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Stability Analysis of Tendon Driven Continuum Robots and
Application to Active Softening

Quentin Peyron1,2, Member, IEEE, and Jessica Burgner-Kahrs1, Senior Member, IEEE.

Abstract—Tendon driven continuum robots are often consid-
ered to navigate through- and operate in cluttered environments.
While their compliance allows them to conform safely to obsta-
cles, it leads them also to buckle under tendon actuation. In
this work, we perform for the first time an extensive elastic
stability analysis of these robots for arbitrary planar designs.
The buckling phenomena are investigated and analyzed using
bifurcation diagrams, complementing the current state of the art
and adding new knowledge about robots composed of n spacer
disks. We show the existence of multiple robot configurations
with different shapes, achievable with the same actuation inputs.
A global stability criterion is also established which links the
critical tendon force, until which the robot is stable, to the design
parameters. Finally, the buckling phenomena are used to actively
soften the robot for a better compromise between compliance and
payload. An open loop control strategy is proposed, which can
theoretically decrease the stiffness to zero while maintaining the
same robot shape. Experimentally, the robot is made 4 times
more compliant than it is nominally using tendon actuation only.

Index Terms—Tendon/Wire Mechanisms, Modeling, Control
and Learning for Soft Robots, Kinematics, Elastic Stability of
Continuum Robots

I. INTRODUCTION

Tendon driven continuum robots (TDCR) are one of the
first and most considered type of continuum robot today. They
consist of a slender elastic backbone, deformed by pulling
on and releasing tendons to generate motion. The tendons
are commonly guided along the backbone using rigid spacer
disks, at a specific distance from it. As a result, pulling
on the tendons generate forces and moments on the disks,
which result in the bending of the backbone. TDCR have
several properties which make them particularly interesting for
operating in constrained and sensitive environments. They can
be designed and controlled to conform to curvilinear shapes
and navigate through tortuous pathways or around obstacles.
The number of tendons and their routing along the backbone
can be chosen to obtain curves with a desired number of
inflection points [1] or with helical shapes [2]. They can be
controlled to perform follow-the-leader deployments [3], [4].
Also, their natural compliance allow them eventually to deform
when contacting the environment instead of damaging it. As a
consequence, they have been largely considered for minimally
invasive surgery [5], where the human body constitutes a

This work was supported by the H2020 EU SimCardioTest project (Digital
transformation in Health and Care SC1-DTH-06-2020; grant agreement No.
101016496

1Continuum Robotics Laboratory, Department of Mathematical & Compu-
tational Sciences, University of Toronto, ON, Canada

2DEFROST Team, Inria and CRIStAL UMR CNRS 9189, University of
Lille, Villeneuve d’Ascq, France
quentin.peyron@inria.fr

constrained and fragile environment. However, due to their
flexibility, TDCR and other continuum robots are challenging
to use for two reasons: they can experience elastic stability
issues and their design involves a compromise between load
bearing capabilities and compliance.

Elastic stability issues of continuum robots arise from
buckling of the slender backbone under the applied actuation
forces and/or external forces. They have been mostly observed
and studied for concentric tube continuum robots [6]–[8].
The relative rotation of telescopic pre-curved tubes leads
to the accumulation of torsional deformation energy. Past a
certain critical rotation, rotating the tubes further leads to a
sudden release of this energy. The robot becomes elastically
unstable and generates a snapping motion which is difficult to
control and dangerous for its surrounding. This phenomenon
is similar to the buckling of cantilever beams, as explained
in [7]. Unstable phenomena appear for lengths of tubes beyond
a critical interaction length, whose value is related to the
tube’s mechanical and geometrical properties. Past this global
stability limit, the robot can have multiple configurations
for the same actuation inputs and snap between these con-
figurations [8]. Knowing the relation between this stability
limit and the design parameters allows to avoid unstable
phenomena through tube design [9] and path planning [10].
Elastic stability issues have also been reported for magnetic
continuum robots [11]–[13], which depend on the backbone
mechanical and magnetic properties and the applied magnetic
fields.

Although it has been rarely observed or discussed in the
literature, TDCR can also be subject to buckling. Pulling on all
the tendons simultaneously will compress the elastic backbone
and lead to losses of elastic stability eventually. To avoid this,
the current practice is to limit the pre-tension on the tendons
or to limit the tendon tension through control. However, there
exists no criterion, to the best of our knowledge, that indicates
the critical tendon force above which buckling appears. These
phenomena have been observed for TDCR in the early work of
Li and Rahn [14]. They considered a planar robot composed of
one disk at the tip, to which one tendon is attached. By solving
a model tailored to the 1-disk planar TDCR, and by conducting
experiments, they showed that the robot can have up to two
different stable configurations beyond a certain tendon force.
However, this phenomenon was not studied in detail. The
authors showed that the critical tendon force above which
multiple shapes exist depends on the robot design parameters,
such as the end-disk radius, but did not provide an analytical
stability criterion. Moreover, the results are specific to a planar
TDCR composed of one disk.

As a second challenge, the elasticity of TDCR requires
a compromise between their load bearing capabilities and



compliance during their design. On one hand, generating a
force at the robot tip requires the robot to be stiff. On the
other hand, being able to contact the environment without
damaging it requires it to be compliant. In order to deal with
this trade-off, two approaches have been considered in the
literature which can be qualified as control-based and design-
based. Control-based approaches consist in using position
force control strategies to vary the robot stiffness at its end-
effector [15], [16]. These methods regulate the end-effector
stiffness indirectly by closing a position loop to respond
to external force disturbance and control the end-effector
stiffness. They allow to significantly increase or decrease the
natural tip stiffness in desired directions. However, they require
multiple actuated degrees of freedom to control both the tip
position and force which result typically in complex actuation
units.

Alternatively, a body of work has been focusing on design-
ing stiffening and softening actuation principles for continuum
robots. These principles involve several mechanisms such as
layer and granular jamming [17], [18], shape memory material
and low-melting point alloy (LMPA) [19], and antagonistic
actuation [20]. In this last work, tendons are used to lock the
expansion of a pneumatic chamber and increase the apparent
stiffness of the structure with two discrete states. Comprehen-
sive reviews of the different principles can be found in [21],
[22]. They don’t allow to vary the stiffness along specific
directions, but can vary the stiffness globally without changing
the robot shape and with a minimal number of actuation inputs.
Active increase or decrease of the backbone stiffness with
ratios reaching several tens have been achieved. However,
these strategies come with their own challenges. Adding
antagonistic actuators dedicated to stiffness modulation or
jamming sheath increases the diameter of the robot. Jamming
mechanisms and LMPA rely on friction and glass transition
of material, which are physical phenomena difficult to control.
They are mainly used to achieve two discrete states, stiff and
soft. Shape memory material and LMPA require temperature
control, whose bandwidth is often limited.

The apparent stiffness of an elastic structure can be changed
by applying forces and making it closer or farther to buckling.
Increasing the forces applied on a beam increases its elastic
energy and brings it closer to its stability limit. As a result,
the beam is more easily deformed under the action of an
external force. Its compliance to this force is then larger.
This principle has been used to realize compliant mechanisms,
whose stiffness can be varied with large amplitudes and
bandwidth [23]–[25]. The buckled element is realized using
compression springs in [25] and pre-strained leaf springs
in [23], [24]. Buckling has also been used to modulate the
stiffness and improve the behaviour of soft devices [26],
leveraging primarily pneumatic and tensile actuation with
specific beam arrangements and spatial geometries. It has been
recently considered to amplify the motion of continuum robots
actuated with electro-active polymers in [27]. The continuum
robot is deformed by a pair of antagonistic tensile actuators,
that compress the elastic backbone. A TDCR can exhibit
the same amplification principle, as it is naturally composed
of antagonistic tendons to achieve bidirectional bending. As
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Fig. 1: Schematics of the planar TDCR. The elastic backbone
is represented in blue, the tendons in grey and the disks in
black. The tendon holes are depicted with red dots. The robot
is subject to an external force applied on its tip represented in
orange.

a consequence, the buckling phenomena induced by tendon
actuation offer a unique opportunity to actively reduce the
TDCR stiffness. In particular, it would allow to achieve
continuous stiffness variations without adding actuators, and
therefore without increasing the robot diameter. Also, it would
only use electro-mechanical actuators to pull on the tendons,
which can have a higher bandwidth than temperature regulated
systems and are easier to control.

The contributions of this paper are as followed:
• The elastic stability issues for planar TDCR are investi-

gated numerically and experimentally, bringing insights
on the results of the 1-disk TDCR [14] and extending
these results to designs with more disks.

• An analytical global stability criterion relating the design
parameters to critical actuation values is developed.

• The buckling phenomena induced by tendon actuation
are used to achieve active softening for the first time.
Softening is achieved instead of stiffening [20] due to
the absence of antagonistic pneumatic chambers and the
control of tendon tension instead of displacement.

The paper is organized as follows. The static model of
TDCR, the numerical method used to analyze the stability and
the experimental setup for the validation of the model and the
stiffness modulation are described in Sec.II. The results of
the stability analysis are presented in Sec.III and in Sec.IV
for the 1-disk and n-disks TDCR cases respectively. Finally,
the buckling-based active softening strategy is investigated in
Sec.V, before concluding.

II. METHOD AND MATERIAL

A. Forward and Inverse Static Model

We consider the case of a planar TDCR as represented on
Fig. 1. It is composed of an elastic backbone, deformed by



two antagonistic tendons guided through n spacer disks and
attached to the last one. Additionally, the spacer disks delimit
n subsegments along the robot. To model the continuum ma-
nipulator statics, we consider classical assumptions for TDCR
composed of spacer disks [28]. The backbone is assumed to
behave as a Kirchhoff rod, where the backbone elongation and
shear are neglected, which is true for long and slender elastic
beams. The disk thickness is assumed to be small with respect
to the robot length and is, therefore, neglected. Additionally,
we neglect the mechanical clearance between the tendons and
their respective guiding holes on the disk. As a consequence,
the disks exert point-wise constraints on the tendons and do
not have an influence on the backbone stiffness. The tendons
are thus partially constrained along the backbone at the disk
locations. The robot is assumed to be subject to an external
force applied at its tip, which might happen when in contact
with the environment or due to the weight of manipulated
objects. The weight of the robot backbone is neglected.

The TDCR is modeled using the variable curvature model
with partially constrained tendons described in [29], reformu-
lated with the planar Kirchhoff rod assumption. The robot
backbone is parametrized by its arc length s. A local frame
Rb = (Ob,xb,yb) is attached to the backbone at s, where yb

is tangent to the backbone centerline. The pose of Rb with
respect to a fixed reference frame R0 = (O0,x0,y0) for all
s defines the pose of the TDCR in the plane. In particular,
the robot position and orientation are represented respectively
by the planar Cartesian coordinates p(s) of Ob in R0 and the
bending angle between y0 and yb, denoted θ(s). They are
linked to the robot curvature u(s) by the relation:

θ′(s) = u(s)

p′(s) = 0Rbv
(1)

where [...]′ denotes the derivative with respect to s,
v =

[
0 1

]T
and 0Rb ∈ SO(2) is the rotation matrix from

Rb to R0. The robot curvature depends on the action of
tendons and the external tip force through the internal forces
n0(s) expressed in R0. It is obtained by integrating the
following differential equations:

u′(s) = (EI)−1vT (bR0n0(s))

n′0(s) = 0
(2)

where E is the young modulus of the material composing the
backbone, I is the second moment of area of the cross-section,
and n0(s) is the vector of distributed internal force along the
backbone.

The tendons and the interactions at the tip exert forces and
moments at the disk location along the backbone, which is
equal to si = iL/n for disk i, with i = {0, ..., n}. These forces
and moments depend on the position of the tendon holes on
each disk, which are represented by points denoted Aj,i for
tendon j on disk i as depicted in Fig. 1. The tendon holes
are placed at a distance rd from the backbone, so that A1,i =[
rd 0

]T
and A2,i =

[
−rd 0

]T
with respect to Rb at si.

The direction of tendon j between disks i−1 and i is denoted

aj,i =
#                    »

Aj,i−1Aj,i/
∣∣∣ #                    »

Aj,i−1Aj,i

∣∣∣. The forces and moments are
then obtained using the relation:

fj,i =

{
− Tj,iaj,i + Tj,i+1aj,i+1 , i < n

Tj,iaj,i + fe i = n

mj,i =
#           »

OiAj,i
Tfj,i

(3)

where Tj,i is the tendon tension along sub-segment i and
fe =

[
Fe cos(φ) Fe sin(φ)

]T
is the external tip force of

magnitude Fe and orientation φ. The tendon tension varies
between the subsegments because of the friction between the
tendons and the disks. These frictions are modeled using
the Coulomb friction law as proposed in [29]. Let µ be the
static friction coefficient, the tendon tension can be computed
recursively using:

Tj,i+1 = Tj,i
1 + µaT

j,ixb,i

1 + µaT
j,i+1xb,i

(4)

where xb,i = xb(si). We also assume that the forces along
yb exerted by the tendons on disks i < n can only be due to
friction [28]. The tendon forces and moments, as well as the
external force at the tip, appear as boundary conditions of the
system (2):

u(si)
+ = u(si)

− + (EI)−1(m1,i +m2,i)

n0(si)
+ = n0(si)

− + f1,i + f2,i

(5)

where u(si)
+ and u(si)

− are equal to lims→si u(s) with
s > si and s < si. Similarly, n0(si)

+ and n0(si)
− are equal

to lims→si n0(s) with s > si and s < si.
The forward and inverse static problems are solved us-

ing a shooting method. The forward static problem aims at
finding the robot configuration from the tension applied on
each tendon. The values of u and n0 at the beginning of
each subsegment are guessed and iterated until the bound-
ary conditions (5) are satisfied. The forward static problem
consists thus in finding the solution x of the set of 3n non-
linear equations gF =

[
gT
F1 gT

F2 ... gT
Fn

]T
, where gFi

corresponds to (5) for subsegment i, of the general form:

gF (x, T1, T2, Fe, φ) = 0 (6)

where x =
[
x0 x1 ... xn−1

]T
with

xi =
[
u(si)

+ (n(si)
+)T

]
. This system is solved

numerically using a Newton-Raphson algorithm. At each
numerical step, the tendon points Aj,i, with j = 1, 2 and
i = {0, ..., n}, and the states at the end of each subsegment
are obtained by integrating (1-2) with a Runge-Kutta 45
scheme, starting from x. The boundary conditions can then
be evaluated.

The inverse static problem aims at finding the tendon
tensions that allow to reach a desired bending angle at the
robot tip while applying a desired total force on the backbone.
In addition to x, we iterate on the two tendon forces in order
to reach a desired total tendon force Td and a tip orientation
θd specified by the user. This is achieved by adding the two
following constraints to the boundary conditions:

θ(L) = θd

T1 + T2 = Td
(7)



Solving the inverse static problem is thus equivalent to finding
the solution y to the system of non-linear equations:

gI(y, θd, Td, Fe, φ) = 0 (8)

where y =
[
x T1 T2

]
. The same numerical methods as for

the forward problem are used to solve the inverse problem.

B. Numerical analysis

Studying analytically the static model of an n-disk TDCR
is challenging because of the robot’s non-linear behavior.
Therefore, we solve and analyze the forward and inverse static
model numerically. This task can be difficult when analyzing
buckling phenomena. Solving (6) and (8) numerically requires
a good initial guess for the algorithm to converge. As the
robot shape is difficult to predict during large deformations,
and can vary significantly under small variations in tendon
tensions close to the unstable configurations, this initial guess
can be hard to find. Also, buckling phenomena lead the system
to experience branching, i.e. the model cardinality increases
from one to several solutions beyond a critical buckling
force. The convergence of the model towards one particular
solution depends on the choice of initial guess. Also, the static
models are typically singular at the branching points, inducing
convergence issues with standard numerical solvers.

To deal with these problems, the static models are solved
and analyzed using the numerical framework presented in [8].
It is composed of a prediction-correction continuation method,
detection functions of branching points from bifurcation the-
ory, and an elastic stability criterion. These different methods
are explained in the following.

Continuation method and bifurcations analysis have been
considered for the analysis of continuum robots in [8], [13].
The continuation method computes the successive configura-
tions of the TDCR when one of the model parameters is varied,
here the tendon force. The computed sets of configurations are
called branches. Starting from an existing solution, the next
solution is predicted by considering the branch tangent and
incrementing the tension value by a specific step size. This
prediction is then used as an initial guess to converge to the
actual solution using a Newton method. In case the method
has problems of convergence, the step size is automatically
reduced and the prediction is updated. Bifurcation theory
provides mathematical functions to detect the appearance of
branching points (BP) and limit points (LP). The latter indi-
cates that the branch has a vertical tangent, and therefore that
the robot shape will be sensitive to small perturbations. Once
these specific configurations are detected, a secant method is
used to solve the static model which is robust to singularities.
The numerical framework flowchart and implementation de-
tails on the continuation algorithm and the detection functions
are given in [8].

The continuation method allows finding robot configurations
in the continuation of a previous one, i.e. on the same branch
of solution. However, several branches can exist which are
disconnected from each other. Finding these branches requires
finding at least one robot configuration belonging to them. To
find these initial robot configurations, we solve the forward

static model for a discrete set of initial guesses of y. We
consider u+(si) ∈ {−umax, 0, umax}, where umax = rd(T1+
T2)/(EI) is the curvature obtained when considering the
tendon to apply a point moment at the robot tip. We consider
also 8 different orientations for the internal force at the base of
each subsegment, i.e. n+

0 (si) = (T1 + T2)
[
cos(γ) sin(γ)

]
with γ ∈ {0, π/4, ..., 7π/4}. This gives us a set of 3n8n initial
guesses for a TDCR composed of n disks. Solving the model
for each of these guesses leads to a set of robot configurations.
Some of them are identical, with slight shape deviations due
to tolerances in the numerical integration and Newton solver,
as different initial guesses can lead to the same solution. We
manually eliminate these configurations from the set, as they
are likely to belong to the same branch. The continuation
method is applied to each of the obtained sets. Note that this
method does not ensure that all robot configurations have been
found, which is beyond the scope of this paper.

In addition to these methods, we use the elastic stability
criterion proposed in [30] to evaluate the stability of the com-
puted configurations. This criterion is derived from the optimal
control theory for beams subject to boundary conditions at
their tip. The beam configuration is stable if the derivative
of the boundary conditions with respect to the internal forces
and moments at a given arc length s is full rank ∀s. This
criterion can be directly applied to a TDCR composed of
one spacer disk only at its tip. In that case, and considering
that the internal moment can be obtained from the backbone
curvature using the linear constitutive equation of the material,
a configuration is considered stable if: 1

EI 0 0
0 1 0
0 0 1

 ∂gFn

∂xs
is full rank ∀s ∈ [0, L] (9)

where xs =
[
u(s) n(s)T

]
. The derivative can be obtained

using finite differences. After perturbating xs, the differential
equations are integrated from s to the tip and the change in
the boundary conditions is computed.

This criterion must be adapted to the case of robots with
n ≥ 2, as the intermediate spacer disks induce boundary
conditions along the backbone, and the internal forces and
curvature are guessed at the beginning of each subsegment.
To do so, we consider that the state of the robot depends on
the state vector y and the perturbated state ys at s and that the
intermediate boundary conditions result in constraints between
these states. As a result, the robot can be considered as a beam
with boundary conditions gFn at the tip only, and the respect
of the intermediate constraints can be ensured by projecting
the state perturbation in the constraints kernel, as classically
performed for the stability analysis of elastic rods [31] and
continuum robots [32]. In addition, as we integrate from s to
L in the finite difference scheme, we consider that the effect of
a perturbation applied along subsegment i on gFn will only
be affected by the next subsegments. Therefore, when s is
along subsegment i, the matrix in Eq. (9) will be impacted by
the states x? =

[
xs xi ... xn−1

]T
and the constraints

c =
[
gT
Fi ... gT

Fn−1

]T
. The derivative of gFn with respect



to all the states can then be written:

∂gFn

∂x?
=
∂gFn

∂x?
N

(
∂c

∂x?

)
N

(
∂c

∂x?

)T

(10)

where N(A) stands for the kernel of the bilinear application
defined by matrix A. From the right to the left, the first
kernel operator projects a 3n× 1 perturbation vector into the
constraints null-space, which is of dimension 3 since there are
3(n−i) constraints and 3(n−i+1) states. We obtain a vector of
perturbations that satisfies the constraints. The second kernel
operator maps these new perturbations back to the partial state
space spanned by the components of x?. The derivative of the
tip boundary conditions we need for the stability evaluation
corresponds finally to the three first rows of ∂gFn

∂x? :

∂gFn

∂xs
=
∂gFn

∂x?

[
I3×3 O3×3(n−i)

]
(11)

The criterion is evaluated numerically by discretizing each
subsegment with 20 nodes. The derivatives are then evaluated
at each node using finite differences, resulting in 20n 3 × 3
matrices. Losses of rank are detected by computing the deter-
minant of these matrices and by detecting changes in sign.

The forward and inverse static problems are solved using
MATLAB (The Mathworks). We use the MatCont toolbox,
which implements the Newton-Raphson method, the continu-
ation algorithm, and the bifurcation detection functions. The
integration of the differential equations is performed using the
ode45 function.

C. Experimental setup

The experimental setup used to validate the stability analysis
and stiffness modulation strategy presented in the following
sections is composed of a motorized TDCR, a shape measure-
ment system, and a tip force generator. The prototype of a
planar TDCR is shown in Fig. 2a. It is composed of a tendon-
driven manipulator and its actuation unit.

The flexible manipulator is designed so that the assumptions
considered in the model are valid. The backbone is composed
of two 19 mm×200 mm×0.55 mm leaf springs made of 1075
spring steel (McMaster-Carr), which ensure planar deforma-
tions by having a high out-of-plane bending- and torsional
stiffness. The two leaf springs are spaced 10 mm from each
other, to avoid collisions with the tendons that run through
the centerline between them. The backbone is deformed in
a plane by two tendons routed on both sides through rigid
spacer disks. The disks are designed to be as light as possible
to minimize the effect of gravity on the robot while being
able to resist the tendon tension. As shown on Fig. 2b, they
are composed of 2 halves fixed on the backbone using M2
screws and are 3D printed using PLA material (Ultimaker
B.V, Utrecht, Netherlands). For intermediate spacer disks, the
tendon holes are built using two portions of 1.4 mm diameter
NiTi rods, which allow to reinforce the disk and limit the
friction with the tendons. The calibrated design parameters of
the flexible backbone are given in Table I.

Each tendon is built using two Maxtin 8 cables of 0.17 mm
diameter (KastKing, New York, USA) pulled by two compact
DC gear motors (ROB-12285, Sparkfun Electronics, Colorado,
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Pulley system
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y0
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(a) Experimental setup. The robot is composed here of one disk.
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(b) CAD view of a spacer disk. (c) Tendon route in the ac-
tuation unit.
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Fig. 2: Prototype of TDCR. The tendon route inside the
actuation unit is represented in red. The force sensor direction
is represented in green. The three indents used to measure the
pose of R0 are indicated with blue circles.



Prototype L (mm) rd (mm) E (GPa) I (mm4) µ
1 disk 200 13.6 169.52 5.27e−1 -
2 disks 400 13 169.52 5.27e−1 0.19

TABLE I: Calibrated parameters of the flexible manipulators.

USA) located in the actuation unit. Each motor can exert
a maximal tendon tension of 50 N. The tendons are guided
in the actuation unit through a set of pulleys, one of them
being fixed to a one-degree-of-freedom force sensor RFS100
(Honigmann Industrielle Elektronik GmbH, Wuppertal, Ger-
many) to measure the tendon tension as depicted in Fig. 2c.
A PMX amplifier (HBK, USA) is used along with the force
sensors, providing a filtered and reliable force measure. Each
tendon tension is controlled using a PI controller, implemented
on Matlab on a master computer, and calculating a voltage
applied to the motors through an Arduino Uno control board
equipped with an Adafruit Motor Shield v2 motor driver. The
controller gains are empirically determined such that the robot
remains stable while accurately reaching the desired tendon
tensions. The controller runs at 20Hz with a resolution lower
than 0.1N for each tendon, the resolution being limited here
by force measurement noises. We assume the force sensor is
close enough to the robot base such that the influence of the
actuation line stiffness is compensated by the controller in
quasi-static regime. The supporting base, the motor pulleys,
and the sensor pulleys are 3D printed. They are placed on
top of an aluminum frame housing the Arduino board and the
power supply.

The robot shape is measured using a laser scanner (FARO
Technologies, Florida, USA), as it is contact-free, accurate,
and adapted to quasi-static measurements. The generated point
cloud is expressed in the base frame R0, measured using 3
indents (blue circles visible on Fig. 2a), and manually cleaned.
The robot shape is finally obtained using the backbone ex-
traction algorithm proposed in [33]. Starting from the robot
base, the next node is obtained by selecting the point cloud
within a circle of radius L/N centered on the current node and
iterating in the direction of the mean position with a segment
length of L/N . The points visited in the point cloud are finally
removed. The same process is applied until all the N nodes
have been found. The repeatability of the shape measurement
process was evaluated by measuring 5 times the same shape
for different robot configurations. The corresponding nodes in
the 5 trials are included in a circle with a maximum radius of
0.3 mm at the robot tip and a mean radius of 0.1 mm along
the backbone.

The stiffness of the TDCR is measured by applying forces
with a specific direction and with increasing magnitude to
the robot tip, and by measuring the corresponding tip dis-
placement. The force is generated through the use of a cable
evolving in the robot plane and attached to the last spacer
disk, see Fig. 2d. The cable is guided through a pulley which
redirects it towards the gravity direction. Calibrated weights
are then hanged to the cable, generating the tip force Fe

with a desired magnitude. The pulley position is manually
adjusted using the device presented in Fig. 2e. It can be
roughly defined by fixing the device on specific locations on

the drilled board and refined using a rail tightened by screws.
The pulley position is adjusted after the application of the force
so that the force direction remains approximately the same
once the robot is deformed. The force direction is measured
for each experiment using the FARO arm, by scanning the
cable and finding the least square line that passes the closest
to the generated point cloud. The tip displacement is obtained
by measuring the robot shape with and without the tip force
and computing the displacement of the last extracted node.

III. STABILITY ANALYSIS OF TDCRS WITH ONE DISK

The stability analysis of the planar TDCR is carried out in
three steps. First, a robot composed of one disk is considered
in order to complete the results presented in [14] with insights
on the buckling phenomenon and its dependence on design
parameters. Second, a stability criterion is formulated for this
particular case study. Third, these results are extended to
TDCRs composed of multiple disks.

A. Buckling analysis

We consider the case study proposed in [14], where the
behavior of a TDCR composed of n = 1 disk, moving in
free space and actuated by pulling on one of the two tendons
is investigated. Numerically, the force applied on tendon 1,
T1, is progressively increased while T2 = 0 N, and the
corresponding robot configurations are computed using the
continuation process. The computed robot configurations form
a bifurcation diagram, which is represented in Fig. 3a along
with the corresponding robot shape in Fig. 3b. Pulling on the
second tendon, i.e. increasing T2 while T1 = 0 N, results
in a similar bifurcation diagram but mirrored with respect to
θ(L) = 0.

We can draw two main observations from these results.
First, the bifurcation diagram is composed of two discon-
nected branches, denoted Branch 1 (configurations 1 to 5)
and Branch 2, with Branch 2 being composed of a stable
portion (configuration 6) and an unstable one (configuration 7)
separated by a LP bifurcation. Consequently, 3 configurations
of the robot exist for the same value of T1 > 29.3 N, one
of them being elastically unstable. This is consistent with the
observations made in [14], where two stable configurations
were achieved for the same tendon tension. As a note, the
stable portions of the two branches end at a maximum tendon
force of T1 = 46 N, for which the tendon hole on the
end disk collides with the tendon hole at the robot base
(configuration 5). Also, as the two branches are disconnected,
the robot cannot pass from Branch 1 to Branch 2 by pulling
on one tendon only and without significant tendon length vari-
ations. For the design of TDCR considered here, for example,
Branch 2 can be reached by pulling first on the second tendon
until T2 = 32 > 29.3 N, then by releasing it gradually
while increasing T1 so that at the end (T1, T2) = (32, 0) N.
Sudden transitions between the two branches can also occur
due to external forces, experienced during interactions with
the environment for example. To show this, we consider a
TDCR with a disk radius of 2 mm subject to a tip force
with an orientation φ = −π/8. The tendon tension T1 is
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Fig. 3: Stability analysis of a TDCR composed of one disk
at the tip and deformed by increasing the tendon tension T1.
Stable and unstable robot configurations are represented in
blue and red resp. A Limit Point (LP) bifurcation is detected,
indicated by a red star. On the right side, a subset of robot
shapes is represented, the actuated tendon being plotted in
grey.
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Fig. 4: Stability analysis of a TDCR composed of one disk at
the tip, actuated with T1 = 32 N and deformed by increasing
the external tip force magnitude Fe. The tip force orientation
is φ = −π/8 and the disk radius is rd = 2 mm. Stable and
unstable robot configurations are represented in blue and red
resp. A Limit Point (LP) bifurcation is detected, indicated by
a red star.

increased above the tension at the LP bifurcation, and the
force magnitude is varied with the continuation process. The
resulting bifurcation diagram is presented in Fig. 4. Starting
from the free space configuration 4, applying a negative force
leads to an LP bifurcation, after which the robot jumps on the
upper branch as shown by the black dashed line. Reducing Fe

to 0 N afterwards leads to robot configuration 6.
Second, the tendon force beyond which the TDCR can have

multiple configurations is marked by the LP bifurcation. The
force at which this bifurcation occurs, denoted TLP , depends
on the robot design parameters, in particular on the distance
rd between the tendon holes and the backbone as stressed
in [14]. To evaluate this, the diagram in Fig 3 is computed
for different values of rd and superimposed on Fig. 5. As rd
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Fig. 5: Evolution of the bifurcation diagram according to the
disk radius.

increases, the tendon force at the LP increases as well, until
it reaches the point where the robot cannot be bent further.
This seems consistent, as the larger rd the more predominant
the tendon moment applied on the backbone is compared to
the tendon force. As a result, since the buckling phenomena
and the LP bifurcation are due to the tendon force, they
appear at a higher tendon tension. The tendon force at the LP
evolves in a quadratic fashion with rd as shown in Fig. 5b.
This differs from the results in [14], where the relationship
is presented as linear. This discrepancy may be due to the
difficulty of detecting accurately these cardinality changes
using standard numerical solvers. However, their assumption
of linear behavior could be considered acceptable, as the curve
non-linearity is not significant.

B. Stability criterion

A global stability criterion gives a lower bound of the
actuation values leading to stability losses as a function of
the robot design parameters, typically without considering
external forces applied on the robot [7]. Finding the analytical
expression of the force at the LP bifurcation would provide
such a relation. However, this task is complex because of the
non-trivial shape of the robot in this configuration. Instead, we
propose to find a criterion by making parallels with existing
beam buckling problems.

According to Eq.(3), a single disk TDCR is subject to
two different wrenches at its tip: a tendon force, which is
parallel to

#         »

O0O1 due to the straight tendon routing, and a
tendon moment. Considering the effect of the force only,
the backbone is in a buckling configuration identical to the
guyed beam studied in [34] when the cable is attached at
the beam base. As the tension in the cable increases, the
beam is compressed and stays in a straight trivial configuration
until buckling occurs, resulting in a super-critical pitchfork
behavior. This scenario is investigated for the 1-disk TDCR
using the continuation method by fixing T1 = T2 = Tt/2 and
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Fig. 6: Stability analysis of a TDCR composed of one disk
at the tip and deformed by pulling on the two tendons
simultaneously with a total force Tt. Stable and unstable robot
configurations are represented in blue and red resp. A Branch
Point (BP) bifurcation is detected, indicated by a red star. The
bifurcation diagrams obtained by pulling on tendon 1 with
rd =2 mm and rd =20 mm are presented with dashed lines.
The values of rd are indicated in blue. On the right side, a
subset of robot shapes are represented, the actuated tendon
being plotted in grey.

by varying the total force Tt applied on the backbone. The
resulting pitchfork bifurcation diagram is shown in Fig. 6. The
robot remains straight until a critical tendon force indicated
by a BP bifurcation, denoted TBP , beyond which two stable
and one unstable configurations exist. The critical tendon
force corresponds to the buckling force of a hinged-hinged
cantilever beam, as explained in [34]. By linearizing the static
model around the straight robot configuration, we can obtain
the relation between the critical tendon force and the design
parameters:

TBP =
EIπ2

L2
(12)

For our prototype, the stability criterion results in TBP =
22.04 N, which corresponds to the value of tendon tension at
the BP bifurcation on Fig. 6. The stable branches stop at the
tendon tension 39 N, under which the tendon holes at the end-
disk and the base coincide. The unstable branch continues on
with Tt −→∞.

It is well known that the force at the critical pitchfork
bifurcation obtained in the trivial straight configuration is a
lower bound of the tendon forces beyond which stability issues
can occur when perturbations are applied on the beam. The
tendon moment acts as such a perturbation. To illustrate this,
the diagrams obtained when pulling on one tendon are plotted
with dashed lines on Fig. 6 for rd =20 mm and rd =2 mm.
In this case, the total tendon force is applied on tendon 1,
resulting in Tt = T1. We can see that the lower the value of
rd, the lower the tendon moment and the closer the bifurcation
diagram is to the pitchfork diagram. We observe also that
TBP < TLP ,∀rd as expected.

The same strategy can be applied to analyze the effect of
an external tip force Fe on the TDCR elastic stability. One
can construct a similar super-critical pitchfork behavior by
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Fig. 7: Evolution of the bifurcation diagram according to the
external tip force.

considering a tip force aligned with the backbone axis at
rest, ±y0 in our case. The bifurcation diagram obtained by
pulling on the two tendons with Fe =2 N and φ = π/2 is
shown on Fig 7a. A similar pitchfork diagram is obtained,
with a critical tendon force TBP =15.43 N. As before, this
tendon force marks a stability limit of the TDCR under
perturbations. Changing the orientation of the tip force will
create additional bending moments along the backbone and
create such perturbations. To illustrate this, we superimpose
the diagram obtained by pulling on the two tendons but with
different tip forces on Fig 7a. The tip forces have different
orientations but equal components along y0. As expected, we
obtain that TBP < TLP ,∀Fe. The value of TBP depends
on Fe.y0, which we investigate by evaluating numerically
the critical tendon force for different tip force magnitude
with φ = π/2. The results are presented in Fig 7b. As
the tip force magnitude increases in the −y0 direction, TBP

decreases and reaches 0 for Fe =5.5 N. This value of Fe

is the critical tip force that provokes buckling without any
tendon tension. It corresponds to the buckling force of a fixed-
hinged cantilever which is written Fe = EI(π/(2L))2. On the
contrary, applying a tip force along y0 increases significantly
the value of TBP and thus stabilizes the robot.

To summarize, we identified here a global stability criterion
for a TDCR with one disk: the maximum tendon force until
which the robot is stable given its design parameters. This
criterion can be used to design stable robots, where the max-
imum tendon force is imposed and the backbone parameters
are chosen accordingly, or to ensure elastic stability during
control, where the backbone parameters are fixed and the
tendon tension varies. It also indicates the level of pre-tension
that can be applied to the tendons without inducing buckling
effects.
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Fig. 8: Comparison between measured and calculated shapes
for the 1-disk prototype of TDCR. The measured nodes are
depicted with black crosses. Only 20 of them are represented
for clarity. The robot backbone predicted by the static model
is depicted with solid blue lines.

Fig. 9: Stable robot shapes obtained for a robot with 1
spacer disk. The two bent configurations are highlighted with
solid blue curves. The leaf springs composing the backbones
are colored light blue. The initial straight configuration is
highlighted with a dash-dotted white line.

C. Experimental validation

The static model is assessed for the case of the 1-disk
TDCR deformed by pulling on tendon 1 only. A set of 11
different values of tendon tension equidistributed in the range
[0 N, 27 N] were applied. For each value, we measured the
robot shape once the robot converged to a steady state. For
the shape reconstruction from the point cloud, the backbone
is discretized in N = 40 nodes. The backbone Young modulus
E and the disk radius rd are then calibrated from the exper-
imental data to account for material property variability and
assembly tolerances. They are estimated so that the mean error
between the measured and calculated robot tip positions for
all the tested configurations is minimized. The minimization
is performed with a Levenberg-Marquardt algorithm imple-

mented in the fminsearch MATLAB function. The values
of the calibrated parameters are listed in Table I. The computed
and measured robot configurations are represented on Fig 8.
The results show a good correlation between the model and the
experiments, with a tip position error of 2.90±1.40 mm, which
represents 1.45% of the robot length. The shape error, which
is computed for each configuration as the mean position error
over the nodes, is 1.70±0.86 mm or 0.85% of the robot length.
The tip orientation error is calculated by comparing the value
of θ(L) given by the model to the experimental orientation.
The latter is obtained by computing the slope of the least
square straight line passing through the last five nodes at the
tip. The orientation error is 2.45 ± 2.02◦. This validates the
ability of the model to predict the backbone shapes obtained
during tendon actuation.

We also observe experimentally the non-trivial robot shape
that belongs to the secondary branch in Fig. 3, visible on the
left side of Fig. 9. The configuration is obtained by manually
pre-bending the robot in the −x0 direction and then applying a
tendon tension above the value at the LP bifurcation TLP . The
robot then converged towards the expected bent configuration
in the direction −x0.

IV. EXTENSION TO TDCRS WITH n DISKS

A. Buckling analysis

The results presented before can be extended to planar
TDCRs composed of n disks. They are generated using our
numerical approach for different values of n while conserving
the same arc length between two disks by setting the robot
length at L = nLd with Ld = 200 mm. We assume initially
that friction is negligible to ease the interpretation of the
results. This assumption is relaxed later.

Pulling on one tendon leads to a more complex bifur-
cation diagram composed of four disconnected branches of
equilibrium configurations, denoted Branch 1 to 4, as shown
on Fig. 10a. A selection of robot configurations picked on
these branches are represented on Fig.10b. Branch 1 and 2
are similar to the ones observed for n = 1. Their stable por-
tions are characterized by robot configurations where the two
subsegments have a similar curvature which is either negative
(configuration 1 to 5) or positive (configuration 6). Branch 3
and Branch 4 are also partially composed of stable robot
configurations, but which form S-shapes (configuration 8,9).
The curvature has the same sign along each subsegment and
opposite signs between the two subsegments. Both extremities
of Branch 4 extend to T1 −→ ∞. As a summary, we find 9
different configurations of the 2-disks TDCR for the same
value of T1 > 30N. Four of the configurations are evaluated
as stable (configuration 5,6,8,9). They are characterized by
robot shapes where the variations of curvature, along one
subsegment or between the two subsegments, are minimal.
This is consistent with the fact that a stable configuration is a
minimum of the robot potential energy.

B. Stability criterion

Pulling on the two tendons simultaneously leads to the
bifurcation diagram shown in Fig. 11, which is composed
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Fig. 10: Stability analysis of a TDCR composed of two disks and deformed by increasing the tendon tension T1. Stable and
unstable robot configurations are represented in blue and red resp. Limit Point (LP) bifurcations are detected, indicated by a
red stars. On the right side, a subset of robot shapes are represented, the actuated tendon being plotted in grey.

of 5 branches. Branches 1 and 2 are composed of robot
configurations where the backbone curvature is zero (config-
uration 1) or has the same sign along the two subsegments
(configuration 2 and 3), similar to the case where n = 1.
They intersect at a BP bifurcation located at TBP = 22.04 N.
Branch 3 and 4 are composed of robot configurations where
one of the subsegments is straight and the other is bent. This
can be interpreted as the straight subsegment staying in the
trivial configuration while the other one is buckled. They are
evaluated as unstable, which is to be expected as one of the
subsegments is in a straight, unbuckled configuration even
after the critical tendon force. Finally, Branch 5 is composed
of stable robot configurations where the backbone experiences
a S-shape (configurations 8 and 9). Along this branch, the
tip orientation is constant and equal to θ(L) = 0 rad. As
a summary, when pulling on both tendons, the TDCR can
have 9 different configurations for the same tendon tension.
The robot shapes shown in Fig. 11 are obtained with the same
total tendon force of Tt = 25N.

We can also observe from Fig. 11 that TBP is the same as
the one obtained from n = 1. This is likely to be due to the

subsegment length Ld which is the same for the two cases.
Moreover, we saw that some robot configurations obtained
after the bifurcation have only one buckled subsegment. These
observations hold when using more subsegments. To verify
this, we compute the bifurcation diagram numerically with the
two tendons pulled for numbers of disks going from n = 3 to
n = 10 and the same subsegment length Ld = 200mm. For a
given backbone stiffness, varying the number of disks while
conserving the same inter-disk arc length leads to the same
critical force TBP = 22.04 N. Assuming that this property
holds for n > 10, we deduce that the global stability of
a TDCR composed of n disks is actually dictated by the
global stability of one subsegment, whose length is L/n.
Consequently, the global stability criterion can be obtained
from Eq. (12):

TBP =
EIπ2

(L/n)2
(13)

This criterion can be useful for TDCR design and control, as
explained previously, and applies to robot prototypes with any
backbone properties and number of disks.
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Fig. 11: Stability analysis of a TDCR composed of two disks
and deformed by pulling on the two tendons simultaneously
with a total force Tt. Stable and unstable robot configurations
are represented in blue and red resp. A Branch Point (BP)
bifurcation is detected, indicated by a red star. On the right
side, a subset of robot shapes obtained for Tt = 25 N are
represented, the actuated tendon being plotted in grey.

Concerning the impact of an external tip force on the critical
tendon force, the same tendency is observed as for the case
n = 1. For increasing magnitude of Fe in the −y0 direction,
TBP decreases in quasi linear fashion until reaching 0 N for
Fe = EI(π/(2L))2.

Finally, we study the influence of friction between the ten-
dons and the disks on the robot’s elastic stability. In particular,
we focus on the evolution of the tendon tensions at LP and BP
bifurcations with the friction coefficient µ. A complete analy-
sis of the influence of friction on the equilibrium branches is
out of the scope of this paper. To study the evolution of TLP ,
we generate Branches 1 and 2 in the case where one tendon
only is pulled (Figure 10) with different values of µ. Reaching
the configurations along these two branches does not imply
the same direction of tendon motion. The tendon is shortened
to bend the backbone in the clockwise direction (Branch 1),
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Fig. 12: Evolution of the bifurcation diagram according to the
friction coefficient in the case of a 2-disks TDCR with one
actuated tendon.

and released to bend in the anti-clockwise direction (Branch
2). To account for this phenomenon, we consider a positive
and negative value of µ respectively with the same magnitude
‖µ‖. The resulting branches are superimposed to the original
frictionless diagram in Fig. 12a, and the evolution of TLP

with µ is shown in Fig. 12b. We observe that the higher the
friction the lower the robot’s deformation is, as expected. Also,
the value of TLP increases with µ in a quasi-linear fashion.
To observe the evolution of TBP , we pull simultaneously the
two tendons starting from the undeformed and straight robot
configuration, which corresponds to Branch 1 in Fig. 11 for
the same values of ‖µ‖. We don’t observe any change in the
critical tendon force. This is to be expected, as in the straight
configuration the vectors ak and xb,k are orthogonal and the
friction force is null.

C. Experimental validation
We use the same process to validate the static model in the

case of the 2-disk TDCR. A set of 7 different values of tendon
tension equidistributed in the range [0 N,18 N] were applied
on tendon 1. To reconstruct the robot shape, each subsegment
is discretized with 40 nodes, giving a total of 80 nodes. The
value of the friction coefficient between the intermediate disk
and the tendon is calibrated to minimize the tip position error.
The Young’s modulus and disk radius are considered the same
as for the 1 disk prototype. The computed and measured
robot configurations are represented in Fig 13. Again, the
results show a good correlation between the model and the
experiments, with tip and shape position errors of 7.2 mm and
4.1 mm respectively, corresponding to 1.8% and 1.02% of the
robot length. The tip orientation error is 3.05± 2.01◦. This
validates the ability of the model to account for the tendon
forces applied on intermediate spacer disks, and the friction
forces at the tendon holes.

We finally evaluate experimentally the stability criterion for
n disks by trying to reach the different robot configurations
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Fig. 13: Comparison between measured and calculated shapes
for the 2-disks prototype of TDCR. The measured nodes are
depicted with black crosses. Only 20 of them are represented
for clarity. The robot backbone predicted by the static model
is depicted with solid blue lines.

Fig. 14: Stable robot shapes obtained for a robot with 2 spacer
disk. The initial straight configuration is highlighted with a
dash-dotted white line, and the four bent configurations with
curvature having the same sign (C-shape) or opposite sign (S-
shape) along the subsegments with solid blue curves.

presented in Fig. 10. As previously, the robot is manually
pre-deformed in the targeted shape and the control is run
until an equilibrium is reached. We obtain the four stable
configurations depicted on Fig. 14. As expected, we obtain
two configurations where the backbone curvature has the same
sign along the two subsegments and two others that exhibit an
S-shape.

V. APPLICATION: ACTIVE SOFTENING

In this section, we present the concept of buckling-based
active softening considering the straight buckling configuration

described in Sec.IV-B. We propose an open-loop strategy to
control the tip orientation and the robot stiffness simultane-
ously. Finally, the control strategy is validated experimentally.

A. Principle of buckling-based active softening for TDCR

To illustrate the impact of buckling on the TDCR stiffness,
we consider the case where the robot is composed of two
disks, the backbone is initially straight, and the two tendons
are pulled simultaneously. This case scenario is depicted in
Fig. 15a. In this configuration, the total tendon force applied
on the flexible backbone can be increased up to the critical
tendon force without altering the robot shape by applying the
same tension on the two tendons. When an external force
is exerted at the tip, the robot deforms, and the tendons’
configuration changes. The tendon force produces interaction
forces on the disks, depicted with grey arrows in the figure,
that favor the robot bending. As a result, when the tendon
force increases, the backbone experiences larger deflections
for the same external force at the tip and the robot stiffness
is lower. We show that phenomenon numerically by applying
tip forces with orientation angles φ = 0 rad and φ = −π/2
rad and of small magnitude ‖Fe‖ = 1e−6 N on the robot.
The tendon force is then progressively increased and the tip
displacement in the force direction ∆x (resp. ∆y) is observed.
The robot stiffness Kxx (resp. Kyy) with respect to the
tip force is finally computed as Kxx = F T

e x0/∆x (resp.
Kyy = F T

e y0/∆y). The results are shown in Fig 15b. As
the tendon force increases, the TDCR can no longer support
the constant but small load it experiences and undergoes a
large displacement. As a result, the TDCR stiffness reaches
nearly 0 N/m at the critical tendon force. Beyond this tendon
force, the robot configuration is unstable, leading to a negative
stiffness typical of zero-stiffness compliant mechanisms [24].
A negative stiffness means here that the robot internal forces,
which comprise the elastic and tendon forces, do not oppose
the deformations induced by the tip force as they normally do
but favor them. As a consequence, the robot continues moving
until it reaches a post-buckling stable configuration, such as
configurations 2, 3, 8 and 9 in Fig. 11.

As a conclusion, tendon actuation can be used to obtain
large variations of the robot stiffness. Buckling-based active
softening with tendon actuation provides an alternative to
existing variable stiffness technologies without adding com-
ponents to integrate into the backbone. Therefore, a smaller
footprint can be achieved while having the advantages of ten-
don actuation, such as easier continuous control and potentially
higher dynamics.

B. Open-loop control of tip orientation and stiffness

Using the principle of buckling-based active softening, we
propose an open-loop control strategy for planar TDCR where
the tip orientation θ(L) and the robot global stiffness are
controlled simultaneously. The actuation inputs to apply to the
robot are computed using the inverse static model to obtain
a desired tip orientation θd. We also impose a desired tendon
force Td applied on the backbone to bring the robot closer to or
farther from its stability limit. In order to validate this control
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Fig. 15: Demonstration of the buckling-based active softening
of TDCR, in the configuration where the robot is straight and
the same force is applied on both tendons. The blue and red
curves on the right represent stable and unstable configurations
respectively.

strategy numerically, the inverse static problem is solved for
several values of θd. For each tip orientation, Td is increased
to the critical tendon force. We neglect the effect of friction
between the tendons and the disks to ease the convergence of
the inverse static model.

The resulting robot shapes and robot stiffness are presented
in Fig. 16. In Fig. 16a, the robot shapes obtained for the
different values of θd and Td are superimposed. The zoomed
views show the most different configurations for θd = −π/8
and θd = −π/2. First of all, we observe that we can
successfully reach a given bending angle with different values
of total tendon force. The inverse static model converges, and
the error in tip orientation is zero modulo the solver tolerances.
We also observe that there are small variations between the
robot shapes for a given value of θd. This property is likely
due to the TDCR construction, in particular to the fact that the
two tendons terminate at the same spacer disk (the backbone
tip) and their routing is symmetric with respect to the robot
backbone. The shape differences, which is the mean distance
between corresponding nodes in the two configurations, are
1.10 mm and 5.20 mm respectively, i.e. 0, 28% and 1, 30%
of the backbone length. These variations are similar to the
position accuracy of standard static models of TDCR [29],
[35]. Consequently, without having implemented a specific
position controller, we can vary the total tendon force while
maintaining the segment shape, with variations that could
be experienced with state-of-the-art model-based planners or
open-loop position control schemes.

The variations of robot stiffness obtained for each value of
θd are shown in Fig. 16b and Fig. 16c. Only the stiffness values
corresponding to stable robot configurations are depicted. The
different curves do not start at the same value of Tt, since the
minimum tendon force required to reach θd increases with it.
As previously, we observe a quasi-linear decrease of Kxx and
Kyy with respect to the total tendon force, until it eventually
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Fig. 16: Demonstration of the buckling-based active softening
of TDCR for non-straight configurations. The values of θd in
rad are written on the graphs. TBP is indicated with a black
dashed line.

reaches 0 N/m. While the stiffness becomes null at TBP for
θd = −π/8 and θd = −π/4, stable configurations beyond
the critical tendon force are computed for the two last tip
orientations. In particular, the total force at which the stiffness
becomes zero increases with θd. This is due to the boundary
condition (7) we added to the system to solve the inverse static
problem, which constrains the robot tip orientation to stay at
the desired value. In conclusion, the robot tip stiffness can be
theoretically decreased to zero without altering the robot tip
orientation and with small variations of the robot shape. This
validates the effectiveness of the proposed open loop control
as a buckling-based active softening strategy.
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Fig. 17: TDCR shape in free space obtained after apply-
ing the tendon forces calculated with the inverse model for
θd = −π/4 and Tt = {8.6, 13.0, 17.0} N. The robot shapes
are depicted in blue, red and green for each total force
respectively. The robot shapes obtained for Tt = 21.0 N are
depicted in black.

C. Experimental validation

We validate the active softening strategy experimentally for
θd = −π/4 and for tip forces in the y0 direction. The tendon
forces computed with the inverse static model are applied to
the prototype for four different values of total tendon force:
Tt = 8.6 N and Tt = 21.0 N, which correspond to the mini-
mum force required to reach θ(L) = π/4 and the force just
before the stability limit respectively, and 2 intermediate forces
Tt = 13.0 N and Tt = 17.0 N. For each value of total force, the
tip stiffness is estimated by applying tip forces with increasing
magnitude and measuring the corresponding robot shape and
tip displacement. The different force magnitudes are obtained
with a set of calibrated weights of mass {2, 5, 7, 10, 12, 15} g.
Each robot configuration is established 5 times, returning to
the straight robot configuration between each trial.

The robot shapes in free space obtained for the 4 total
forces are represented in Fig. 17. We can see that for Tt =
{8.6, 13.0, 17.0} N, the computed tendon tensions lead to
similar robot shapes. The tip orientation errors are 8.76±1.41◦,
7.60 ± 0.19◦ and 2.34 ± 3.39◦ respectively, resulting in a
mean tip orientation variation over the different values of Tt of
6.42◦. These values seem acceptable considering that friction
was neglected and the accuracy of the open loop control is
limited to the static model accuracy. Indeed, the orientation
variation is similar to the tip orientation error reported in
section IV.C, which was obtained by accounting for friction.
We observe an error of 25.02 ± 2.52◦ for Tt = 21 N. This
is expected, as the robot becomes more sensitive to small
perturbations when getting closer to the stability limit. Due to
this error, interpreting the change of stiffness would be difficult
since it would be due to the change in total force but also the
change in robot shape. Therefore, we measure the tip stiffness
for the three first values of total force only.
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Fig. 18: Displacement to tip force relation for different val-
ues of total tendon force applied on the backbone and for
θ(L) = −π/4. The distributions of the measured values for
each tip force amongst the 5 trials are represented with blue,
red, and green areas. Plain thick lines represent the linearized
relationship.

The tip displacements along y0 obtained after application of
the calibrated weights are depicted in Fig. 18. The maximum
and minimum values amongst the 5 trials are indicated by thin
plain lines, the colors corresponding to the different values
of Tt. Linear regression is performed on all the measures
related to a given Tt. The offset from the obtained linear
relationship is deducted from the data points and the fitted
lines in Fig. 18. The slope of the line gives the compliance
at the robot tip along y0 K−1yy = ∆y/(F T

e y0), from which
the stiffness can be deduced. For Tt = {8.6, 13.0, 17.0} N,
we obtain Kyy = {19.75, 10.67, 4.65} N/m. As expected,
the total tendon force has a significant impact on the stiffness
at the tip of the robot. The value of Kyy is approximately
divided by 4 when passing from Tt = 8.6 N to Tt = 17.0 N,
i.e. when doubling the total force. Also, the stiffness can be
varied continuously on this range by changing the value of
Tt. The measured values of stiffness show some discrepancies
with the values predicted by the model in Fig. 16c. For the
same values of total force, the stiffness values predicted by the
model are Kyy = {13.10, 9.41, 5.74} N/m, resulting in errors
of {50.76%, 13.39%, 18.90%} of the theoretical values. This is
attributed to the fact that the tip force magnitude in simulation
is much lower than in experiments. In order to measure the
stiffness, high-enough tip forces had to be applied in order to
observe distinct tendon tension variations during control, and
therefore to obtain distinct tip displacement. As a result, larger
changes in configurations are obtained, which are impacted
by the non-linearity of the robot behavior. Nevertheless, this
experiment demonstrates the effectiveness of the buckling-
based active softening strategy.

VI. DISCUSSION

The results obtained during the stability analysis improve
the understanding of the behaviour of TDCR. They give useful



insights on how to design and control these robots, such
as what pre-tension can be applied on the tendons without
inducing buckling, or what are the different configurations the
backbone can achieve for a given set of tendon tensions. The
buckling-based stiffness modulation strategy also reveals to
be effective in reducing the robot tip stiffness significantly.
In this section, we discuss some other ways of using these
results in practice, as well as some limitations of this work.
In particular, our numerical results depend on the assumptions
we considered in the static model, which are discussed below.

A. Assumption 1: Absence of backbone self-collisions

Some results of the stability analysis depend on the as-
sumption that the tendons cannot collide with the backbone,
or that the backbone cannot collide with itself. In particular,
the non-trivial robot shapes presented in Fig. 3 and 10, all
the configurations of the trivial branches above F1 = 31N
on Fig. 10, and the non straight configurations of Fig. 6
will be affected by these collisions. These configurations
might be altered or might not exist for standard designs of
TDCR where the backbone consists of a standard tube or leaf
spring. However, several results still apply to these designs.
The value TBP will be the same, as the backbone is not
subject to any self-collision when reaching the critical tendon
force. The backbone is also free to achieve small bending
around the straight configurations beyond TBP . The stiffness
modulation strategy is applicable to standard TDCR designs.
As shown in Fig. 16, the robot configurations obtained with
θd = −π/8 do not present collisions between the tendons and
the backbone, while the stiffness still decreases towards 0 N/m
while increasing the total tendon force. By considering a
backbone composed of more disks, which is often the case
in the literature, larger collision-free values of θd can be
achieved. We also think that the interesting shapes obtained
beyond the critical tendon force can motivate new designs
of TDCR. Indeed, achieving different shapes with continuum
robots without adding actuators, such as the S-shapes we
present in Sec.IV, is an active research topic [36], [37].

B. Assumption 2: Tendon force control

The results presented in this work are valid for TDCR
where the tendon tension is controlled rather than the tendon
displacement. This is important to notice, since switching
between these two actuation modalities can result in significant
changes of behaviour as demonstrated in [38]. In particular,
the authors in this work showed that the pre-tension of the
tendons has no effect on the robot stiffness when the tendon
is fully constrained along the backbone and its displacement
is prescribed. As a result, the effectiveness of the stiffness
modulation strategy we propose shows the interest of using
tendon tension control for TDCR.

From an application point of view, this tension control
requires a tension sensor that cannot always be placed at the
backbone base, especially in medical applications where small
form factors are important. In that case, the sensor might be
deported farther from the backbone base, requiring to consider
the actuation line stiffness in the static model as considered

in previous works. Alternatively, the research community of
cable-driven mechanisms has developed a number of compact
solutions for tension sensing, including small-scale compliant
bodies equipped with strain gauges [39], [40] and self-sensing
tendons composed of multiple resistive fibers [41], that could
be integrated close to the backbone base.

C. Assumption 3: Planar robots composed of spacer disks

The results of the stability analysis and the stiffness mod-
ulation are valid for planar TDCR composed of spacer disks.
Therefore, they apply directly to several existing designs of
TDCR, where the robot deformations have been restricted to
a plane to facilitate design and control. It is interesting to note
that, as the number of disks contributes quadratically to the
critical tendon force, this force increases rapidly with n for a
given robot length. As a result, the larger the number of disks,
the larger the actuation space where the TDCR stays elastically
stable. Also, the critical tendon force may become larger
than the force that can sustain the tendon without breaking.
In that case, the considered TDCR cannot become unstable,
but loses also interesting features such as the configuration
multiplicity and the stiffness modulation. This could motivate
the use of new materials for the tendons, that can resist higher
magnitudes of tendon tension. To push this topic further, the
critical tendon force approaches infinity when the number of
disks does, this last case being equivalent to having tendons
fully-constrained along the backbone [28]. Fully-constrained
tendons are usually realized by continuously guiding the
tendons along the backbone through lumens, and can lead to
a significantly different behaviour. As a result, TDCR with
fully-constrained tendons might theoretically not be subject to
any buckling phenomenon. They might be elastically stable for
any tendon tension, but, again, at the cost stiffness modulation
and shape changing abilities. However, in practice, TDCR
with tendons guided through channels might still be subject
to buckling. Buckling could occur due to errors in the planar
restriction, the mechanical play between the tendons and
the channel and imperfect robot fabrication and assembly.
A deeper analysis of the effect of these imperfections on
the TDCR stability is definitively of interest for predicting
buckling phenomena more accurately and using them.

VII. CONCLUSION

In this work, we present an extensive stability analysis of
planar TDCR composed of spacer disks for the first time,
based on both numerical analyses and experimental assess-
ments. We show that TDCRs can have multiple configurations
for the same actuation inputs, confirming and completing
existing results on the 1-disk robot and extending them to
two disks. The unstable configurations can lead to sudden
changes of configuration eventually which are to be avoided
in sensitive environments. The stable ones present interesting
shapes, such as S-shape curves, that could be exploited to
obtain different kinematic properties. We also show that these
configurations appear when the total tendon force applied
on the robot backbone goes beyond a critical value, which
depends on the backbone design parameters. We provide an



analytical expression of this critical tendon force, which can
be used to design stable TDCR, determine the pre-tension to
apply on the tendons or to ensure the robot elastic stability
during control. Finally, we show that this buckling behavior
can be leveraged to decrease the robot stiffness with small
alteration of its shape. The robot stiffness can in theory be
reduced down to quasi 0N/m, and ratios up to 4 are obtained
experimentally with the considered setup.

Though they are promising, the results of this work un-
derline also several future works to improve the control of
TDCR buckling. First, some assumptions we made for the
stability analysis need to be relaxed to improve our knowledge
of these behaviors. We will investigate the influence of static
friction in detail, considering stick and slip regimes, and
extend these results to TDCR evolving in space. Second, all the
possible configurations of TDCRs should be identified, which
implies upgrading our numerical analysis framework with
global search algorithms. Third, improved and new strategies
must be developed to exploit the buckling phenomena. The
prototype and the tendon tension control should be refined in
order to achieve a larger reduction of the robot stiffness. Also,
new path-planning methods must be developed, to transition
between the multiple stable configurations of the robot. This
will eventually lead to obtaining different kinematic properties
which can be used to improve the versatility of TDCRs.
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