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A B S T R A C T

This paper looks at the challenge of making maintenance decisions for deteriorating systems when the
degradation process leading to failure cannot be directly observed or measured. In this scenario, the system’s
health is monitored by observing the progression of a degradation-related marker index, which can be obtained
through inspections. To model this configuration, a bivariate gamma process is employed. One component
represents the marker process, while the other represents the degradation process, which dictates the time of
failure. Two condition-based maintenance (CBM) policies are proposed and analyzed. The first policy is based
on a conventional decision structure, utilizing a fixed preventive threshold directly applied to the measured
process. The second policy relies on monitoring data related to the marker process to estimate the level of
latent degradation at inspections. We demonstrate that the second policy is equivalent to a policy employing
an adaptive preventive threshold that sequentially evolves. We provide insights into some key properties
associated with this approach. The expected cost rate is calculated and employed for policy optimization.
Additionally, a numerical study is presented that showcases the practical implementation of the method and
highlights the effectiveness of the second approach, even when the correlation between degradation and the
marker process is low.
1. Introduction

Industrial organizations are actively seeking new strategies to en-
hance the efficiency of their operations. In this pursuit, maintenance
optimization has emerged as a pivotal factor, simultaneously minimiz-
ing production costs while providing high-quality products. It involves
deciding which action to take at the appropriate moment based on
available information. Corrective actions refer to maintenance mea-
sures necessary when a system experiences a failure, while preventive
actions are maintenance activities designed to prevent or postpone
future failures. These preventive actions are carried out while the
system is still operational. There are three primary categories of preven-
tive maintenance strategies: (1) age-based maintenance, (2) time-based
maintenance, and (3) condition-based maintenance, as mentioned in
Ref. [1]. Due to its advantages, condition-based maintenance (CBM) has
garnered increasing attention in maintenance research. CBM relies on
one or more variables that measure the system’s condition, with the pri-
mary objective of reducing unnecessary maintenance interventions and
eliminating the risks associated with preventive maintenance actions.

The application of CBM in industrial areas relies on the develop-
ment of stochastic degradation models. The choice of the stochastic
process that best describes the degradation dramatically influences
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the CBM decision-making strategy. Research on CBM has two main
streams, one focusing on discrete and the other on continuous degra-
dation processes. Markov chains are commonly employed to model
discrete deterioration processes [2–6], while continuous time and space
stochastic processes such as the Wiener, gamma, and inverse Gaussian
processes are widely used in continuous degradation processes. The
Wiener process is suitable in describing non-monotonic degradation
over time; see for example, [7–10]. On the other hand, the gamma
and inverse Gaussian (IG) processes are applied to model the mono-
tonic degradation of a system. These processes can be regarded as
the limit of a compound Poisson process and are thus appropriate
models when degradation takes the form of cumulative damage. There
is limited literature available on utilizing a CBM-based strategy in the
context of the IG process, as seen in references such as [11] for a
maintenance policy in the presence of heterogeneity among a product
population, [12] for dynamic auto-adaptive predictive maintenance
with successive Bayesian updates, [13] for predictive maintenance
with imperfect repairs, [14] for CMB considering a two-stage inverse
Gaussian process with random effects, and [15] for a mission-oriented
maintenance policy.

On the contrary, the gamma process has been studied extensively
in CBM models, see [16] for major works prior to 2007. Without
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attempting exhaustiveness, some illustrative works are quoted here-
after. Meier-Hirmer et al. [17] developed a model of maintenance
optimization for a system with a gamma deterioration process with
intervention delay and studied its application in railway track mainte-
nance. Caballé et al. [18] proposed a periodic inspection/replacement
strategy for a system subject to an internal gamma degradation pro-
cess and an external non-homogeneous Poisson sudden shocks process.
Yuan et al. [19] presented a model to quantify the economic value
gained by the implementation of maintenance actions. Zhang et al. [20]
studied how heterogeneity in degradation influences condition-based
maintenance. Mercier and Castro [21] introduced and compared two
imperfect repair models for a degrading system, with deterioration
level modeled by a non-homogeneous gamma process. Han [22] devel-
oped an optimal CBM policy with the optimal inspection points under
the gamma degradation process with random effects to account for
potential population/environmental heterogeneities.

Early research in CBM modeling for gradually deteriorating sys-
tems primarily concentrated on single-component systems. Mainte-
nance policies and models for multi-component systems were sub-
sequently proposed. A wide range of configurations has been envis-
aged [23]. For multi-component systems, several degradation indica-
tors are monitored, each associated with a component that requires
maintenance. In the context of multi-component systems with gradual
degradation phenomena, degradation models based on Lévy stochastic
processes, specifically gamma and Wiener processes, are frequently em-
ployed. A multi-component configuration is relevant when it comes to
explicitly exploiting dependencies between components or subsystems.
The most commonly explored dependencies are economic, structural,
and stochastic.

Some researchers [24–26] are investigating CBM strategies that
incorporate economic dependencies. Their primary motivation is to
achieve cost reduction when maintaining multiple components jointly.
In the context of degradation modeling, the particular interest is in
stochastic dependencies. Interactions between components can be state-
state or state-rate interactions (see e.g. [27,28]). Various types of
stochastic dependencies are being explored and modeled using cop-
ulas [29,30], multivariate processes [31], load sharing [32], or the
common effect of environmental factors [33]. It is important to note
that CBM studies on multi-component systems that take structural
dependence into account are somewhat limited, as they require more
complex analytical formulations. Furthermore, it is essential to clarify
that the terminology ‘‘single-component’’ or ‘‘multi-component’’ does
not necessarily correspond to the real configuration of the system but
rather to the model being used. For instance, a CBM policy for a single-
unit system may refer to a multi-component system considered as a
whole, characterized by a one-dimensional ‘‘health index’’ rather than
its complete multi-dimensional state [34].

In the majority of the aforementioned studies, failure mechanisms
can be attributed to an underlying, observable physical or chemical
degradation process, such as fatigue crack growth, corrosion, and wear,
among others. However, there are situations in which failure cannot
be linked to an observable degradation process. Thus, it becomes chal-
lenging to directly and accurately measure or observe the degradation
process itself, as noted by [35]. In other words, the degradation process
is latent. In such cases, besides the latent degradation, we can measure
other indices that are related to the performance characteristics. Such
indices are referred to as markers [36]. These markers are statisti-
cally associated with the latent degradation state, and hence, contain
valuable information about the unobservable degradation process.

This configuration has the potential to be utilized in a wide range
of real-life scenarios. It is applicable to systems where failure is linked
to a specific component or a subsystem that is inaccessible. Although
the degradation indicator is well-defined, measuring its level may
necessitate complex or cost-prohibitive operations that are impractical.
Consequently, non-destructive or remote testing processes are being
2

explored to indirectly assess the degree of degradation in an alter-
native manner. Clearly, the performance of the measurement system
can impact the accuracy of the marker and its correlation with actual
degradation. A prime example of this configuration is the degradation
of mechanical transmissions. Directly accessing the gears for measuring
degradation levels poses considerable challenges. However, the obser-
vation of oil wear debris can serve as a valuable marker [37]. Another
illustrative example is the corrosion-induced degradation of aluminum
alloys, a significant factor leading to structural failure in various safety-
critical and mission-critical engineering components/systems, such as
aircraft wings and nuclear batteries. Therefore, degradation perfor-
mance remains latent, but non-destructive testing techniques like elec-
trochemical impedance spectroscopy (EIS) can be employed to evaluate
the corrosion-induced degradation process [38].

Another scenario arises in systems where a global degradation phe-
nomenon is identified, but a definitive evaluation indicator is lacking.
In such cases, information about the level of degradation is derived
from precise measurements of a correlated indicator. For instance, this
can be observed in studies related to AIDS, where CD4 cell count
serves as an indicator of residual lifetime [36,39,40], in monitoring
disease progression in neurological disorders (e.g., amyotrophic lat-
eral sclerosis) using serum and cerebrospinal fluid neurofilament light
chain protein as an indicator, and in tracking gradual seal degradation
through the dynamic response of hydraulic actuators for blade-pitch
control in wind turbines.

Additional examples can be found in various situations. The per-
formance of lithium-ion batteries deteriorates with decreasing capacity
and increasing impedance, potentially leading to equipment and sys-
tem failures or even catastrophic losses. Health indicators (HI), such
as the charge quantity stored in the battery during constant current
charging or the discharge voltage over time, can be employed to
represent changes in capacity degradation, which is otherwise un-
measurable [41]. The accumulation of undesirable materials on solid
surfaces can significantly increase resistance to heat transfer in subsea
heat exchangers. Failure results from fouling and can be detected while
the fouling process remains latent. The marker process is associated
with changes in certain physical properties of the fluid, which can be
periodically checked.

Different mathematical models have been developed to describe the
relationship between latent degradation and marker processes. Whit-
more et al. [42] presented a model based on a bivariate Wiener process,
where one component represents the marker and the second, latent
component determines the failure time. Ting Lee et al. [43] extended
the model proposed in [42] and applied it in a clinical trial for AIDS.
Ting Lee et al. [44] also explored Bayesian inference for the bivariate
Wiener process introduced in [42]. Peng and Zhou [45] assumed that
the degradation process follows a Wiener process, and the marker is
the integral of the performance degradation. Shemehsavar [46] em-
ployed a bivariate gamma process to model monotone-increasing latent
degradation and marker processes. Zhou et al. [47] introduced a model
where latent degradation follows a gamma process, and the marker
process is a function of this latent degradation in the presence of an
error term. They used a Monte Carlo-based algorithm to estimate and
predict crack depth on gear teeth in a spur gearbox based on vibration
signals. Xu et al. [48] introduced a dynamic system characterized by a
hidden degradation process identified through particle filtering based
on measurable outputs from the considered dynamic system.

This paper addresses the challenge of making optimal condition-
based maintenance decisions in case of latent degradation. System
failure occurs when the latent degradation level reaches a predefined
threshold. The marker process serves as an indirect source of infor-
mation regarding latent degradation. The paper focuses on systems
where both marker and latent processes exhibit similar behaviors, fea-
turing non-decreasing trajectories and continuous evolution over time.
The paper’s central concern lies in exploiting the connection between

latent degradation and the marker. To maintain clarity and avoid
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introducing additional complexities stemming from interdependencies
between components, we concentrate our efforts on scenarios associ-
ated with one degradation phenomenon linked to a single indicator.
This indicator may pertain to a specific component or may encapsu-
late information from multiple components that cannot be observed
individually.

As discussed above, gamma processes are commonly used for degra-
dation modeling and maintenance modeling in engineering systems.
Hence, we select a modeling framework based on Kibble’s bivariate
gamma process. This process possesses the essential characteristic of
monotonically increasing sample paths and has a well-known con-
ditional infinitely divisible distribution (namely, randomized gamma
distribution) for the latent degradation given the marker. The Kibble
model includes a single parameter that indicates the Pearson corre-
lation, providing an explicit and easily interpretable measure of the
dependency between two processes.

We suggest two condition-based maintenance (CBM) strategies in-
volving periodic inspections, and we develop analytical expressions
for the long-term expected maintenance cost rate for both strategies.
The first strategy follows a conventional structure reliant solely on
the marker process. The second and paramount strategy introduces an
advanced maintenance decision rule utilizing predictive inferences to
estimate the degradation level based on observed data. An alternative
representation of the primary policy is provided, which relies on an
adaptive threshold. To derive the cost function analytically rather than
resorting to Monte Carlo simulations, we explore and establish the
properties of the adaptive threshold.

Our objective is to explore whether it is more advantageous to base
decisions directly on the observed marker indicator or if it would be
beneficial to make predictive inferences about the level of latent degra-
dation. Thus, the final contribution involves a comparative analysis of
the two maintenance strategies against an ideal scenario where the
degradation process is perfectly understood. A series of representative
numerical experiments highlight the value of an advanced maintenance
policy and demonstrate the advantages of inferring the degradation
level from the marker indicator.

The paper is structured as follows: Section 2 introduces the bivari-
ate gamma process and reviews key probabilities. Section 3 presents,
analyzes, and discusses the maintenance policies. Section 4 illustrates
and compares the proposed policies through a simulation study. Finally,
Section 5 provides the conclusion.

2. General framework

2.1. Stochastic degradation model

Two random variables, 𝑋 and 𝑌 , are said to follow Kibble’s bivariate
gamma distribution (Balakrishnan and Lai [49]) with shape parameter
𝛼, rate parameters 𝜆1, 𝜆2, and correlation 𝜌, if their joint distribution is
as follows:

𝑓 (𝑥, 𝑦|𝛼, 𝜌) =
(𝜆1𝜆2)𝛼

(1 − 𝜌)𝛤 (𝛼)

(

𝑥𝑦
𝜌𝜆1𝜆2

)
𝛼−1
2

× exp
(

−
𝜆1𝑥 + 𝜆2𝑦

1 − 𝜌

)

𝐼𝛼−1

(

2
√

𝜌𝜆1𝜆2𝑥𝑦
1 − 𝜌

)

, (1)

where 𝑥, 𝑦 > 0, 0 < 𝜌 < 1, 𝛼, 𝜆1, 𝜆2 > 0 and 𝐼𝛼(⋅) is the modified Bessel
function of the first kind of order 𝛼 defined as:

𝐼𝛼(𝑧) =
∞
∑

𝑘=0

( 𝑧2 )
2𝑘+𝛼

𝛤 (𝑘 + 𝛼 + 1)𝑘!
, 𝑧 > 0.

The marginal distributions of 𝑋 and 𝑌 are gamma with the same shape
parameter 𝛼 and rate parameters 𝜆1 and 𝜆2, respectively. The parameter
𝜌 is also Pearson’s product-moment correlation coefficient between 𝑋
and 𝑌 .

Consider a two-dimensional process, {(𝑋𝑡, 𝑌𝑡), 𝑡 ≥ 0} with the initial
3

value (𝑋0, 𝑌0) = (0, 0), such that the vector (𝑋𝑡, 𝑌𝑡) has Kibble’s bivariate
gamma distribution with shape parameter 𝛼𝑡, rate parameters 𝜆1, 𝜆2,
and correlation 𝜌. We consider the process {𝑋𝑡, 𝑡 ≥ 0} to be the latent
degradation process which represents the level of degradation of the
system at time 𝑡. Hence, 𝑋𝑡 has a gamma distribution with shape
parameter 𝛼𝑡 and rate parameter 𝜆1.

The system fails when the degradation process {𝑋𝑡, 𝑡 ≥ 0} reaches
a failure threshold 𝐿 > 0 for the first time. We denote this first-
hitting time by the random variable 𝑆. The failure threshold 𝐿 is given
and related to the characteristics of the system under study. Here, we
assume that the failure of the system is self-announced.

The other process, {𝑌𝑡, 𝑡 ≥ 0}, represents a marker process that
is correlated with the degradation process {𝑋𝑡, 𝑡 ≥ 0} and tracks its
progress. 𝑌𝑡 has a gamma distribution with shape parameter 𝛼𝑡 and rate
parameter 𝜆2. The degradation process is latent and cannot be mea-
sured but inference about the degradation process can be performed
using the marker process. The maintenance decision-making procedure
is based on the marker process observations. The correlation coefficient
𝜌 describes the strength of the association between the two processes.

2.2. Key probability distributions

For a system surviving at time 𝑡, two types of predictive inference
that exploit marker information can be considered:

• Prediction of the degradation level, 𝑋𝑡 which is latent, given its
marker level 𝑌𝑡 at that time;

• Prediction at time 𝑡 of the future system failure time 𝑆 given that
its marker level at that time is 𝑌𝑡 = 𝑦.

Our main concern is to employ the first. For parametric inference
and maintenance optimization with this model, we need different
probability distributions which are mentioned hereafter.

Consider a time interval [0, 𝑡] partitioned into time points 0 = 𝑇0 <
𝑇1 < ⋯ < 𝑇𝑘 = 𝑡, where 𝑘 is the total number of inspection points up to
time 𝑡. Let 𝛥𝑋𝑖 = 𝑋𝑇𝑖 − 𝑋𝑇𝑖−1 be the increment for process 𝑋 over the
time interval (𝑇𝑖−1, 𝑇𝑖] for 𝑖 = 1,… , 𝑘. Moreover, 𝛥𝑌𝑖 = 𝑌𝑇𝑖−𝑌𝑇𝑖−1 denotes
the increment for the process 𝑌 in the same time interval. Then, the
distribution of 𝛥𝑌𝑖 conditional on 𝛥𝑋𝑖 = 𝛥𝑥𝑖 has a randomized gamma
distribution (RGD) (see [50,51]); i.e,
(

𝛥𝑌𝑖|𝛥𝑋𝑖 = 𝛥𝑥𝑖
)

∼ RGD
(

𝛼𝛥𝑇𝑖 + 𝜂𝑖,
𝜆2

1 − 𝜌

)

, (2)

where 𝜂𝑖 ∼ Poisson( 𝜌𝜆1𝛥𝑥𝑖1−𝜌 ) and 𝛥𝑇𝑖 = 𝑇𝑖 − 𝑇𝑖−1. We know that the

bivariate gamma process has independent increments and hence we can
extend the conditional event from (2) to the entire 𝜎-field generated by
{𝛥𝑋1, 𝛥𝑋2,… , 𝛥𝑋𝑘}. So we have
(

𝛥𝑌𝑖|𝛥𝑋𝑗 = 𝛥𝑥𝑗 , 1 ≤ 𝑗 ≤ 𝑘
)

∼ RGD
(

𝛼𝛥𝑇𝑖 + 𝜂𝑖,
𝜆2

1 − 𝜌

)

.

Since the (𝛥𝑌𝑖)1≤𝑗≤𝑘 are independent we can write their joint distribu-
ion conditional on (𝛥𝑋𝑖)1≤𝑖≤𝑘 and thus obtain the conditional density
f 𝑌𝑡 =

∑𝑘
𝑖=1 𝛥𝑌𝑖. We also have

𝑘
∑

𝑖=1
𝛥𝑥𝑖 = 𝑥𝑡, and

𝑘
∑

𝑖=1
𝛥𝑇𝑖 = 𝑡.

So, conditional on (𝛥𝑋𝑖)1≤𝑖≤𝑘, the random variable 𝑌𝑡 has randomized
gamma distribution

(𝑌𝑡|𝛥𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑘) ∼ RGD
(

𝛼𝑡 + 𝜂,
𝜆2

1 − 𝜌

)

,

where 𝜂 =
∑𝑘

𝑖=1 𝜂𝑖 ∼ Poisson( 𝜌𝜆1𝑥𝑡1−𝜌 ) depends on the partitioned sample
path only through its terminal point 𝑥𝑡 and not on the structure of the
partition. Therefore, the conditional distribution of 𝑌𝑡 given (𝛥𝑋𝑖 =
𝛥𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑘) is the same as the conditional distribution of 𝑌𝑡 given
𝑋𝑡,

(𝑌𝑡|𝑋𝑡 = 𝑥𝑡) ∼ RGD
(

𝛼𝑡 + 𝜂,
𝜆2

)

, (3)

1 − 𝜌
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where 𝜂 ∼ Poisson( 𝜌𝜆1𝑥𝑡1−𝜌 ) (see [46]).
Now suppose a system has survived until time 𝑡 when a marker level

𝑌𝑡 = 𝑦 is recorded. This occurrence constitutes a censored observation
on the failure time because we know 𝑆 > 𝑡. In this case, the distribution
of (𝑌𝑡|𝑋𝑡 = 𝑥), for 𝑆 > 𝑡, follows (3) and we can write its pdf as follows:

𝑓1(𝑦|𝑥) = 𝑃 (𝑌𝑡 ∈ 𝑑𝑦|𝑋𝑡 = 𝑥, 𝑆 > 𝑡)

=
𝑦
𝛼𝑡−1
2 𝜆2

𝛼𝑡+1
2 exp

(

−
𝜌𝜆1𝑥 + 𝜆2𝑦

1 − 𝜌

)

(1 − 𝜌)(𝜌𝑥𝜆1)
𝛼𝑡−1
2

× 𝐼𝛼𝑡−1

(

2
√

𝜌𝜆1𝜆2𝑥𝑦
1 − 𝜌

)

, 𝑦 > 0. (4)

Also, the probability of a system surviving beyond time 𝑡 such that
the terminal point 𝑋𝑡 does not exceed the threshold 𝐿 is as follows
(see [52]):

𝑓2(𝑥) = 𝑃 (𝑋𝑡 ∈ 𝑑𝑥, 𝑆 > 𝑡) =
𝜆1𝛼𝑡

𝛤 (𝛼𝑡)
𝑥𝛼𝑡−1𝑒−𝜆1𝑥, 0 < 𝑥 < 𝐿. (5)

Now the joint pdf for a system surviving beyond time 𝑡, and hav-
ng marker level 𝑌𝑡 and degradation level 𝑋𝑡 at time 𝑡, is given by
1(𝑦|𝑥)𝑓2(𝑥). Since 𝑥 is not observed, we integrate it out of the joint
ensity and we obtain:

3(𝑦) = 𝑃 (𝑌𝑡 ∈ 𝑑𝑦, 𝑆 > 𝑡) = ∫

𝐿

0
𝑓1(𝑦|𝑥)𝑓2(𝑥)𝑑𝑥. (6)

As already stated, we are interested in the prediction of the degradation
level of the system surviving at time 𝑡 from its current marker value.
The related conditional distribution function is as follows:

𝑃 (𝑋𝑡 ∈ 𝑑𝑥|𝑌𝑡 = 𝑦, 𝑆 > 𝑡) =
𝑓1(𝑦|𝑥)𝑓2(𝑥)

𝑓3(𝑦)
, 0 < 𝑥 < 𝐿. (7)

We also need the distribution of the failure time 𝑆. Since 𝑋𝑡 is strictly
ncreasing in 𝑡, we have:

(𝑆 > 𝑠) = 𝑃 (𝑋𝑠 < 𝐿) = ∫

𝐿

0

𝜆1𝛼𝑠

𝛤 (𝛼𝑠)
𝑥𝛼𝑠−1𝑒−𝜆1𝑥d𝑥 =

𝛤 (𝛼𝑠, 𝜆1𝐿)
𝛤 (𝛼𝑠)

here 𝛤 (𝑎, 𝑧) = ∫ 𝑧
0 𝑢𝑎−1𝑒−𝑢d𝑢 is the incomplete gamma function.

. Maintenance policies

The degradation leading to system failure remains latent, and there
s no direct access to information about the actual degradation or the
emaining useful life. Consequently, the degradation level cannot be
irectly used for making maintenance decisions. However, monitoring
nformation can be accessed through inspections, which reveals the
tatus of the marker process before the system’s failure. To address the
hallenge of optimal maintenance decision-making, we introduce two
ondition-based maintenance (CBM) policies. The first policy involves
aking maintenance decisions directly based on the marker process.

ince CBM decision parameters typically include inspection frequency
nd preventive maintenance threshold related to degradation level, we
dopt a conventional CBM decision rule with a threshold on the marker
evel for initiating preventive actions. The second policy aims to lever-
ge the marker process to infer information about the current latent
egradation level of the system. In this scenario, we propose the use
f predictive probabilities to determine the probability of surpassing a
hreshold on the latent degradation level, which then guides preventive
aintenance actions.

In the subsequent subsections, we will provide more detailed de-
criptions of these policies and explore their characteristics.

.1. Maintenance decision rules

Suppose that the time interval between two inspections is fixed and
4

qual to 𝑇 , so the 𝑘th inspection time during one cycle is 𝑇𝑘 = 𝑘𝑇 , 𝑘 ∈ t
, while 𝑇0 = 0. At the time 𝑇𝑘, if the system has not failed yet, we can
easure the marker value 𝑌𝑇𝑘 . The two decision rules are as follows:

lassical Maintenance Policy (CMP): This policy simply uses a preventive
imit on the observable marker process. The reason behind this is that
he marker can somehow reflect the situation of the latent process due
o the relationship between them. Consequently, traditional decision
ules can be employed in the marker process. Let us denote the crit-
cal level of the marker process by 𝑀𝑌 where the subscript 𝑌 is to
mphasize that this threshold is for the marker process. Therefore, if
𝑇𝑘 > 𝑀𝑌 , we replace the system preventatively; otherwise, the system
s properly working, and no maintenance action is needed. In this
ase, maintenance decision-making is postponed to the next inspection
ime. The time interval between two inspections, 𝑇 , and the preventive
hreshold for the marker process, 𝑀𝑌 , are decision variables and must

be optimized.

Intelligent Maintenance Policy (IMP): Inspired by Russel et al. [53], an
intelligent agent is defined as a system that perceives its environment
and takes actions to maximize its chances of success. In the context
of latent degradation, the term ‘‘intelligent’’ may refer to the use of
predictive inference to formulate a maintenance policy designed to
adeptly adjust to the system’s behavior. To this aim, this policy is
defined based on the conditional distribution of the latent degradation
𝑋𝑡 given the observed marker variable 𝑌𝑡 introduced in Eq. (7).

For a system with observable degradation, preventative replacement
usually occurs whenever it is in a critical situation which means its
degradation level has exceeded a threshold 𝑀𝑋 < 𝐿. The latent nature
of the degradation 𝑋𝑡 implies that we cannot be aware if this event oc-
curs. However, we can assess the probability of this incident given the
marker information. Thus, if the chance of having a system in a critical
situation is high or in other words if 𝑃 (𝑋𝑇𝑘 > 𝑀𝑋 |𝑌𝑇𝑘 = 𝑦𝑇𝑘 , 𝑆 > 𝑇𝑘) >
, we replace the system. Otherwise, the system is considered properly
orking. No maintenance is needed, and maintenance decision-making

s postponed to the next inspection time. It is worth pointing out that
he subscript 𝑋 in 𝑀𝑋 denotes that this threshold is for the latent
egradation process. Here the decision variables are 𝑇 , 𝑀𝑋 , and the
olerance probability, 𝑝.

For both CMP and IMP, preventive replacements are considered to
e perfect. So for both decision rules after inspection time and possible
aintenance, we have:

𝑋𝑇𝑘 , 𝑌𝑇𝑘 )

=

{

(0, 0) if preventive replacement has been performed;
(𝑋𝑇−

𝑘
, 𝑌𝑇−

𝑘
) otherwise.

Here 𝑇 −
𝑘 refers to the time just before the maintenance action. Since

he system failure is self-announcing, whenever the system fails, it is
erfectly and immediately replaced by a new system, in accordance
ith the corrective replacement action.

Fig. 1 illustrates possible sample paths of the bivariate gamma
egradation process for a system subjected to CMP. The interval be-
ween 0 and 𝑇5 is the first cycle of a system that terminates with a
erfect preventive replacement. The second cycle is between 𝑇5 and
12. As the latent degradation of the system crosses the threshold 𝐿, it
inishes with a corrective replacement.

.2. IMP as a policy with an adaptive threshold

Let us focus on the Intelligent Maintenance Policy proposed in the
revious section. Here, we will introduce an alternative definition for
MP that is equivalent, yet more intuitive for comparison with CMP.
or this policy, decision-making at a given time 𝑡 is based on the
onditional probability 𝑃 (𝑋𝑡 > 𝑀𝑋 |𝑌𝑡 = 𝑦, 𝑆 > 𝑡), which is compared
ith decision variable 𝑝. The considered conditional probability is
bviously a function of the time 𝑡 and of the observed value 𝑦 of the
arker process. One first characterization of its behavior is given by
he following theorem:
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Fig. 1. Schematic evolution of a maintained system state under CMP.

Theorem 1. For a given 𝑀𝑋 , the following statements are true.

(i) Considering a fixed 𝑡, the function 𝑦 → 𝑃 (𝑋𝑡 > 𝑀𝑋 |𝑌𝑡 = 𝑦, 𝑆 > 𝑡) is
strictly increasing on (0,∞).

(ii) Considering a fixed 𝑦, the function 𝑡 → 𝑃 (𝑋𝑡 > 𝑀𝑋 |𝑌𝑡 = 𝑦, 𝑆 > 𝑡) is
increasing on ( 1𝛼 ,∞).

The proof of Theorem 1 is given in Appendix A. The constraint
𝑡 > 1

𝛼 is necessary for the mathematical proof, but extensive numerical
experiments show that statement (ii) remains valid for 𝑡 ∈ [ 0.4𝛼 , 1𝛼 ]. Let
s now state some corollaries of Theorem 1. At inspection time 𝑇𝑘,

we know that the system must be preventively replaced if 𝑃 (𝑋𝑇𝑘 >
𝑋 |𝑌𝑇𝑘 = 𝑦, 𝑆 > 𝑇𝑘) is greater than 𝑝. Theorem 1-(i) indicates that, if

he value of the marker process is higher than a level, the probability
hat the system is at risk is greater, which is logical because of the
ositive correlation between latent and marker processes. The question
s: what is the appropriate level of the marker process that ensures that
he sufficient condition to perform a preventive action is met? Based on
heorem 1, the conditional probability 𝑃 (𝑋𝑇𝑘 > 𝑀𝑋 |𝑌𝑇𝑘 = 𝑦, 𝑆 > 𝑇𝑘) is
bounded monotonic function of 𝑦 which has a unique value 𝜉𝑘 with

he following definition

𝑘 = inf{𝑦 ∶ 𝑃 (𝑋𝑇𝑘 > 𝑀𝑋 |𝑌𝑇𝑘 = 𝑦, 𝑆 > 𝑇𝑘) > 𝑝}. (8)

Therefore, Theorem 1-(i) implies that 𝑃 (𝑋𝑇𝑘 > 𝑀𝑋 |𝑌𝑇𝑘 = 𝑦𝑇𝑘 , 𝑆 > 𝑇𝑘) >
𝑝 is equivalent to 𝑦𝑇𝑘 > 𝜉𝑘. Moreover, based on Theorem 1-(ii), for
𝑇𝑘 > 1

𝛼 we have:

(𝑋𝑇𝑘 > 𝑀𝑋 |𝑌𝑇𝑘 = 𝑦, 𝑆 > 𝑇𝑘) < 𝑃 (𝑋𝑇𝑘+1 > 𝑀𝑋 |𝑌𝑇𝑘+1 = 𝑦, 𝑆 > 𝑇𝑘+1),

for all 𝑦 > 0.

ence, 𝜉𝑘+1 ≤ 𝜉𝑘. Altogether, from Theorem 1 we can deduce that
espite the different structures of decision rules in CMP and IMP, these
wo policies consider a threshold on the marker level. The difference
s the nature of the proposed threshold in these two policies. The
hreshold in CMP is fixed while IMP suggests an adaptive threshold
hat dynamically evolves itself as time passes. More properties of this
daptive threshold are also investigated in Section 4.1.

It is worth noting that the definition of 𝜉𝑘, which gives us an
quivalent condition to 𝑃 (𝑋𝑇𝑘 > 𝑀𝑋 |𝑌𝑇𝑘 = 𝑦, 𝑆 > 𝑇𝑘) > 𝑝, as well
s the decreasing behavior of 𝜉𝑘 over time are essential to evaluate the
orrective and preventive replacement probabilities and to obtain the
nalytical expression of the cost function in the following sections. For
5

IMP, we hereafter assume 𝛼𝑇 > 1 to evaluate the cost function in a
closed form. Otherwise, we can use a simulation-based evaluation of
the cost function.

3.3. Corrective and preventive probabilities at inspection times

Depending on the values of their respective decision variables, the
two policies CMP and IMP can evolve between a purely preventive and
a purely corrective behavior. Their performance, which depends on the
balance between these two limit configurations, has to be optimized.
For this purpose, it is necessary to determine the probabilities of pre-
ventive and corrective actions. Maintenance actions are perfect. Hence
the degradation process of the maintained system is a regenerative pro-
cess and maintenance times define regeneration epochs. The intervals
of time between successive regeneration epochs are renewal cycles. Let
the notations 𝑃𝑝 and 𝑃𝑐 represent respectively the probability that a
renewal cycle ends with preventive and corrective replacement. As a
consequence, we have:

𝑃𝑝 =
∞
∑

𝑘=1
𝑃𝑝(𝑘), and 𝑃𝑐 =

∞
∑

𝑘=0
𝑃𝑐 (𝑘)

here 𝑃𝑝(𝑘), 𝑘 = 1, 2,… is the probability that preventive maintenance
s performed at time 𝑇𝑘 and 𝑃𝑐 (𝑘), 𝑘 = 0, 1,… denotes the probability
hat corrective maintenance has been performed between times 𝑇𝑘 and
𝑘+1. This section is devoted to the derivation of preventive action and
orrective action probabilities. For this aim, according to the properties
f the bivariate stochastic process introduced in Section 2.1, we denote:

(𝑋𝑇𝑖2
−𝑋𝑇𝑖1

,𝑌𝑇𝑖2
−𝑌𝑇𝑖1

)(𝑥, 𝑦) =
(𝜆1𝜆2)

𝛼(𝑇𝑖2−𝑇𝑖1 )

(1 − 𝜌)𝛤
(

𝛼(𝑇𝑖2 − 𝑇𝑖1 )
)

(

𝑥𝑦
𝜌𝜆1𝜆2

)

𝛼(𝑇𝑖2 −𝑇𝑖1 )−1
2

× exp
(

−
𝜆1𝑥 + 𝜆2𝑦

1 − 𝜌

)

𝐼𝛼(𝑇𝑖2−𝑇𝑖1 )−1

×

(

2
√

𝜌𝜆1𝜆2𝑥𝑦
1 − 𝜌

)

, 𝑥, 𝑦 ≥ 0,

hich is the Kibble’s bivariate gamma pdf for (𝑋𝑇𝑖2
− 𝑋𝑇𝑖1

, 𝑌𝑇𝑖2 − 𝑌𝑇𝑖1 )
based on (1). Also, its marginal is represented by

𝑓(𝑋𝑇𝑖2
−𝑋𝑇𝑖1

)(𝑥) =
𝜆1

𝛼(𝑇𝑖2−𝑇𝑖1 )

𝛤
(

𝛼(𝑇𝑖2 − 𝑇𝑖1 )
)𝑥𝛼(𝑇𝑖2−𝑇𝑖1 )−1𝑒−𝜆1𝑥, 𝑥 ≥ 0,

which is the gamma pdf for the degradation increment 𝑋𝑇𝑖2
−𝑋𝑇𝑖1

. We
recall that when 𝑇𝑖1 = 0, 𝑋𝑇𝑖1

= 𝑌𝑇𝑖1 = 0 and then they can be omitted
in the notations.

3.3.1. Classical maintenance policy

• Corrective probabilities for CMP: A corrective action occurs be-
tween inspection times 𝑇𝑘 and 𝑇𝑘+1 if no failure and no preventive
action have occurred before 𝑇𝑘. For CMP this means that the marker
process has not reached the maintenance threshold at inspection times
before system failure. Consequently,

𝑃𝑐 (0) = 𝑃 (𝑋𝑇1 > 𝐿) = ∫

∞

𝐿
𝑓(𝑋𝑇1 )

(𝑥)d𝑥,

and for 𝑘 ≥ 1,

𝑃𝑐 (𝑘) = 𝑃 (𝑋𝑇1 < 𝐿, … , 𝑋𝑇𝑘 < 𝐿,𝑋𝑇𝑘+1 > 𝐿, 𝑌𝑇1 < 𝑀𝑌 , … , 𝑌𝑇𝑘 < 𝑀𝑌 )

= 𝑃 (𝑋𝑇𝑘 < 𝐿,𝑋𝑇𝑘+1 > 𝐿, 𝑌𝑇𝑘 < 𝑀𝑌 )

= ∫

𝐿

0 ∫

𝑀𝑌

0
𝑃 (𝑋𝑇𝑘+1 > 𝐿|𝑋𝑇𝑘 = 𝑥, 𝑌𝑇𝑘 = 𝑦)𝑓(𝑋𝑇𝑘 ,𝑌𝑇𝑘 )

(𝑥, 𝑦)d𝑦d𝑥

= ∫

𝐿

0 ∫

𝑀𝑌

0 ∫

∞

𝐿−𝑥
𝑓(𝑋𝑇𝑘+1−𝑋𝑇𝑘 )

(𝑧)𝑓(𝑋𝑇𝑘 ,𝑌𝑇𝑘 )
(𝑥, 𝑦)d𝑧d𝑦d𝑥. (9)
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The second equation holds because (𝑋𝑡)𝑡≥0 and (𝑌𝑡)𝑡≥0 are increasing
processes and the last equation holds because (𝑋𝑡, 𝑌𝑡)𝑡≥0 has indepen-
dent increments.

• Preventive probabilities for CMP: A preventive action occurs at
an inspection time 𝑇𝑘 if the marker process crosses the threshold 𝑀𝑌
for the first time and no corrective action has been performed before,
i.e. the latent process remains below the failure level. Hence:

𝑃𝑝(1) = 𝑃 (𝑋𝑇1 < 𝐿, 𝑌𝑇1 > 𝑀𝑌 ) = ∫

𝐿

0 ∫

∞

𝑀𝑌

𝑓(𝑋𝑇1 ,𝑌𝑇1 )
(𝑥, 𝑦)d𝑦d𝑥,

and for 𝑘 ≥ 2, using a similar calculation as in (9), we have:

𝑃𝑝(𝑘) = 𝑃 (𝑋𝑇1 < 𝐿, … , 𝑋𝑇𝑘 < 𝐿, 𝑌𝑇1 < 𝑀𝑌 , … , 𝑌𝑇𝑘−1 < 𝑀𝑌 , 𝑌𝑇𝑘 > 𝑀𝑌 )

= 𝑃 (𝑋𝑇𝑘 < 𝐿, 𝑌𝑇𝑘−1 < 𝑀𝑌 , 𝑌𝑇𝑘 > 𝑀𝑌 )

= ∫

𝐿

0 ∫

𝑀𝑌

0 ∫

𝐿−𝑥

0 ∫

∞

𝑀𝑌 −𝑦
𝑓(𝑋𝑇𝑘−𝑋𝑇𝑘−1 ,𝑌𝑇𝑘−𝑌𝑇𝑘−1 )

(𝑧,𝑤)

× 𝑓(𝑋𝑇𝑘−1 ,𝑌𝑇𝑘−1 )
(𝑥, 𝑦)d𝑤d𝑧d𝑦d𝑥.

3.3.2. Intelligent maintenance policy
Recall that for IMP, preventive action is performed at inspection

time 𝑇𝑘 if 𝑃 (𝑋𝑇𝑘 > 𝑀𝑋 |𝑌𝑇𝑘 = 𝑦𝑇𝑘 , 𝑆 > 𝑇𝑘) > 𝑝, or equivalently if
𝑌𝑇𝑘 > 𝜉𝑘, where 𝜉𝑘 is defined by Eq. (8). Then with some modification
in the probability calculation for CMP, we can derive the probabilities
for IMP.

• Corrective probabilities for IMP: A corrective action occurs between
times 𝑇𝑘 and 𝑇𝑘+1 if no preventive action has been performed before.
For IMP this means that the marker process remains below the adaptive
maintenance threshold 𝜉𝑘 at each inspection time 𝑇𝑘 before system
failure. Therefore,

𝑃𝑐 (0) = 𝑃 (𝑋𝑇1 > 𝐿) = ∫

∞

𝐿
𝑓(𝑋𝑇1 )

(𝑥)d𝑥,

and for 𝑘 > 0, using similar calculations,

𝑃𝑐 (𝑘) = 𝑃 (𝑋𝑇1 < 𝐿, … , 𝑋𝑇𝑘 < 𝐿,𝑋𝑇𝑘+1 > 𝐿, 𝑌𝑇1 < 𝜉1, … , 𝑌𝑇𝑘 < 𝜉𝑘)

= 𝑃 (𝑋𝑇𝑘 < 𝐿,𝑋𝑇𝑘+1 > 𝐿, 𝑌𝑇𝑘 < 𝜉𝑘)

= ∫

𝐿

0 ∫

𝜉𝑘

0 ∫

∞

𝐿−𝑥
𝑓(𝑋𝑇𝑘+1−𝑋𝑇𝑘 )

(𝑧)𝑓(𝑋𝑇𝑘 ,𝑌𝑇𝑘 )
(𝑥, 𝑦)d𝑧d𝑦d𝑥.

The second equation holds due to the monotonicity of the gamma
process and also the fact that increasing 𝑘 results in smaller values of
𝜉𝑘. That means the event 𝑌1 < 𝜉1, … , 𝑌𝑘 < 𝜉𝑘 is equivalent to the event
𝑌𝑘 < 𝜉𝑘 since 𝑌𝑇𝑖 < 𝑌𝑇𝑘 < 𝜉𝑘 ≤ 𝜉𝑖 for 1 ≤ 𝑖 < 𝑘.

• Preventive probabilities for IMP: A preventive action occurs at
inspection time 𝑇𝑘 if the marker process overpasses its preventive
threshold 𝜉𝑘 for the first time and no corrective action has been
performed before in the cycle. Thus

𝑃𝑝(1) = 𝑃 (𝑋𝑇1 < 𝐿, 𝑌𝑇1 > 𝜉1) = ∫

𝐿

0 ∫

∞

𝜉1
𝑓(𝑋𝑇1 ,𝑌𝑇1 )

(𝑥, 𝑦)d𝑦d𝑥,

and for 𝑘 > 1

𝑃𝑝(𝑘) = 𝑃 (𝑋𝑇1 < 𝐿, … , 𝑋𝑇𝑘 < 𝐿, 𝑌𝑇1 < 𝜉1, … , 𝑌𝑇𝑘−1 < 𝜉𝑘−1, 𝑌𝑇𝑘 > 𝜉𝑘)

= 𝑃 (𝑋𝑇𝑘 < 𝐿, 𝑌𝑇𝑘−1 < 𝜉𝑘−1, 𝑌𝑇𝑘 > 𝜉𝑘)

= ∫

𝐿

0 ∫

𝜉𝑘

𝜉𝑘−1
∫

𝐿−𝑥

0 ∫

∞

𝜉𝑘−𝑦
𝑓(𝑋𝑇𝑘−𝑋𝑇𝑘−1 ,𝑌𝑇𝑘−𝑌𝑇𝑘−1 )

(𝑧,𝑤)

× 𝑓(𝑋𝑇𝑘−1 ,𝑌𝑇𝑘−1 )
(𝑥, 𝑦)d𝑤d𝑧d𝑦d𝑥

+ ∫

𝐿

0 ∫

𝜉𝑘

0 ∫

𝐿−𝑥

0
𝑓(𝑋𝑇𝑘−𝑋𝑇𝑘−1 )

(𝑧)𝑓(𝑋𝑇𝑘−1 ,𝑌𝑇𝑘−1 )
(𝑥, 𝑦)d𝑧d𝑦d𝑥

= ∫

𝐿

0 ∫

𝜉𝑘−1

0 ∫

𝐿−𝑥

0 ∫

∞

max(𝜉𝑘−𝑦,0)
𝑓(𝑋𝑇𝑘−𝑋𝑇𝑘−1 ,𝑌𝑇𝑘−𝑌𝑇𝑘−1 )

(𝑧,𝑤)

× 𝑓(𝑋𝑇𝑘−1 ,𝑌𝑇𝑘−1 )
(𝑥, 𝑦)d𝑤d𝑧d𝑦d𝑥.
6

i

The second part of the third equality refers to the following situation
where 𝑌𝑇𝑘−1 is less than the adaptive threshold 𝜉𝑘−1 but is greater than
the next threshold 𝜉𝑘. In this case, preventive action is not required at
𝑇𝑘−1. But even without measuring the degradation level 𝑌𝑇𝑘 , we already
know that preventive action must be taken at 𝑇𝑘 provided that the
system does not face a failure before that time.

3.4. Maintenance cost

Maintenance actions incur a burden of costs. Inspections take place
at times 𝑇𝑘, each with cost 𝑐𝑖. At each inspection, preventive action may
be performed, costing 𝑐𝑝. Also, a corrective replacement with cost 𝑐𝑐 is
needed whenever the system fails. Hence, the cumulative cost function
on [0, 𝑡] is:

𝐶(𝑡) = 𝑐𝑖𝑁𝑖(𝑡) + 𝑐𝑝𝑁𝑝(𝑡) + 𝑐𝑐𝑁𝑐 (𝑡),

where 𝑁𝑖(𝑡), 𝑁𝑝(𝑡), and 𝑁𝑐 (𝑡) are respectively the number of inspections,
the number of preventive replacements, and the number of corrective
replacements in [0,t]. This cost depends on the decision variables. We
employ the long-run average cost per unit of time 𝐸𝐶 as the objective
function to be minimized. From classical renewal theory, it is well
known that for any degradation process with the regenerative property,
we have the following equation.

𝐸𝐶 = lim
𝑡→∞

𝐸 (𝐶(𝑡))
𝑡

=
𝐸
(

𝐶(𝐿1)
)

𝐸(𝐿1)
,

where 𝐿1 is the length of one renewal cycle, i.e., the time between
two successive replacements. So we proceed to minimize 𝐸𝐶 with the
following formula to find optimal values of the decision variables:

𝐸𝐶 =
𝑐𝑖𝐸(𝑁𝑖) + 𝑐𝑐𝐸(𝑁𝑐 ) + 𝑐𝑝𝐸(𝑁𝑝)

𝐸(𝐿1)
. (10)

We know that a cycle ends either with a corrective or a preventive
replacement. Thus,

𝐸(𝑁𝑝) = 𝑃𝑝 =
∞
∑

𝑘=1
𝑃𝑝(𝑘),

nd

(𝑁𝑐 ) = 𝑃𝑐 =
∞
∑

𝑘=0
𝑃𝑐 (𝑘).

oreover, 𝑁𝑖 is a discrete random variable with non-negative support
nd the following probabilities:

(𝑁𝑖 = 0) = 𝑃𝑐 (0), 𝑃 (𝑁𝑖 = 𝑘) = 𝑃𝑐 (𝑘) + 𝑃𝑝(𝑘), for 𝑘 = 1, 2,… .

We also know that the length of a cycle is equal to 𝑁𝑖𝑇 or 𝑆 in cases
of ending the cycle with a preventive or a corrective replacement,
respectively. Hence,

𝐸(𝐿1) = 𝑃𝑝𝐸(𝑁𝑖)𝑇 + 𝑃𝑐𝐸(𝑆),

where

𝐸(𝑁𝑖) =
∞
∑

𝑘=0
𝑘𝑃 (𝑁𝑖 = 𝑘),

nd

(𝑆) = ∫

∞

0
𝑃 (𝑆 > 𝑠)d𝑠 = ∫

∞

0

𝛤 (𝛼𝑠, 𝜆1𝐿)
𝛤 (𝛼𝑠)

d𝑠.

. Numerical study

In this section, we illustrate our proposed maintenance policies
hrough a simulation study. First of all, we try to discuss the charac-
eristics of the adaptive threshold 𝜉𝑘 and then the optimal decision rule

s obtained for CMP and IMP.
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Fig. 2. Effect of changing decision variables on 𝜉𝑘 for three different values of 𝜌 = 0.3, 0.5, 0.7. The parameter set considered here is 𝛼 = 0.1, 𝜆1 = 𝜆2 = 0.7 and the failure threshold
is 𝐿 = 60.
4.1. The effect of decision variables on the IMP adaptive threshold

The adaptive threshold 𝜉𝑘 at inspection time 𝑇𝑘 is defined by Eq. (8).
Its value depends on the decision variables 𝑝, 𝑇 , and 𝑀𝑋 . Various
remarks can be given regarding the evolution of 𝜉𝑘 in case of modifying
these decision variables. These remarks, which are related to the facts
declared in Theorem 1, are given in Appendix B. Some numerical ex-
periments are conducted to complement the above-mentioned remarks.
Fig. 2 shows for 𝜉𝑘 as a function of 𝑘, and for different values of 𝜌, the
effect of changes in decision variables. The main points are as follows:

• For each 𝑘, increasing 𝑝 generates an increase of 𝜉𝑘, see Remark 1
for proof. A higher value of 𝑝 means that we want preventive
action to be taken only when the system is close to failure. To
ensure that only highly deteriorated systems are replaced, the
IMP decision rule chooses a higher adaptive threshold value.
Otherwise, a preventive replacement is performed even when the
risk of failure is low.

• For each 𝑘, decreasing 𝑇 i.e. reducing the value of 𝑇𝑘 = 𝑘𝑇 results
in increasing values of 𝜉𝑘, see Remark 2 for proof. With frequent
inspections, the marker value can be measured more often. The
conditional probability (7), and thus the risk of failure, is updated
at a higher frequency. Therefore, it is possible to increase the
values of 𝜉𝑘 without the system being in a vulnerable state during
the transition from 𝜉𝑘 to 𝐿.

• For each 𝑘, the value of 𝜉𝑘 increases with 𝑀𝑋 , see Remark 3 for
proof. For a given value of failure threshold 𝐿, choosing higher
values of 𝑀𝑋 results in a smaller preventive replacement zone.
This corresponds to choosing to replace only the systems that are
really deteriorated, i.e. choosing a higher value of 𝜉𝑘. We see that
the impact of the decision variable 𝑀𝑋 is similar to that of the
decision variable 𝑝. Choosing smaller values of 𝑝 and 𝑀𝑋 leads
to a more conservative decision rule. Indeed, at each inspection
time 𝑇𝑘, the lower the value of 𝜉𝑘, the higher the chances of taking
preventive action and avoiding an unexpected failure.

Given the above remarks, it is clear that the self-adaptation dynamic
of the IMP policy is a function of the choice of decision variables. The
evolution of the threshold 𝜉𝑘 does not require a new online optimization
at each time step. Structurally, this policy can change the preventive
threshold on the marker process in a rational way. The evolution of the
dynamic maintenance threshold 𝜉𝑘 depends on the model parameters
as well. Among all the parameters of the degradation model, the
correlation parameter 𝜌 is particularly important as it stands for the
relationship between the latent process and the marker process. Three
values of 𝜌 are considered in Fig. 2 to show the effect of changing 𝜌 on
the adaptive preventive threshold. It can be seen that all configurations
result in a decrease of 𝜉𝑘 when 𝜌 increases.

In all, as already stated, the IMP policy is a more sophisticated
version than CMP with an adaptive decreasing threshold instead of
7

constant fixed 𝑀𝑌 . Fig. 2 confirms that 𝜉𝑘 decreases when 𝑘 increases.
It is apparent that the adaptive threshold decreases with an approxi-
mately linear slope. The slope clearly depends on the decision variable
configuration and also the parameter set. It can be seen that, for
smaller values of 𝜌 the decreasing slope is steeper. That means with a
stronger correlation, we have more reliable information about the state
of the latent degradation process given the observed state of the marker
process; hence there is no need for a large decrease in the values of the
adaptive threshold for future inspections.

4.2. Numerical study and performance comparison

Unless otherwise stated we assume that the parameters of the
bivariate gamma process are 𝛼 = 0.1, 𝜆1 = 0.7, 𝜆2 = 0.7, while the
failure threshold is set at 𝐿 = 60. The selected parameters are intended
to depict a scenario featuring the degradation indicator of a system
with an expert-estimated mean lifespan of 14 months (equivalent to
420 days), and a variance of the marker around 50 after 250 days of
usage. Furthermore, in the scenario where both the latent and marker
processes exhibit identical characteristics, their marginal distributions
share the same parameter values. The correlation coefficient 𝜌 ranges
over values 0.1, 0.3, 0.5, 0.7 and 0.9 to show the strength of the relation
between the marker and latent processes. These specific parameter
selections have been made to showcase how the proposed policies
behave and to facilitate numerical comparisons. It is worth noting that
different sets of parameters could be employed in a similar fashion for
further analysis.

Let 𝜃1 = (𝑀𝑌 , 𝑇 ) and 𝜃2 = (𝑀𝑋 , 𝑇 , 𝑝) be the decision variables for
CMP and IMP respectively. We aim to find the optimal values 𝜃∗𝑖 , 𝑖 = 1, 2
of these decision variable, such that:

𝐸𝐶∗
𝑖 = 𝐸𝐶(𝜃∗𝑖 ) ≤ 𝐸𝐶(𝜃𝑖), for 𝜃𝑖 ∈ 𝛩𝑖

where 𝛩1 = [0,+∞) × [0,+∞) and 𝛩2 = [0, 𝐿] × [0,+∞) × [0, 1] for CMP
and IMP decision rules, respectively.

By considering the following cost configurations, we conducted a
numerical study.

𝑐𝑖 = 5, 𝑐𝑝 = 140, 𝑐𝑐 = 240. (11)

In this numerical study, we use, as a benchmark for comparison, the
hypothetical ideal case where the latent degradation process 𝑋𝑡 is
observable. In this case, it is no longer necessary to use a marker process
at all. Adapting the procedure defined in [34] to periodic inspections,
the related long-run optimal maintenance cost rate can be obtained. It
is then compared to the ones obtained with IMP and CMP policies.

With the unit costs configuration and parameter set given previ-
ously, the optimal cost for the hypothetical ideal case is 𝐸𝐶∗

Ideal =
0.4590998, while the optimal time interval between inspections and
the optimal maintenance threshold are 110.6426 and 43.63159, re-
spectively. Thus, the value of 𝐸𝐶∗ will serve as a reference for
Ideal
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Table 1
Optimal cost and decision variables for different values of 𝜌 for CMP.

𝐸𝐶∗
1 𝑀∗

𝑌 𝑇 ∗ PRC

𝜌 = 0.9 0.4745916 43.66953 108.4251 3.38%
𝜌 = 0.7 0.4871396 43.53404 112.3639 6.11%
𝜌 = 0.5 0.4974453 43.31415 118.9446 8.35%
𝜌 = 0.3 0.5048235 42.86665 120.4265 10.00%
𝜌 = 0.1 0.5107319 42.71846 122.7395 11.25%

Table 2
Optimal cost and decision variables for different values of 𝜌 for IMP.

𝐸𝐶∗
2 𝑀∗

𝑋 𝑇 ∗ 𝑝∗ PRC

𝜌 = 0.9 0.4680314 41.67136 114.1677 0.7148207 1.94%
𝜌 = 0.7 0.473598 40.4905 119.2963 0.6851776 3.16%
𝜌 = 0.5 0.4749485 39.47189 120.6514 0.6575764 3.45%
𝜌 = 0.3 0.4755291 37.97544 123.1166 0.5910648 3.58%
𝜌 = 0.1 0.4760132 36.88819 125.1819 0.5173126 3.68%

comparison to assess the cost increase incurred by the loss of direct
observation.

The percentage relative cost increase is considered for comparison.
It is defined as:

PRC =
𝐸𝐶∗

𝑖 − 𝐸𝐶∗
Ideal

𝐸𝐶∗
Ideal

× 100 (12)

where 𝐸𝐶∗
𝑖 is defined as previously for CMP and IMP.

Tables 1 and 2 depict the optimal values of the decision variables
nd the cost for various correlations between the marker and latent
rocess, respectively, for CMP and IMP. The relative increase in cost
hich illustrates the effect of 𝜌 on the maintenance cost is given in

hese tables. The results reveal that with the decrease of 𝜌, the cost
ncreases and deviates from 𝐸𝐶∗

Ideal. From the tables, it can be seen
that the decision rule IMP is better than CMP in all cases. Notably,
the highest percentage of the relative increase in cost for IMP occurs
in 𝜌 = 0.1. It is approximately equal to the lowest percentage of the
relative increase in cost for CMP, which corresponds to 𝜌 = 0.9.

.3. Robustness in case of differences between the latent and marker evo-
ution rates

In the previous numerical experiments, the rates of evolution of the
arker and latent processes are identical, i.e. 𝜆1 = 𝜆2. From properties

f the bivariate gamma process introduced in Section 2, we know that
or a given value of 𝜌, if 𝜆1 < 𝜆2 the sample path of the marker
rocess tends to be lower than the sample path of the latent process.
n such a situation and with identical maintenance thresholds, the
se of the marker process instead of the latent process for decision-
aking may lead to more failures. Indeed the marker process indicates

hat the system is far from failure which is not the case. On the
ontrary, when 𝜆1 > 𝜆2, the marker process values are higher than the
alues of the latent process. Hence, it may result in more conservative
verly cautious maintenance actions. To go further, we investigate how
oderate differences between the mean rates of the marker and the

atent processes affect the optimal decision variables and the optimal
ost. To this aim, we consider that 𝜆2 = 𝜆1 ± 𝜖. Numerical results are
iven for 𝜖 = 0.2 as an example of a moderate difference between 𝜆1 and
2. The values of the other parameters are the same as in the previous
ection. The results are shown in Tables 3–6 which can be considered
n addition to Tables 1 and 2 where 𝜖 = 0. A first analysis of optimal
ost rate 𝐸𝐶∗ shows that it remains very stable for the two policies
hen the value of 𝜆2 is slightly changing and the decision variables
re updated accordingly.

Nevertheless, for CMP, the decision variable 𝑀∗
𝑌 is sensitive to

hanges in the value of 𝜆2. It decreases significantly as 𝜆2 increases.
ndeed, as the rate parameter 𝜆2 increases, the mean evolution rate
8

f the marker process decreases. This means that system failure arises
Table 3
Optimal cost and decision variables for different values of 𝜌 for CMP: Case 𝜆2 < 𝜆1
𝜆2 = 0.5).

𝐸𝐶∗
1 𝑀∗

𝑌 𝑇 ∗

𝜌 = 0.9 0.4747293 61.64174 110.9064
𝜌 = 0.7 0.487961 60.32118 115.6872
𝜌 = 0.5 0.4972741 59.62128 120.7024
𝜌 = 0.3 0.5061086 59.0271 121.4659
𝜌 = 0.1 0.5124461 58.77783 123.9657

Table 4
Optimal cost and decision variables for different values of 𝜌 for CMP: Case 𝜆2 > 𝜆1
𝜆2 = 0.9).

𝐸𝐶∗
1 𝑀∗

𝑌 𝑇 ∗

𝜌 = 0.9 0.4750954 34.8642 106.0671
𝜌 = 0.7 0.4893817 34.01058 111.3013
𝜌 = 0.5 04998618 33.82293 116.8621
𝜌 = 0.3 0.5051535 33.32315 118.2206
𝜌 = 0.1 0.513101 32.84561 119.9563

Table 5
Optimal cost and decision variables for different values of 𝜌 for IMP: Case 𝜆2 < 𝜆1
(𝜆2 = 0.5).

𝐸𝐶∗
2 𝑀∗

𝑋 𝑇 ∗ 𝑝∗

𝜌 = 0.9 0.4674119 41.89745 114.4464 0.7115131
𝜌 = 0.7 0.4708573 40.05201 119.6824 0.6995851
𝜌 = 0.5 0.4752868 39.13543 120.5517 0.6847704
𝜌 = 0.3 0.4768508 37.98851 123.5777 0.5652202
𝜌 = 0.1 0.4782173 36.97921 125.3537 0.5324252

Table 6
Optimal cost and decision variables for different values of 𝜌 for IMP: Case 𝜆2 > 𝜆1
(𝜆2 = 0.9).

𝐸𝐶∗
2 𝑀∗

𝑋 𝑇 ∗ 𝑝∗

𝜌 = 0.9 0.4693209 41.8424 114.4749 0.7495639
𝜌 = 0.7 0.4734863 40.86702 119.3662 0.670277
𝜌 = 0.5 0.475567 39.98011 120.5209 0.6234719
𝜌 = 0.3 0.4775137 37.14151 123.4667 0.5888839
𝜌 = 0.1 0.4796114 36.85059 125.013 0.5665818

when the values of the marker process are lower. The preventive
threshold 𝑀𝑌 is following this trend to keep the same probability
of preventive actions. In parallel, 𝑇 ∗ is slightly decreasing to ensure
optimal tuning. For IMP, the decision variables are stable. Specifically,
𝑀∗

𝑋 and 𝑇 ∗ do not change, and 𝑝∗ only slightly fluctuates as 𝜆2 changes.
s a consequence, small changes in the value of 𝜆2 have very little

mpact on the location of the optimal point of the cost function, as well
s the optimal decision variables. This stability of optimal cost rate and
ptimal decision variables characterizes strong robustness to variations
n the 𝜆2 parameter for IMP, which is not the case for CMP.

4.4. Correlation as a decision variable

Suppose that the cost of the inspection is closely related to the
amount of correlation between the latent degradation and the marker
process, i.e., 𝑐𝑖 = ℎ(𝜌) for a given function ℎ. This situation can arise
when the correlation is associated with monitoring the performance
of the marker process. Several options of monitoring devices for a
given marker process can be available, or several marker processes
can be considered, such that each of them has a specific correlation
with the latent process and its associated cost of measurement. Then,
it is relevant to ask for the best value of 𝜌 to get the optimal value of
maintenance cost and decide jointly on the best-associated monitoring
strategy. Suppose we have a system with a latent degradation process
and several options for marker processes, such that each of them has a
different correlation with the latent process and hence a different cost
of measurement. It might be thought that the best marker process is the
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Fig. 3. Various shapes of 𝑐𝑖 as a function of 𝜌.

one most strongly correlated with the latent process. However, it may
impose a higher cost when the marker and latent processes are strongly
correlated. It is reasonable to choose the correlation that minimizes the
cost function, which means that 𝜌 also becomes a decision variable.

Here, we assume that 𝑐𝑖 = 𝑎 + 𝑏𝜌𝛾 where 𝑎 and 𝑏 are positive con-
stants and 𝛾 is a non-negative real number. Considering this, different
kinds of inspection cost functions can be defined depending on the
value of 𝛾. More precisely, the inspection cost is:

• constant when 𝛾 = 0; which is a trivial case and we will not
address this case any further.

• a concave increasing function when 0 < 𝛾 < 1. That means as a
function of 𝜌, the rate of increase of 𝑐𝑖 is higher at the beginning
of the interval [0, 1], while it reduces afterward.

• a linear increasing function when 𝛾 = 1.
• a convex increasing function when 𝛾 > 1. For small values of 𝜌,

inspection cost 𝑐𝑖 evolves slowly and then grows more rapidly.
Obviously, this growth’s speed depends on the magnitude of 𝛾.

A numerical study was conducted with 𝑎 = 5 and 𝑏 = 7 while 𝛾 takes
values 0.5, 1, 2, 5, 10, and 15. Corresponding shapes of the inspection
cost function are depicted in Fig. 3. Fig. 4 shows how changing 𝜌 can
affect the optimal cost when the inspection cost is a function of the
correlation between the marker and latent processes. This figure shows
the evolution of optimal cost with respect to 𝜌 for various values of 𝛾
in CMP. In each case, the minimum value of optimal cost is obtained
and depicted by a ‘‘∗’’ sign.

Under the same cost configuration of 𝑐𝑝 and 𝑐𝑐 as in (11) and with
parameters 𝛼 = 0.1, 𝜆1 = 𝜆2 = 0.7, and 𝐿 = 60, the optimal values
of decision variables are given in Tables 7 and 8 for CMP and IMP,
respectively. It can be seen that, for a given value of 𝛾, the optimal cost
for IMP is always lower than for CMP. Moreover, the optimal value of
𝜌∗ is much lower in IMP than in CMP. From Tables 7 and 8, we see that
the optimal value of 𝜌∗ increases with 𝛾, which is reasonable given the
shape of the inspection cost function in Fig. 3.

Hence, if there are two marker processes and the CMP decision
rule has to be employed, the decision-maker should choose the marker
process which is more closely related to the latent process, i.e. with the
higher correlation. This choice may result in a higher maintenance cost
than with the IMP decision rule.

5. Conclusion

In this paper, we investigated CBM policies for a system with an
unobservable degradation process. Instead of directly observing this
9

Fig. 4. CMP maintenance cost as a function of 𝜌 for different values of 𝛾.

Table 7
Optimal cost and decision variables for different values of 𝛾 for CMP.

𝐸𝐶∗
1 𝑀∗

𝑌 𝑇 ∗ 𝜌∗

𝛾 = 0.5 0.5325465 42.40107 122.5668 0.1019388
𝛾 = 1 0.5212979 44.94092 123.9586 0.1517832
𝛾 = 2 0.5111996 43.63356 119.5199 0.3972142
𝛾 = 5 0.4976918 42.68946 116.9143 0.6492435
𝛾 = 10 0.4887491 42.10388 121.7721 0.7849923
𝛾 = 15 0.4854622 41.87729 124.5724 0.8493222

Table 8
Optimal cost and decision variables for different values of 𝛾 for IMP.

𝐸𝐶∗
2 𝑀∗

𝑋 𝑇 ∗ 𝑝∗ 𝜌∗

𝛾 = 0.5 0.4970541 44.53968 120.3403 0.6866454 0.1123388
𝛾 = 1 0.4912671 41.61062 120.1753 0.7129884 0.1939604
𝛾 = 2 0.4782309 39.87464 119.8381 0.6578021 0.2234431
𝛾 = 5 0.4762208 38.06256 118.9271 0.6426162 0.3943600
𝛾 = 10 0.4751424 38.81985 117.4567 0.6527617 0.5102471
𝛾 = 15 0.4746997 40.45746 115.1368 0.6726548 0.5943782

degradation process, we have access to a marker process that exhibits a
correlation with the underlying latent degradation process. The stochas-
tic degradation model follows a bivariate gamma distribution. Within
this context, we have introduced two periodic maintenance policies
with the objective of minimizing the long-term cost rate function. The
first policy, referred to as CMP, traditionally employs a fixed preventive
maintenance threshold based on the marker process. On the other hand,
the second policy, known as IMP, utilizes a prediction of the latent
degradation level of the system derived from its current marker level
for decision-making. We demonstrate that IMP can be described as a
policy with an adaptive ‘‘intelligent’’ preventive threshold based on the
marker process. This threshold is updated automatically at each inspec-
tion time without any requirement for an online optimization process.
We outline the properties of this adaptive threshold and provide an-
alytical expressions for the maintenance cost rate for both policies.
Additionally, we present a numerical study to evaluate the performance
of these policies, comparing them and underscoring the effectiveness
and robustness of IMP, even in cases where the correlation between
the marker and latent processes is weak. We also investigated the case
where this correlation is related to the monitoring cost. This can help
the decision-maker decide on the optimal investment to be made in the
monitoring technique. Furthermore, we delve into the scenario where
this correlation is linked to monitoring costs. This information can
be valuable to decision-makers in determining the optimal investment



Reliability Engineering and System Safety 242 (2024) 109739E. Mosayebi Omshi et al.

f

𝐼

L
[

a

P

ℎ

a
B
p
a

L
f

P

a

p
𝜈

L

P

in the monitoring technique. In future studies, it is imperative to
study the influence of various parameters, particularly the correlation
coefficient, which characterizes the strength of the association between
the degradation and marker processes. We can extend the concept of
periodic inspections to encompass a condition-based inspection policy,
scheduling the timing of the next inspection based on the currently
observed degradation level. Moreover, we can explore more intricate
models for the lifetime of systems operating in environments with
two competing risks. Finally, natural extensions of the present work
could be other types of bivariate processes with imperfect maintenance
actions.
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Appendix A. Proof of Theorem 1

This section focuses on the proof of Theorem 1. To this aim, we need
to prove some lemmas.

First of all, we mention some Turán-type inequalities for the modi-
fied Bessel function of the first kind. Barciz [54] showed that for 𝜅 > −1
and 𝑥 > 0, we have:

𝐼2𝜅 (𝑥) − 𝐼𝜅−1(𝑥)𝐼𝜅+1(𝑥) > 0, (A.1)

Moreover, Barciz [55] also showed that for 𝜇 > 𝜅 > −1 and 𝑥 > 0, the
ollowing inequality holds.

𝜅+1(𝑥)𝐼𝜇(𝑥) − 𝐼𝜇+1(𝑥)𝐼𝜅 (𝑥) ≥ 0. (A.2)

emma 1. Let 𝑔1 and 𝑔2 be two positive differentiable functions on
0,+∞), such that 𝑔1(0) = 𝑔2(0) = 0 and the function 𝑥 →

𝑔1(𝑥)
𝑔2(𝑥)

is a

continuous increasing function of 𝑥 on [0,+∞). Then, ℎ(𝑧) =
∫ 𝑧
0 𝑔1(𝑢)d𝑢

∫ 𝑧
0 𝑔2(𝑢)d𝑢

is

n increasing function of 𝑧 on [0,+∞).

roof. Calculate as follows:
′(𝑧)

=
𝑔1(𝑧) ∫

𝑧
0 𝑔2(𝑢)d𝑢 − 𝑔2(𝑧) ∫

𝑧
0 𝑔1(𝑢)d𝑢

(

∫ 𝑧
0 𝑔2(𝑢)d𝑢

)2

=
∫ 𝑧
0 𝑔′1(𝑣)d𝑣 ∫

𝑧
0 𝑔2(𝑢)d𝑢 − ∫ 𝑧

0 𝑔′2(𝑣)d𝑣 ∫
𝑧
0 𝑔1(𝑢)d𝑢

( 𝑧 )2
10

∫0 𝑔2(𝑢)d𝑢
=
∫ 𝑧
0 ∫ 𝑧

0

[

𝑔′1(𝑣)𝑔2(𝑢) − 𝑔′2(𝑣)𝑔1(𝑢)
]

d𝑣d𝑢
(

∫ 𝑧
0 𝑔2(𝑢)d𝑢

)2

=
∫ 𝑧
0 ∫ 𝑢

0

[

𝑔′1(𝑣)𝑔2(𝑢) − 𝑔′2(𝑣)𝑔1(𝑢)
]

d𝑣d𝑢 + ∫ 𝑧
0 ∫ 𝑧

𝑢

[

𝑔′1(𝑣)𝑔2(𝑢) − 𝑔′2(𝑣)𝑔1(𝑢)
]

d𝑣d𝑢
(

∫ 𝑧
0 𝑔2(𝑢)d𝑢

)2

=
∫ 𝑧
0 ∫ 𝑢

0

[

𝑔′1(𝑣)𝑔2(𝑢) − 𝑔′2(𝑣)𝑔1(𝑢)
]

d𝑣d𝑢 + ∫ 𝑧
0 ∫ 𝑣

0

[

𝑔′1(𝑣)𝑔2(𝑢) − 𝑔′2(𝑣)𝑔1(𝑢)
]

d𝑢d𝑣
(

∫ 𝑧
0 𝑔2(𝑢)d𝑢

)2

=
∫ 𝑧
0 ∫ 𝑣

0

[

𝑔′1(𝑣)𝑔2(𝑢) − 𝑔′2(𝑣)𝑔1(𝑢)
]

d𝑢d𝑣
(

∫ 𝑧
0 𝑔2(𝑢)d𝑢

)2
> 0.

The last inequality holds since
𝑔1(𝑥)
𝑔2(𝑥)

is an increasing function of 𝑥

nd so 𝑔′1(𝑣)𝑔2(𝑣) > 𝑔′2(𝑣)𝑔1(𝑣) and 𝑔1(𝑣)𝑔2(𝑢) > 𝑔1(𝑢)𝑔2(𝑣) for 𝑢 < 𝑣.
y multiplying these two inequalities we see that the integrand is a
ositive function which leads to a positive value for the integral and
n increasing function ℎ(𝑧). □

emma 2. Let 𝑢 be a positive and increasing function of 𝑥, then the
ollowing statements are true.

(i) For 𝜈 > 0 and 𝑥 > 0, the function 𝑥 →
𝑢(𝑥)𝐼𝜈 (𝑢(𝑥))
𝐼𝜈−1(𝑢(𝑥))

is an increasing
function.

(ii) For 𝜈2 > 𝜈1 > 1 and 𝑥 > 0, the function 𝑥 →
𝑢𝜈2−1(𝑥)𝐼𝜈2−1(𝑢(𝑥))

𝑢𝜈1−1(𝑥)𝐼𝜈1−1(𝑢(𝑥))
is

an increasing function.

roof. (i) By writing

𝑢(𝑥)𝐼𝜈 (𝑢(𝑥))
𝐼𝜈−1(𝑢(𝑥))

=
𝑢𝜈 (𝑥)𝐼𝜈 (𝑢(𝑥))

𝑢𝜈−1(𝑥)𝐼𝜈−1(𝑢(𝑥))
,

nd using the fact that for all real values of 𝜈, we have:

𝜕
𝜕𝑢

(

𝑢𝜈𝐼𝜈 (𝑢)
)

= 𝑢𝜈𝐼𝜈−1(𝑢),

the derivative of the function with respect to 𝑥 is positive by setting
𝜅 = 𝜈 − 1 in (A.1) which holds for 𝜈 > 0.

(ii) Similarly, the derivative of the function with respect to 𝑥 is
ositive due to (A.2) by setting 𝜇 = 𝜈2 − 2 and 𝜅 = 𝜈1 − 2, i.e. for
2 > 𝜈1 > 1. □

emma 3. Let 𝐺(𝑦; 𝑧, 𝜈) = ∫ 𝑧
0 𝑔(𝑥, 𝑦; 𝜈)d𝑥 where

𝑔(𝑥, 𝑦; 𝜈) = 𝑥
𝜈
2 exp

(

−
𝜆1𝑥
1 − 𝜌

)

𝐼𝜈

(

2
√

𝜌𝜆1𝜆2𝑥𝑦
1 − 𝜌

)

,

then the following statements are true.

(i) for 𝜈 > 0, the function 𝑧 →
𝐺(𝑦; 𝑧, 𝜈)

𝐺(𝑦; 𝑧, 𝜈 − 1)
is an increasing function of

𝑧.
(ii) for 𝜈2 > 𝜈1 > 1, the function 𝑧 →

𝐺(𝑦; 𝑧, 𝜈2 − 1)
𝐺(𝑦; 𝑧, 𝜈1 − 1)

is an increasing
function of 𝑧.

roof. By defining 𝑢(𝑥) =
2
√

𝜌𝜆1𝜆2𝑥𝑦
1 − 𝜌

, we know that:
(i) The function

𝑔(𝑥, 𝑦; 𝜈)
𝑔(𝑥, 𝑦; 𝜈 − 1)

=
1 − 𝜌

2
√

𝜌𝜆1𝜆2𝑦

𝑢(𝑥)𝐼𝜈 (𝑢(𝑥))
𝐼𝜈−1 (𝑢(𝑥))

is an increasing function of 𝑥 due to Lemma 2-(i). Therefore, the as-
sumptions of Lemma 1 are satisfied, it can be deduced that 𝐺(𝑦; 𝑧, 𝜈)

𝐺(𝑦; 𝑧, 𝜈 − 1)
is an increasing function of 𝑧 for 𝜈 > 0.

(ii) Similarly, the function

𝑔(𝑥, 𝑦; 𝜈2 − 1)
=

(

1 − 𝜌
√

)𝜈2−𝜈1 𝑢𝜈2−1(𝑥)𝐼𝜈2−1 (𝑢(𝑥))
𝜈 −1
𝑔(𝑥, 𝑦; 𝜈1 − 1) 2 𝜌𝜆1𝜆2𝑦 𝑢 1 (𝑥)𝐼𝜈1−1 (𝑢(𝑥))
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Fig. B.5. Conditional probability and adaptive threshold for IMP as a function of decision variables.
is an increasing function of 𝑥 due to Lemma 2-(ii). Hence, due to
Lemma 1,

𝐺(𝑦; 𝑧, 𝜈2 − 1)
𝐺(𝑦; 𝑧, 𝜈1 − 1)

is an increasing function of 𝑧 for 𝜈2 > 𝜈1 >

1. □

Proof of Theorem 1. As 𝑀𝑋 < 𝐿, from Eq. (7)

𝑃 (𝑋𝑡 > 𝑀𝑋 |𝑌𝑡 = 𝑦, 𝑆 > 𝑡) =
∫ 𝐿
𝑀𝑋

𝑓1(𝑦|𝑥)𝑓2(𝑥)d𝑥

∫ 𝐿
0 𝑓1(𝑦|𝑥)𝑓2(𝑥)d𝑥

, (A.3)

and then by substituting Eqs. (4)–(6), we have:

𝑃 (𝑋𝑡 > 𝑀𝑋 |𝑌𝑡 = 𝑦, 𝑆 > 𝑡)

=

∫ 𝐿
𝑀𝑋

𝑥
𝛼𝑡−1
2 exp

(

−
𝜆1𝑥
1 − 𝜌

)

𝐼𝛼𝑡−1

(

2
√

𝜌𝜆1𝜆2𝑥𝑦
1 − 𝜌

)

d𝑥

∫ 𝐿
0 𝑥

𝛼𝑡−1
2 exp

(

−
𝜆1𝑥
1 − 𝜌

)

𝐼𝛼𝑡−1

(

2
√

𝜌𝜆1𝜆2𝑥𝑦
1 − 𝜌

)

d𝑥

= 1 −

∫ 𝑀𝑋
0 𝑥

𝛼𝑡−1
2 exp

(

−
𝜆1𝑥
1 − 𝜌

)

𝐼𝛼𝑡−1

(

2
√

𝜌𝜆1𝜆2𝑥𝑦
1 − 𝜌

)

d𝑥

∫ 𝐿
0 𝑥

𝛼𝑡−1
2 exp

(

−
𝜆1𝑥
1 − 𝜌

)

𝐼𝛼𝑡−1

(

2
√

𝜌𝜆1𝜆2𝑥𝑦
1 − 𝜌

)

d𝑥

= 1 −
𝐺(𝑦;𝑀𝑋 , 𝛼𝑡 − 1)
𝐺(𝑦;𝐿, 𝛼𝑡 − 1)

⋅

(i) By properties of the modified Bessel function of the first kind
(see [56]), we have:

𝜕
𝜕𝑦

𝐼𝛼𝑡−1

(

2
√

𝜌𝜆1𝜆2𝑥𝑦
1 − 𝜌

)

= 𝛼𝑡 − 1
2𝑦

𝐼𝛼𝑡−1

(

2
√

𝜌𝜆1𝜆2𝑥𝑦
1 − 𝜌

)

+

√

𝜌𝜆1𝜆2𝑥

(1 − 𝜌)
√

𝑦
𝐼𝛼𝑡

(

2
√

𝜌𝜆1𝜆2𝑥𝑦
1 − 𝜌

)

,

consequently

𝜕
𝜕𝑦

𝐺(𝑦; 𝑧, 𝛼𝑡 − 1) = 𝛼𝑡 − 1
2𝑦

𝐺(𝑦; 𝑧, 𝛼𝑡 − 1) +

√

𝜌𝜆1𝜆2
(1 − 𝜌)

√

𝑦
𝐺(𝑦; 𝑧, 𝛼𝑡).

Thus
𝜕
𝜕𝑦

𝑃 (𝑋𝑡 > 𝑀𝑋 |𝑌𝑡 = 𝑦, 𝑆 > 𝑡)

= −

√

𝜌𝜆1𝜆2
(1 − 𝜌)

√

𝑦

[

𝐺(𝑦;𝑀𝑋 , 𝛼𝑡)𝐺(𝑦;𝐿, 𝛼𝑡 − 1) − 𝐺(𝑦;𝐿, 𝛼𝑡)𝐺(𝑦;𝑀𝑋 , 𝛼𝑡 − 1)
]

𝐺2(𝑦;𝐿, 𝛼𝑡 − 1)
⋅

From Lemma 3-(i), 𝐺(𝑦; 𝑧, 𝛼𝑡)
𝐺(𝑦; 𝑧, 𝛼𝑡 − 1)

is an increasing function of 𝑧 for all

𝑡 > 0 and as 𝑀𝑋 < 𝐿, the expression in the brackets is negative. Thus,
The derivative is positive which completes the proof.
11
(ii) For 1 < 𝛼𝑡1 < 𝛼𝑡2, the assumptions of Lemma 3-(ii) are satisfied.
Then, for 𝑀𝑋 < 𝐿, we have:
𝐺(𝑦;𝑀𝑋 , 𝛼𝑡2 − 1)
𝐺(𝑦;𝑀𝑋 , 𝛼𝑡1 − 1)

<
𝐺(𝑦;𝐿, 𝛼𝑡2 − 1)
𝐺(𝑦;𝐿, 𝛼𝑡1 − 1)

,

in other words,
𝐺(𝑦;𝑀𝑋 , 𝛼𝑡2 − 1)
𝐺(𝑦;𝐿, 𝛼𝑡2 − 1)

<
𝐺(𝑦;𝑀𝑋 , 𝛼𝑡1 − 1)
𝐺(𝑦;𝐿, 𝛼𝑡1 − 1)

.

Hence, for 𝑡2 > 𝑡1 >
1
𝛼 , 𝑃 (𝑋𝑡1 > 𝑀𝑋 |𝑌𝑡1 = 𝑦, 𝑆 > 𝑡1) < 𝑃 (𝑋𝑡2 > 𝑀𝑋 |𝑌𝑡2 =

𝑦, 𝑆 > 𝑡2) which is the desired conclusion. □

Appendix B. Proof of remarks in Section 4.1

Remark 1. Given fixed values of 𝑀𝑋 and 𝑇 , increasing 𝑝 results in
greater values of 𝜉𝑘 for each 𝑘.

Proof. For a given 𝑘 and 𝑀𝑋 , from Theorem 1-(i) we know that
𝑃 (𝑋𝑇𝑘 > 𝑀𝑋 |𝑌𝑇𝑘 = 𝑦, 𝑆 > 𝑇𝑘) is an increasing function of 𝑦. Hence,
if 𝑝(1) < 𝑝(2) then it is clear that

𝜉(1)𝑘 = inf{𝑦 ∶ 𝑃 (𝑋𝑇𝑘 > 𝑀𝑋 |𝑌𝑇𝑘 = 𝑦, 𝑆 > 𝑇𝑘) > 𝑝(1)}

< inf{𝑦 ∶ 𝑃 (𝑋𝑇𝑘 > 𝑀𝑋 |𝑌𝑇𝑘 = 𝑦, 𝑆 > 𝑇𝑘) > 𝑝(2)} = 𝜉(2)𝑘

Fig. B.5(a) shows this situation. □

Remark 2. Given fixed values of 𝑝 and 𝑀𝑋 , the value of 𝜉𝑘 decreases
with increasing 𝑇 for each 𝑘.

Proof. For a given 𝑦, and 𝑀𝑋 , from Theorem 1-(ii) the probability
𝑃 (𝑋𝑡 > 𝑀𝑋 |𝑌𝑡 = 𝑦, 𝑆 > 𝑡) is an increasing function of 𝑡 on ( 1𝛼 ,∞).
Hence, if 1

𝛼 < 𝑇 (1) < 𝑇 (2) which is equivalent to 1
𝛼 < 𝑇 (1)

𝑘 < 𝑇 (2)
𝑘 for a

given 𝑘, then

𝑃 (𝑋𝑇 (1)
𝑘

> 𝑀𝑋 |𝑌𝑇 (1)
𝑘

= 𝑦, 𝑆 > 𝑇 (1)
𝑘 )

< 𝑃 (𝑋𝑇 (2)
𝑘

> 𝑀𝑋 |𝑌𝑇 (2)
𝑘

= 𝑦, 𝑆 > 𝑇 (2)
𝑘 ), for all 𝑦.

From Theorem 1-(i), we know that these functions are increasing in 𝑦.
That means, for a given 𝑝, 𝜉(1)𝑘 = inf{𝑦 ∶ 𝑃 (𝑋𝑇 (1)

𝑘
> 𝑀𝑋 |𝑌𝑇 (1)

𝑘
= 𝑦, 𝑆 >

𝑇 (1)
𝑘 ) > 𝑝} is greater than 𝜉(2)𝑘 = inf{𝑦 ∶ 𝑃 (𝑋𝑇 (2)

𝑘
> 𝑀𝑋 |𝑌𝑇 (2)

𝑘
= 𝑦, 𝑆 >

𝑇 (2)
𝑘 ) > 𝑝}. Fig. B.5(b) depicts the situation. □

Remark 3. Given fixed values of 𝑝 and 𝑇 , the value of 𝜉𝑘 increases
with increasing 𝑀𝑋 for each 𝑘.

Proof. For a given 𝑘 and 𝑦, the probability 𝑃 (𝑋𝑇𝑘 > 𝑧|𝑌𝑇𝑘 = 𝑦, 𝑆 > 𝑇𝑘)

is a decreasing function of 𝑧. Hence, if 𝑀 (1)
𝑋 < 𝑀 (2)

𝑋 then

𝑃 (𝑋 >𝑀 (1)
|𝑌 = 𝑦, 𝑆 >𝑇 )>𝑃 (𝑋 >𝑀 (2)

|𝑌 = 𝑦, 𝑆 > 𝑇 ), for all 𝑦.
𝑇𝑘 𝑋 𝑇𝑘 𝑘 𝑇𝑘 𝑋 𝑇𝑘 𝑘
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From Theorem 1-(i), we know that these functions are increasing in 𝑦.
That means, for a given 𝑝, 𝜉(1)𝑘 = inf{𝑦 ∶ 𝑃 (𝑋𝑇𝑘 > 𝑀 (1)

𝑋 |𝑌𝑇𝑘 = 𝑦, 𝑆 >
𝑇𝑘) > 𝑝} is less than 𝜉(2)𝑘 = inf{𝑦 ∶ 𝑃 (𝑋𝑇𝑘 > 𝑀 (2)

𝑋 |𝑌𝑇𝑘 = 𝑦, 𝑆 > 𝑇𝑘) > 𝑝}.
Fig. B.5(c) depicts the situation. □
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