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Singularity Removal for 3D Elliptic Problems with

Variable Coefficients and Line Sources

E. Bejaoui* F. Ben Belgacem�

December 12, 2023

Abstract

Three dimensional elliptic problems with variable coefficients and line Dirac sources arise
in a number of fields. The lack of regularity on the solution prompts users to turn towards
alternative variational formulations. Rather than using weighted Sobolev spaces, we prefer
the dual variational formulation written in the Hilbertian Lebesgue space, the one used by G.
Stampacchia [Séminaire Jean Leray, 1964]. The key work is to show a singular/regular expansion
where the singularity of the potential is fully expressed by a convolution formula, based on the
Green kernel of the Laplacian. The correction term restores the boundary condition and fits with
the standard variational formulation of Poisson equation (in the Sobolev space H1). We intend
to develop a thorough analysis of the proposed expansion while avoiding stringent assumptions
on the conductivities. Sharp technical tools, as those developed in [E. Di-Giorgi, Mem. Accad.
Sci. Torino. 1957] and [N. G. Meyers Ann. Scuo. Norm. Sup. Pisa, 1963], are necessary in the
proofs.

keywords: Dirac line sources, variable conductivity, weak variational formulation, singular-regular

expansion.

1 Introduction

Let Ω be a bounded connected domain in R
3, with a Lipschitz-continuous boundary Γ = ∂Ω. The

generic point in Ω is denoted by x and the generic point on Γ by τ , while n stands for the unit

normal vector to Γ which is outward to Ω.

The elliptic problem to deal with consists in finding a potential field ϕ(·) created by a linear Dirac

source f(·): find ϕ ∈ ? such that

−div (a∇ϕ) = f in Ω,

ϕ = 0 on Γ.
(1)
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The conduction parameter a(·) is a bounded space-varying positive coefficient. To ensure the

coerciveness of the problem (possibly in H1
0 (Ω)), it is taken positively bounded from below away

from zero, that is (α is a given real-number),

0 < α ≤ a(x) ≤ α∗(= ‖a‖L∞(Ω)) <∞, ∀x ∈ Ω. (2)

The line Dirac source is supported by γ = (γ(t) = s(t))t∈I=[0,ℓ], a parameterized compact curve

strongly contained in Ω. This curve is simple, in the sense that the map γ(·) is injective. It can

be a closed line, the parameterization is hence periodic. We have γ(0) = γ(ℓ) and so to preserve

injectivity, the extreme-point ℓ is excluded from I and then I = [0, ℓ[. We consider that it is a

Lipschitz manifold: the function t 7→ γ(t) is a lipeomorphism mapping I into the curve γ ⊂ R
3,

meaning that γ(·) as a function and its inverse γ−1(·) are both Lipschitzian. This class of curves

accept angular points. Finally, we choose t as the curvilinear abscissa, then the tangent vector

γ′(·) is hence unitary that is |γ′(t)| = 1 and ℓ is the length of γ (see [29]). The linear Dirac data is

denoted as f(·) = λ(·)δγ , it is defined as the measure : ∀ψ ∈ C (Ω),

〈f, ψ〉γ :=

∫

I
λ(t)ψ(s(t)) dt =

∫

γ
λ(s)ψ(s) ds. (3)

The first integral stands for the rigorous mathematical definition of the curvilinear integral (see

[29]). However, writing the second form will be preferred for its commodity.

The support of the Dirac measure is the curve γ, representing for instance a loaded fiber or a wire,

and the density is λ(·). That we consider a single ‘connected’ curve for the source is by no means

restrictive. The overall study is readily extended to more than a single linear source.

Models such as (1) may be encountered in growing number of fields : solid and fluid mechanics,

physics or biomathematics. Fractures in three dimensional porous media can mathematically be

driven by linear sources (see [23, 14]). Computing electric and magnetic fields from power transmis-

sion lines is of a common concern [27], the source are the electric wires. Is also of a great importance

the noise propagation that may be radiated by pointwise or linear sources in traffic acoustic models

[20] (roads, railways . . . ). Optimal control of elliptic/parabolic equations with some particular ob-

servations, supported by curves, are another example for line sources [7]. Coupled 1D-3D equations

governed by problems similar to (1) are recurrent in biomathematics : coupling between blood flow

and tissue perfusion [9], drug administration by micro-circulation [28]. We shall stop here. A quite

rich bibliography, though certainly not exhaustive, is provided in the introduction of [17]. Readers

interested in the subject are recommended to browse that paper. Therein, additional references

can be found on the computational approximation methods applied to models similar to (1) so as

their numerical analysis. We limit ourselves to the most recent references (see [24, 16, 21, 15]).

At last, the analysis carried out here has an important mathematical interest of its own. In fact,

it is a compelling intermediary step for the study of non-linear equations when the conductivity is
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also dependent on the potential ϕ(·) itself, that is a = a((·), ϕ(·)).

A singular/regular expansion of the solution ϕ is the purpose. The singular contribution is

expressed by a mathematical formula while the correction is solution to a regular elliptic problem

set in H1(Ω). The particular feature and source difficulty is that the conductivity a(·) is space-

dependent. This is in a way the continuation of [3], where the data was a point-wise Dirac sources.

As will be seen later on, results in there are the starting block of the analysis undertaken here.

The paper is outlined as follows. Section 2 lays the ‘weakened’ variational framework, the foun-

dation of the analysis of problem (1). The solution is sought for in the Lebesgue space L2(Ω).

Di-Giorgi continuity result is central to the well posedeness (see [11, 1957]). The singular/regular

expansion, the key result, is provided and a first assessment is presented in Section 3. The math-

ematical full justification of that expansion is the subject of Section 4. Bochner’s integrals is the

chief tool we use (see [5, 1933]). In Section 5, assumptions on the conductivity are softened to

include a larger class of conductivities for which the expansion is still valid. Another regularity

result by N. G. Meyers is at the chief tool of this generalization (see [25, 1963]). At last, Section 7

presents some analytical examples and a numerical experimentation.

Notations — The Lebesgue space L2(Ω) of square integrable functions is endowed with the natural

norm ‖ · ‖L2(Ω). We need some Sobolev spaces, H1(Ω) involves all the functions that are in L2(Ω)

so as their partial derivatives. The subspace containing the functions in H1(Ω) that vanish on Γ is

denoted by H1
0 (Ω). The set of the traces over Γ of all the functions of H1(Ω) is denoted H1/2(Γ)

and H−1/2(Γ) is its dual (see [2]). For a positive real-number ν < 1, we need the Sobolev space

W ν,∞(Ω) =
{

χ ∈ L∞(Ω), |χ|W ν,∞ = sup
x,y∈Ω

|χ(x)− χ(y)|
|x− y|ν <∞

}

.

It is denoted Lipν(Ω) the set of ν-Lipschitzian functions (see [32], especially for the particular

density properties). It coincides also with the Hölder space generally denoted C 0,ν(Ω). If endowed

with the natural norm ‖ · ‖W ν,∞ = ‖ · ‖L∞(Ω) + | · |W ν,∞ , it has a Banach structure.

The symbol [·] stands for the jump across a given boundary. Notice that for ν ∈]0, 1[, we use the

symbol (ν)− to point out any of the real numbers < ν, generally close to ν. The symbol (ν)+ is a

given real number > ν.
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2 Dual Variational Formulation

Functions in H1(Ω) may not have traces on the curve γ(1). An important fact is that the data

f in (3) switches off the H1(Ω)-Sobolev functional framework. An alternative to study (not to

solve!) problem (1) is a weaker framework. The regularity to prescribe to the solution ϕ(·) is lower
and the dual variational formulation is obtained by transposition (see, eg, [30]). Before coming to

the details, we recall that if the Dirac measure f(·) is replaced by a data F ∈ L2(Ω), the unique

solution denoted now rF , belongs to H
1(Ω), with (rF )|Γ = 0 and is such that

∫

Ω
a∇rF∇ψ dx =

∫

Ω
Fψ dx, ∀ψ ∈ H1

0 (Ω). (4)

If no further regularity is introduced on a(·), that is it simply belongs to L∞(Ω), the pioneering

work by Di-Giorgi in [11] (see also [26]) establishes that rF (·) enjoys a Hölderian continuity. We

refer to [6, Theorem 9.34] for the following lemma.

Lemma 2.1 (Di Giorgi, 1957) Assume F ∈ L2(Ω). Then, the solution rF (·) to Problem (4) is

Hölderian. There exists ν ∈]0, 1[ such that

‖rF ‖C0,ν(Ω) ≤ C‖F‖L2(Ω). (5)

The real ν and the constant C depend both upon the parameter a(·).

In complement, we need another useful result established by N. G. Meyers (see [25]). Therein

is stated that rF (·) belongs in fact to more regular Sobolev spaces. The lemma below is found in

[13, Theorem 1].

Lemma 2.2 (Meyers, 1963) Assume F ∈ L2(Ω). Then, there exists p∗ > 2 such that for all p

with 2 < p < p∗, the solution rF (·) belongs to W 1,p(Ω) and

‖rF ‖W 1,p(Ω) ≤ C‖F‖L2(Ω). (6)

The threshold number p∗ depends upon the ellipticity parameter a(·). The constant C is dependent

on p and on α.

The derivation of the variational formulation for (1) relies on a duality argument (see, eg,

[22]). Let F (·) be a test function in L2(Ω) and rF (·) be the unique solution to problem (4). The

transposition implies the following equation : find ϕ in L2(Ω) such that
∫

Ω
ϕ(x)F (x) dx =

∫

γ
λ(s)rF (s) ds, ∀F ∈ L2(Ω). (7)

By Lemma 2.1, rF (·) is continuous and the duality pairing in the right hand side makes sense.

1Despite the fact that the function ln(ln(r)), where r =
√

(x1)2 + (x2)2, belongs to H1
loc(R

3), it has not a trace
along the x3-axis.
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Lemma 2.3 Assume that λ ∈ L2(γ). Then, problem (7) has a unique solution ϕ ∈ L2(Ω) with

‖ϕ‖L2(Ω) ≤ C‖λ‖L2(γ).

Proof: The linear form

F 7→ 〈f, rF 〉 =
∫

γ
λ(s)rF (s) ds,

is continuous on L2(Ω). Indeed, according to the Di-Giorgi stability (5), we have that

〈f, rF 〉 ≤ C‖λ‖L2(γ)‖rF ‖C (γ) ≤ C‖λ‖L2(γ)‖F‖L2(Ω).

Existence and uniqueness are ensured by the Riesz representation Theorem. The proof is complete.

Remark 2.1 The data f(·) may be a Borel measure on the curve γ. It belongs then to the dual

space of C (γ) and may be even in (C 0,ν(γ))′, according to Lemma 2.1.

The elliptic regularity shows that the solution ϕ(·) falls short to be in H1(Ω). Given that f(·)
is in H(−1)−(Ω), the proof of the following result can be obtained by Hilbertian interpolation, as in

[18].

Lemma 2.4 The solution ϕ(·) belongs to H(1)−(Ω) with

‖ϕ‖
H(1)

− (Ω)
≤ C‖λ‖L2(γ).

The constant C blows up if (1)− (= 1− ̺, for arbitrarily small ̺ > 0) tends to 1.

When numerical approximations of problem (1) are intended, formulation (7) is of no practical

use. Indeed, the linear form involved in there can hardly be implemented, problem (4) would be

repeatedly solved to get rF (·). This is highly expensive. A possible argument to circumvent this

defect is to proceed following [3] (see also [30]). Extract the singular part in the potential ϕ(·)
and then compute the correction as the solution of a discretized Poisson problem set in H1(Ω).

Of course, the process is operative and successful if we provide an explicit formula for the singular

contribution to the solution.

To get a first insight on how to work out the expansion, consider a conductivity a(·) defined on

the open space R
3, while still fulfilling (2). Denote by Ga((·), s) the fundamental solution of the

operator Aa = −div (a∇(·)) in R
3. Then, setting,

Ka(·) =
∫

γ
λ(s)Ga((·), s) ds,

it is readily checked out that Aa(Ka) = f , in R
3 (see [22]). The potential ϕ(·) solution of (7) can

hence be split up into singular/regular contributions according to

ϕ(·) = Ka(·) + χa(·). (8)
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The correction χa(·) lies in H1(Ω), takes care of the boundary condition through χ|Γ = −Ka(·)
and is solution to the Laplace equation (4) (with f = 0). Doing so requires a closed form of

Ga((·), s), most often out of access. More, it is a bivariate Green function, not convolutional

Ga((·), s) 6= Ga((·) − s), when a(·) is space-dependent. Its computation will be consequently too

expensive.

Earlier research have been engaged to derive expansions similar to (8), for pointwise Dirac

sources in [3] (see [33, 4, 10]) and for linear sources in three dimensions [17, 15] and references

therein. For the line sources, assumptions on the smoothness of the conductivity, more or less

restrictive, have been introduced in most of those papers. The generality we have in mind needs

to release some of them and reduces the others. We pursue the extension of the analysis achieved

in [3], and to write down an alternative expansion to (8) by means of the more advantageous con-

volutional Green function G1((·), s) = G((·)− s) of the Laplace operator (A1 = −∆(·)) (instead of

Ga((·), s)).
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3 The Singular-Regular Splitting

In spite of its mathematical value, formula (8) does not bring any numerical advantage. An afford-

able remedy consists in operating some changes to it. This is why we extend to our problem the

ideas developed in [3] and undertake the analysis to come up with the desired new expansion. To

be specific, we aim to check out the following decomposition

ϕ(x) =

∫

γ

λ(s)

a(s)
G(x− s) ds+ χ(x) =

∫

γ
K(s,x) ds+ χ(x) = K(x) + χ(x), ∀x ∈ Ω. (9)

The notation K(s, (·)) and K(·) are obvious. The correction is there to account for the boundary

condition and will be hopefully solution to the ’regular’ Poisson problem : find χ ∈ H1(Ω) such

that
−div (a∇χ) = div g in Ω,

χ = −K on Γ.
(10)

The data g in (10) is provided by the integral

g(x) =

∫

γ
g(s,x) ds =

∫

γ

λ(s)

a(s)
(a(x)− a(s))∇G(x− s) ds, ∀x ∈ Ω. (11)

The preliminary action is to show, under minimal assumptions on the parameter a(·), that the

correction χ(·) lies in H1(Ω) and is spared from any singularity.

Accordingly, and from now on, the terminology regular/singular will qualify functions that are/are

not in H1(Ω).

The objects introduced above have to make a mathematical sense. The singular function K(·)
is the opening step. For K(·) to be defined, the least to expect is that the trace of a(·) on γ be

determined. We therefore assume in the subsequent that a(·) is continuous at a vicinity ωγ of the

curve γ.

Lemma 3.1 Assume that a ∈ C (ωγ) and λ ∈ L2(γ). The singularity K(·) in formula (9) is well

defined, in the sense that

K(·) =
∫

γ

λ(s)

a(s)
G((·)− s) ds ∈ L2(Ω).

Proof: The integral can be understood either in the sense of Bochner integrals or equivalently in

the almost everywhere sense (as in Fubini’s theorem) (see [31]).

The function to integrate

s 7→ K(s, (·)) = λ(s)

a(s)
G((·)− s),

can be viewed as a function with values in L2(Ω). In [31, Chapter 5], appropriate tools are proposed

to assess the existence of K(·) as an integral in L2(Ω) (see also [12]). One needs simply to show

that K(s, (·)) is absolutely integrable on γ or stronger (more useful!), that it is square integrable
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(in L2(γ, L2(Ω))). To do so, let R be the diameter of Ω, meaning that R = sup
x,y∈Ω |x− y|. Then

for all s, the inclusion Ω ⊂ B(s, R) implies the bound

‖G((·)− s)‖2L2(Ω) =

∫

Ω
(G(x− s))2 dx ≤ 1

(4π)2

∫

B(s,R)

1

|x− s|2 dx =
R

4π
.

Switching to the spherical coordinates system with the origin at point s, the calculations become

straightforward. Back to the integral of interest, we get that

∫

γ
‖K(s, (·))‖2L2(Ω) ds ≤ R

α2
‖λ‖2L2(γ).

According to [31, Lemma 5.21], we conclude that the integral over γ is well defined in L2(Ω) with

‖K‖L2(Ω) ≤
∫

γ
‖K(s, (·))‖L2(Ω) ds ≤ C‖λ‖L2(γ).

The constant can be fixed to C =
√
Rℓ
α . The proof is complete.

Remark 3.1 The continuity assumption on a(·) is made for simplicity. It may be weakened to a

piecewise continuity for instance. It may be changed into a ∈W 1,p(ωγ) with p > 2 so that the trace

a|γ ∈ Lp(γ).

The study of the elliptic problem (10), for the corrector χ(·), is subordinated to the statement

χ = −K|Γ for the Dirichlet condition. We need thus to corroborate that K|Γ belongs to H1/2(Γ).

Lemma 3.2 Assume that a ∈ C (ωγ) and λ ∈ L2(γ). There holds that

‖K‖H1/2(Γ) ≤ C‖λ‖L2(γ).

Proof: The kernel K(·) belongs to H1
loc(Ω

′) provided that Ω
′ ⊂ R

3 \ γ. The proof is thus

straightforward by means of the trace theorem.

We turn to the data g(·). Further smoothness is mandatory on the conductivity. Assume (only

for a while) that a ∈ W ̺,∞(ωγ) with ̺ > 1/2. Define the distance d > 0 that separates γ from

Ω \ ωγ , then we set

‖a‖̺,∞ = max(‖a‖W ̺,∞(ωγ), d
−̺‖a‖L∞(Ω)).

Therefore, it is easily seen that

|a(x)− a(s)| ≤ ‖a‖̺,∞|x− s|̺, ∀(x, s) ∈ Ω× γ. (12)

Lemma 3.3 Assume that a ∈ W ̺,∞(ωγ), for ̺ > 1/2 and λ ∈ L2(γ). Then g(·) defined in (11)

belongs to (L2(Ω))3 and

‖g‖(L2(Ω))3 ≤ C‖λ‖L2(γ).
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Proof: We need to know whether s 7→ ‖g(s, (·))‖(L2(Ω))3 belongs to L2(γ). We start by observing

that

‖(a(·)− a(s))∇G((·)− s)‖2(L2(Ω))3 ≤ 1

(4π)2

∫

B(s,R)

|a(x)− a(s)|2
|x− s|4 dx.

Owing to (12) we get

‖(a(·)− a(s))∇G((·)− s)‖2(L2(Ω))3 ≤
‖a‖2̺,∞
(4π)2

∫

B(s,R)
|x− s|−4+2̺dx.

Resorting again to the spherical coordinates we state

‖(a(·)− a(s))∇G((·)− s)‖(L2(Ω))3 ≤ ‖a‖̺,∞R̺−1/2

√

̺− 1/2
.

Processing following the line of the previous proof, we conclude to

‖g(·)‖(L2(Ω))3 ≤
√
ℓ‖g(s, (·))‖L2(γ,L2(Ω)3) ≤

√
ℓ

α

(

R̺−1/2

√

̺− 1/2

)

‖a‖̺,∞‖λ‖L2(γ) ≤ C(̺)‖λ‖L2(γ).

The dependence upon (R, ̺) is kept there on purpose. Accordingly, ̺ cannot be 1/2 nor can R be

infinity. The result is stated.

Lemma 3.4 Assume that a ∈ W ̺,∞(ωγ), for ̺ > 1/2 and λ ∈ L2(γ). Problem (10) has a unique

solution χ ∈ H1(Ω) with

‖χ‖H1(Ω) ≤ C‖λ‖L2(γ).

Proof: The variational formulation of (10) reads as: find χ ∈ H1(Ω) with χ|Γ = −K and such that

∫

Ω
a∇χ∇ψ dx = −

∫

Ω
g∇ψ dx, ∀ψ ∈ H1

0 (Ω). (13)

The result is directly deduced from the estimates in Lemmas 3.2 and 3.3. The proof is complete.

All ingredients are at our disposal to assess the expansion (9) for some regular conductivities.

The result will be extended later on to a wider class of conductivities.

Proposition 3.5 Assume that a ∈ W ̺,∞(ωγ), for ̺ > 1/2 and λ ∈ L2(γ). Let ϕ ∈ L2(Ω) be the

solution of problem (7). Then, expansion (9) holds true.

9



4 From Pointwise to Linear Sources

The mathematical proof of of Proposition 3.5 and then the expansion (9) is the purpose. As

suggested earlier, the basic tool comes from the representation of the linear source as a dense cloud

of point-wise Dirac sources. For each point source, we use the singular-regular expansion shown in

[3, Proposition 3.2], before going back to the linear sources, by practicing a summation. In a way

we start from the following integration (in the distributional sense)

〈f, rF 〉γ =

∫

γ
λ(s)〈δx−s, rF 〉 ds =

∫

γ
λ(s)rF (s) ds, ∀F ∈ L2(Ω).

Before stepping any further, let (s, λ(s)) ∈ γ × R be given. We consider then problem (1), where

the data is radiated by the pointwise Dirac source (λ(s)δx−s). The variational problem can be

expressed analogously to (7) : find ϕ(s) in L2(Ω) such that

∫

Ω
ϕ(s,x)F (x) dx = λ(s)rF (s), ∀F ∈ L2(Ω). (14)

That (14) has only one solution is established in [3, Lemma 2.2] and we have that

‖ϕ(s)‖L2(Ω) ≤ C|λ(s)|. (15)

It is of prime importance to notice that the constant C is the very constant of Lemma 2.1, is uni-

versal and does not depend neither on s nor on λ(s). The process to be permanently used shows

finally how to derive, by an integration argument, the solution of (7) from the one of (14).

Lemma 4.1 Assume that λ ∈ L2(γ). Then, the solution ϕ(·) of problem (7) is given by the

Bochner integral

ϕ(·) =
∫

γ
ϕ(s, (·)) ds ∈ L2(Ω).

Proof: For the existence of that integral almost everywhere, showing that the bivariate function

(s,x) 7→ ϕ(s,x) is square integrable (and therefore absolutely integrable) in γ ×Ω is enough. The

stability identity (15) implies that

∫

γ
‖ϕ(s)‖2L2(Ω) ds ≤ C‖λ‖2L2(γ).

Denote for a while ψ ∈ L2(Ω) that integral. Integrating the variational problem (14), with respect

to s, and using Fubini theorem yields

∫

Ω
ψF dx =

∫

γ
λ(s)rF (s) ds = 〈f, rF 〉γ , ∀F ∈ L2(Ω).

This tells that ψ(·) satisfies problem (7). The uniqueness concludes to the equality ψ(·) = ϕ(·).
The proof is complete.
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According to [3, Proposition 3.2], provided that a ∈ W ̺,∞(ωγ) with ̺ > 1/2, we have the

following

ϕ(s, (·)) = λ(s)

a(s)
G((·)− s) + χ(s, (·)) = K(s, (·)) + χ(s, (·)), ∀s ∈ γ. (16)

The correction term χ(s, (·)) belongs toH1(Ω), to which the Dirichlet boundary condition χ(s, (·)) =
−K(s, (·))|Γ is prescribed and fulfills the regular variational formulation,

∫

Ω
a∇χ(s, (·))∇ψ dx = −

∫

Ω
g(s, (·))∇ψ dx, ∀ψ ∈ H1

0 (Ω). (17)

The data g(s, (·)) is defined as in (11).

The aim is twofold, the derivation of (9) from (16) and then the discussion about the conductivity

assumption to hopefully weaken it as far as possible.

Proof of Proposition 3.5: Integrate (16) over γ, and using results of Lemmas 3.1 and 4.1, we

obtain

ϕ(·) = K(·) +
∫

γ
χ(s, (·)) ds.

To establish that the correction integral coincides with χ(·), we integrate problem (17), proceed

according the proof of Lemmas 4.1, after invoking the results of Lemma 3.3 and 3.2. The proof is

complete.

Remark 4.1 Be aware that, for almost every s ∈ γ, the singular partK(s, (·)) belongs to H(1/2)−(Ω),

while K(·) has a higher smoothness, as it belongs to H(1)−(Ω).
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5 Conductivities with Limited Smoothness

The smoothness required on the conductivity a(·), for the expansion (9) to still hold true, is the

issue we tackle. Can it be reduced? To what extent? The answer to the first question is : Yes! In

a large extent, to answer the other question.

Theorem 5.1 Assume a ∈ W ̺,∞(ωγ) for ̺ > 0 and λ ∈ L2(γ). The singular/regular expansion

(9) is still valid.

Basically the proof uses a density argument for the spaces the conductivities belong to. So,

we need some continuity of the non linear map a 7→ (ϕ,K, χ). The target space for (ϕ,K, χ)

being still L2(Ω)× L2(Ω)×H1(Ω), the starting space cannot be simply L∞(Ω). Neither can it be

L∞(Ω)∩W ̺,∞(ωγ), as a Banach space, because of the specific density of the canonical embeddings

in Hölder spaces (see [32]). As will be seen, endowing it with the norm of L∞(Ω)∩W β,∞(ωγ), with

β < ̺, will meet our purposes. Be aware that this norm fails to provide L∞(Ω)∩W ̺,∞(ωγ) with a

Banach structure. This will not harm the proof we are elaborating. Most of the sequel is dedicated

to studying this operator. Some adaptations of the notations are mandatory. They will be fixed as

we go along.

5.1 Preliminary Lemmas

We consider the closed convex subset of L∞(Ω) of conductivities fulfilling condition (2),

Dα =
{

a(·) ∈ L∞(Ω), a(·) ≥ α
}

.

For a given a ∈ Dα, we set the notation ϕa for the solution ϕ of (7). Moreover, if F ∈ L2(Ω), the

solution to (4) will be called ra(F ) instead of rF . In some places, when no confusion is feared we

simply write ra (idem for Ka, ga and χa).

Lemma 5.2 The operator a 7→ ϕa is a Lipschitz mapping from Dα into L2(Ω), that is

‖ϕa − ϕb‖L2(Ω) ≤ C‖a− b‖L∞(Ω)‖λ‖L2(γ), ∀a, b ∈ Dα.

The constant C depends on α and ℓ the length of γ.

Proof: Observe that in view of formulation (7), we obtain that
∫

Ω
(ϕa − ϕa)(x)F (x) dx =

∫

γ
λ(s)(ra − rb)(s) ds, ∀F ∈ L2(Ω). (18)

The key result is therefore to bound appropriately the norm ‖ra − rb‖L2(γ). Let p ∈]2, p∗[ be as in

Lemma 2.2 and q < 2 its conjugate. We have (ra − rb) ∈ W 1,p
0 (Ω) obeys the following variational

12



identity
∫

Ω
a∇(ra − rb)∇ψ dx =

∫

Ω
(b− a)∇rb∇ψ dx, ∀ψ ∈W 1,q

0 (Ω). (19)

Following the proof of [25, Theorem 1] —in particular the inf-sup condition stated in there—, it

comes out that

‖ra − rb‖W 1,p(Ω) ≤ C‖a− b‖L∞(Ω)‖rb‖W 1,p(Ω).

The constant C depends upon α. Applying Lemma 2.2 on rb(·) yields that

‖ra − rb‖W 1,p(Ω) ≤ C‖a− b‖L∞(Ω)‖F‖L2(Ω).

Given that that p > 2, by the trace theorem functions in W 1,p(Ω) have traces on the curve γ (those

in H1(Ω) don’t) (see [2]). Hence, (ra − rb)|γ ∈W
1− 2

p
,p
(γ) and we get in particular

‖rb − ra‖L2(γ) ≤ C‖rb − ra‖W 1,p(Ω) ≤ C‖a− b‖L∞(Ω)‖F‖L2(Ω).

Back to (18), the above bound is enough to deduce that

‖ϕa − ϕb‖L2(Ω) ≤ C‖a− b‖L∞(Ω)‖λ‖L2(γ).

The proof is complete.

The continuity of the operator a 7→ Ka determines the integral over the curve γ, in (9). Here

again, the Lipschitz-continuity can be obtained.

Lemma 5.3 The operator a 7→ Ka is Lipschitzian Dα ∩ C (ωγ) into L
2(Ω), that is

‖Ka −Kb‖L2(Ω) ≤ C‖a− b‖L∞(Ω)‖λ‖L2(γ), ∀a, b ∈ Dα ∩ C (ωγ).

The constant C depends on α and ℓ.

Proof: The proof follows the spirit of Lemma 3.1. Using Bochner Theorem we have

‖Ka −Kb‖L2(Ω) ≤
∫

γ
|λ(s)|

∣

∣

∣

∣

1

a(s)
− 1

b(s)

∣

∣

∣

∣

‖G((·)− s)‖L2(Ω) ds.

Reproducing the computations in the proof of Lemma 3.1, we deduce that —recall that R is for

diam Ω.

‖Ka −Kb‖L2(Ω) ≤
√
Rℓ

α2
‖λ‖L2(γ)‖a− b‖L∞(Ω).

The proof is complete.

We come now to the continuity of the map a 7→ Ka(·)|Γ. This will be useful for the Dirichlet

condition enforced on the correction function χa.
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Lemma 5.4 The operator a 7→ (Ka)|Γ is of Lipschitz type from Dα ∩ C (ωγ) into H
1/2(Γ),

‖Ka −Kb‖H1/2(Γ) ≤ C‖a− b‖L∞(Ω)‖λ‖L2(γ), ∀a, b ∈ Dα ∩ C (ωγ).

The constant is so that C = C(α).

Proof: Proceeding as in Lemma 5.4 and using the fact that sup
s∈γ ‖G((·) − s)‖H1/2(Γ) is finite

(stated in the proof of Lemma 3.2) gives the result.

Lemma 5.5 The operator a 7→ ga, is a locally Lipschitz mapping from Dα∩W ̺,∞(ωγ) into L
2(Ω)3,

‖ga − gb‖L2(Ω)3 ≤ C‖a− b‖̺,∞‖λ‖L2(γ), ∀a, b ∈ Dα ∩W ̺,∞(ωγ).

The constant is such that C = C(α, ̺, ‖a‖̺,∞) .

Proof: Denote κ = (a− b). Hence, the difference (gb − ga) is the sum of two contributions

(gb − ga)(x) =

∫

γ

λκ

ab
(s)(a(x)− a(s))∇G(x− s) ds

−
∫

γ

λ

b
(s)(κ(x)− κ(s))∇G(x− s) ds = g1(x) + g2(x). (20)

Each integral function g1(·) and g2(·) is handled apart.

(i.) The L2–norm of g1(·) can be expressed by Fubini’s theorem

‖g1‖2(L2)3 =

∫

γ×γ

λκ

ab
(s)

λκ

ab
(σ)

(
∫

Ω
(a(x)− a(s))(a(x)− a(σ))∇G(x− s)∇G(x− σ) dx

)

dsdσ

≤ 1

α4
‖κ‖2L∞(Ω)

∫

γ×γ
|λ(s)λ(σ)|

(
∫

Ω

|a(x)− a(s)||a(x)− a(σ)|
|x− s|2|x− σ|2 dx

)

dsdσ.

Owing to Lemma 8.1 (in the appendix) we get

‖g1‖2(L2)3 ≤ C

α4
‖κ‖2L∞(Ω)‖a‖2̺,∞

∫

γ×γ

|λ(s)λ(σ)|
|s− σ|1−2̺

dsdσ.

Applying Lemma 8.2 ends to

‖g1‖(L2)3 ≤ C‖b− a‖L∞(Ω)‖λ‖L2(γ).

The constant is such that C = C(̺, α, ‖a‖̺,∞).

(ii.) Switching to the second contribution g2(·), we start from

‖g2‖2(L2)3 =

∫

γ×γ

λ

b
(s)

λ

b
(σ)

(
∫

Ω
(κ(x)− κ(s))(κ(x)− κ(σ))∇G(x− s)∇G(x− σ) dx

)

dsdσ

≤ 1

α2

∫

γ×γ
|λ(s)λ(σ)|

(
∫

Ω

|κ(x)− κ(s)||κ(x)− κ(σ)|
|x− s|2|x− σ|2 dx

)

dsdσ.

Invoking once again Lemmas 8.1 and 8.2 as above yields that

‖g1‖(L2)3 ≤ C‖b− a‖̺,∞‖λ‖L2(γ).
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The constant is such that C = C(̺, α).

Notice that the operator a 7→ ga(·) is locally Lipschitz because the constant in step (i.) depends

upon ‖a‖̺,∞. The proof is complete.

Lemma 5.6 The operator a 7→ χa(·), is a locally Lipschitz mapping from Dα ∩ W ̺,∞(ωγ) into

H1(Ω)3,

‖χa − χb‖H1(Ω) ≤ C‖a− b‖̺,∞‖λ‖L2(γ), ∀a, b ∈ Dα ∩W ̺,∞(ωγ).

The constant C is as follows C = C(α, ̺, ‖a‖̺,∞, ‖b‖̺,∞). The dependence with respect to the two

last arguments is linear.

Proof: The Dirichlet condition (χa−χb)|Γ = −(Ka−Kb)|Γ shloud be imposed before writing down

the elliptic variational equation

∫

Ω
a∇(χa − χb)∇ψ dx =

∫

Ω
(b− a)∇χb∇ψ dx−

∫

Ω
(ga − gb)∇ψ dx, ∀ψ ∈ H1

0 (Ω).

A direct consequence is the following stability

‖χa − χb‖H1(Ω) ≤ C(|χb|H1(Ω)‖a− b‖L∞(Ω) + ‖Ka −Kb‖H1/2(Γ) + ‖ga − gb‖(L2(Ω))3)

≤ C(‖b‖̺,∞‖a− b‖L∞(Ω) + ‖Ka −Kb‖H1/2(Γ) + ‖ga − gb‖(L2(Ω))3).

The proof is complete owing to Lemmas 5.4 and 5.5.

5.2 Proof of Theorem 5.1

Let a(·) be in W ̺,∞(ωγ) ∩ Dα with ̺ > 0. The Sobolev (Hölder) space W 1/2+̺,∞(ωγ) is more

regular and is dense in W ̺,∞(ωγ) with respect to the norm of W β,∞(ωγ) (β < ̺) (see [32]) —It

is important to know that the density is lost if W ̺,∞(ωγ) is endowed with its own norm and then

with its own Banach structure.

One can find a sequence (an(·))n≥0 ⊂W 1/2+̺,∞(ωγ)∩Dα that converges towards a(·) inW β,∞(ωγ)∩
L∞(Ω). It is easy to manage so that (an(·))n≥0 belongs to Dα/2. Working in the larger set

W β,∞(Ω) ∩ Dα/2 enables the whole preparatory Lemmas 5.3, 5.4, 5.5 and 5.6 stated above. We

have the following convergence in the product space L2(Ω)×L2(Ω)× (L2(Ω))3 ×H1/2(Γ)×H1(Ω)

lim
n→∞

(ϕan ,Kan , gan ,Kan|Γ, χan) = (ϕa,Ka, ga,Ka|Γ, χa).

Based on Proposition 3.5, expansion (9) takes place for the regular conductivity an(·). Going thus

to the limit makes the same expansion to be true for the less regular conductivity a(·). The proof

is complete.
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6 Miscellaneous

The purpose is to add few comments on the expansion (9) and discuss some possible extensions so

as an alternative.

6.1 The Neumann Condition

The Dirichlet condition on the potential ϕ(·) may be replaced by a Neumann condition, that is

(a∂n)ϕ = 0 on Γ.

We consider here that the full boundary is subjected to the given flux condition. The non-uniqueness

caused by spurious constants is a classical issue, successfully handled in a well mastered way.

It is of an equal interest to look at this case carefully. The analysis carried out here can be

undertaken following the same technical process. The singular contribution K(·) is the same as

in (9). Conversely, a small modification is introduced in the variational problem determining the

correction function χ(·), to account for the right boundary condition. One can check out that the

new formulation reads as

∫

Ω
a∇χ∇ψ dx = −

∫

Ω
g · ∇ψ dx−

∫

Γ
gNψ dτ , ∀ψ ∈ H1(Ω).

The vector data g is the one provided in (11). The Neumann condition gN is defined by

gN (x) =

∫

γ
λ(s)∂nG(x− s) ds, in ΓN . (21)

The overall results elaborated can be stated in this new context. To show the validity of expan-

sion (9), only few adaptations are necessary, they are all related to the Neumann condition gN (·).

6.2 An Alternative Method

Another way to proceed is possible for smooth conductivities, when it comes to the computation

of the right-hand-side of problem (10) (or (13)). This alternative may be practical and spare users

from long integral computations of (11), when exactness is sought for.

First, let us set that the singular function K(·) is in fact solution to the following Poisson problem

−∆K =
λ

a
δγ (=

1

a
f), in Ω. (22)

The framework where to check out this claim is provided by the dual variational formulation (7),

when the conductivity is unity, a(·) = 1. Let then F ∈ L2(Ω) be given and rF (·) be defined as

in (4). Then

∫

Ω
K(x)F (x) dx =

∫

γ

λ(s)

a(s)

(
∫

Ω
G(x− s)(−∆rF (x)) dx

)

ds =

∫

γ

λ(s)

a(s)
rF (s) ds.
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The next step is conducted formally (can be made variationally!). A special care should be paid to

the boundary conditions. Plugging expansion (9), we have

−div (a∇ϕ) = −div (a∇K)− div (a∇χ) = a(−∆K)− (∇a)(∇K)− div (a∇χ),

completed by the boundary condition χ|Γ = −K. Then, on account of (22), we derive that

−div (a∇χ) = (∇a)(∇K), in Ω. (23)

A variational formulation written in H1(Ω) makes sense as soon as the data (∇a)(∇K) belongs to

H−1(Ω).

Be aware that for non-smooth conductivities the correct formulation of the correction problem is

the one given in (13). For example, if a(·) has jumps, problem (23) fail to provide the right χ(·).

6.3 Two Dimensional Domains

Things are different in two dimensions. Changes are driven by the properties of the Sobolev spaces

which are known to be closely related to the dimension. The line source belongs in fact to H−1(Ω).

Functions in H1(Ω) have indeed traces on the Lipschitz curve γ. They belong to H1/2(γ). As a

result, the regular variational formulation (4) works and the potential ϕ lies in H1
0 (Ω). There is

no need of the dual formulation (7). In spite of this statement, the expansion (9) remains valid,

though probably less useful. In fact, its interpretation has not the same effects. The smoothness

of both K(·) and χ(·) are modified dramatically.

Observe first that, in two dimensions, the “supposed” singular partK(·) belongs actually yo H1(Ω).

Moreover, it is easy to see, that the source term f
a (·) is in H−(1/2)+(Ω) = H(−1/2)−(Ω). The elliptic

regularity (for the Laplacian) proves that K ∈ H(3/2)−(Ω). This is tightly linked to the structure

and the nature of the line source distribution. Now, we turn to the potential ϕ(·), if no more

regularity is put on a(·), it only belongs to H1(Ω). This says in particular that the correction χ(·)
cannot be more regular than ϕ(·) while K(·) is really smoother.

Assume now that a ∈W ̺,∞(Ω). Then, after a careful investigation of the data g in equation (13),

we conclude, again in the frame of the elliptic regularity, that the smoothness of the correction

function χ(·), solution to equation (13), cannot exceed H1+̺(Ω). So, in two dimensions again the

allegedly singularity K(·) is smoother than the (expected to be) regular correction χ(·), when ̺

is small. That exponent ̺ needs to grow larger than 1/2 to see the regularity properties of both

contributions inverted. To summarize, K(·) is smoother for low regular conductivities and χ(·)
becomes smoother if the conductivities are regular enough, when ̺ ≥ 1/2.
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7 Examples

The numerical assessment of expansion (9) is the purpose, for some selected conductivities. Our

computational results may be viewed as a generalization of the work in [17]. Recall the fact that

conductivities in there are assumed to be in W 2,∞(Ω), too stringent from our point of view. We

choose not to confront the singularity extraction process to the standard finite element method ap-

plied to the H1-variational formulation(2) of problem (1). This task has been successfully carried

out in [17] and in [3], highlighting the numerical advantages brought by the expansion method.

The domain of computation is the vertical cylinder with radius R = 0.5 and height H = 0.5,

it is the solid of revolution around the z-axis, defined by (r, z) ∈ [0, R] × [0, H]. The segment

γ = {0} × [0, H], support of the Dirac source, is the axis of the cylinder. The cylindrical coordi-

nates system (r, θ, z) is naturally retained here.

Regular conductivity — Let α, ǫ be a given couple of real numbers with 0 < ǫ < α and we fix a

real-number q ∈ R. The variable conductivity is therefore defined by

a(x) =
1 + z

α+ ǫ exp(qr)
, in Ω.

The solution has a symmetry of revolution; it is set to be (3)

ϕ(x) = (1 + z)η(r) = (1 + z)
(

− α

2π
ln r +

ǫ

2π
(Ei(q)− Ei(qr))

)

.

This potential is generated by a source term f(·) to be plugged in equation (1) —that can be

computed to

f(x) = (1 + z)2δγ −
η(r)

α+ ǫ exp(qr)
, in Ω.

As predicted, the solution fails to be in H1(Ω) because of the logarithmic term.

The first step is to illustrate that the contribution K(·) in (9) succeeds in fully capturing the

singular behavior of the solution ϕ(·), caused by the linear Dirac contribution to the data f(·).
Prior to compute K(·), we mention that the points of γ are characterized by their own cylindrical

coordinates s = (ρ = 0, t) while x is specified by (r, z), as above. We start from

K(x) =
1

4π

∫

γ

(1 + t)2

a(s)

1

|x− s| ds =
α+ ǫ

4π

∫

[0,1]

1 + t
√

r2 + (z − t)2
dt.

All calculations carried out produce the expression

K(x) =
α+ ǫ

4π
(
√

r2 + (1− z)2 −
√

r2 + z2) +
α+ ǫ

4π
(1 + z) ln(

√

r2 + (z − 1)2 + (1− z))

+
α+ ǫ

4π
(1 + z) ln(

√

r2 + z2 + z)− α+ ǫ

2π
(1 + z) ln r. (24)

2Can possibly be used in the numerical ground but it is not valid because not respectful of the mathematical
results. The potential ϕ(·) fails to belong to H1(Ω).

3Ei(·) is the special function of exponential integral (see [1]). It has a logarithmic singularity: Ei(r) = γ+ ln r+A(r),
A(·) is an analytic function. γ is the Euler-Mascheroni constant
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The last logarithmic term in (ln r) is exhibited on purpose. According to the footnote (3), it is

the very singularity of the potential ϕ(·). This (singular) term excepted, all the others belong to

H(3/2)−(Ω). The correction χ(= ϕ−K) will be affected by those terms. All in all, the extraction

process retrieves the strong logarithmic singularity and leaves there moderately smooth terms. The

effect is therefore a moderate smoothness of χ(·), though it stands a H1-type variational formula-

tion which is the ultimate target.

The singular contribution being explicitly isolated, we pass to the finite approximation of the cor-

rection term χ(·). The computations are realized in Freefem++, the code developed by F. Hecht

and his team (see [19]).

A Dirichlet condition is first prescribed on the whole boundary of Ω, immediately available from

the knowledge of ϕ(·). The data g(·) in (11) is evaluated by hands. The computed correction χh(·)
is hence solution to the affine finite element discretization of the variational problem (13). The

approximate potential ϕh(·) is obtained by adding exact K(·) (in reality its interpolation). The gap

(ϕ − ϕh) = (χ − χh) is therefore evaluated in the H1– and L2–norms and the convergence curves

are depicted in Figure 1. The parameters are fixed to α = ǫ = 1 and q = 2π. Logarithmic scale is

adopted on both axis.
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Figure 1: Convergence : Dirichlet boundary (left), Dirichlet-Neumann boundary (right).

As notified above, the correction function χ(= ϕ−K)) is in H(3/2)− . The theory predicts that

the gap e(χ) = (χ − χh) is bounded by C(h(1/2)− , h(3/2)−) with respect to the (H1, L2)-norms

respectively (see [8]). The linear regressions of the errors plots (left panel in Figure 1) bring an

interesting insight on the finite element accuracy. The errors may be evaluated ; results indicate

the following trends eH1(ϕ) ≈ 0.8×h and eL2(ϕ) ≈ 0.36×h1.88. The convergence rates seem to be

better than expected. Let us underline the fact that, as currently followed, the errors are obtained

by confronting the computed finite element potential ϕh to the Lagrange interpolate ihϕ(·) rather
than ϕ(·) itself. If precision were demanded, we should write that eH1(ihϕ) ≈ 0.8× h. Notice also

that we use a refined uniform mesh (not the one used to compute ϕh(·) to evaluate the errors. The
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refined mesh size is hF = 0.0082, while the finite element solutions are obtained on meshes with

size h ∈ [0.018, 0.12]. Notice that using the alternative method exposed in Subsection 6.2 gives

almost exactly the same result; the conductivity enjoys the necessary smoothness.

The curves in the left panel of Figure 1 are when the boundary conditions are changed. Neumann

conditions are applied on both ‘up and down’ faces of the cylinder, while the lateral surface of the

boundary is still subjected to a Dirichlet condition. The flux data is picked up from formula (21).

The errors are given by eH1(ihϕ) ≈ 0.4×h0.8 for the H1-norm while eL2(ihϕ) ≈ 0.07×h1.15 for the

L2-norm. The convergence rate for the L2 is quite less than expected, it suffers from the substantial

loss of 0.35. A likely explanation comes from the regression constant 0.07 which is small, compared

to the range of mesh sizes [0.018, 0.12]. For this range of meshes, it may be checked out, for instance,

that eL2(ihϕ) = 0.07 × h1.15 ≤ 0.3 × h1.5. And this would in a perfect agreement with the theo-

retical findings. In fact, typically only a bound on the error is given by the mathematical estimates.

Moderately regular Conductivities — The subsequent examples deal with a set of conductivities

with reduced smoothness,

a(x) =
(1 + z)

α+ ǫr̺
, in Ω.

The exponent ̺ > 0 is given. The parameter a(·) belongs then to W ̺,∞(Ω). The new solution is

selected to be

ϕ(x) = (1 + z)η(r) = (1 + z)

(

− α

2π
ln r +

ǫ

2π̺
(1− r̺)

)

,

and the related source data in equation (1) reads as

f(x) = (1 + z)2δγ −
η(r)

α+ ǫr̺
, in Ω.

The singular contribution K(·) looks like the one in (24), simply change α+ ǫ into α.

Looking closely at the correction function χ(·) shows that it belongs to H(1+̺)− for small ̺ < 1/2.

Actually, the regularity is driven by the term r̺. The gap (ϕ−ϕh) is expected to decay like Ch̺−

with respect to the H1-norm. The slopes of the curves of the H1-error (full circles in Figure 2) are

(0.38, 0.63) for both conductivities, related to the exponents ̺ = (0.15, 0.5) respectively. The obser-

vations are quite close to the predictions with a slightly better behavior (than expected). Exploring

the convergence rates with respect to the L2-norm shows an agreement with the predicted ones.

The regression slopes, a worthy indication of the effective convergence rate provide (1.33, 1.51).

The constant (α, ǫ) are chosen equal to (1, π).

The last computations are dedicated to the case where Neumann conditions are applied on upper

and lower faces of the cylinder. Here again, the error-curves are depicted in Figure 3. We observe

the same trends as for the previous example. The slopes of the regressions of the H1-curves are
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Figure 2: Errors with ̺ = 0.15 (left) and ̺ = 0.5 (right).

computed to (0.24, 0.45) for the exponents ̺ = (0.15, 0.5). The slopes for the discretization error

‖ϕ− ϕh‖L2 is almost 1 for both cases. This hardly meets the theoretical predictions and sounds a

little bit disappointing, at least for ̺ = 0.5. Indeed, for the latter case, the predicted convergence

predicted should be rather of order h1.5. This prompts us to look at the regression constant in

‖χ− χh‖L2 ≈ 0.04× h, for a mesh size h ranging in [0.02, 0.15]. The likely explanation is the one

provided above for the first example.
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Figure 3: Convergence, Neumann conditions: (̺ = 0.15 (left), ̺ = 0.5 (right)).

8 Conclusion

Potentials created by Dirac sources are singular. Their singular behavior prevent them from ful-

filling the standard variational formulation (in the Sobolev space H1), often fit for second order

boundary value problems. In three dimensions, we provide a generic mathematical formula that

fully captures the singular behavior of the potential when the source is a line Dirac measure. The

conduction parameter is space dependent: identified as the main difficulty which is specifically

dealt with in this paper. After removing the singularity, the residual part (full potential minus

singularity) brings the correction to the boundary conditions, enjoys enough regularity to fulfill

a tractable variational problem (the one practiced in H1(Ω)). It can be computed by many of
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the available numerical methods. Before closing, although the proof is limited to the continuous

conductivities here, we see no reason why it cannot cover the case of parameters with jumps.

Hopefully, the process detailed in [3], for pointwise sources, applies as well to line Dirac sources,

with some improvements. Research on this issue is underway and the forthcoming numerical study

is devoted to a deeper validation of the extraction process either for the diffusion or elastic problems.
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Appendix

We prove two technical lemmas that are the centerpiece of Section 5.

Lemma 8.1 Assume a ∈ L∞(R3)∩W ̺,∞(ωγ) with 0 < ̺ < 1/2. Let (s,σ) be a couple of distinct

points in γ. There holds that

∫

R3

|(a(x)− a(s))(a(x)− a(σ))|
|x− s|2|x− σ|2 dx ≤ C(̺)

‖a‖2̺,∞
|s− σ|1−2̺

.

Proof: Choose the Cartesian coordinate system (x1, x2, z) so that the z-axis is directed along the

vector −→σs = (s− σ). The origin is located at the mid point of the segment [s,σ] so that s(0, 0, t)

with t > 0, and σ = (0, 0,−t) and then |s − σ| = 2t. To alleviate the presentation, we denote

I = I(s,σ) that integral and η = ‖a‖̺,∞. The use the cylindrical system (r, θ, z) is appropriate.

In view of (12), we derive that

I ≤ η2
∫

R3

dx

|x− s|2−̺|x− σ|2−̺

≤ 2πη2
∫

[0,∞[×R

rdrdz

(r2 + (z − t)2)1−̺/2(r2 + (z + t)2)1−̺/2
.

Notice that the integrand is even with respect to z, the integration is hence reduced to the z ≥ 0.

After the variable change r = (z + t)u, we obtain that

I ≤ 4πη2
∫

[0,∞[

1

(z + t)2−2̺

(

∫

[0,∞[

udu

(u2 + ζ2)1−̺/2(u2 + 1)1−̺/2

)

dz.

We have set ζ = |z−t|
z+t for all t ≥ 0, z ≥ 0. Now, accounting for ζ ≤ 1 we derive the bound

I ≤ 2πη2
∫

[0,∞[

1

(z + t)2−2̺

(

∫

[0,∞[

2udu

(u2 + ζ2)(3−̺)/2

)

dz

≤ 4πη2

1− ̺

∫

[0,∞[

1

(z + t)2−2̺

1

ζ1−̺
dz =

4πη2

1− ̺

∫

[0,∞[

1

|z2 − t2|1−̺
dz.

The second changing of variable z = vt gives

I ≤ 4πη2

1− ̺

1

t1−2̺

∫

[0,∞[

1

|v2 − 1|1−̺
dv.

The fact that the integral is finite ends to

I ≤ C(̺)η2

t1−2̺
≤ Cη2

|s− σ|1−2̺
.

The result is complete.

Lemma 8.2 Assume that the simple curve γ is of class C 1,α, with α > 0. Let ̺ > 0 be given, then
∫

γ

∫

γ

|λ(s)λ(σ)|
|s− σ|1−̺

dsdσ ≤ C‖λ‖2L2(γ), ∀λ ∈ L2(γ).
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Proof: The stability in the lemma is derived from the properties of the (̺)-Riesz potential defined

on the curve γ,

(R̺λ)(s) =

∫

γ

λ(σ)

|s− σ|1−̺
dσ.

This aim is to show that it is a Calderon-Zygmund operator.

According to [34, Theorem 1.1], checking out the bondedness on the lines is enough to extend it

to C 1,α-curves. Following the terminology of the curves theory, a line is a curve γ that is a scaled

isometric copy of a segment in the sense that

c∗|t− τ | ≤ |γ(t)− γ(τ)| ≤ c∗|t− τ |, ∀t, τ ∈ I.

The constants c∗ and c∗ are positive.

It is thus sufficient to prove the result for the operator R̺ defined as

(R̺λ)(t) =

∫

I

λ(τ)

|t− τ |1−̺
dτ.

The proof starts as follows

(R̺λ)
2(t) ≤

∫

I

λ2(τ)

|t− τ |1−̺
dτ

∫

I

1

|t− τ |1−̺
dτ ≤ 2ℓ̺

̺

∫

I

λ2(τ)

|t− τ |1−̺
dτ.

Integrating with respect to t yields

‖R̺λ‖2L2(I) ≤
2ℓ̺

̺

∫

I

(
∫

I

1

|t− τ |1−̺
dt

)

λ2(τ)dτ ≤ 4ℓ2̺

̺2
‖λ‖2L2(I).

The proof is complete.

Remark 8.1 Actually, a sufficient condition, for the proof to still work, can be expressed directly

on arbitrary curves, as follows

sup
s∈γ

∫

γ

1

|s− σ|1−̺
dσ <∞.

Using the atlas of local cards, together with the compactness of the curve, extends the proof for any

Lipschitz curves. This is easy to check out, for instance when the curves γ are parameterized by

s(t) = (t, ξ(t), ζ(t)), where ξ and ζ are Lipschitz functions.

Be careful that if ̺ = 0, then the operator R0 is not a Riesz transformation. The convolution kernel

should be odd. It is not, it is the contrary, it is even! Actually, R0 fails to be bounded.
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