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Near-optimal Closed-loop Method via Lyapunov Damping for Convex Optimization

We introduce an autonomous system with closed-loop damping for first-order convex optimization. While, to this day, optimal rates of convergence are only achieved by non-autonomous methods via open-loop damping (e.g., Nesterov's algorithm), we show that our system is the first one featuring a closed-loop damping while exhibiting a rate arbitrarily close to the optimal one. We do so by coupling the damping and the speed of convergence of the system via a well-chosen Lyapunov function. We then derive a practical first-order algorithm called LYDIA by discretizing our system, and present numerical experiments supporting our theoretical findings.

Introduction

We consider the unconstrained minimization of a smooth convex real-valued and lower-bounded function f over a Hilbert space H:

min x∈H f (x).
One of the most famous algorithms for such optimization problems is Nesterov's Accelerated Gradient method (NAG) [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O 1 k 2[END_REF], which is known to achieve the optimal rate of convergence for first-order methods on convex functions with Lipschitz-continuous gradient. Among several ways to explain the efficiency of NAG, Su et al. [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights[END_REF] studied the algorithm through the lens of Ordinary Differential Equations (ODEs) and proposed the following model:

ẍ(t) + a t ẋ(t) + ∇f (x(t)) = 0, ∀t ≥ t 0 , (AVD a )
where a > 0, t 0 ≥ 0 and ∇f denotes the gradient of the smooth real-valued convex function f . Here, ẋ def = dx dt , respectively ẍ def = d 2 x dt 2 , denotes the first, resp. second, time-derivative (or velocity, resp. acceleration) of the solution x of the ODE. AVD stands for Asymptotically Vanishing Damping and relates to the coefficient a/t. NAG is obtained by (non-straightforward) discretization of (AVD a ). Conversely (AVD a ) can be seen as NAG with infinitesimal step-sizes. Following [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights[END_REF], many works studied the system (AVD a ), and notably proved that when a > 3, the function values along a solution (or trajectory) of (AVD a ) converge with the asymptotic rate o 1 t 2 to the optimal value as t → +∞ [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights[END_REF][START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF][START_REF] May | Asymptotic for a second-order evolution equation with convex potential and vanishing damping term[END_REF]. This matches the rate of NAG in the case of discrete (or iterative) algorithms [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O 1 k 2[END_REF]. We further discuss additional results for (AVD a ) and other possible choices of a later in Section 2.

The interest in the connection between ODEs (or dynamical systems) and algorithms comes from the abundance of theory and tools for analyzing ODEs and the insights that they provide for understanding algorithms. In particular, continuous-time analyses relying on Lyapunov functions can often be adapted to the discrete setting, see e.g., [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF]. In this work, we are interested in a special case of the Inertial Damped Gradient (IDG) system:

ẍ(t) + γ(t) ẋ(t) + ∇f (x(t)) = 0, ∀t ≥ t 0 , (IDG γ )
where γ is a positive function and is called "damping" by analogy with mechanics. There are two inherently different ways of designing the damping coefficient γ: the so-called open-and closed-loop manners. While obtaining fast convergence rates o 1 t 2 with open-loop damping is known, for example, when γ(t) = a t with a > 3, which exactly yields (AVD a ), we propose the first closed-loop damping that provides (IDG γ ) with near-optimal rate of convergence. Our special instance of (IDG γ ) is called (LD) and is introduced hereafter. We first discuss the problem setup in more details.

Problem setting

The damping a t in (AVD a ) depends explicitly on the time variable t, making the system nonautonomous. We say that a damping with such explicit dependence on the time t is open-loop. In contrast, a damping γ that does not explicitly depend on t is called closed-loop and makes (IDG γ ) an autonomous ODE (since the ODE is then independent of t 0 ): the feedback for the system, in terms of γ, may only depend on the state x (and its derivatives) but not explicitly on the time t. For optimization, autonomous ODEs are often preferable over non-autonomous ones, since the dependence on the time t, and hence on the initial time t 0 , is removed. For example, even though the asymptotic rate of convergence of (AVD a ) does not depend on t 0 , the trajectory does depend on the choice of t 0 : when choosing a large t 0 , the damping a/t is very small at all time and the "damping effect" is almost completely lost. We illustrate this in Figure 1 where we show how the choice of t 0 heavily influences the solution of (AVD a ). Additionally some important tools for analyzing ODEs only hold (or are simpler to use) for autonomous ODEs, see e.g., the Hartman-Grobman Theorem [START_REF] Hartman | A lemma in the theory of structural stability of differential equations[END_REF][START_REF] David M Grobman | Homeomorphism of systems of differential equations[END_REF], which relates the behavior of autonomous ODEs around their equilibrium points to that of a linear system. Another such example is the so-called ODE method [START_REF] Ljung | Analysis of recursive stochastic algorithms[END_REF][START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF], which formally states that algorithms with vanishing step-sizes asymptotically behave like solutions of corresponding ODEs.

In this work we therefore tackle the following open question:

Can one design the damping γ in (IDG γ ) in a closed-loop manner (so as to make the ODE autonomous) while still achieving the same optimal convergence rate as (AVD a )?

This question hides a circular argument that makes it hard to solve. Indeed, according to Cabot et al. [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF], a sufficient condition on γ for the convergence of the function values is that +∞ t 0 γ(t)dt = +∞. The straightforward choice is then the constant damping γ(t) = a > 0, which in (IDG γ ) yields 

f (x 1 , x 2 ) = x 4 1 + 0.1x 4 2 .
The left plot shows the evolution of the function values over time. The right plot shows the trajectories in the space (x 1 , x 2 ). Different initial times heavily affect the solution of (AVD a ), but not (LD). We approximated the solutions using NAG for (AVD a ) and LYDIA (see Algorithm 1) for (LD), both with very small step-sizes.

the Heavy Ball with Friction (HBF) algorithm [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF], known to be sub-optimal for convex functions. We therefore seek a closed-loop damping that converges to zero, but not "too fast". In the open-loop setting, the natural choice is γ(t) = a t , a > 0 because this is the fastest polynomial decay that converges to zero while being non-integrable. Further [START_REF] Attouch | Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity[END_REF] showed that any damping of the form a t β with β ∈ (0, 1) yields a sub-optimal rate. Therefore we formally seek to design a closed-loop damping γ that behaves like 1 t . Because it cannot depend directly on the variable t, our closed-loop damping γ must be built from other quantities of the system that may converge to zero, for example ∥ ẋ(t)∥. However, the rate at which such quantities converge to zero depend themselves on the choice of γ. To escape this loop of thought, we design γ using quantities that are known to behave asymptotically like 1 t in the case of (AVD a ) and investigate whether this choice of γ still gives fast convergence rates. This idea takes inspiration from [START_REF] Attouch | Fast optimization via inertial dynamics with closed-loop damping[END_REF] which used ∥ ẋ(t)∥ as damping, with a key difference that we now explain.

Our contribution

In the case of (AVD a ) with a > 3, it is known that under standard assumptions the quantity E(t) [START_REF] May | Asymptotic for a second-order evolution equation with convex potential and vanishing damping term[END_REF]. Therefore, following the aforementioned intuition, we propose a closed-loop damping defined for all t ≥ t 0 by γ(t) def = E(t). Our version of (IDG γ ) then reads:

def = f (x(t))-f ⋆ + 1 2 ∥ ẋ(t)∥ 2 (where f ⋆ def = min H f ) is such that E(t) = o 1 t 2
ẍ(t) + E(t) ẋ(t) + ∇f (x(t)) = 0, ∀t ≥ t 0 , (LD) 
and is called (LD) for Lyapunov Damping, since it will turn out later that E is non-increasing, making it a so-called "Lyapunov function" for (LD). Note that (LD) assumes the availability of the optimal value f ⋆ , we further discuss this later in Remark 4.10. Our main result is then that our system (LD) which features a closed-loop damping yields the following rate of convergence.

Theorem 1.1. Assume that f is a continuously differentiable convex function and that argmin H f ̸ = ∅.

Then, for any bounded solution x of (LD) and for any δ > 0,

f (x(t)) -f ⋆ = o 1 t 2-δ .
This means that the rate of our method is arbitrarily close to o 1 t 2 , the optimal one achieved by (AVD a ) with a > 3. To the best of our knowledge, this is the first system with closed-loop damping featuring such rate. Additionally, note that (LD) does not make use of the hyper-parameter a, whose choice is crucial in (AVD a ).

Organization

In Section 2 we review related work regarding ODEs for optimization, closed-loop damping, and known results in the open-loop case. In Section 3 we make the setting precise and show the existence of solutions to (LD). Section 4 is devoted to showing our main result. In Section 5 we derive a practical algorithm from (LD) and use it to perform numerical experiments. We finish by drawing conclusions and further discussing our results.

Related Work

ODEs for optimization. There is a long line of work in exploiting the interplay between ODEs and optimization algorithms, going back, at least, to the work of Polyak's [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] Heavy Ball with Friction (HBF) method for acceleration. As previously stated, Su et al. [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights[END_REF] linked NAG [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O 1 k 2[END_REF] to the differential equation (AVD a ), hence providing a new view on the heavily used, yet not perfectly understood algorithm. NAG is however obtained via a non-straightforward discretization of (AVD a ) since the gradient of f is evaluated at an "extrapolated point". Recently, Alecsa et al. [START_REF] Daniel Alecsa | An extension of the second order dynamical system that models Nesterov's convex gradient method[END_REF] proposed a model with "implicit Hessian", whose Euler explicit discretization yields NAG. Higher-order ODEs have also been introduced to better understand NAG: Attouch et al. [START_REF] Attouch | Fast convex optimization via inertial dynamics with Hessian driven damping[END_REF] proposed a model with "Hessian damping" based on [START_REF] Alvarez | A second-order gradient-like dissipative dynamical system with Hessian-driven damping: Application to optimization and mechanics[END_REF], while Shi et al. [START_REF] Shi | Understanding the acceleration phenomenon via high-resolution differential equations[END_REF] similarly considered higher-resolution ODEs allowing to better distinguish NAG from other (IDG γ ) systems.

Closed-loop damping. The closest work to ours is [START_REF] Attouch | Fast optimization via inertial dynamics with closed-loop damping[END_REF], which proposed a closed-loop damping of the form γ = ∥ ẋ∥ p for several values of p ∈ R. Our work builds on [START_REF] Attouch | Fast optimization via inertial dynamics with closed-loop damping[END_REF] since our damping √ E also involves ∥ ẋ∥. Yet, Attouch et al. [START_REF] Attouch | Fast optimization via inertial dynamics with closed-loop damping[END_REF] could provide counterexamples for which their systems do not achieve near-optimal rates, unlike ours. A key difference is that our damping √ E is non-increasing, while ∥ ẋ∥ may oscillate heavily. They nonetheless derived rates under additional assumptions (e.g. strong convexity or the Kurdyka-Łojasiewicz (KL) property). Lin and Jordan [START_REF] Lin | A control-theoretic perspective on optimal high-order optimization[END_REF] introduced more complex systems of closed-loop dampings relying on the gradient ∇f and the speed ẋ. This was followed by Attouch et al. [START_REF] Attouch | Fast convex optimization via closed-loop time scaling of gradient dynamics[END_REF] who considered a system that is shown to generalize the systems in [START_REF] Lin | A control-theoretic perspective on optimal high-order optimization[END_REF]. Further Attouch et al. [START_REF] Attouch | Fast convex optimization via closed-loop time scaling of gradient dynamics[END_REF] showed that their system can be interpreted as a time-rescaled gradient flow combined with so-called "time averaging" techniques. Their time-scaling is expressed in terms of the inverse of the norms of the speed ẋ and the gradient ∇f . However, the improvement achieved by time rescaling cannot carry through discretization since it amounts to following the same trajectory but faster, which for discrete algorithms would boil down to increasing the step-size, yielding numerical instabilities. Nonetheless, by combining time rescaling and time averaging, they managed to build a practical method achieving acceleration compared to the O 1 t rate of gradient flow, but still sub-optimal compared to (AVD a ). Adly et al. [START_REF] Adly | Finite time stabilization of nonlinear oscillators subject to dry friction[END_REF] proposed to replace the term γ(t) ẋ(t) in (IDG γ ) by a "non-smooth" potential. Their non-smooth potential provides the solutions of their differential inclusion with finite length and convergence to a point very close to a minimizer of f (if such a point exists). However, since the solution does not converge to the minimal value, it does not have the optimal rate that we seek.

Our damping makes use of the optimality gap f (x(t)) -f ⋆ (see Remark 4.10 for further discussion). This idea is not new and is used, for example, in the Polyak step-size

f (x k )-f ⋆ ∥∇f (x k )∥ 2 [27].
In our system (LD) the optimality gap is rather used for designing the damping γ rather than the step-size.

Open-loop damping and proof techniques. The convergence properties of (AVD a ) (and more generally (IDG γ ) in the open-loop setting) have been intensively studied. First, for (AVD a ) with a > 3, following [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights[END_REF], the convergence rate o 1 t 2 for function values and the convergence of the trajectories were proved in [START_REF] May | Asymptotic for a second-order evolution equation with convex potential and vanishing damping term[END_REF][START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF][START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF]. In the setting a < 3, [START_REF] Aujol | Optimal rate of convergence of an ODE associated to the fast gradient descent schemes for b > 0[END_REF][START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF] derived the sub-optimal rate O 1 t 2a 3

. For the critical value a = 3 only the rate O 1 t 2 is known and whether this rate can be improved to o 1

t 2
and whether the trajectories converge remains open. Rates have also been derived under additional assumptions such as the KL property [START_REF] Aujol | Optimal convergence rates for Nesterov acceleration[END_REF].

Regarding (IDG γ ), Attouch and Cabot [START_REF] Attouch | Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity[END_REF] developed general conditions for the convergence of the values and of the trajectories, which unify several results mentioned above. All these results have in common that they rely on the analysis of Lyapunov functions, like E previously introduced. We refer to [START_REF] Wibisono | A variational perspective on accelerated methods in optimization[END_REF][START_REF] Ashia C Wilson | A Lyapunov analysis of accelerated methods in optimization[END_REF] for more details on Lyapunov analyses. The proof of our main result takes inspiration from those in [START_REF] Cabot | Asymptotics for some semilinear hyperbolic equations with non-autonomous damping[END_REF] where sufficient conditions to derive optimal rates are provided. They must nonetheless be significantly adapted since some of the conditions in [START_REF] Cabot | Asymptotics for some semilinear hyperbolic equations with non-autonomous damping[END_REF] do not hold generally for closed-loop dampings like ours. We replace them by using a specific property of our system (see Lemma 4.1 hereafter). A more detailed comparison follows our main analysis in Remark 4.9.

Preliminaries and Existence of Solutions

Throughout the paper we fix a real Hilbert space H with inner product ⟨•, •⟩ and induced norm ∥•∥. We make the following assumptions on the function f . Assumption 1. The function f : H → R is (i) convex and continuously differentiable with locally Lipschitz-continuous gradient ∇f ;

(ii) bounded from below by f ⋆ def = inf H f.

We also fix an initial time t 0 ≥ 0 and initial conditions x(t 0 ) = x 0 ∈ H, and ẋ(t 0 ) = ẋ0 ∈ H. Given the setting above, we can ensure the existence and uniqueness of the solutions of (LD).

Theorem 3.1. Under Assumption 1, there exists a unique solution x to (LD) with initial conditions (x 0 , ẋ0 ) ∈ H × H and initial time t 0 ≥ 0.

The proof relies on the Picard-Lindelöf Theorem and is postponed to Appendix A.

Remark 3.2. The local Lipschitz-continuity of ∇f is only required to guarantee the existence and uniqueness of the solutions on [t 0 , +∞[ (see below), but is not used elsewhere in our analysis.

We finally recall a special case of the Landau notation for asymptotic comparison that we use heavily in the sequel. Definition 2. For any non-negative function g : R → R and ∀α ≥ 0,

g(t) = o 1 t α ⇐⇒ lim t→+∞ t α g(t) = 0.
4 Main Result: Convergence Rates for (LD)

This section is devoted to proving our main result Theorem 1.1, which states that the solution of (LD) achieves a convergence rate that is arbitrarily close to the optimal one for convex functions. First we show that E is indeed a Lyapunov function for the system (LD).

The Lyapunov function of (LD)

Throughout what follows, let x be the solution of (LD) with the initial conditions stated in Section 3.

Recall that the damping coefficient in (LD) is E(t) where for all t ≥ t 0 ,

E(t) = f (x(t)) -f ⋆ + 1 2 ∥ ẋ(t)∥ 2 .
We first show identities that are specific to (LD) and that play a crucial role in what follows. Lemma 4.1. Under Assumption 1 the solution x of (LD) is such that E is continuously differentiable for all t ≥ t 0 and

dE(t) dt = -E(t) ∥ ẋ(t)∥ 2 , (1) 
so in particular E is non-increasing. Furthermore, for all t ≥ t 0 it holds that

d E(t) dt = - 1 2 ∥ ẋ(t)∥ 2 , or equivalently, t t 0 ∥ ẋ(s)∥ 2 ds = 2 E(t 0 ) -2 E(t). (2) 
Proof. We apply the chain rule and use the fact that x solves (LD) to obtain:

dE(t) dt = ⟨∇f (x(t)), ẋ(t)⟩ + ⟨ẍ(t), ẋ(t)⟩ = ∇f (x(t)) -E(t) ẋ(t) -∇f (x(t)), ẋ(t) = -E(t) ∥ ẋ(t)∥ 2 , (3) 
which proves [START_REF] Adly | Finite time stabilization of nonlinear oscillators subject to dry friction[END_REF]. As for the second part, the chain rule and (1) imply

d E(t) dt = 1 2 E(t) dE(t) dt = - 1 2 E(t) E(t) ∥ ẋ(t)∥ 2 = - 1 2 ∥ ẋ(t)∥ 2 .
Finally, by the Fundamental Theorem of Calculus and the continuity of ẋ this is equivalent to

t t 0 ∥ ẋ(s)∥ 2 ds = 2 E(t 0 ) -2 E(t).
The function E describes a quantity which is non-increasing along the trajectory x, and note that E(t) = 0 if, and only if, f (x(t)) = f ⋆ and ẋ(t) = 0. Such a function is called a Lyapunov function for the system (LD).

Preliminary convergence results

We make the following assumptions, which are consistent with those in Theorem 1.1.

Assumption 2. We assume that

(i) argmin H f ̸ = ∅;
(ii) the solution x of (LD) is uniformly bounded on [t 0 , +∞[. Remark 4.2. Assumption 2-(ii) holds, for example, when f is coercive.

We begin our analysis by showing that the trajectory x minimizes the function f . We do so by showing that E(t) tends to zero as t → +∞. Theorem 4.3. Under Assumptions 1 and 2, E(t) converges to zero as t → +∞. This implies in particular that f (x(t)) ----→ t→+∞ f ⋆ and ∥ ẋ(t)∥ ----→ t→+∞ 0.

We make use of the following classical result to prove Theorem 4.3. Proof of Theorem 4.3. Let z ∈ argmin H f , and for all t ≥ t 0 define the so-called "anchor function"

h z (t) def = 1 2 ∥x(t) -z∥ 2 .
Then h z is twice differentiable for all t ≥ t 0 and we have:

ḣz (t) = ⟨x(t) -z, ẋ(t)⟩ . (4) ḧz (t) = ∥ ẋ(t)∥ 2 + ⟨x(t) -z, ẍ(t)⟩ (LD) = ∥ ẋ(t)∥ 2 + x(t) -z, -E(t) ẋ(t) -∇f (x(t)) = ∥ ẋ(t)∥ 2 + x(t) -z, -E(t) ẋ(t) -⟨x(t) -z, ∇f (x(t))⟩ (4) ≤ ∥ ẋ(t)∥ 2 -E(t) ḣz (t) + f ⋆ -f (x(t)), (5) 
where we used the first-order characterization of the convexity of f in the last step. So h z (t) fulfills the following differential inequality:

ḧz (t) + f (x(t)) -f ⋆ + 1 2 ∥ ẋ(t)∥ 2 =E(t) ≤ ∥ ẋ(t)∥ 2 + 1 2 ∥ ẋ(t)∥ 2 -E(t) ḣz (t),
or equivalently,

E(t) ≤ 3 2 ∥ ẋ(t)∥ 2 -ḧz (t) -E(t) ḣz (t). (6) 
We integrate (6) from t 0 to T > t 0 :

T t 0 E(t)dt ≤ 3 2 T t 0 ∥ ẋ(t)∥ 2 dt - T t 0 ḧz (t)dt - T t 0 E(t) ḣz (t)dt = 3 E(t 0 ) -E(T ) -ḣz (T ) + ḣz (t 0 ) -E(t)h z (T ) + E(0)h z (t 0 ) - 1 2 T t 0 ∥ ẋ(t)∥ 2 h z (t)dt, (7) 
where we performed integration by parts on the last integral and used Lemma 4.1. Note that by the boundedness of E and the continuity of f , f (x) -f ⋆ and ∥ ẋ∥ are uniformly bounded on [t 0 , +∞[. This implies together with Assumption 2 that h z and ḣz are uniformly bounded as well. Therefore, ḣz (T ), E(T ) and E(T )h z (T ) are uniformly bounded from above for all T ∈ [t 0 , +∞[. Further

- T t 0 ∥ ẋ(s)∥ 2 h z (s)ds ≤ 0 and ḣz (t 0
) and E(t 0 )h z (t 0 ) are constants. So the right-hand side in ( 7) is uniformly bounded from above for all T ∈ [t 0 , +∞[. Therefore we deduce that

+∞ t 0 E(t)dt < +∞. (8) 
Finally, E is non-negative and non-increasing by [START_REF] Adly | Finite time stabilization of nonlinear oscillators subject to dry friction[END_REF], so it converges to some value

E ∞ ∈ [0, E(t 0 )] as t → ∞.
Further since E is continuous we can conclude by Lemma 4.4 that lim t→+∞ E(t) = 0.

Rates of convergence for E

The proof of our main result Theorem 1.1 relies on the following lemma. Lemma 4.5. Let α ≥ 0:

If +∞ t 0 t α E(t)dt < +∞, then lim t→+∞ t α+1 E(t) = 0.
This result follows from standard calculus arguments and is proved later in Appendix B. Observe that (8) already provides us with a first rate by applying Lemma 4.5 with α = 0. Proposition 4.6. Under Assumption 1 and 2, it holds that

E(t) = o 1 t .
Since E is a sum of non-negative quantities, any convergence rate of E translates into a rate for f , hence in particular Proposition 4.6 implies f (x(t)) -f ⋆ = o 1 t . The proof of Theorem 1.1 follows similar steps as that of Theorem 4.3. The main idea is that by combining ( 8) with (2) we can improve the rate from o 1 t to o 1 t 3/2 and iteratively repeat this process. This is stated in the following theorem.

Theorem 4.7. Under Assumptions 1 and 2 for all 0 < ε < 1 2 and all n ∈ N ≥1 it holds that

E(t) = o 1 t αn-α n-1 ε , where α n def = 2 - 1 2 n-1 . (9) 
Before proving Theorem 4.7, we show that Theorem 1.1 is a direct consequence of this result.

Proof of Theorem 1.1. For any 0 < δ < 1, choose 0 < ε < δ 2 and observe that

lim n→+∞ α n = 2, hence lim n→+∞ (α n -α n-1 ε) = 2 -2ε > 2 -δ,
which shows that there exists N ∈ N ≥1 , such that α N -α N -1 ε > 2 -δ and therefore by Theorem 4.7

0 = lim t→+∞ t α N -α N -1 ε E(t) ≥ lim t→+∞ t 2-δ E(t) ≥ 0, hence lim t→+∞ t 2-δ E(t) = 0.
Finally the case δ ≥ 1 is covered by Proposition 4.6 and, as previously discussed, the following implication holds for all δ > 0:

E(t) = o 1 t 2-δ =⇒ f (x(t)) -f ⋆ = o 1 t 2-δ .
It now only remains to prove Theorem 4.7. We make use of the following lemma. The proof of Lemma 4.8 is postponed to Appendix B Proof of Theorem 4.7. Fix 0 < ε < 1 2 . We show (9) by induction over n ∈ N >1 . The case n = 1 holds from Proposition 4.6. Observe that for all n ≥ 1, we have the following:

α n -1 = 1 - 1 2 n-1 = 1 2 2 - 1 2 n-2 = α n-1 2 . ( 10 
)
Let us now assume that there exists n ≥ 1 such that:

E(t) = o 1 t αn-α n-1 ε ⇐⇒ E(t) = o 1 t αn 2 - α n-1 2 ε . (I.H.)
To proceed by induction we need to show that (I.H.) implies

E(t) = o 1 t α n+1 -αnε . ( 11 
)
To this aim, it is actually sufficient to prove that

+∞ t 0 t αn 2 -αnε E(t)dt < +∞. (12) 
Indeed, according to Lemma 4.5 if (12) holds, then

0 = lim t→+∞ t αn 2 +1-αnε E(t) (10) 
= lim

t→+∞ t α n+1 -αnε E(t),
which is equivalent to [START_REF] Aujol | Optimal rate of convergence of an ODE associated to the fast gradient descent schemes for b > 0[END_REF].

To show [START_REF] Aujol | Optimal convergence rates for Nesterov acceleration[END_REF] we multiply both sides of (6) by t αn 2 -αnε and integrate from t 0 to T ≥ t 0 :

T t 0 t αn 2 -αnε E(t)dt ≤ 3 2 T t 0 t αn 2 -αnε ∥ ẋ(t)∥ 2 dt - T t 0 t αn 2 -αnε ḧz (t)dt - T t 0 t αn 2 -αnε E(t) ḣz (t)dt. ( 13 
)
Now it only remains to show that the limit as T → +∞ of each term on the right-hand side of ( 13) is uniformly bounded from above for T ∈ [t 0 , +∞[, which will imply that the left-hand side remains uniformly bounded as T → +∞. This approach is similar to the proof of Theorem 4.3, but the key equation ( 2) allows deducing further integrability results for ∥ ẋ(t)∥ 2 by using the induction hypothesis (I.H.), which is new and specific to the system (LD). We first make the following observation using (10):

t 1+ε t 1-αn 2 +αnε E(t) = t αn 2 - α n-1 2 ε E(t) (I.H.) ----→ t→+∞ 0.
Therefore according to Definition 2, we have

1 t 1-αn 2 +αnε E(t) = o 1 t 1+ε , (14) 
and using Lemma 4.8 with g(t) =

1 t 1-αn 2 +αnε E(t) and β = 1 + ε, +∞ t 0 1 t 1-αn 2 +αnε E(t)dt < +∞. ( 15 
)
We now use [START_REF] Cabot | Asymptotics for some semilinear hyperbolic equations with non-autonomous damping[END_REF] to show the integrability of t αn 2 -αnε ∥ ẋ(t)∥ 2 , which shows the uniform boundedness of the first term on the right-hand side of (13) as T → +∞. For any T ≥ t 0 :

T t 0 t αn 2 -αnε ∥ ẋ(t)∥ 2 dt I.P.,(2) = -2t αn 2 -αnε E(t) T t 0 - T t 0 α n 2 -α n ε t αn 2 -1-αnε (-2 E(t))dt (10) = -2T αn 2 -αnε E(T ) + 2t αn 2 -αnε 0 E(t 0 ) + 2 α n 2 -α n ε T t 0 1 t 1-αn 2 +αnε E(t)dt,
where the second term is constant, the last integral is finite as T → +∞ by [START_REF] Cabot | Asymptotics for some semilinear hyperbolic equations with non-autonomous damping[END_REF] and

-2 lim T →+∞ T αn 2 -αnε E(T ) ≤ 0.
Therefore the first term in ( 13) is bounded:

+∞ t 0 t αn 2 -αnε ∥ ẋ(t)∥ 2 dt < +∞. (16) 
Looking at the second term in [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF] we have:

- T t 0 t αn 2 -αnε
ḧz (t)dt

I.P. = -t αn 2 -αnε ḣz (t) T t 0 + α n 2 -α n ε T t 0 t αn 2 -1-αnε ḣz (t)dt I.P. = -T αn 2 -αnε ḣz (T ) + t αn 2 -αnε 0 ḣz (t 0 ) + α n 2 -α n ε t αn 2 -1-αnε h z (t) T t 0 - α n 2 -α n ε α n 2 -1 -α n ε T t 0 t αn 2 -2-αnε h z (t)dt. ( 17 
)
Recall that there exists a 0

≤ M < +∞ such that ∀t ≥ t 0 h z (t) ∈ [0, M ], since by Assumption 2, x is bounded. Due to - α n 2 -α n ε >0 α n 2 -1 -α n ε <0
> 0 and αn 2 -2 -α n ε < -1, we can bound the limit of the last term in [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF] as T → +∞:

- α n 2 -α n ε α n 2 -1 -α n ε +∞ t 0 t αn 2 -2-αnε h z (t)dt ≤ -M α n 2 -α n ε α n 2 -1 -α n ε +∞ t 0 t αn 2 -2-αnε dt < +∞.
Again by boundedness of x and by the definition of ḣz we get:

-lim

T →+∞ T αn 2 -αnε ḣz (T ) C.S.
≤ lim

T →+∞ T αn 2 -αnε ∥x(T ) -z∥ ∥ ẋ(T )∥ ≤ √ M lim T →+∞ T αn 2 -αnε ∥ ẋ(T )∥ = 0.
Indeed,

0 (I.H.) = lim t→+∞ t αn-α n-1 ε E(t) = lim t→+∞ t αn-α n-1 ε f (x(t)) -f ⋆ + 1 2 ∥ ẋ(t)∥ 2 ≥ lim t→+∞ t αn-α n-1 ε ∥ ẋ(t)∥ 2 ≥ 0, hence: lim t→+∞ t αn-α n-1 ε ∥ ẋ(t)∥ 2 = 0 ⇐⇒ lim t→+∞ t αn 2 - α n-1 2 ε ∥ ẋ(t)∥ = 0 ⇒ lim t→+∞ t αn 2 - α n-1 2 ε-ε ∥ ẋ(t)∥ = 0 (10) 
⇐⇒ lim t→+∞ t αn 2 -αnε ∥ ẋ(t)∥ = 0.

To conclude that the limit T → +∞ of the right-hand side of ( 17) is bounded from above, we observe that two of the three remaining terms are constant and lim

T →+∞ α n 2 -α n ε T αn 2 -1-αnε h z (T ) = 0,
since αn 2 -1 -α n ε < 0 and h z is bounded. We finish the proof by bounding the third term of (13). For T ≥ t 0 we have:

- T t 0 t αn 2 -αnε E(t) ḣz (t)dt I.P.,(2) = -t αn 2 -αnε E(t)h z (t) T t 0 + T t 0 α n 2 -α n ε t αn 2 -1-αnε E(t) - 1 2 t αn 2 -αnε ∥ ẋ(t)∥ 2 h z (t)dt = -T αn 2 -αnε E(T )h z (T ) + t αn 2 -αnε 0 E(t 0 )h z (t 0 ) + α n 2 -α n ε T t 0 t αn 2 -1-αnε E(t)h z (t)dt - 1 2 T t 0 t αn 2 -αnε ∥ ẋ(t)∥ 2 h z (t)dt. ( 18 
)
Only the third term on the right-hand side of ( 18) is neither constant nor non-positive. Using again the boundedness of h z , it holds that:

+∞ t 0 t αn 2 -1-αnε E(t)h z (t)dt ≤ M +∞ t 0 t αn 2 -1-αnε E(t)dt (15) 
< +∞.

Hence the limit as T → +∞ of the third term of ( 13) is bounded from above as well. Therefore all limits as T → +∞ of the terms on the right-hand side of (13) are bounded from above, hence [START_REF] Aujol | Optimal convergence rates for Nesterov acceleration[END_REF] holds. By induction, we conclude that (9) holds for all n ∈ N ≥1 .

Remark 4.9. The induction step of Theorem 4.7 resembles the proof of [START_REF] Cabot | Asymptotics for some semilinear hyperbolic equations with non-autonomous damping[END_REF]Lemma 3.10]. Yet, their result is not directly applicable to (LD) because it requires the knowledge of an asymptotic lower-bound on the damping, which we do not know a priori. Furthermore, Cabot and Frankel [START_REF] Cabot | Asymptotics for some semilinear hyperbolic equations with non-autonomous damping[END_REF] showed how to iteratively repeat the application of this result but their proof relies on a strong integrability statement on ∥ ẋ(t)∥ that may not hold in general. The specific nature of our system (LD) allows us to deduce this integrability statement instead of assuming it.

Drawbacks of the approach

Now that we presented the main benefits of using a Lyapunov function as damping in (LD), we discuss some drawbacks of our approach, starting with the following remark.

Remark 4.10. Our system (LD) makes use of the optimal value f ⋆ . The latter might be unknown in general but is known in several practical cases such as over-determined regression with squared loss, or empirical risk minimization of some over-parameterized machine learning problems [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF]. We refer to [START_REF] Boyd | Subgradient methods[END_REF] for more examples and further discussion. All the results above do not require the knowledge of f ⋆ , only its existence. However Algorithm 1 presented in Section 5 is only practical when f ⋆ is known.

The second drawback of our approach is that we can lower bound the convergence rate of our damping E(t). This not surprising as the bound actually matches the sufficient condition from [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF] mentioned in the introduction.

Proposition 4.11. The convergence rate of the damping √ E of the dynamical system (LD) cannot be asymptotically faster than 1 t , i.e., there exists no α > 1 such that E(t) = o 1 t α for a non-constant bounded solution of (LD). Remark 4.12. Proposition 4.11 expresses that E can never vanish faster than o( 1 t 2 ). However, this does not mean that the convergence rate of f (x(t)) -f ⋆ can never be faster than the worst-case o( 1t 2 ); one can sometimes obtain faster convergence of function values, as we will observe in the numerical experiments.

Proof of Proposition 4.11. Assume that E(t) = o 1 t α for some α > 1, then by Lemma 4.8,

∞ t 0 E(t)dt < +∞. ( 19 
)
Let us make a similar computation as in [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF]Prop. 3.5]:

dE(t) dt + 2 E(t)E(t) (1) 
= -

E(t) ∥ ẋ(t)∥ 2 + 2 E(t) f (x(t)) -f ⋆ + 1 2 ∥ ẋ(t)∥ 2 = 2 E(t)(f (x(t)) -f ⋆ ) ≥ 0. (20) 
Multiply ( 20) by e 

Now integrate 21 from t 0 to t:

0 ≤ e 2 t t 0 √ E(s)ds E(t) -E(t 0 ) ⇐⇒ E(t) ≥ e -2 t t 0 √ E(s)ds E(t 0 ).
This implies that

lim t→∞ E(t) ≥ e -2 ∞ t 0 √ E(s)ds E(t 0 ) (19) 
> 0, which contradicts Proposition 4.3, since lim t→∞ E(t) = 0. Therefore, we conclude that

∞ t 0 E(t)dt = ∞, (22) 
and by Lemma 4.8 the limit of t α E(t) for t → +∞ does not exist or is not finite for any α > 1, hence E(t) ̸ = o 1 t α for α > 1.

5 Algorithms and Numerical Experiments

Practical algorithms from (LD)

We first detail how we discretize (LD). We use an explicit discretization with fixed step-size √ s > 0: for k ∈ N we approximate the solution x of (LD) at times t k = k √ s and define x k def = x(t k ). We use the approximations ẋ(t)

≈ x k -x k-1 √ s and ẍ(t) ≈ x k+1 -2x k +x k-1 s
. We also define the discrete version of the damping accordingly by first defining

E k def = f (x k ) -f ⋆ + 1 2 x k -x k-1 √ s 2 . ( 23 
)
and our damping then reads γ(x k , x k-1 )

def = √ E k .
Using this in (LD) we then propose the following discretization scheme for all k ∈ N:

x k+1 -2x k + x k-1 s + γ(x k , x k-1 ) x k -x k-1 √ s + ∇f (y k ) = 0 ⇐⇒ x k+1 = x k + 1 - √ sγ(x k , x k-1 ) [x k -x k-1 ] -s∇f (y k ), (24) 
where the gradient ∇f is evaluated at

y k = x k + (1 - √ sγ(x k , x k-1 )) [x k -x k-1 ]
, in the same fashion as it is done in NAG. One can optionally rather evaluate the gradient at x k .

We call the resulting algorithm LYDIA, for LYapunov Damped Inertial Algorithm, which is summarized in Algorithm 1. Algorithm 1: LYDIA input:

x 0 , x -1 ∈ R n , step-size s > 0, k max ∈ N 1 for k = 1 to k max do 2 y k ← x k + 1 - √ E k √ E 0 [x k -x k-1 ] 3 x k+1 ← y k -s∇f (y k ) 4 end
Note that compared to [START_REF] May | Asymptotic for a second-order evolution equation with convex potential and vanishing damping term[END_REF], we actually scaled the damping term

√ s √ E k by √ s √ E 0 in Algo- rithm 1.
This scaling is optional but improves numerical stability 1 as it ensures that the coefficient in front of [x k -x k-1 ] remains non-negative. More specifically, we have the following lemma that shows that E k is non-increasing under standard assumptions. Lemma 5.1. Let f be a continuously differentiable convex functions whose gradient is Lipschitz continuous with constant L > 0. Let (x k , y k ) k∈N be the sequence generated by Algorithm 1, where s < 1 L . Then, for all k ∈ N,

E k+1 ≤ E k - s 2 ∥∇f (x k ) -∇f (y k )∥ 2 . (25) 
In particular (E k ) k∈N is non-increasing, hence it is a "discrete" Lyapunov function for Algorithm 1.

Proof. Consider for any x, y ∈ H and s ∈ (0, 1/L] the following refined version of the Descent Lemma [5, Remark 5.2.]:

f (y -s∇f (y)) ≤ f (x) + ⟨∇f (y), y -x⟩ - s 2 ∥∇f (y)∥ 2 - s 2 ∥∇f (x) -∇f (y)∥ 2 . (26) 
Take y = y k and x = x k in ( 26) and subtract f ⋆ on both sides:

f (x k+1 ) -f ⋆ ≤ f (x k ) -f ⋆ + ⟨∇f (y k ), y k -x k ⟩ - s 2 ∥∇f (y k )∥ 2 - s 2 ∥∇f (x k ) -∇f (y k )∥ 2 . ( 27 
)
Observe that we have the following identities:

∥x k+1 -x k ∥ 2 = ∥s∇f (y k ) -(y k -x k )∥ 2 = s 2 ∥∇f (y k )∥ 2 -2s ⟨∇f (y k ), y k -x k ⟩ + ∥y k -x k ∥ 2 , and, (28) 
∥y k -x k ∥ 2 (1) = 1 - √ E k √ E 0 (x k -x k-1 ) 2 . (29) 
Therefore,

⟨∇f (y k ), y k -x k ⟩ = s 2 ∥∇f (y k )∥ 2 - 1 2s ∥x k+1 -x k ∥ 2 + 1 2s ∥y k -x k ∥ 2 = s 2 ∥∇f (y k )∥ 2 - 1 2s ∥x k+1 -x k ∥ 2 + 1 2s 1 - √ E k √ E 0 (x k -x k-1 ) 2 .
Substitute this in [START_REF] Polyak | Introduction to optimization[END_REF] to get

f (x k+1 ) -f ⋆ + 1 2s ∥x k+1 -x k ∥ 2 ≤ f (x k ) -f ⋆ + 1 2s 1 - E k √ E 0 (x k -x k-1 ) 2 - s 2 ∥∇f (x k ) -∇f (y k )∥ 2 . ( 30 
)
Observe that for first iteration k = 0, (30) reads

f (x 1 ) -f ⋆ + 1 2s ∥x 1 -x 0 ∥ 2 ≤ f (x 0 ) -f ⋆ + 1 2s 1 - √ E 0 √ E 0 (x 0 -x -1 ) 2 - s 2 ∥∇f (x 0 ) -∇f (y 0 )∥ 2 which is equivalent to E 1 ≤ f (x 0 ) -f ⋆ -s 2 ∥∇f (x 0 ) -∇f (y 0 )∥ 2 and therefore E 1 ≤ f (x 0 ) -f ⋆ + 1 2s ∥x 0 -x -1 ∥ 2 - s 2 ∥∇f (x 0 ) -∇f (y 0 )∥ 2 = E 0 - s 2 ∥∇f (x 0 ) -∇f (y 0 )∥ 2 . So E 1 ≤ E 0 . Let k ∈ N >0 such that ∀ 1 ≤ i ≤ k, E i ≤ E i-1
, then in particular E k ≤ E 0 and we deduce from (29) that:

1 - √ E k √ E 0 (x k -x k-1 ) 2 ≤ ∥x k -x k-1 ∥ 2 , (31) 
which simplifies [START_REF] Shi | Understanding the acceleration phenomenon via high-resolution differential equations[END_REF] into

f (x k+1 ) -f ⋆ + 1 2s ∥x k+1 -x k ∥ 2 ≤ f (x k ) -f ⋆ + 1 2s ∥x k -x k-1 ∥ 2 - s 2 ∥∇f (x k ) -∇f (y k )∥ 2 .
This is exactly (25) after using [START_REF] Ljung | Analysis of recursive stochastic algorithms[END_REF], hence by induction, [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O 1 k 2[END_REF] holds for all k ∈ N. 

Lyapunov function values E(t)

LD AVD HBF GD t 2 t 2

Numerical experiments

Methodology. We evaluate the performance of our system and empirically corroborate Theorem 1.1. We consider the following 1-dimensional test functions, defined for all x ∈ R by: Since (LD) and (AVD a ) are second-order ODEs that do not have closed-form solutions in general, we approximate them by using the LYDIA algorithm and NAG respectively, both with small step-sizes. We take a = 3.1 in NAG. We also consider Gradient Descent (GD) and the HBF algorithms mentioned in the introduction. For each test function 2 , we present the evolution of the optimality gap f (x(t)) -f ⋆ as a function of the time t. Since this value is not monotonous and may oscillate heavily, we also display the evolution of the (discretized) Lyapunov function E.

f flat (x) def = x 24 , f non-KL (x) def = 0, if x = 0; exp -1 x 2 , else, f uneven (x) def = x 3 , if x > 0; x 2 , if x ≤ 0, f contmin (x) def =      (x -ε) 2 , if x > ε; (x + ε) 2 , if x < ε; 0, else.
Results. The function f flat is a convex polynomial that is very flat around its minimizer. As discussed in [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF]Example 2.12] such polynomials of large degree allow emphasizing the worst-case bounds on the rates of convergence. Indeed, we observe on the right of Figure 2 that the rate for GD and HBF is asymptotically close to O 1 t while that of LD and (AVD a ) gets close to O 1 t 2 which empirically validates our main result Theorem 1.1. Some convex functions are not strongly convex but possess the KL property which allows deriving faster rates of convergence (as done in the closed-loop setting by [START_REF] Attouch | Fast optimization via inertial dynamics with closed-loop damping[END_REF]). Since Theorem 1.1 does not assume such a property, we evaluate the algorithms on a function that is known for not having the KL property on Figure 3. The results again match the theoretical ones. Similarly, properties such as f being even (i.e., f (-x) = f (x), ∀x) or argmin H f being a singleton can allow one to derive faster convergence results than for general convex functions. Our last-two test functions in Figures 4 and5 illustrate that the rate of (LD) also holds without such properties.

Finally, while Figures 2 and3 evidence cases where the solution of (LD) yields very fast minimization of function values, Figure 4 shows a case where (LD) is faster than GD and HBF but not as fast as (AVD a ) and Figure 5 shows a case where (LD) is behind all other methods. Nonetheless, in all cases observe that E is non-increasing and that it exhibits the rate predicted by Theorem 1.1.

Conclusions and Perspectives

We introduced a new system (LD) which, as initially intended, is independent of the choice of the initial time t 0 , unlike (AVD a ), and which does require the hyper-parameter a > 3 compared to the latter, but however assumes knowledge of the optimal value f ⋆ . We showed that it is possible to design closed-loop dampings that achieve near-optimal rates of convergence for convex optimization. The key ingredient is the coupling between the damping and the speed of convergence of the system. This yielded in particular the identity (1), specific to (LD) and essential to adapt the proofs from the open-loop to the closed-loop setting. This coupling provides a new understanding on how to choose the damping term in second-order ODEs for optimization which may prove to be useful beyond the specific cases of (LD) and (AVD a ). We provided numerical experiment corroborating our theoretical results as well as a new practical first-order algorithm LYDIA, derived from (LD), and for which we showed that E a still a (discrete) Lyapunov function.

As for future work, it remains open to know whether we can improve the rate from "arbitrarily close to optimal" to optimal (i.e., can we take δ = 0 in Theorem 1.1?). We also suspect that one can drop Assumption 2-(ii) as it is not required for (AVD a ) [START_REF] May | Asymptotic for a second-order evolution equation with convex potential and vanishing damping term[END_REF][START_REF] Ali | Asymptotics for a second-order differential equation with nonautonomous damping and an integrable source term[END_REF], but we could not yet do it in the closedloop setting. On the algorithmic side, our experiments suggest that the rate of (LD) is transferred to the LYDIA algorithm, which remains to be shown. One might also consider other discretization schemes. Finally, it is worth investigating whether one can find systems and algorithms with the same properties that do not require the optimal value f ⋆ .

Appendices A Proof of Existence and Uniqueness

This section is devoted to proving Theorem 3.1. We recall some result from the theory of ODEs.

Theorem A.1. [29, Theorem 4.2.6] (Classical Version of Picard-Lindelöf) Let H be a Hilbert space, let Ω ⊆ R × H be open. Let G : Ω → H be continuous and let (t 0 , x 0 ) ∈ Ω. Assume that there exists L ≥ 0 such that for all (t, x), (t, y) ∈ Ω we have

∥G(t, x) -G(t, y)∥ ≤ L ∥x -y∥ .
Then, there exists δ > 0 such that the initial value problem Remark A.3. Definition 3 is easily generalized to Hilbert spaces and Theorem A.2 is valid for an ODE in an infinite dimensional space as well, since the proof relies on Zorn's Lemma.

u ′ (t) = G(t, u(t)) (t ∈ (t 0 , t 0 + δ)) , u (t 0 ) = x 0 , admits a unique continuously differentiable solution u : [t 0 , t 0 + δ[ → H, which satisfies (t, u(t)) ∈ Ω for all t ∈ [t 0 , t 0 + δ[.
Proof of Theorem 3.1. We first reduce the system (LD) to an equivalent first-order system:

d dt x(t) ẋ(t) = ẋ(t) -f (x(t)) -f ⋆ + 1 2 ∥ ẋ(t)∥ 2 ẋ(t) -∇f (x(t)) def = G(t, (x(t), ẋ(t))). (32) 
We first show the claim in the case argmin H f ̸ = ∅ and later for the case argmin H f = ∅.

First, if (x 0 , ẋ0 ) ∈ argmin H f × {0}, then (x(t), ẋ(t)) ≡ (x 0 , 0) is the unique global solution, since ẍ(t) = 0 for all t ≥ t 0 . Now assume that (x 0 , ẋ0 ) ̸ ∈ argmin H f × {0} and let us check that for all t ≥ t 0 , the function

(u, v) → G(t, (u, v)) = v -f (u) -f ⋆ + 1 2 ∥v∥ 2 v(t) -∇f (u)
is Lipschitz continuous on the open set

A def = (H × H) \ (argmin H f × {0}).
The first coordinate of G is clearly locally Lipschitz continuous w.r.t. (u, v) and therefore it suffices to check that the second coordinate of G is also locally Lipschitz continuous w.r.t. (u, v) on A.

The square root function is locally Lipschitz continuous everywhere except at 0 and f (u) -f ⋆ + 1 2 ∥v∥ 2 ̸ = 0 for all (u, v) ∈ A. Therefore (u, v) ∈ A → f (u) -f ⋆ + 1 2 ∥v∥ 2 v is locally Lipschitz continuous as a product of locally Lipschitz-continuous functions. Finally ∇f is locally Lipschitz continuous by Assumption 1-(i) , hence G is locally Lipschitz continuous on A. We can now apply the Picard-Lindelöf Theorem A.1 to any open and bounded neighborhood of the initial conditions (t 0 , (x 0 , ẋ0 )) to find some δ > 0 and a unique solution (x, ẋ) to ( 32) on [t 0 , t 0 + δ[. It now remains to show that the solution exists on [t 0 , +∞[. Let T ∈ ]t 0 , +∞] be the maximal time of existence (as stated in Theorem A.2) of the solution (x, ẋ) of [START_REF] Wibisono | A variational perspective on accelerated methods in optimization[END_REF]. Assume that T < +∞, then the limits of x and ẋ(t) exist as t → T . Indeed, first note that the uniform boundedness of E implies that ẋ is bounded on [t 0 , T [ and by (LD) ẍ is bounded on [t 0 , T [ as well. Now consider a Cauchy sequence (t n ) n∈N converging to T and let m, n ∈ N. Then by the mean value Theorem we have: Then, if (x(T ), ẋ(T )) ∈ A then we can extend the solution by applying Picard-Lindelöf to an open and bounded neighborhood of ((T, (x(T ), ẋ(T ))) which contradicts the fact that T was the maximal time of existence. If (x(T ), ẋ(T )) ∈ ∂A ⊂ argmin H f × {0}, where ∂A denotes the boundary of A, then ẍ(T ) = 0 and we can extend the solution on [T, T + δ[, for some δ > 0, by taking (x(t), ẋ(t)) = (x(T ), 0). This is again a contradiction, therefore we necessarily have T = +∞.

∥x(t n ) -x(t m )∥ ≤ sup
Finally, in the case where argmin H f = ∅, we see similarly to before that G(t, (u, v)) is locally Lipschitz continuous w.r.t. (u, v) everywhere on H × H. So the Picard-Lindelöf Theorem implies the existence of a unique local solution for any initial value, which we can again extend to a global solution on [t 0 , +∞[.

B Missing Proofs of Lemmas

Proof of Lemma 4.4. Assume that there exists c > 0 such that lim t→+∞ g(t) = c, which implies the existence of t 1 ≥ t 0 such that ∀t ≥ t 1 , g(t) ≥ c 2 . Then Then note that

t α+1 E(t) ′ + (1) 
= (α + 1)t α E(t) -t α+1 E(t) ∥ ẋ(t)∥ < +∞.

(34)

Therefore by definition of the improper integral, lim t→+∞ t α+1 E(t) admits a finite limit l ∈ R ≥0 . Now, assume that l > 0, then for any ε ∈]0, l[ there exists t 1 ≥ t 0 such for all t ≥ t 1 we have E(t) > 

  with t0 = 1 AVD with t0 = 10 AVD with t0 = 1000

Figure 1 :

 1 Figure 1: Comparison of our autonomous system (LD) and the non-autonomous one (AVD a ) for different initial times t 0 on the 2D functionf (x 1 , x 2 ) = x 4 1 + 0.1x 4 2 .The left plot shows the evolution of the function values over time. The right plot shows the trajectories in the space (x 1 , x 2 ). Different initial times heavily affect the solution of (AVD a ), but not (LD). We approximated the solutions using NAG for (AVD a ) and LYDIA (see Algorithm 1) for (LD), both with very small step-sizes.

Lemma 4 . 4 .

 44 If g is a non-negative continuous function on [t 0 , +∞[ and +∞ t 0 g(t)dt is finite, then either lim t→+∞ g(t) does not exist or lim t→+∞ g(t) = 0. The proof of Lemma 4.4 is postponed to Appendix B. We now prove Theorem 4.3.

Lemma 4 . 8 .

 48 Let g be continuous and non-negative on [t 0 , +∞[. Then for any β > 1, lim t→+∞ t β g(t) exists and is finite =⇒

Figure 2 :

 2 Figure 2: Rate of convergence of LD, AVD, HBF and GD on the test-function f flat . Left: Evolution of the function values. Right: Evolution of the Lyapunov function.

Figure 3 :

 3 Figure 3: Rate of convergence of LD, AVD, HBF and GD on the test-function f non-KL . Left: Evolution of the function values. Right: Evolution of the Lyapunov function.

Figure 4 :

 4 Figure 4: Rate of convergence of LD, AVD, HBF and GD on the test-function f uneven . Left: Evolution of the function values. Right: Evolution of the Lyapunov function.

Figure 5 :

 5 Figure 5: Rate of convergence of LD, AVD, HBF and GD on the test-function f contmin . Left: Evolution of the function values. Right: Evolution of the Lyapunov function.

Definition 3 .

 3 [START_REF] Philip | Ordinary differential equations[END_REF] Definition 3.20] Let ϕ : I → R n , n ∈ N, be a solution to an ODE defined on some open interval I ⊂ R.(a) We say ϕ admits an extension or continuation to the right (resp. to the left) if, and only if, there exists a solution ψ : J → R n to the same ODE, defined on some open interval J ⊃ I such that ψ| I = ϕ and sup J > sup I (resp. inf J < inf I)An extension or continuation of ϕ is a function that is an extension to the right or an extension to the left (or both).(b) The solution ϕ is called a maximal solution if, and only if, it does not admit any extension in the sense defined in (a). Theorem A.2. [26, Theorem 3.22] Every solution ϕ 0 : I 0 → R n to some ODE, defined on an open interval I 0 ⊂ R, can be extended to a maximal solution of this ODE.

  s∈]t 0 ,T [ ∥ ẋ(s)∥ |t n -t m | , and ∥ ẋ(t n ) -ẋ(t m )∥ ≤ sup s∈]t 0 ,T [ ∥ẍ(s)∥ |t n -t m | . Therefore (x(t n ))n∈N and ( ẋ(t n )) n∈N are Cauchy sequences which implies that lim t→T x(t) and lim t→T ẋ(t) exist.

+∞ t 0 g

 0 (t)dt < +∞.Proof of Lemma 4.5. Denote the positive and negative parts of a function g by[g(•)] + def = max(g(•), 0) and [g(•)] - def = max(-g(•), 0) ≥ 0, so that ∀x ∈ H, g(x) = [g(x)] + -[g(x)] -.

  Definition 1. A function x : [t 0 , +∞[→ H, which is twice continuously differentiable on ]t 0 , +∞[ and continuously differentiable on [t 0 , +∞[, is called a (global) solution or trajectory to (IDG γ ), resp. (LD), if it satisfies (IDG γ ), resp. (LD), for all t > t 0 and satisfies the initial conditions previously mentioned.

  l-ε t α+1 . Then, which contradicts the integrability assumption on t α E(t). Then for any ε > 0 we can find t 1 ≥ t 0 such that ∀t ≥ t 1 ,

	+∞ t 0	t α E(t)dt ≥	+∞ t 1	t α E(t)dt >	+∞ t 1	t α l -ε t α+1 dt = (l -ε)	+∞ t 1	1 t	dt = +∞,
	Proof of Lemma 4.8. Let l						
								g(t) ≤	(l + ε) t β .
	Therefore,								
	+∞ t 0	g(t)dt =	t 1 t 0	g(t)dt	+	+∞ t 1	g(t)dt ≤ I + (l + ε)	+∞ t 1	1 t
				def = I<+∞			

def

= lim t→∞ t β g(t) ≥ 0. β dt < +∞, since β > 1, which proves the result.

An alternative to scaling is to choose s so that √ s √ E 0 ≤ 1.

Some of these functions do not have a globally Lipschitz continuous gradient which could cause numerical instabilities. We overcome this by using small-enough step-sizes to ensure boundedness of the iterates of all the algorithms considered.
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