0.25

0.50

0.75

1.00
c12

k

c6
kc6

n0 + k

|c3
kc3

n0 + k|

(b) Damping factors in M̄.

Figure 8: Damping factors of the eigenvalues in M and M̄ as functions of k = 0, . . . , n1 − 1 with
n1 = 2n0 = 32, when using the Galerkin operator eq. (38). The black curves correspond to the
factors of the correct eigenvalues on the main diagonal, while blue curves represent the factors of
the spurious eigenvalues. The orange curves correspond to the factors of the off-diagonal blocks.

of the 2-level estimator. Note that, because these terms are to be compared with 0, the comparison
with the eigenvalues of the fine-grid operator F̃1 are of little interest, which is why we simply
consider the damping factors −

√
2ckcn0+k with respect to eigenvalues λ0

k of the coarse-grid operator
F̃0, for k = 0, . . . , n0 − 1, given by eq. (36).

The evolution with k = 0, . . . , n1 − 1 of the three damping factors is presented in fig. 8a. We
observe that the eigenvalues λ1

k associated with fine, low-frequency Hartley basis vectors, i.e., for
k close to 0 and n1 − 1 (see fig. 7), are well-represented on the main diagonal of M, since c4k ≈ 1.
At the same time, the damping factors c2kc

2
n0+k corresponding to spurious components are close

to 0, resulting in small values of the first and last few diagonal entries of the difference Λ1 − M.
In particular, we note that the first entry of M11 exactly matches that of Λ1, i.e., λ1

0, because
c0 = 1 and cn0 = 0. On the other hand, eigenvalues λ1

k associated with fine, medium- to high-
frequency Hartley basis vectors are severely damped since c4k quickly decreases to 0 as k approaches
n0 = n1/2. Spurious diagonal components are also somewhat damped by a factor c2kc

2
n0+k, which

is maximal for k ∈ {n1/4, 3n1/4}. Finally, the spurious, off-diagonal components are damped by a
factor −

√
2ckcn0+k, which is maximal for k ∈ {n1/4, 3n1/4}.

5.3 Two-level F-MLMC with linear, symmetric, circulant simulators

We now consider the filtered grid transfer operators defined in section 4.1, P̄ = S1P and R̄ = RS1,
where S1 denotes the second-order Shapiro filter defined in eq. (25). Similarly to eqs. (29) and (31),
it is possible to study the effect the filtered transfer operators on the Hartley basis vectors (see
appendix I for the derivations). For the prolongation P̄, we have

P̄h0
k =

√
2(c3kh

1
k − c3n0+kh

1
n0+k), ∀k = 0, . . . , n0 − 1. (43)

The addition of the Shapiro filter raises the damping factors ck to the power 3. The prolongated
Hartley basis vectors are thus more severely damped than they were without filtering. Again,
the most damped fine-grid basis vectors h1

k are those corresponding to k close to n0 = n1/2, i.e.,
high-frequency signals. For the restriction operator we have

R̄h1
k = c3kh

0
k, and R̄h1

n0+k = −c3n0+kh
0
k, ∀k = 0, . . . , n0 − 1. (44)
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Similar conclusions can be drawn as for the unfiltered case, but with the damping factors raised to
the power of 3, thus increasing the damping, which still affects more strongly the fine-grid, high-
frequency signals that cannot be represented on the coarse grid. Similarly to the unfiltered case
(see remark 1, identities eqs. (43) and (44) can be recast as

P̄H0 =
√
2H1C

T
3 , R̄H1 = H0C3, HT

1 P̄ =
√
2CT

3 H
T
0 HT

0 R̄ = C3H
T
1 , (45)

where C3 :=
[
Diag({c3k}

n0−1
k=0 ) Diag({−c3n0+k}

n0−1
k=0 )

]
∈ Rn0×2n0 .

The impact of filtering on the total variance of the MLMC estimator is now assessed, con-
sidering a 2-level MLMC estimator and assuming that F̃1 and F̃0 are symmetric, circulant ma-
trices. From eqs. (33) and (45), we deduce the decomposition F̄0 := P̄F̃0R̄ = H1M̄HT

1 , where

M̄ :=

[
M̄11 M̄12

M̄21 M̄22

]
, with

M̄11 =
√
2Diag({c6kλ0

k}
n0−1
k=0 ), (46)

M̄22 =
√
2Diag({c6n0+kλ

0
k}

n0−1
k=0 ), (47)

M̄12 =
√
2Diag({−c3kc

3
n0+kλ

0
k}

n0−1
k=0 ) = M̄2,1. (48)

Upon replacing F0 with its filtered counterpart F̄0, eq. (28) can be written as in eq. (37), but with M
replaced by M̄. The sparsity pattern of M̄ is identical to that of M, and its entries are similar, but
with damping factors raised to increased powers. We remark that the off-diagonal blocks M̄12 and
M̄21 have entries that are more strongly damped than those of their unfiltered counterparts, M12

and M21, as can be visualized in fig. 8 (orange plots), which contributes to reducing the off-diagonal
entries of Λ1 − M̄ compared to those of Λ1 −M.

To study more closely the diagonal entries of M̄ and compare them to the eigenvalues of F̃1 in
Λ1 we resort to the Galerkin operator defined by F̃0 := 1

2R̄F̃1P̄. This definition is inspired by the
form of eq. (38), although there is no guarantee of its optimality. Then, from eqs. (33) and (45), it
follows that the Galerkin operator F̃0 can be diagonalized in the Hartley basis as F̃0 = H0Λ0H

T
0

with Λ0 =
1√
2
C3Λ1C

T
3 , or, equivalently,

λ0
k =

1√
2

(
c6kλ

1
k + c6n0+kλ

1
n0+k

)
, ∀k = 0, . . . , n0 − 1. (49)

The diagonal blocks of M̄ thus become

M̄11 = Diag({c12k λ1
k + c6n0+kc

6
kλ

1
n0+k}

n0−1
k=0 ), (50)

M̄22 = Diag({c12n0+kλ
1
n0+k + c6n0+kc

6
kλ

1
k}

n0−1
k=0 ) = Diag({c12k λ1

k + c6k−n0
c6kλ

1
k−n0

}2n0−1
k=n0

). (51)

The conclusions are the same as for the diagonal blocks of M, but with damping factors raised
to higher powers. Consequently, the spurious eigenvalues on the main diagonal are damped more
strongly than in the unfiltered case, as can be visualized in fig. 8 (blue plots). Moreover, the
factors c8k also damp more strongly the consistent eigenvalues compared to the factors c4k of M, as
can be visualized in fig. 8 (black plots). Although the addition of filters induces a certain loss of
(mainly high-frequency) information, the spurious signals introduced by the grid transfer operators
are significantly reduced. These results suggest that, for filtering to be beneficial, a tradeoff needs
to be found between reducing the detrimental effects induced by the grid transfer operators and
degrading of the information of the original signal. The second-order Shapiro filters considered in
this paper seem to offer a good compromise. Further endeavors to study and improve the filtering
process may be pursued in future work.
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6 2D application

In this section, we again apply the filtered MLMC estimator to the variance estimation problem
described in section 2, but now considering a 2D diffusion operator and using parameter settings
more complex than those in the 1D example presented earlier. Specifically, the diffusivity field K is
now specified to be non-uniform, making the variance field also non-uniform. The considered domain
is D = (0, 1)× (0, 2) ⊂ R2. The boundary conditions are chosen periodic along both directions. The
2D diffusivity tensor field K is chosen to be diagonal and heterogeneous

K =
1

2m− 4

[
D2

11 0
0 D2

22

]
, (52)

where, for i = 1, 2, Dii : D → R represents a length-scale field in the i-th direction. As previously,
we let m = 2q = 10. We model D11 = ζ(ω1) and D22 = ζ(ω2) as two different realizations of a
2D, periodic Gaussian random field ζ over D of uniform mean µζ , and of quasi-Gaussian covariance
structure with uniform variance σ2

ζ = (µζ/5)
2 = 0.04µ2

ζ and uniform length-scale Dζ . In the
following experiments, two sets of parameters are considered for ζ, namely (µζ = 0.12, Dζ = 0.2)
and (µζ = 0.02, Dζ = 0.04). The corresponding realizations used in the subsequent experiments are
depicted in fig. 9.

(a) µζ = 0.12 and Dζ = 0.2. (b) µζ = 0.02 and Dζ = 0.04.

Figure 9: Length-scale fields D11 (top) and D22 (bottom) used in the reported experiments for the
definition of K in eq. (52), with µζ = 0.12 and Dζ = 0.2 (left), and with µζ = 0.02 and Dζ = 0.04
(right).

The diffusion operator in eq. (1) is discretized on Cartesian grids of size nℓ = nx
ℓ × ny

ℓ , with
the length-scale fields Dij discretized at edge centers, and the solution discretized at cell centers.
The finest grid considered here is composed of nL = 256 × 128 cells. Three coarser grids are used
with a uniform coarsening factor of 4, i.e., nL−1 = 128 × 64, nL−2 = 64 × 32 and nL−3 = 32 × 16.
The resulting Gram matrix on level ℓ is given by Wℓ = 2n−1

ℓ Inℓ
. The discrete operators Aℓ ∈

Rnℓ×nℓ are designed to apply to and return vectors of size nℓ whose entries are associated with cell
centers that are sorted by increasing y-coordinate first, then by increasing x-coordinate. In other
words, the entry indexed by k = inx

ℓ + j in such vectors is associated with a cell center located at
(xj , yi) ∈ R2, where xj := (j + 1/2)/nx

ℓ and yi := (i+ 1/2)/ny
ℓ , for j = 1, . . . , nx

ℓ and i = 1, . . . , ny
ℓ .

As in the 1D illustration, we are interested in the multilevel estimation of the fine discretized field
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θ = E[(ALXL)⊙ (ALXL)]. With the Cartesian ordering of the unknowns described above, the 2D
prolongation and restriction operators may be constructed as the Kronecker product of their 1D
counterpart, defined in eq. (16), in the x and y directions. The 2D grid transfer operators defined
in this manner are then related by Rℓ−1

ℓ = 1
2(P

ℓ
ℓ−1)

T, for ℓ = 1, . . . , L. Likewise, the second-order
2D Shapiro filter is defined as the Kronecker product of two 1D, second-order Shapiro filters defined
in eq. (25). The cost model is still considered linear in the number of cells, implying here that one
simulator evaluation on level ℓ is as computationally expensive as 4 simulator evaluations on level
ℓ− 1. The baseline is a crude, single-level MC (L = 0) computed with a sample of size 100; hence
the total budget is η = 100CL.

Figure 10: The top-left sub-figure shows the exact discretized field θ on level L, while the other
sub-figures depict the expectation of the single-level MC estimator (top-right), the expectation of
the 2- and 4-level MLMC estimators (middle-left and middle-right), and the expectation of the 2-
and 4-level F-MLMC estimators (bottom-left and bottom-right). The tensor field K corresponds
to µζ = 0.12 and Dζ = 0.2 (fig. 9a). The expectation is approximated from 500 estimators, each
constructed with a computational budget η = 100CL.

For a given diffusivity tensor field K, the exact discretized field θ on the finest level L is
computed explicitly as θk = (Lek)k, for k = 1, . . . , nL, where L denotes the discrete diffusion
operator defined in eq. (2) on level L and ek denotes the k-th canonical basis vector of RnL . The
top-left sub-figure of fig. 10 presents the obtained field θ for a fixed tensor field K obtained as
described above with parameters µζ = 0.12 and Dζ = 0.2. The other sub-figures represent the
expectation of the compared estimators, namely the single-level MC estimator, and the 2- and 4-
level (F-)MLMC estimators. The expectation is approximated from 500 estimators, each constructed
with a computational budget η = 100CL. These figures confirm a key property of the MC and (F-
)MLMC estimators, namely that they are unbiased. Indeed, their expectations visually coincide

21



(up to statistical error due to the estimation) with the reference, i.e., E[θ̂] = θ. Consequently, the
MSE solely consists of the variance of the estimators.

Figure 11: Variance of the MC estimator (top), of the 2- and 4-level MLMC estimators (middle-left
and middle-right), and of the 2- and 4-level F-MLMC estimators (bottom-left and bottom-right).
The tensor field K corresponds to µζ = 0.12 and Dζ = 0.2 (fig. 9a). The variance is approximated
from 500 estimators, each constructed with a computational budget η = 100CL.

Figure 11 shows the variance of the considered estimators. Although the variance of the MLMC
estimators (middle row) visually seems lower than that of the MC estimator (top row), we clearly
observe high-frequency fluctuations in the variance field, both for the 2-level (left) and the 4-level
(right) unfiltered MLMC estimators. These high-frequency components of the variance may have
significant consequences on individual estimations of θ. Indeed, while the MLMC estimations
will, on average, match the desired field (owing to the unbiasedness of the estimators), individual
estimations will be polluted by high-frequency error components because of the large high-frequency
components of the variance. The bottom row of fig. 11 demonstrates, at least visually, that the
addition of filtering effectively damps these high-frequency components. These observations are
confirmed by fig. 12, which shows the spectral decomposition of the variance in the Hartley space,
allowing for the visualization of the contribution of each scale (or frequency) to the variance. The
Hartley matrix HL used to project the 2D variance (discretized) fields onto the Hartley spectral
space is defined as the Kronecker product of two 1D Hartley matrices defined in eq. (19). The 2D
spectral variance is defined as ν = (νk)

nL−1
k=0 ∈ RnL , with

νk := 2n−1
L E[(hL

k )
T(θ̂MLMC

L − θ))2], k = 0, . . . , nL − 1, (53)

where hL
k denotes the k-th column of HL. Again, the columns of HL are re-ordered so that, in

fig. 12, the frequencies in the x and y directions increase along the associated axes, starting from
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the lower-left corner, corresponding to low frequencies (large scales). We observe that the variance
of the unfiltered MLMC estimators (middle row) clearly exhibits larger high-frequency components
than the single-level MC estimator (top row), with values of the same order of magnitude as the
low-frequency components. This not only translates into noticeable high-frequency fluctuations of
the variance field, as evidenced in fig. 11, but it may also deteriorate the overall variance, as was
the case in some instances in the 1D illustration (see section 4.2).

Figure 12: Spectral variance ν of the MC estimator (top), of the 2- and 4-level MLMC estimators
(middle-left and middle-right), and of the 2- and 4-level F-MLMC estimators (bottom-left and
bottom-right). The tensor field K corresponds to µζ = 0.12 and Dζ = 0.2 (fig. 9a). The variance is
approximated from 500 estimators, each constructed with a computational budget η = 100CL.

With the Cartesian indexing and the re-ordering of the Hartley basis vectors described earlier,
the 2D cumulative variance νcml = (νcml

k )
ny
L−1

k=0 ∈ Rny
L is computed by adding the components of the

2D spectral variance eq. (53) shown in fig. 12 in rectangle patterns starting with the bottom-left
corner. Specifically,

νcml
k =

k∑
i=0

2k+1∑
j=0

νinx
L+j , k = 0, . . . , ny

L − 1. (54)

As such, the first components of νcml represent the cumulative variance associated with the low
frequencies (large scales), while the last component νcml

ny
L−1

coincides with the total variance of the
estimator. Figure 13 presents the cumulative variance of the MLMC and F-MLMC estimators for K
corresponding to (µζ = 0.12, Dζ = 0.2) and (µζ = 0.02, Dζ = 0.04). In the first case (fig. 13a), for
both the MC, the MLMC and the F-MLMC estimators, most of the variance is concentrated in the
lower frequencies. Although the low-frequency contribution to the variance is significantly reduced
by the MLMC estimator, a non-negligible contribution of the high frequencies to the variance is
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(a) K with µζ = 0.12 and Dζ = 0.2 (fig. 9a).

0 32 64 96 128
k

0
2500
5000
7500

10000
12500
15000
17500
20000

cm
l

k

L=0 (MC)
L=1 (MLMC)
L=2 (MLMC)
L=3 (MLMC)

0 32 64 96 128
k

0

1000

2000

3000

4000

5000

6000

7000

cm
l

k

L=0 (MC)
L=1 (F-MLMC)
L=2 (F-MLMC)
L=3 (F-MLMC)

(b) K with µζ = 0.02 and Dζ = 0.04 (fig. 9b).

Figure 13: Cumulative variance of the MC estimator (L = 0) and of different MLMC estimators
(left) and F-MLMC estimators (right) with L ∈ {1, 2, 3}. The tensor field K corresponds to µζ =
0.12 and Dζ = 0.2 (top), and µζ = 0.02 and Dζ = 0.04 (bottom). The variance is approximated
from 500 estimators, each constructed with a computational budget η = 100CL.

noticeable. Adding filters reduces the error in the high frequencies, as was observed previously
in the spectral decomposition of the variance (fig. 12), but it also reduces the error on the lower
frequencies, thus leading to lower total variance. In the second case (fig. 13b), corresponding to
a tensor field K with smaller scales (see fig. 9b), the MLMC estimators deteriorate the variance
compared to the crude MC estimator. The addition of a coarser grid (L = 1) and the corresponding
grid transfer operators induce significant variance in the high-frequency components, leading to an
increased total variance. The degradation is all the more pronounced as coarser grids are added
(L = 2 and L = 3). We observe that the addition of filters mitigates these effects and allows the
F-MLMC estimators to produce an effective reduction of the variance. The addition of coarser
grids (L = 2 and L = 3) does not bring further improvement, but does not deteriorate the total
variance either. The low-frequency (large-scale) components are already well-captured by the two
finer grids. This can be explained by the fact that the spectral content of the samples is shifted
to higher frequencies. In such a case, a different grid hierarchy, starting from a finer grid, would
be more appropriate, although finer discretizations may not always be available or affordable in an
operational context. These results are summarized in terms of total variance in fig. 14.
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(a) K with µζ = 0.12 and Dζ = 0.2 (fig. 9a).
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(b) K with µζ = 0.02 and Dζ = 0.04 (fig. 9b).

Figure 14: Total variance of the MC estimator (L = 0) and of different MLMC estimators and
F-MLMC estimators with L ∈ {1, 2, 3}. The tensor field K corresponds to µζ = 0.12 and Dζ = 0.2
(left), and µζ = 0.02 and Dζ = 0.04 (right). The variance is approximated from 500 estimators,
each constructed with a computational budget η = 100CL.

7 Conclusion

In this paper, we focused on the estimation of the expectation of a discretized field using a multilevel,
MLMC-like estimator. The different fidelity levels considered are grids of different resolutions, which
requires the use of grid transfer operators in the estimator. The resulting MLMC estimator can then
be used to reduce the variance of the estimation compared to a crude MC estimator, as confirmed
with an idealized 1D problem of estimating the discretized intrinsic variance field of a diffusion-based
covariance operator. However, projecting the variance of the MLMC estimator onto a spectral space
revealed some discrepancy in the estimation of the different scales of the discretized field. In our
experiments, the MLMC estimator was still able to still achieve a lower total variance by improving
the estimation of the low-frequency (large-scale) components compared to the MC estimator, but
at the expense of degrading the estimation in the higher-frequency (smaller-scale) components.

Inspired by multigrid methods, we proposed an improvement of the MLMC estimator by adding
filtering operators, resulting in the F-MLMC estimator. Filtering out the high-frequency compo-
nents of a discretized field before restriction and after prolongation removes spurious features, thus
yielding a better estimation of both the small- and large-scale components. These improvements
significantly impact the total variance of the F-MLMC estimators, which is also reduced compared
to the MLMC estimators in our experiments. In the specific case of linear, symmetric, circulant
simulators, we quantified the effects of grid transfer and filtering operators on the total variance of
(F-)MLMC estimators, which allowed us to improve our understanding of the influence of each ingre-
dient. The proposed F-MLMC estimators were applied to the problem of estimating the discretized
intrinsic variance field of a 2D diffusion-based covariance operator with a non-uniform diffusivity
field, which relies on non-linear simulators f̃ℓ : Xℓ 7→ (AℓXℓ) ⊙ (AℓXℓ). The conclusions of these
experiments were consistent with the theoretical results derived in the spectral analysis for linear,
symmetric, circulant simulators. Specifically, F-MLMC estimators do reduce the variance in both
the low and high frequencies compared to their unfiltered counterparts, thus improving the total
variance. Even in experiments where MLMC estimators were not able to reduce (and, actually, did
deteriorate) the variance compared to a crude MC estimator, F-MLMC estimators still achieved
lower total variance.
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It should be noted that, for the particular problem of estimating discretized variance fields
considered in this paper, the proposed MLMC and F-MLMC estimators are not guaranteed to be
almost surely non-negative. Although negative estimates were not encountered in our experiments,
this is nonetheless a serious limitation of the multilevel estimators, as already pointed out for the
MLMC estimation of the variance of random variables (possibly with values in Hilbert spaces) [2].
A similar issue exists for the estimation of covariance matrices, for which multilevel estimators are
not guaranteed to be almost surely SPD [30], although advanced (but computationally expensive)
approaches have been proposed to design multilevel estimators that are SPD by construction [38,
39]. These crucial issues still constitute an open research area.

Nonetheless, the investigations conducted in this paper and the proposed F-MLMC estimator
expand the range of use of MLMC-like methods to discretized fields. In our study, the use of second-
order Shapiro filters demonstrated the benefits of applying pre- and post-smoothing at each level
of the MLMC estimators. A potential next step would be to investigate whether conditions can be
derived for selecting the grid transfer and filtering operators, similar to the conditions stated in [12]
for multigrid methods. Furthermore, extensions of the MLBLUE techniques [49, 50] to discretized
fields may allow for the derivation of optimal spectral weights for each scale component of the
discretized field to act as a post-prolongation filter [13, section 4.4], possibly in combination with
the spectral pre-restriction smoothing technique of [31]. Finally, for the specific variance estimation
problem described in section 2, sampling AX requires solving (many) systems of linear equations
of the form Mu = b, involving an SPD matrix M := W(I − ∆). In our experiments, we solved
these systems numerically using a Cholesky decomposition of M. However, for large-scale problems,
computing such a decomposition is not computationally tractable and sparse iterative methods are
typically used instead [57]. An interesting research avenue would consist of exploiting further the
hierarchical nature of MLMC techniques by combining them with multigrid iterative methods for
solving the systems of linear equations, using the same grid hierarchy, along the lines of [32, 33].

A Choice of grid transfer operators

We detail here our choice of prolongation and restriction operators. Specifically, the prolongation
operator P := Pℓ

ℓ−1 between a coarse level ℓ − 1 and the next fine level ℓ is designed such that it
satisfies the norm-preserving property given by the first identity in eq. (17). By the definition of the
weighted inner product eq. (6), this property can be recast as xT

ℓ−1P
TWℓPxℓ−1 = xT

ℓ−1Wℓ−1xℓ−1 for
all xℓ ∈ Rnℓ , which, in turn, amounts to PTWℓP = Wℓ−1. For the particular choice Wℓ = n−1

ℓ Inℓ
,

for ℓ = 0, . . . , L, this property becomes PTP = (nℓ/nℓ−1)Inℓ−1
. We note that the prolongation

operator defined in eq. (16) satisfies this property with a refinement factor nℓ/nℓ−1 = 2. Further-
more, for the variance estimation problem described in section 2 where normal random vectors
need to be restricted to coarser grids, we want the second identity in eq. (17) to hold so that the
restricted signals remain normally distributed with the same mean and variance on the coarse grids.
With a linear restriction operator R := Rℓ−1

ℓ , a zero-mean normal random vector trivially remains
a zero-mean normal random vector when restricted to a coarser grid. Importantly, we require the
restricted normal random vector to have a unit variance. To achieve this, we define R = V−1

ℓ−1P
TVℓ

as in eq. (16), which implies that

RRT = V−1
ℓ−1P

TVℓV
T
ℓ P(V−1

ℓ−1)
T = V−1

ℓ−1P
TWℓP(VT

ℓ−1)
−1 = V−1

ℓ−1Wℓ−1(V
T
ℓ−1)

−1, (55)

where the last identity holds since PTWℓP = Wℓ−1. The decomposition Wℓ−1 = Vℓ−1V
T
ℓ−1 then

implies that RRT = Inℓ−1
, and hence that the unit variance is conserved on the coarser grids.
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B Orthogonality of the Hartley matrix

We focus here on a Hartley matrix H of arbitrary size n,

(H)j,k :=
1√
n
(cosαjk + sinαjk) , αjk :=

(2j + 1)kπ

n
, ∀j, k = 0, . . . , n− 1. (56)

We have, for i, j = 0, . . . , n− 1,

(HHT)i,j =
1

n

n−1∑
k=0

(cosαik + sinαik)(cosαjk + sinαjk) (57)

=
1

n

n−1∑
k=0

[cos(αik − αjk) + sin(αik + αjk)] (58)

=
1

n

n−1∑
k=0

cos
2(i− j)kπ

n
+

1

n

n−1∑
k=0

sin
2(i+ j + 1)kπ

n
. (59)

From [21, 1.342 (1&2)], we deduce, for i, j = 0, . . . , n− 1,
n−1∑
k=0

cos
2(i− j)kπ

n
= nδij ,

n−1∑
k=0

sin
2(i+ j + 1)kπ

n
= 0, (60)

where δij denotes the Kronecker delta, thus proving that HHT = In. Similarly,

(HTH)i,j =
1

n

n−1∑
k=0

cos
(2k + 1)(i− j)π

n
+

1

n

n−1∑
k=0

sin
(2k + 1)(i+ j)π

n
, (61)

and HTH = In follows from [21, 1.342 (3&4)].

C Reordering of the Hartley basis vectors

For the plots of the spectral variance, the columns of the 1D Hartley matrix HL used in eq. (20) are
actually reordered so that they are sorted by increasing representable frequency on the corresponding
discrete grid (see fig. 7, which depicts the Hartley basis vectors without reordering). Specifically, the
new matrix with reordered columns is obtained as HLΠ, where Π = (Πj,k)

nL−1
j,k=0 is the permutation

matrix defined by Πj,2k = δj,k and Πj,2k+1 = δj,nL−k−1, for j = 0, . . . , nL− 1 and k = 0, . . . , nL/2−
1 (assuming nL is even). The 2D Hartley matrix with reordered columns is constructed as the
Kronecker product of two 1D Hartley matrices, each with reordered columns.

D Proof of eq. (27)

By linearity of the expectation operator, and denoting ẊL := XL − E[XL], we have that V(Y0) :=
E[∥Y0 − E[Y0]∥2WL

] = E[∥F0ẊL∥2WL
]. Likewise, for ℓ = 1, . . . , L, we have V(Yℓ − Yℓ−1) = E[∥(Fℓ −

Fℓ−1)ẊL∥2WL
]. Now, for any M ∈ RnL×nL ,

E[∥MẊL∥2WL
] = E[(MẊL)

TWL(MẊL)] = trE[ẊT
LM

TWLMẊL] (62)

= E[tr(ẊT
LM

TWLMẊL)] = E[tr(MTWLMẊLẊ
T
L)] (63)

= tr(MTWLME[ẊLẊ
T
L]) = tr(MTWLMG) (64)

= tr((MG1/2)TWL(MG1/2)) = ∥MG1/2∥2F,WL
, (65)
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where tr(·) denotes the matrix trace operator and G denotes the covariance matrix of XL. Fur-
thermore, assuming that WL = wInL for some w > 0, for any M ∈ RnL×nL and any orthogonal
Q ∈ RnL×nL , we have ∥QTM∥2F,WL

= tr(wMTQQTM) = tr(MTWLM) = ∥M∥2F,WL
, so that

eq. (28) follows.

E Proof of eq. (29)

For j, k = 0, . . . , n0 − 1,

(Ph0
k)2j = (Ph0

k)2j+1 = (h0
k)j =

√
2

√
n1

[
cos

(4j + 2)kπ

n1
+ sin

(4j + 2)kπ

n1

]
. (66)

Upon writing (4j + 2)kπ = (4j + 1)kπ + kπ and applying elementary trigonometric identitites,

(Ph0
k)2j =

√
2ck(h

1
k)2j +

√
2

√
n1

[
sin

kπ

n1

(
cos

(4j + 1)kπ

n1
− sin

(4j + 1)kπ

n1

)]
. (67)

Noticing that

sin
kπ

n1
= sin

(
(n0 + k)π

2n0
− π

2

)
= −cn0+k, (68)

cos
(4j + 1)kπ

n1
= cos

(
(4j + 1)(n0 + k)π

n1
− π

2

)
= sin

(4j + 1)kπ

n1
, (69)

sin
(4j + 1)kπ

n1
= sin

(
(4j + 1)(n0 + k)π

n1
− π

2

)
= − cos

(4j + 1)kπ

n1
, (70)

we conclude that (Ph0
k)2j =

√
2(ck(h

1
k)2j − cn0+k(h

1
n0+k)2j). A similar derivation allows us to show

that (Ph0
k)2j+1 =

√
2(ck(h

1
k)2j+1 − cn0+k(h

1
n0+k)2j+1), thus proving eq. (29).

F Proof of eq. (31)

For j = 0, . . . , n0 − 1 and k = 0, . . . , 2n0 − 1,

(Rh1
k)j =

1√
2
((h1

k)2j + (h1
k)2j+1) (71)

=
1√
2n1

[
cos

(4j + 1)kπ

n1
+ cos

(4j + 3)kπ

n1
+ sin

(4j + 1)kπ

n1
+ sin

(4j + 3)kπ

n1

]
(72)

=
1√
2n1

[
2 cos

(8j + 4)kπ

2n1
cos

2kπ

2n1
+ 2 sin

(8j + 4)kπ

2n1
cos

2kπ

2n1

]
(73)

=
ck√
n0

[
cos

(2j + 1)kπ

n0
+ sin

(2j + 1)kπ

n0

]
. (74)

Hence, for j, k = 0, . . . , n0 − 1, it follows immediately that Rh1
k = ckh

0
k. Furthermore,

(Rh1
n0+k)j =

cn0+k√
n0

[
cos

(
(2j + 1)kπ

n0
+ π

)
+ sin

(
(2j + 1)kπ

n0
+ π

)]
= −cn0+kh

0
k, (75)

thus proving eq. (31).
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G Symmetric circulant matrices are diagonalizable in the Hartley
basis

In this appendix, we prove theorem 2 below, which states that symmetric, circulant matrices can be
diagonalized in the cell-centered Hartley basis H defined by eq. (56). To do so, we start by recalling
or proving results on the node-centered Fourier basis F̌ ∈ Cn×n and Hartley bases Ȟ± ∈ Rn×n

defined by

F̌ := Ȟc + iȞs, Ȟ± := Ȟc ± Ȟs, (Ȟc)j,k :=
1√
n
cos

2jkπ

n
, (Ȟs)j,k :=

1√
n
sin

2jkπ

n
, (76)

where i ∈ C denotes the unit imaginary number such that i2 = −1. It is clear that Ȟc and Ȟs are
real, symmetric matrices, and hence so are Ȟ±, while F̌ is a complex, symmetric (but not Hermitian)
matrix. Furthermore, F̌ is unitary (see, e.g., [11]), i.e., F̌∗F̌ = F̌F̌∗ = In, where F̌∗ = Ȟc − iȞs is
the Hermitian transpose of F̌.

Lemma 1. Ȟc and Ȟs are such that

Ȟ2
c + Ȟ2

s = In, ȞcȞs = ȞsȞc = 0n, Ȟc1n =
√
ne1, Ȟs1n = 0n, (77)

where 0n := (0, . . . , 0)T ∈ Rn, 1n := (1, . . . , 1)T ∈ Rn, and e1 denotes the first column of In.

Proof. The first two identities follow from [4, Lemma 1], while the last two identities follow from [21,
1.342 (1&2)].

Corollary 1. Ȟ±1n =
√
ne1.

Corollary 2. Ȟ± are orthogonal, i.e., (Ȟ±)2 = In. Furthermore, Ȟ+Ȟ− = Ȟ−Ȟ+ = F̌2.

Proof. By the definitions eq. (76) and lemma 1, we have

Ȟ±1n = Ȟc1n ± Ȟs1n = Ȟc1n =
√
ne1, (78)

(Ȟ±)2 = (Ȟ2
c + Ȟ2

s)± (ȞcȞs + ȞsȞc) = Ȟ2
c + Ȟ2

s = In, (79)

F̌2 = Ȟ2
c − Ȟ2

s + i(ȞcȞs + ȞsȞc) = Ȟ2
c − Ȟ2

s, (80)

Ȟ−Ȟ+ = Ȟ2
c − Ȟ2

s + (ȞcȞs − ȞsȞc) = F̌2 = Ȟ+Ȟ−. (81)

Lemma 2. Let A = Circ(a) ∈ Rn×n be a symmetric, circulant matrix whose first column is a =
(ak)

n−1
k=0 ∈ Rn, with an−i = ai, for i = 1, . . . , n−1. Then ȞcAȞs+ ȞsAȞc = ȞcAȞs− ȞsAȞc =

0n.

Proof. Proven in the intermediary steps of the proof of [4, Theorem 1].

Theorem 1. Let A = Circ(a) ∈ Rn×n be a symmetric, circulant matrix whose first column is
a = (ak)

n−1
k=0 ∈ Rn, with an−i = ai, for i = 1, . . . , n − 1. Then Ȟ+AȞ+ = Ȟ−AȞ− = Λ, where

Λ =
√
nDiag(Ȟ+a) =

√
nDiag(Ȟ−a) =

√
nDiag(Ȟca).

Proof. The fact that Ȟ+AȞ+ =
√
nDiag(Ȟ+a) = Λ = ȞcAȞc + ȞsAȞs follows from [4, Theo-

rem 1], since symmetric, circulant matrices belong to the larger class of matrices considered in [4].
Then, from the definition of Ȟ− and lemma 2, we have

Ȟ−AȞ− = (ȞcAȞc + ȞsAȞs)− (ȞcAȞs + ȞsAȞc) = ȞcAȞc + ȞsAȞs = Λ. (82)
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Finally, from lemma 1 and corollary 1,

diag(Λ) = Λ1n = Ȟ−AȞ−1n = ȞcAȞc1n + ȞsAȞs1n =
√
nȞ−Ae1 =

√
nȞcAe1, (83)

which concludes the proof, since Ae1 = a.

Corollary 3. Let A = Circ(a) ∈ Rn×n be a symmetric, circulant matrix and let Λ be defined as in
theorem 1. Then Ȟ+AȞ− = Ȟ−AȞ+ = ΛF̌2 = F̌2Λ.

Proof. From theorem 1 and corollary 2, we have

Ȟ+AȞ− = Ȟ+AȞ+Ȟ+Ȟ− = Ȟ+AȞ+F̌2 = ΛF̌2, (84)

Ȟ−AȞ+ = Ȟ−AȞ−Ȟ−Ȟ+ = Ȟ−AȞ−F̌2 = ΛF̌2, (85)

(Ȟ+AȞ−)T = (ΛF̌2)T = F̌2Λ = Ȟ−AȞ+ = ΛF̌2, (86)

where the last row follows from the symmetry of A, Ȟ± and F̌2.

Lemma 3. H = Ȟ+C+ Ȟ−S, with C := Diag({cos kπ
n }n−1

k=0) and S := Diag({sin kπ
n }n−1

k=0).

Proof. From elementary trigonometric identities, we have

cos
(2j + 1)kπ

n
= cos

2jkπ

n
cos

kπ

n
− sin

2jkπ

n
sin

kπ

n
, (87)

sin
(2j + 1)kπ

n
= sin

2jkπ

n
cos

kπ

n
− cos

2jkπ

n
sin

kπ

n
, (88)

then lemma 3 follows.

Lemma 4. CF̌2S+ SF̌2C = 0n, where C and S are defined as in lemma 3.

Proof. From [4, Lemma 1], we have that, for j, k = 0, . . . , n − 1, (F̌2)j,k = 1 if j = k = 0 or
j+k = n, and (F̌2)j,k = 0 otherwise. Moreover, (CF̌2S)j,k = (F̌2)j,k cos

jπ
n sin kπ

n , and, by symmetry,
SF̌2C = (CF̌2S)T. Now, if j = k = 0, (CF̌2S)j,k = (SF̌2C)j,k = 0 trivially. Otherwise, if j ̸= 0,
k ̸= 0, and j + k ̸= n, (CF̌2S)j,k = (SF̌2C)j,k = 0. Finally, if j + k = n, elementary trigonometric
identities induce

(CF̌2S)j,k = cos
jπ

n
sin

(n− j)π

n
= cos

jπ

n
sin

(
π − jπ

n

)
= cos

jπ

n
sin

jπ

n
, (89)

(CF̌2S)k,j = sin
jπ

n
cos

(n− j)π

n
= sin

jπ

n
cos

(
π − jπ

n

)
= − cos

jπ

n
sin

jπ

n
, (90)

so that (CF̌2S+ SF̌2C)j,k = (CF̌2S)j,k + (CF̌2S)k,j = 0, thus completing the proof.

We are now ready to state and prove theorem 2.

Theorem 2. Let A = Circ(a) ∈ Rn×n be a symmetric, circulant matrix and let Λ be defined as in
theorem 1. Then HTAH = Λ.

Proof. Starting from the expression of lemma 3, and applying theorem 1, corollary 3 and lemma 4,
we obtain

HTAH = CȞ+AȞ+C+ SȞ−AȞ−S+CȞ+AȞ−S+ SȞ−AȞ+C (91)

= CΛC+ SΛS+CΛF̌2S+ SΛF̌2C = Λ(C2 + S2 +CF̌2S+ SF̌2C), (92)

so that HTAH = Λ(C2 + S2) = Λ since C2 + S2 = In by elementary trigonometry.
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H Proof of the optimality of the Galerkin operator

Let n1, n0 ∈ N be such that n1 > n0 > 0, and let A1 ∈ Rn1×n1 and A0 ∈ Rn0×n0 be two linear
operators. Let R ∈ Rn0×n1 and P ∈ Rn1×n0 be a restriction operator and a prolongation operator,
respectively, such that RRT = In0 and P = αRT, for some α ∈ R. We seek the operator A∗

0 that
minimizes ∥A1 − PA0R∥2F,W1

among the linear operators A0 ∈ Rn0×n0 . We restrict ourselves to
the case where W1 = wIn1 , with w > 0, so that

A∗
0 := argmin

A0∈Rn0×n0

∥A1 −PA0R∥2F,W1
= argmin

A0∈Rn0×n0

∥A1 −PA0R∥2F, (93)

where ∥ · ∥F denotes the classical (unweighted) Frobenius norm. We start by writing

∥A1 −PA0R∥2F = ∥A1 −PA0R∥2F = ∥ vec(A1 −PA0R)∥22 (94)

= ∥ vec(A1)− vec(PA0R)∥22 = ∥ vec(A1)− (RT ⊗P) vec(A1)∥22, (95)

so that eq. (93) is recast as an ordinary linear least squares problem whose solution is

vec(A∗
0) =

(
(RT ⊗P)T(RT ⊗P)

)−1
(RT ⊗P)T vec(A1) (96)

=
(
(R⊗PT)(RT ⊗P)

)−1
(R⊗PT) vec(A1) (97)

= (RRT ⊗PTP)−1 vec(PTA1R
T) = (In0 ⊗ α2In0)

−1 vec((αR)A1(α
−1P)) (98)

= α−2(In0 ⊗ In0) vec(RA1P) = α−2 vec(RA1P), (99)

thus proving that A∗
0 = α−2RA1P.

I Proof of eqs. (43) and (44)

We start by looking at the effect of the Shapiro filter on the fine Hartley basis vectors, (S1h
1
k)j =

1
4

[
(h1

k)j−1 + 2(h1
k)j + (h1

k)j+1

]
. Elementary trigonometric identities imply that, for j, k = 0, . . . , n1−

1,

cos
(2j − 1)kπ

n1
+ cos

(2j + 1)kπ

n1
= 2ck cos

2jkπ

n1
, (100)

cos
(2j + 1)kπ

n1
+ cos

(2j + 3)kπ

n1
= 2ck cos

(2j + 2)kπ

n1
, (101)

sin
(2j − 1)kπ

n1
+ sin

(2j + 1)kπ

n1
= 2ck sin

2jkπ

n1
, (102)

sin
(2j + 1)kπ

n1
+ sin

(2j + 3)kπ

n1
= 2ck sin

(2j + 2)kπ

n1
, (103)

leading to

(S1h
1
k)j =

ck
2

[
cos

2jkπ

n1
+ cos

(2j + 2)kπ

n1
+ sin

2jkπ

n1
+ sin

(2j + 2)kπ

n1

]
= c2k(h

1
k)j , (104)

where the last identity is obtained by applying the same trigonometric identities as for eqs. (100)
to (103), and thus showing that S1h

1
k = c2kh

1
k, for k = 0, . . . , n1 − 1. Then, eq. (29) implies that,

for k = 0, . . . , n0 − 1, P̄h0
k = S1Ph0

k =
√
2
[
ckS1h

1
k − cn0+kS1h

1
n0+k

]
, from which eq. (43) follows.

Furthermore, eq. (44) follows immediately from the direct application of eq. (31) to R̄h0
k = RS1h

0
k =

c2kRh0
k.
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