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1 LIST3N-LM2S, Université de Technologie de Troyes, Troyes, France
2 Department of Mathematics, Statistics and Computer Sciences, University of Tehran, Tehran, Iran
3 School of Mathematics, Statistics, Chemistry and Phys, Murdoch University, Perth, WA, Australia

Abstract

This paper looks at the challenge of making maintenance decisions for deteriorating systems when

the degradation process leading to failure cannot be directly observed or measured. In this scenario,

the system’s health is monitored by observing the progression of a degradation-related marker index,

which can be obtained through inspections. To model this configuration, a bivariate gamma process is

employed. One component represents the marker process, while the other represents the degradation

process, which dictates the time of failure. Two condition-based maintenance (CBM) policies are

proposed and analyzed. The first policy is based on a conventional decision structure, utilizing a fixed

preventive threshold directly applied to the measured process. The second policy relies on monitoring

data related to the marker process to estimate the level of latent degradation at inspections. We

demonstrate that the second policy is equivalent to a policy employing an adaptive preventive threshold

that sequentially evolves. We provide insights into some key properties associated with this approach.

The expected cost rate is calculated and employed for policy optimization. Additionally, a numerical

study is presented that showcases the practical implementation of the method and highlights the

effectiveness of the second approach, even when the correlation between degradation and the marker

process is low.

Keywords: Bivariate gamma process, condition-based maintenance, degradation process, marker

process.

1. Introduction

Industrial organizations are actively seeking new strategies to enhance the efficiency of their op-

erations. In this pursuit, maintenance optimization has emerged as a pivotal factor, simultaneously

minimizing production costs while providing high-quality products. It involves deciding which ac-

tion to take at the appropriate moment based on available information. Corrective actions refer to

maintenance measures necessary when a system experiences a failure, while preventive actions are

maintenance activities designed to prevent or postpone future failures. These preventive actions are

carried out while the system is still operational. There are three primary categories of preventive
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maintenance strategies: (1) age-based maintenance, (2) time-based maintenance, and (3) condition-

based maintenance, as mentioned in reference [36]. Due to its advantages, condition-based maintenance

(CBM) has garnered increasing attention in maintenance research. CBM relies on one or more variables

that measure the system’s condition, with the primary objective of reducing unnecessary maintenance

interventions and eliminating the risks associated with preventive maintenance actions.

The application of CBM in industrial areas relies on the development of stochastic degradation

models. The choice of the stochastic process that best describes the degradation dramatically influences

the CBM decision-making strategy. Research on CBM has two main streams, one focusing on discrete

and the other on continuous degradation processes. Markov chains are commonly employed to model

discrete deterioration processes [2, 9, 22, 30, 31], while continuous time and space stochastic processes

such as the Wiener, gamma, and inverse Gaussian processes are widely used in continuous degradation

processes. The Wiener process is suitable in describing non-monotonic degradation over time; see for

example, [15, 18, 35, 55]. On the other hand, the gamma and inverse Gaussian (IG) processes are

applied to model the monotonic degradation of a system. These processes can be regarded as the limit

of a compound Poisson process and are thus appropriate models when degradation takes the form of

cumulative damage. There is limited literature available on utilizing a CBM-based strategy in the

context of the IG process, as seen in references such as [12] for a maintenance policy in the presence

of heterogeneity among a product population, [29] for dynamic auto-adaptive predictive maintenance

with successive Bayesian updates, [28] for predictive maintenance with imperfect repairs, [45] for CMB

considering a two-stage inverse Gaussian process with random effects, and [24] for a mission-oriented

maintenance policy.

On the contrary, the gamma process has been studied extensively in CBM models, see [43] for major

works prior to 2007. Without attempting exhaustiveness, some illustrative works are quoted hereafter.

Meier-Hirmer et al. [26] developed a model of maintenance optimization for a system with a gamma

deterioration process with intervention delay and studied its application in railway track maintenance.

Caballé et al. [10] proposed a periodic inspection/replacement strategy for a system subject to an

internal gamma degradation process and an external non-homogeneous Poisson sudden shocks process.

Yuan et al. [52] presented a model to quantify the economic value gained by the implementation of

maintenance actions. Zhang et al. [53] studied how heterogeneity in degradation influences condition-

based maintenance. Mercier and Castro [27] introduced and compared two imperfect repair models for

a degrading system, with deterioration level modeled by a non-homogeneous gamma process. Han [19]

developed an optimal CBM policy with the optimal inspection points under the gamma degradation

process with random effects to account for potential population/environmental heterogeneities.

Early research in CBM modeling for gradually deteriorating systems primarily concentrated on

single-component systems. Maintenance policies and models for multi-component systems were sub-
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sequently proposed. A wide range of configurations has been envisaged [21]. For multi-component

systems, several degradation indicators are monitored, each associated with a component that re-

quires maintenance. In the context of multi-component systems with gradual degradation phenomena,

degradation models based on Lévy stochastic processes, specifically gamma and Wiener processes, are

frequently employed. A multi-component configuration is relevant when it comes to explicitly exploit-

ing dependencies between components or subsystems. The most commonly explored dependencies are

economic, structural, and stochastic.

Some researchers ([7, 8, 11]) are investigating CBM strategies that incorporate economic depen-

dencies. Their primary motivation is to achieve cost reduction when maintaining multiple components

jointly. In the context of degradation modeling, the particular interest is in stochastic dependencies.

Interactions between components can be state-state or state-rate interactions (see e.g. [6, 49]). Various

types of stochastic dependencies are being explored and modeled using copulas [1, 23], multivariate

processes [25], load sharing [32], or the common effect of environmental factors [54]. It’s important to

note that CBM studies on multi-component systems that take structural dependence into account are

somewhat limited, as they require more complex analytical formulations. Furthermore, it’s essential to

clarify that the terminology “single-componen” or “multi-component” does not necessarily correspond

to the real configuration of the system but rather to the model being used. For instance, a CBM policy

for a single-unit system may refer to a multi-component system considered as a whole, characterized

by a one-dimensional “health index” rather than its complete multi-dimensional state [17].

In the majority of the aforementioned studies, failure mechanisms can be attributed to an underly-

ing, observable physical or chemical degradation process, such as fatigue crack growth, corrosion, and

wear, among others. However, there are situations in which failure cannot be linked to an observable

degradation process. Thus, it becomes challenging to directly and accurately measure or observe the

degradation process itself, as noted by [44]. In other words, the degradation process is latent. In such

cases, besides the latent degradation, we can measure other indices that are related to the performance

characteristics. Such indices are referred to as markers [20]. These markers are statistically associated

with the latent degradation state, and hence, contain valuable information about the unobservable

degradation process.

This configuration has the potential to be utilized in a wide range of real-life scenarios. It is ap-

plicable to systems where failure is linked to a specific component or a subsystem that is inaccessible.

Although the degradation indicator is well-defined, measuring its level may necessitate complex or cost-

prohibitive operations that are impractical. Consequently, non-destructive or remote testing processes

are being explored to indirectly assess the degree of degradation in an alternative manner. Clearly,

the performance of the measurement system can impact the accuracy of the marker and its correla-

tion with actual degradation. A prime example of this configuration is the degradation of mechanical
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transmissions. Directly accessing the gears for measuring degradation levels poses considerable chal-

lenges. However, the observation of oil wear debris can serve as a valuable marker [13]. Another

illustrative example is the corrosion-induced degradation of aluminum alloys, a significant factor lead-

ing to structural failure in various safety-critical and mission-critical engineering components/systems,

such as aircraft wings and nuclear batteries. Therefore, degradation performance remains latent, but

non-destructive testing techniques like electrochemical impedance spectroscopy (EIS) can be employed

to evaluate the corrosion-induced degradation process [40].

Another scenario arises in systems where a global degradation phenomenon is identified, but a

definitive evaluation indicator is lacking. In such cases, information about the level of degradation

is derived from precise measurements of a correlated indicator. For instance, this can be observed in

studies related to AIDS, where CD4 cell count serves as an indicator of residual lifetime [14, 20, 39],

in monitoring disease progression in neurological disorders (e.g., amyotrophic lateral sclerosis) using

serum and cerebrospinal fluid neurofilament light chain protein as an indicator, and in tracking gradual

seal degradation through the dynamic response of hydraulic actuators for blade-pitch control in wind

turbines.

Additional examples can be found in various situations. The performance of lithium-ion batteries

deteriorates with decreasing capacity and increasing impedance, potentially leading to equipment and

system failures or even catastrophic losses. Health indicators (HI), such as the charge quantity stored

in the battery during constant current charging or the discharge voltage over time, can be employed to

represent changes in capacity degradation, which is otherwise unmeasurable [48]. The accumulation of

undesirable materials on solid surfaces can significantly increase resistance to heat transfer in subsea

heat exchangers. Failure results from fouling and can be detected while the fouling process remains

latent. The marker process is associated with changes in certain physical properties of the fluid, which

can be periodically checked.

Different mathematical models have been developed to describe the relationship between latent

degradation and marker processes. Whitmore et al. [47] presented a model based on a bivariate Wiener

process, where one component represents the marker and the second, latent component determines the

failure time. Ting Lee et al. [41] extended the model proposed in [47] and applied it in a clinical

trial for AIDS. Ting Lee et al. [42] also explored Bayesian inference for the bivariate Wiener process

introduced in [47]. Peng and Zhou [34] assumed that the degradation process follows a Wiener process,

and the marker is the integral of the performance degradation. Shemehsavar [38] employed a bivariate

gamma process to model monotone-increasing latent degradation and marker processes. Zhou et al. [56]

introduced a model where latent degradation follows a gamma process, and the marker process is a

function of this latent degradation in the presence of an error term. They used a Monte Carlo-based

algorithm to estimate and predict crack depth on gear teeth in a spur gearbox based on vibration
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signals. Xu et al. [50] introduced a dynamic system characterized by a hidden degradation process

identified through particle filtering based on measurable outputs from the considered dynamic system.

This paper addresses the challenge of making optimal condition-based maintenance decisions in case

of latent degradation. System failure occurs when the latent degradation level reaches a predefined

threshold. The marker process serves as an indirect source of information regarding latent degradation.

The paper focuses on systems where both marker and latent processes exhibit similar behaviors,

featuring non-decreasing trajectories and continuous evolution over time. The paper’s central concern

lies in exploiting the connection between latent degradation and the marker. To maintain clarity and

avoid introducing additional complexities stemming from interdependencies between components, we

concentrate our efforts on scenarios associated with one degradation phenomenon linked to a single

indicator. This indicator may pertain to a specific component or may encapsulate information from

multiple components that can not be observed individually.

As discussed above, gamma processes are commonly used for degradation modeling and mainte-

nance modeling in engineering systems. Hence, we select a modeling framework based on Kibble’s

bivariate gamma process. This process possesses the essential characteristic of monotonically increas-

ing sample paths and has a well-known conditional infinitely divisible distribution (namely, randomized

gamma distribution) for the latent degradation given the marker. The Kibble model includes a sin-

gle parameter that indicates the Pearson correlation, providing an explicit and easily interpretable

measure of the dependency between two processes.

We suggest two condition-based maintenance (CBM) strategies involving periodic inspections, and

we develop analytical expressions for the long-term expected maintenance cost rate for both strategies.

The first strategy follows a conventional structure reliant solely on the marker process. The second and

primary strategy introduces an advanced maintenance decision rule utilizing predictive inferences to

estimate the degradation level based on observed data. An alternative representation of the primary

policy is provided, which relies on an adaptive threshold. To derive the cost function analytically

rather than resorting to Monte Carlo simulations, we explore and establish the properties of the

adaptive threshold.

Our objective is to explore whether it is more advantageous to base decisions directly on the

observed marker indicator or if it would be beneficial to make predictive inferences about the level of

latent degradation. Thus, the final contribution involves a comparative analysis of the two maintenance

strategies against an ideal scenario where the degradation process is perfectly understood. A series

of representative numerical experiments highlight the value of an advanced maintenance policy and

demonstrate the advantages of inferring the degradation level from the marker indicator.

The paper is structured as follows: Section 2 introduces the bivariate gamma process and reviews

key probabilities. Section 3 presents, analyzes, and discusses the maintenance policies. Section 4
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illustrates and compares the proposed policies through a simulation study. Finally, Section 5 provides

the conclusion.

2. General Framework

2.1. Stochastic Degradation Model

Two random variables, X and Y , are said to follow Kibble’s bivariate gamma distribution (Balakr-

ishnan and Lai [3]) with shape parameter α, rate parameters λ1, λ2, and correlation ρ, if their joint

distribution is as follows:

f(x, y|α, ρ) = (λ1λ2)
α

(1− ρ)Γ(α)

(
xy

ρλ1λ2

)α−1
2

exp

(
−λ1x+ λ2y

1− ρ

)
Iα−1

(
2
√
ρλ1λ2xy

1− ρ

)
, (1)

where x, y > 0, 0 < ρ < 1, α, λ1, λ2 > 0 and Iα(·) is the modified Bessel function of the first kind of

order α defined as:

Iα(z) =

∞∑
k=0

( z2 )
2k+α

Γ(k + α+ 1)k!
, z > 0.

The marginal distributions of X and Y are gamma with the same shape parameter α and rate parame-

ters λ1 and λ2, respectively. The parameter ρ is also Pearson’s product-moment correlation coefficient

between X and Y .

Consider a two-dimensional process, {(Xt, Yt), t ≥ 0} with the initial value (X0, Y0) = (0, 0), such

that the vector (Xt, Yt) has Kibble’s bivariate gamma distribution with shape parameter αt, rate

parameters λ1, λ2, and correlation ρ. We consider the process {Xt, t ≥ 0} to be the latent degradation

process which represents the level of degradation of the system at time t. Hence, Xt has a gamma

distribution with shape parameter αt and rate parameter λ1.

The system fails when the degradation process {Xt, t ≥ 0} reaches a failure threshold L > 0 for

the first time. We denote this first-hitting time by the random variable S. The failure threshold L is

given and related to the characteristics of the system under study. Here, we assume that the failure

of the system is self-announced.

The other process, {Yt, t ≥ 0}, represents a marker process that is correlated with the degradation

process {Xt, t ≥ 0} and tracks its progress. Yt has a gamma distribution with shape parameter αt and

rate parameter λ2. The degradation process is latent and cannot be measured but inference about the

degradation process can be performed using the marker process. The maintenance decision-making

procedure is based on the marker process observations. The correlation coefficient ρ describes the

strength of the association between the two processes.

2.2. Key Probability Distributions

For a system surviving at time t, two types of predictive inference that exploit marker information

can be considered:
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• Prediction of the degradation level, Xt which is latent, given its marker level Yt at that time;

• Prediction at time t of the future system failure time S given that its marker level at that time

is Yt = y.

Our main concern is to employ the first. For parametric inference and maintenance optimization with

this model, we need different probability distributions which are mentioned hereafter.

Consider a time interval [0, t] partitioned into time points 0 = T0 < T1 < · · · < Tk = t, where k

is the total number of inspection points up to time t. Let ∆Xi = XTi −XTi−1 be the increment for

process X over the time interval (Ti−1, Ti] for i = 1, ..., k. Moreover, ∆Yi = YTi
− YTi−1

denotes the

increment for the process Y in the same time interval. Then, the distribution of ∆Yi conditional on

∆Xi = ∆xi has a randomized gamma distribution (RGD) (see [16] and [51]); i.e,

(∆Yi|∆Xi = ∆xi) ∼ RGD

(
α∆Ti + ηi,

λ2

1− ρ

)
, (2)

where ηi ∼ Poisson(ρλ1∆xi

1−ρ ) and ∆Ti = Ti − Ti−1. We know that the bivariate gamma process has

independent increments and hence we can extend the conditional event from (2) to the entire σ-field

generated by {∆X1,∆X2, · · · ,∆Xk}. So we have

(∆Yi|∆Xj = ∆xj , 1 ≤ j ≤ k) ∼ RGD

(
α∆Ti + ηi,

λ2

1− ρ

)
.

Since the (∆Yi)1≤j≤k are independent we can write their joint distribution conditional on (∆Xi)1≤i≤k

and thus obtain the conditional density of Yt =
∑k

i=1 ∆Yi. We also have

k∑
i=1

∆xi = xt, and

k∑
i=1

∆Ti = t.

So, conditional on (∆Xi)1≤i≤k, the random variable Yt has randomized gamma distribution

(Yt|∆Xi, 1 ≤ i ≤ k) ∼ RGD

(
αt+ η,

λ2

1− ρ

)
,

where η =
∑k

i=1 ηi ∼ Poisson(ρλ1xt

1−ρ ) depends on the partitioned sample path only through its terminal

point xt and not on the structure of the partition. Therefore, the conditional distribution of Yt given

(∆Xi = ∆xi, 1 ≤ i ≤ k) is the same as the conditional distribution of Yt given Xt,

(Yt|Xt = xt) ∼ RGD

(
αt+ η,

λ2

1− ρ

)
, (3)

where η ∼ Poisson(ρλ1xt

1−ρ ) (see [38]).

Now suppose a system has survived until time t when a marker level Yt = y is recorded. This

occurrence constitutes a censored observation on the failure time because we know S > t. In this case,
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the distribution of (Yt|Xt = x), for S > t, follows (3) and we can write its pdf as follows:

f1(y|x) = P (Yt ∈ dy|Xt = x, S > t)

=

y
αt−1

2 λ2

αt+1
2 exp

(
−ρλ1x+ λ2y

1− ρ

)
(1− ρ)(ρxλ1)

αt−1
2

Iαt−1

(
2
√
ρλ1λ2xy

1− ρ

)
, y > 0. (4)

Also, the probability of a system surviving beyond time t such that the terminal point Xt does not

exceed the threshold L is as follows (see [33]):

f2(x) = P (Xt ∈ dx, S > t) =
λ1

αt

Γ(αt)
xαt−1e−λ1x, 0 < x < L. (5)

Now the joint pdf for a system surviving beyond time t, and having marker level Yt and degradation

level Xt at time t, is given by f1(y|x)f2(x). Since x is not observed, we integrate it out of the joint

density and we obtain:

f3(y) = P (Yt ∈ dy, S > t) =

∫ L

0

f1(y|x)f2(x)dx. (6)

As already stated, we are interested in the prediction of the degradation level of the system surviving

at time t from its current marker value. The related conditional distribution function is as follows:

P (Xt ∈ dx|Yt = y, S > t) =
f1(y|x)f2(x)

f3(y)
, 0 < x < L. (7)

We also need the distribution of the failure time S. Since Xt is strictly increasing in t, we have:

P (S > s) = P (Xs < L) =

∫ L

0

λ1
αs

Γ(αs)
xαs−1e−λ1xdx =

Γ(αs, λ1L)

Γ(αs)

where Γ(a, z) is the incomplete gamma function defined by Γ(a, z) =
∫ z

0
ua−1e−udu.

3. Maintenance Policies

The degradation leading to system failure remains latent, and there is no direct access to infor-

mation about the actual degradation or the remaining useful life. Consequently, the degradation level

cannot be directly used for making maintenance decisions. However, monitoring information can be

accessed through inspections, which reveals the status of the marker process before the system’s failure.

To address the challenge of optimal maintenance decision-making, we introduce two condition-based

maintenance (CBM) policies. The first policy involves making maintenance decisions directly based

on the marker process. Since CBM decision parameters typically include inspection frequency and

preventive maintenance threshold related to degradation level, we adopt a conventional CBM decision

rule with a threshold on the marker level for initiating preventive actions. The second policy aims

to leverage the marker process to infer information about the current latent degradation level of the
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system. In this scenario, we propose the use of predictive probabilities to determine the probability

of surpassing a threshold on the latent degradation level, which then guides preventive maintenance

actions.

In the subsequent subsections, we will provide more detailed descriptions of these policies and

explore their characteristics.

3.1. Maintenance decision rules

Suppose that the time interval between two inspections is fixed and equal to T , so the i-th inspection

time during one cycle is Tk = kT, k ∈ N, while T0 = 0. At the time Tk, if the system has not failed

yet, we can measure the marker value YTk
. The two decision rules are as follows:

Classical Maintenance Policy (CMP): This policy simply uses a preventive limit on the observable

marker process. The reason behind this is that the marker can somehow reflect the situation of the

latent process due to the relationship between them. Consequently, traditional decision rules can be

employed in the marker process. Let us denote the critical level of the marker process by MY where

the subscript Y is to emphasize that this threshold is for the marker process. Therefore, if YTk
> MY ,

we replace the system preventatively; otherwise, the system is properly working, and no maintenance

action is needed. In this case, maintenance decision-making is postponed to the next inspection time.

The time interval between two inspections, T , and the preventive threshold for the marker process,

MY , are decision variables and must be optimized.

Intelligent Maintenance Policy (IMP): Inspired by Russel et al. [37], an intelligent agent is defined as

a system that perceives its environment and takes actions to maximize its chances of success. In the

context of latent degradation, the term “intelligent” may refer to the use of predictive inference to

formulate a maintenance policy designed to adeptly adjust to the system’s behavior. To this aim, this

policy is defined based on the conditional distribution of the latent degradation Xt given the observed

marker variable Yt introduced in equation (7).

For a system with observable degradation, preventative replacement usually occurs whenever it is

in a critical situation which means its degradation level has exceeded a threshold MX < L. The latent

nature of the degradation Xt implies that we cannot be aware if this event occurs. However, we can

assess the probability of this incident given the marker information. Thus, if the chance of having a

system in a critical situation is high or in other words if P (XTk
> MX |YTk

= yTk
, S > Tk) > p, we

replace the system. Otherwise, the system is considered properly working. No maintenance is needed,

and maintenance decision-making is postponed to the next inspection time. It is worth pointing out

that the subscript X in MX denotes that this threshold is for the latent degradation process. Here

the decision variables are T , MX , and the tolerance probability, p.
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Figure 1: Schematic evolution of a maintained system state under CMP

For both CMP and IMP, preventive replacements are considered to be perfect. So for both decision

rules after inspection time and possible maintenance, we have:

(XTk
, YTk

) =

(0, 0) if preventive replacement has been performed;

(XT−
k
, YT−

k
) otherwise.

Here T−
k refers to the time just before the maintenance action. Since the system failure is self-

announcing, whenever the system fails, it is perfectly and immediately replaced by a new system, in

accordance with the corrective replacement action.

Figure 1 illustrates possible sample paths of the bivariate gamma degradation process for a system

subjected to CMP. The interval between 0 and T5 is the first cycle of a system that terminates with a

perfect preventive replacement. The second cycle is between T5 and T12. As the latent degradation of

the system crosses the threshold L, it finishes with a corrective replacement.

3.2. IMP as a policy with an adaptive threshold

Let’s focus on the Intelligent Maintenance Policy proposed in the previous section. Here, we

will introduce an alternative definition for IMP that is equivalent, yet more intuitive for comparison

with CMP. For this policy, decision-making at a given time t is based on the conditional probability

P (Xt > MX |Yt = y, S > t), which is compared with decision variable p. The considered conditional

probability is obviously a function of the time t and of the observed value y of the marker process.

One first characterization of its behavior is given by the following theorem:
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Theorem 1. For a given MX , the following statements are true.

(i) Considering a fixed t, the function y → P (Xt > MX |Yt = y, S > t) is strictly increasing on

(0,∞).

(ii) Considering a fixed y, the function t → P (Xt > MX |Yt = y, S > t) is increasing on ( 1
α ,∞).

The proof of Theorem 1 is given in Appendix A. The constraint t > 1
α is necessary for the

mathematical proof, but extensive numerical experiments show that statement (ii) remains valid for

t ∈ [ 0.4α , 1
α ]. Let us now state some corollaries of Theorem 1. At inspection time Tk, we know that the

system must be preventively replaced if P (XTk
> MX |YTk

= y, S > Tk) is greater than p. Theorem

1-(i) indicates that, if the value of the marker process is higher than a level, the probability that

the system is at risk is greater, which is logical because of the positive correlation between latent and

marker processes. The question is: what is the appropriate level of the marker process that ensures that

the sufficient condition to perform a preventive action is met? Based on Theorem 1, the conditional

probability P (XTk
> MX |YTk

= y, S > Tk) is a bounded monotonic function of y which has a unique

value ξk with the following definition

ξk = inf{y : P (XTk
> MX |YTk

= y, S > Tk) > p}. (8)

Therefore, Theorem 1-(i) implies that P (XTk
> MX |YTk

= yTk
, S > Tk) > p is equivalent to yTk

> ξk.

Moreover, based on Theorem 1-(ii), for Tk > 1
α we have:

P (XTk
> MX |YTk

= y, S > Tk) < P (XTk+1
> MX |YTk+1

= y, S > Tk+1), for all y > 0.

Hence, ξk+1 ≤ ξk. Altogether, from Theorem 1 we can deduce that despite the different structures

of decision rules in CMP and IMP, these two policies consider a threshold on the marker level. The

difference is the nature of the proposed threshold in these two policies. The threshold in CMP is

fixed while IMP suggests an adaptive threshold that dynamically evolves itself as time passes. More

properties of this adaptive threshold are also investigated in Subsection 4.1.

It is worth noting that the definition of ξk, which gives us an equivalent condition to P (XTk
>

MX |YTk
= y, S > Tk) > p, as well as the decreasing behavior of ξk over time are essential to evaluate

the corrective and preventive replacement probabilities and to obtain the analytical expression of the

cost function in the following sections. For IMP, we hereafter assume αT > 1 to evaluate the cost

function in a closed form. Otherwise, we can use a simulation-based evaluation of the cost function.

3.3. Corrective and preventive probabilities at inspection times

Depending on the values of their respective decision variables, the two policies CMP and IMP

can evolve between a purely preventive and a purely corrective behavior. Their performance, which
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depends on the balance between these two limit configurations, has to be optimized. For this purpose,

it is necessary to determine the probabilities of preventive and corrective actions. Maintenance actions

are perfect. Hence the degradation process of the maintained system is a regenerative process and

maintenance times define regeneration epochs. The intervals of time between successive regeneration

epochs are renewal cycles. Let the notations Pp and Pc represent respectively the probability that a

renewal cycle ends with preventive and corrective replacement. As a consequence, we have:

Pp =

∞∑
k=1

Pp(k), and Pc =

∞∑
k=0

Pc(k)

where Pp(k), k = 1, 2, · · · is the probability that preventive maintenance is performed at time Tk and

Pc(k), k = 0, 1, · · · denotes the probability that corrective maintenance has been performed between

times Tk and Tk+1. This section is devoted to the derivation of preventive action and corrective action

probabilities. For this aim, according to the properties of the bivariate stochastic process introduced

in Subsection 2.1, we denote:

f(XTi2
−XTi1

,YTi2
−YTi1

)(x, y) =
(λ1λ2)

α(Ti2
−Ti1

)

(1− ρ)Γ (α(Ti2 − Ti1))

(
xy

ρλ1λ2

)α(Ti2
−Ti1

)−1

2

× exp

(
−λ1x+ λ2y

1− ρ

)
Iα(Ti2

−Ti1
)−1

(
2
√
ρλ1λ2xy

1− ρ

)
, x, y ≥ 0,

which is the Kibble’s bivariate gamma pdf for (XTi2
−XTi1

, YTi2
−YTi1

) based on (1). Also, its marginal

is represented by

f(XTi2
−XTi1

)(x) =
λ1

α(Ti2
−Ti1

)

Γ (α(Ti2 − Ti1))
xα(Ti2

−Ti1
)−1e−λ1x, x ≥ 0,

which is the gamma pdf for the degradation increment XTi2
− XTi1

. We recall that when Ti1 = 0,

XTi1
= YTi1

= 0 and then they can be omitted in the notations.

3.3.1. Classical Maintenance Policy

• Corrective probabilities for CMP: A corrective action occurs between inspection times Tk and

Tk+1 if no failure and no preventive action have occurred before Tk. For CMP this means that the

marker process has not reached the maintenance threshold at inspection times before system failure.

Consequently,

Pc(0) = P (XT1
> L) =

∫ ∞

L

f(XT1
)(x)dx,
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and for k ≥ 1,

Pc(k) = P (XT1
< L, . . . ,XTk

< L,XTk+1
> L, YT1

< MY , . . . , YTk
< MY )

= P (XTk
< L,XTk+1

> L, YTk
< MY )

=

∫ L

0

∫ MY

0

P (XTk+1
> L|XTk

= x, YTk
= y)f(XTk

,YTk
)(x, y)dydx

=

∫ L

0

∫ MY

0

∫ ∞

L−x

f(XTk+1
−XTk

)(z)f(XTk
,YTk

)(x, y)dzdydx. (9)

The second equation holds because (Xt)t≥0 and (Yt)t≥0 are increasing processes and the last equation

holds because (Xt, Yt)t≥0 has independent increments.

• Preventive probabilities for CMP: A preventive action occurs at an inspection time Tk if the

marker process crosses the threshold MY for the first time and no corrective action has been performed

before, i.e. the latent process remains below the failure level. Hence:

Pp(1) = P (XT1 < L, YT1 > MY ) =

∫ L

0

∫ ∞

MY

f(XT1
,YT1

)(x, y)dydx,

and for k ≥ 2, using a similar calculation as in (9), we have:

Pp(k) = P (XT1 < L, . . . ,XTk
< L, YT1 < MY , . . . , YTk−1

< MY , YTk
> MY )

= P (XTk
< L, YTk−1

< MY , YTk
> MY )

=

∫ L

0

∫ MY

0

∫ L−x

0

∫ ∞

MY −y

f(XTk
−XTk−1

,YTk
−YTk−1

)(z, w)f(XTk−1
,YTk−1

)(x, y)dwdzdydx.

3.3.2. Intelligent Maintenance Policy

Recall that for IMP, preventive action is performed at inspection time Tk if P (XTk
> MX |YTk

=

yTk
, S > Tk) > p, or equivalently if YTk

> ξk, where ξk is defined by equation (8). Then with some

modification in the probability calculation for CMP, we can derive the probabilities for IMP.

• Corrective probabilities for IMP: A corrective action occurs between times Tk and Tk+1 if

no preventive action has been performed before. For IMP this means that the marker process re-

mains below the adaptive maintenance threshold ξk at each inspection time Tk before system failure.

Therefore,

Pc(0) = P (XT1 > L) =

∫ ∞

L

f(XT1
)(x)dx,

13



and for k > 0, using similar calculations,

Pc(k) = P (XT1
< L, . . . ,XTk

< L,XTk+1
> L, YT1

< ξ1, . . . , YTk
< ξk)

= P (XTk
< L,XTk+1

> L, YTk
< ξk)

=

∫ L

0

∫ ξk

0

∫ ∞

L−x

f(XTk+1
−XTk

)(z)f(XTk
,YTk

)(x, y)dzdydx.

The second equation holds due to the monotonicity of the gamma process and also the fact that

increasing k results in smaller values of ξk. That means the event Y1 < ξ1, . . . , Yk < ξk is equivalent

to the event Yk < ξk since YTi
< YTk

< ξk ≤ ξi for 1 ≤ i < k.

• Preventive probabilities for IMP: A preventive action occurs at inspection time Tk if the marker

process overpasses its preventive threshold ξk for the first time and no corrective action has been

performed before in the cycle. Thus

Pp(1) = P (XT1 < L, YT1 > ξ1) =

∫ L

0

∫ ∞

ξ1

f(XT1
,YT1

)(x, y)dydx,

and for k > 1

Pp(k) = P (XT1
< L, . . . ,XTk

< L, YT1
< ξ1, . . . , YTk−1

< ξk−1, YTk
> ξk)

= P (XTk
< L, YTk−1

< ξk−1, YTk
> ξk)

=

∫ L

0

∫ ξk

ξk−1

∫ L−x

0

∫ ∞

ξk−y

f(XTk
−XTk−1

,YTk
−YTk−1

)(z, w)f(XTk−1
,YTk−1

)(x, y)dwdzdydx

+

∫ L

0

∫ ξk

0

∫ L−x

0

f(XTk
−XTk−1

)(z)f(XTk−1
,YTk−1

)(x, y)dzdydx

=

∫ L

0

∫ ξk−1

0

∫ L−x

0

∫ ∞

max(ξk−y,0)

f(XTk
−XTk−1

,YTk
−YTk−1

)(z, w)f(XTk−1
,YTk−1

)(x, y)dwdzdydx.

The second part of the third equality refers to the following situation where YTk−1
is less than the

adaptive threshold ξk−1 but is greater than the next threshold ξk. In this case, preventive action is

not required at Tk−1. But even without measuring the degradation level YTk
, we already know that

preventive action must be taken at Tk provided that the system does not face a failure before that

time.

3.4. Maintenance Cost

Maintenance actions incur a burden of costs. Inspections take place at times Tk, each with cost ci.

At each inspection, preventive action may be performed, costing cp. Also, a corrective replacement

with cost cc is needed whenever the system fails. Hence, the cumulative cost function on [0, t] is:

C(t) = ciNi(t) + cpNp(t) + ccNc(t),
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where Ni(t), Np(t), and Nc(t) are respectively the number of inspections, the number of preventive

replacements, and the number of corrective replacements in [0,t]. This cost depends on the decision

variables. We employ the long-run average cost per unit of time EC as the objective function to be

minimized. From classical renewal theory, it is well known that for any degradation process with the

regenerative property, we have the following equation.

EC = lim
t→∞

E (C(t))

t
=

E (C(L1))

E(L1)
,

where L1 is the length of one renewal cycle, i.e., the time between two successive replacements. So we

proceed to minimize EC with the following formula to find optimal values of the decision variables:

EC =
ciE(Ni) + ccE(Nc) + cpE(Np)

E(L1)
. (10)

We know that a cycle ends either with a corrective or a preventive replacement. Thus,

E(Np) = Pp =

∞∑
k=1

Pp(k),

and

E(Nc) = Pc =

∞∑
k=0

Pc(k).

Moreover, Ni is a discrete random variable with non-negative support and the following probabilities:

P (Ni = 0) = Pc(0), P (Ni = k) = Pc(k) + Pp(k), for k = 1, 2, · · · .

We also know that the length of a cycle is equal to NiT or S in cases of ending the cycle with a

preventive or a corrective replacement, respectively. Hence,

E(L1) = PpE(Ni)T + PcE(S),

where

E(Ni) =

∞∑
k=0

kP (Ni = k),

and

E(S) =

∫ ∞

0

P (S > s)ds =

∫ ∞

0

Γ(αs, λ1L)

Γ(αs)
ds.

4. Numerical Study

In this section, we illustrate our proposed maintenance policies through a simulation study. First

of all, we try to discuss the characteristics of the adaptive threshold ξk and then the optimal decision

rule is obtained for CMP and IMP.
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(a) Effect of changing p (b) Effect of changing T (c) Effect of changing MX

Figure 2: Effect of changing decision variables on ξk for three different values of ρ = 0.3, 0.5, 0.7. The parameter set

considered here is α = 0.1, λ1 = λ2 = 0.7 and the failure threshold is L = 60.

4.1. The effect of decision variables on the IMP adaptive threshold

The adaptive threshold ξk at inspection time Tk is defined by equation (8). Its value depends on

the decision variables p, T , and MX . Various remarks can be given regarding the evolution of ξk in

case of modifying these decision variables. These remarks, which are related to the facts declared in

Theorem 1, are given in Appendix B. Some numerical experiments are conducted to complement the

above-mentioned remarks. Figure 2 shows for ξk as a function of k, and for different values of ρ, the

effect of changes in decision variables. The main points are as follows:

• For each k, increasing p generates an increase of ξk, see Remark 1 for proof. A higher value of p

means that we want preventive action to be taken only when the system is close to failure. To

ensure that only highly deteriorated systems are replaced, the IMP decision rule chooses a higher

adaptive threshold value. Otherwise, a preventive replacement is performed even when the risk

of failure is low.

• For each k, decreasing T i.e. reducing the value of Tk = kT results in increasing values of ξk, see

Remark 2 for proof. With frequent inspections, the marker value can be measured more often.

The conditional probability (7), and thus the risk of failure, is updated at a higher frequency.

Therefore, it is possible to increase the values of ξk without the system being in a vulnerable

state during the transition from ξk to L.

• For each k, the value of ξk increases with MX , see Remark 3 for proof. For a given value of failure

threshold L, choosing higher values of MX results in a smaller preventive replacement zone. This

corresponds to choosing to replace only the systems that are really deteriorated, i.e. choosing a

higher value of ξk. We see that the impact of the decision variable MX is similar to that of the

decision variable p. Choosing smaller values of p and MX leads to a more conservative decision
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rule. Indeed, at each inspection time Tk, the lower the value of ξk, the higher the chances of

taking preventive action and avoiding an unexpected failure.

Given the above remarks, it is clear that the self-adaptation dynamic of the IMP policy is a function

of the choice of decision variables. The evolution of the threshold ξk does not require a new online

optimization at each time step. Structurally, this policy can change the preventive threshold on the

marker process in a rational way. The evolution of the dynamic maintenance threshold ξk depends on

the model parameters as well. Among all the parameters of the degradation model, the correlation

parameter ρ is particularly important as it stands for the relationship between the latent process and

the marker process. Three values of ρ are considered in Figure 2 to show the effect of changing ρ on

the adaptive preventive threshold. It can be seen that all configurations result in a decrease of ξk when

ρ increases.

In all, as already stated, the IMP policy is a more sophisticated version than CMP with an adap-

tive decreasing threshold instead of constant fixed MY . Figure 2 confirms that ξk decreases when k

increases. It is apparent that the adaptive threshold decreases with an approximately linear slope. The

slope clearly depends on the decision variable configuration and also the parameter set. It can be seen

that, for smaller values of ρ the decreasing slope is steeper. That means with a stronger correlation,

we have more reliable information about the state of the latent degradation process given the observed

state of the marker process; hence there is no need for a large decrease in the values of the adaptive

threshold for future inspections.

4.2. Numerical study and performance comparison

Unless otherwise stated we assume that the parameters of the bivariate gamma process are α =

0.1, λ1 = 0.7, λ2 = 0.7, while the failure threshold is set at L = 60. The selected parameters are

intended to depict a scenario featuring the degradation indicator of a system with an expert-estimated

mean lifespan of 14 months (equivalent to 420 days), and a variance of the marker indicator around

50 after 250 days of usage. Furthermore, in the scenario where both the latent and marker processes

exhibit identical characteristics, their marginal distributions share the same parameter values. The

correlation coefficient ρ ranges over values 0.1, 0.3, 0.5, 0.7 and 0.9 to show the strength of the relation

between the marker and latent process. These specific parameter selections have been made to showcase

how the proposed policies behave and to facilitate numerical comparisons. It’s worth noting that

different sets of parameters could be employed in a similar fashion for further analysis.

Let θ1 = (MY , T ) and θ2 = (MX , T, p) be the decision variables for CMP and IMP respectively.

We aim to find the optimal values θ∗i , i = 1, 2 of these decision variable, such that:

EC∗
i = EC(θ∗i ) ≤ EC(θi), for θi ∈ Θi
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where Θ1 = [0,+∞) × [0,+∞) and Θ2 = [0, L] × [0,+∞) × [0, 1] for CMP and IMP decision rules,

respectively.

By considering the following cost configurations, we conducted a numerical study.

ci = 5, cp = 140, cc = 240. (11)

In this numerical study, we use, as a benchmark for comparison, the hypothetical ideal case where the

latent degradation process Xt is observable. In this case, it is no longer necessary to use a marker

process at all. Adapting the procedure defined in [17] to periodic inspections, the related long-run

optimal maintenance cost rate can be obtained. It is then compared to the ones obtained with IMP

and CMP policies.

With the unit costs configuration and parameter set given previously, the optimal cost for the

hypothetical ideal case is EC∗
Ideal = 0.4590998, while the optimal time interval between inspections

and the optimal maintenance threshold are 110.6426 and 43.63159, respectively. Thus, the value of

EC∗
Ideal will serve as a reference for comparison to assess the cost increase incurred by the loss of direct

observation.

The percentage relative cost increase is considered for comparison. It is defined as:

PRC =
EC∗

i − EC∗
Ideal

EC∗
Ideal

× 100 (12)

where EC∗
i is defined as previously for CMP and IMP.

Tables 1 and 2 depict the optimal values of the decision variables and the cost for various correlations

between the marker and latent process, respectively, for CMP and IMP. The relative increase in cost

which illustrates the effect of ρ on the maintenance cost is given in these tables. The results reveal

that with the decrease of ρ, the cost increases and deviates from EC∗
Ideal. From the tables, it can be

seen that the decision rule IMP is better than CMP in all cases. Notably, the highest percentage of the

relative increase in cost for IMP occurs in ρ = 0.1. It is approximately equal to the lowest percentage

of the relative increase in cost for CMP, which corresponds to ρ = 0.9.

4.3. Robustness in case of differences between the latent and marker evolution rates

In the previous numerical experiments, the rates of evolution of the marker and latent processes

are identical, i.e. λ1 = λ2. From properties of the bivariate gamma process introduced in Section 2,

we know that for a given value of ρ, if λ1 < λ2 the sample path of the marker process tends to be

lower than the sample path of the latent process. In such a situation and with identical maintenance

thresholds, the use of the marker process instead of the latent process for decision-making may lead

to more failures. Indeed the marker process indicates that the system is far from failure which is not

the case. On the contrary, when λ1 > λ2, the marker process values are higher than the values of the
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Table 1: Optimal cost and decision variables for different values of ρ for CMP

EC∗
1 M∗

Y T ∗ PRC

ρ = 0.9 0.4745916 43.66953 108.4251 3.38%

ρ = 0.7 0.4871396 43.53404 112.3639 6.11%

ρ = 0.5 0.4974453 43.31415 118.9446 8.35%

ρ = 0.3 0.5048235 42.86665 120.4265 10.00%

ρ = 0.1 0.5107319 42.71846 122.7395 11.25%

Table 2: Optimal cost and decision variables for different values of ρ for IMP

EC∗
2 M∗

X T ∗ p∗ PRC

ρ = 0.9 0.4680314 41.67136 114.1677 0.7148207 1.94%

ρ = 0.7 0.473598 40.4905 119.2963 0.6851776 3.16%

ρ = 0.5 0.4749485 39.47189 120.6514 0.6575764 3.45%

ρ = 0.3 0.4755291 37.97544 123.1166 0.5910648 3.58%

ρ = 0.1 0.4760132 36.88819 125.1819 0.5173126 3.68%

latent process. Hence, it may result in more conservative overly cautious maintenance actions. To go

further, we investigate how moderate differences between the mean rates of the marker and the latent

processes affect the optimal decision variables and the optimal cost. To this aim, we consider that

λ2 = λ1 ± ϵ. Numerical results are given for ϵ = 0.2 as an example of a moderate difference between

λ1 and λ2. The values of the other parameters are the same as in the previous section. The results

are shown in Tables 3-6 which can be considered in addition to Tables 1 and 2 where ϵ = 0. A first

analysis of optimal cost rate EC∗ shows that it remains very stable for the two policies when the value

of λ2 is slightly changing and the decision variables are updated accordingly.

Nevertheless, for CMP, the decision variable M∗
Y is sensitive to changes in the value of λ2. It

decreases significantly as λ2 increases. Indeed, as the rate parameter λ2 increases, the mean evolution

rate of the marker process decreases. This means that system failure arises when the values of the

marker process are lower. The preventive threshold MY is following this trend to keep the same

probability of preventive actions. In parallel, T ∗ is slightly decreasing to ensure optimal tuning. For

IMP, the decision variables are stable. Specifically, M∗
X and T ∗ do not change, and p∗ only slightly

fluctuates as λ2 changes. As a consequence, small changes in the value of λ2 have very little impact

on the location of the optimal point of the cost function, as well as the optimal decision variables.
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This stability of optimal cost rate and optimal decision variables characterizes strong robustness to

variations in the λ2 parameter for IMP, which is not the case for CMP.

Table 3: Optimal cost and decision variables for different values of ρ for CMP: Case λ2 < λ1 (λ2 = 0.5)

EC∗
1 M∗

Y T ∗

ρ = 0.9 0.4747293 61.64174 110.9064

ρ = 0.7 0.487961 60.32118 115.6872

ρ = 0.5 0.4972741 59.62128 120.7024

ρ = 0.3 0.5061086 59.0271 121.4659

ρ = 0.1 0.5124461 58.77783 123.9657

4.4. Correlation as a Decision Variable

Suppose that the cost of the inspection is closely related to the amount of correlation between

the latent degradation and the marker process, i.e., ci = h(ρ) for a given function h. This situation

can arise when the correlation is associated with monitoring the performance of the marker process.

Several options of monitoring devices for a given marker process can be available, or several marker

processes can be considered, such that each of them has a specific correlation with the latent process

and its associated cost of measurement. Then, it is relevant to ask for the best value of ρ to get

the optimal value of maintenance cost and decide jointly on the best-associated monitoring strategy.

Suppose we have a system with a latent degradation process and several options for marker processes,

such that each of them has a different correlation with the latent process and hence a different cost of

measurement. It might be thought that the best marker process is the one most strongly correlated

with the latent process. However, it may impose a higher cost when the marker and latent processes

are strongly correlated. It is reasonable to choose the correlation that minimizes the cost function,

Table 4: Optimal cost and decision variables for different values of ρ for CMP: Case λ2 > λ1 (λ2 = 0.9)

EC∗
1 M∗

Y T ∗

ρ = 0.9 0.4750954 34.8642 106.0671

ρ = 0.7 0.4893817 34.01058 111.3013

ρ = 0.5 04998618 33.82293 116.8621

ρ = 0.3 0.5051535 33.32315 118.2206

ρ = 0.1 0.513101 32.84561 119.9563
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Table 5: Optimal cost and decision variables for different values of ρ for IMP: Case λ2 < λ1 (λ2 = 0.5)

EC∗
2 M∗

X T ∗ p∗

ρ = 0.9 0.4674119 41.89745 114.4464 0.7115131

ρ = 0.7 0.4708573 40.05201 119.6824 0.6995851

ρ = 0.5 0.4752868 39.13543 120.5517 0.6847704

ρ = 0.3 0.4768508 37.98851 123.5777 0.5652202

ρ = 0.1 0.4782173 36.97921 125.3537 0.5324252

Table 6: Optimal cost and decision variables for different values of ρ for IMP: Case λ2 > λ1 (λ2 = 0.9)

EC∗
2 M∗

X T ∗ p∗

ρ = 0.9 0.4693209 41.8424 114.4749 0.7495639

ρ = 0.7 0.4734863 40.86702 119.3662 0.670277

ρ = 0.5 0.475567 39.98011 120.5209 0.6234719

ρ = 0.3 0.4775137 37.14151 123.4667 0.5888839

ρ = 0.1 0.4796114 36.85059 125.013 0.5665818

which means that ρ also becomes a decision variable.

Here, we assume that ci = a + bργ where a and b are positive constants and γ is a non-negative

real number. Considering this, different kinds of inspection cost functions can be defined depending

on the value of γ. More precisely, the inspection cost is:

• constant when γ = 0; which is a trivial case and we will not address this case any further.

• a concave increasing function when 0 < γ < 1. That means as a function of ρ, the rate of increase

of ci is higher at the beginning of the interval [0, 1], while it reduces afterward.

• a linear increasing function when γ = 1.

• a convex increasing function when γ > 1. For small values of ρ, inspection cost ci evolves slowly

and then grows more rapidly. Obviously, this growth’s speed depends on the magnitude of γ.

A numerical study was conducted with a = 5 and b = 7 while γ takes values 0.5, 1, 2, 5, 10, and

15. Corresponding shapes of the inspection cost function are depicted in Figure 3. Figure 4 shows

how changing ρ can affect the optimal cost when the inspection cost is a function of the correlation

between the marker and latent processes. This figure shows the evolution of optimal cost with respect

to ρ for various values of γ in CMP. In each case, the minimum value of optimal cost is obtained and
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Figure 3: Various shapes of ci as a function of ρ

depicted by a “∗” sign.

Under the same cost configuration of cp and cc as in (11) and with parameters α = 0.1, λ1 = λ2 = 0.7,

and L = 60, the optimal values of decision variables are given in Tables 7 and 8 for CMP and IMP,

respectively. It can be seen that, for a given value of γ, the optimal cost for IMP is always lower than

for CMP. Moreover, the optimal value of ρ∗ is much lower in IMP than in CMP. From Tables 7 and

8, we see that the optimal value of ρ∗ increases with γ, which is reasonable given the shape of the

inspection cost function in Figure 3.

Hence, if there are two marker processes and the CMP decision rule has to be employed, the

decision-maker should choose the marker process which is more closely related to the latent process,

i.e. with the higher correlation. This choice may result in a higher maintenance cost than with the

IMP decision rule.

5. Conclusion

In this paper, we investigated CBM policies for a system with an unobservable degradation process.

Instead of directly observing this degradation process, we have access to a marker process that exhibits

a correlation with the underlying latent degradation process. The stochastic degradation model follows

a bivariate gamma distribution. Within this context, we have introduced two periodic maintenance
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Figure 4: CMP Maintenance cost as a function of ρ for different values of γ

Table 7: Optimal cost and decision variables for different values of γ for CMP

EC∗
1 M∗

Y T ∗ ρ∗

γ = 0.5 0.5325465 42.40107 122.5668 0.1019388

γ = 1 0.5212979 44.94092 123.9586 0.1517832

γ = 2 0.5111996 43.63356 119.5199 0.3972142

γ = 5 0.4976918 42.68946 116.9143 0.6492435

γ = 10 0.4887491 42.10388 121.7721 0.7849923

γ = 15 0.4854622 41.87729 124.5724 0.8493222

Table 8: Optimal cost and decision variables for different values of γ for IMP

EC∗
2 M∗

X T ∗ p∗ ρ∗

γ = 0.5 0.4970541 44.53968 120.3403 0.6866454 0.1123388

γ = 1 0.4912671 41.61062 120.1753 0.7129884 0.1939604

γ = 2 0.4782309 39.87464 119.8381 0.6578021 0.2234431

γ = 5 0.4762208 38.06256 118.9271 0.6426162 0.3943600

γ = 10 0.4751424 38.81985 117.4567 0.6527617 0.5102471

γ = 15 0.4746997 40.45746 115.1368 0.6726548 0.5943782
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policies with the objective of minimizing the long-term cost rate function. The first policy, referred to

as CMP, traditionally employs a fixed preventive maintenance threshold based on the marker process.

On the other hand, the second policy, known as IMP, utilizes a prediction of the latent degradation level

of the system derived from its current marker level for decision-making. We demonstrate that IMP

can be described as a policy with an adaptive “intelligent” preventive threshold based on the marker

process. This threshold is updated automatically at each inspection time without any requirement

for an online optimization process. We outline the properties of this adaptive threshold and provide

analytical expressions for the maintenance cost rate for both policies. Additionally, we present a

numerical study to evaluate the performance of these policies, comparing them and underscoring the

effectiveness and robustness of IMP, even in cases where the correlation between the marker and latent

processes is weak. We also investigated the case where this correlation is related to the monitoring

cost. This can help the decision-maker decide on the optimal investment to be made in the monitoring

technique. Furthermore, we delve into the scenario where this correlation is linked to monitoring

costs. This information can be valuable to decision-makers in determining the optimal investment

in the monitoring technique. In future studies, it is imperative to study the influence of various

parameters, particularly the correlation coefficient, which characterizes the strength of the association

between the degradation and marker processes. We can extend the concept of periodic inspections

to encompass a condition-based inspection policy, scheduling the timing of the next inspection based

on the currently observed degradation level. Moreover, we can explore more intricate models for the

lifetime of systems operating in environments with two competing risks. Finally, natural extensions of

the present work could be other types of bivariate processes with imperfect maintenance actions.
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Appendix A: Proof of Theorem 1

This section focuses on the proof of the Theorem 1. To this aim, we need to prove some lemmas.

First of all, we mention some Turán-type inequalities for the modified Bessel function of the first

kind. Barciz [4] showed that for κ > −1 and x > 0, we have:

I2κ(x)− Iκ−1(x)Iκ+1(x) > 0, (A.1)

Moreover, Barciz [5] also showed that for µ > κ > −1 and x > 0, the following inequality holds.

Iκ+1(x)Iµ(x)− Iµ+1(x)Iκ(x) ≥ 0. (A.2)
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Lemma 1. Let g1 and g2 be two positive differentiable functions on [0,+∞), such that g1(0) =

g2(0) = 0 and the function x → g1(x)

g2(x)
is a continuous increasing function of x on [0,+∞). Then,

h(z) =

∫ z

0
g1(u)du∫ z

0
g2(u)du

is an increasing function of z on [0,+∞).

Proof. Calculate as follows:

h′(z) =
g1(z)

∫ z

0
g2(u)du− g2(z)

∫ z

0
g1(u)du(∫ z

0
g2(u)du

)2
=

∫ z

0
g′1(v)dv

∫ z

0
g2(u)du−

∫ z

0
g′2(v)dv

∫ z

0
g1(u)du(∫ z

0
g2(u)du

)2
=

∫ z

0

∫ z

0
[g′1(v)g2(u)− g′2(v)g1(u)] dvdu(∫ z

0
g2(u)du

)2
=

∫ z

0

∫ u

0
[g′1(v)g2(u)− g′2(v)g1(u)] dvdu+

∫ z

0

∫ z

u
[g′1(v)g2(u)− g′2(v)g1(u)] dvdu(∫ z

0
g2(u)du

)2
=

∫ z

0

∫ u

0
[g′1(v)g2(u)− g′2(v)g1(u)] dvdu+

∫ z

0

∫ v

0
[g′1(v)g2(u)− g′2(v)g1(u)] dudv(∫ z

0
g2(u)du

)2
=

∫ z

0

∫ v

0
[g′1(v)g2(u)− g′2(v)g1(u)] dudv(∫ z

0
g2(u)du

)2 > 0.

The last inequality holds since
g1(x)

g2(x)
is an increasing function of x and so g′1(v)g2(v) > g′2(v)g1(v) and

g1(v)g2(u) > g1(u)g2(v) for u < v. By multiplying these two inequalities we see that the integrand is

a positive function which leads to a positive value for the integral and an increasing function h(z).

Lemma 2. Let u be a positive and increasing function of x, then the following statements are true.

(i) For ν > 0 and x > 0, the function x → u(x)Iν(u(x))

Iν−1(u(x))
is an increasing function.

(ii) For ν2 > ν1 > 1 and x > 0, the function x → uν2−1(x)Iν2−1(u(x))

uν1−1(x)Iν1−1(u(x))
is an increasing function.

Proof. (i) By writing

u(x)Iν(u(x))

Iν−1(u(x))
=

uν(x)Iν(u(x))

uν−1(x)Iν−1(u(x))
,

and using the fact that for all real values of ν, we have:

∂

∂u
(uνIν(u)) = uνIν−1(u),

the derivative of the function with respect to x is positive by setting κ = ν − 1 in (A.1) which holds

for ν > 0.
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(ii) Similarly, the derivative of the function with respect to x is positive due to (A.2) by setting

µ = ν2 − 2 and κ = ν1 − 2, i.e. for ν2 > ν1 > 1.

Lemma 3. Let G(y; z, ν) =
∫ z

0
g(x, y; ν)dx where

g(x, y; ν) = x
ν
2 exp

(
− λ1x

1− ρ

)
Iν

(
2
√
ρλ1λ2xy

1− ρ

)
,

then the following statements are true.

(i) for ν > 0, the function z → G(y; z, ν)

G(y; z, ν − 1)
is an increasing function of z.

(ii) for ν2 > ν1 > 1, the function z → G(y; z, ν2 − 1)

G(y; z, ν1 − 1)
is an increasing function of z.

Proof. By defining u(x) =
2
√
ρλ1λ2xy

1− ρ
, we know that:

(i) The function

g(x, y; ν)

g(x, y; ν − 1)
=

1− ρ

2
√
ρλ1λ2y

u(x)Iν (u(x))

Iν−1 (u(x))

is an increasing function of x due to Lemma 2-(i). Therefore, the assumptions of Lemma 1 are satisfied,

it can be deduced that
G(y; z, ν)

G(y; z, ν − 1)
is an increasing function of z for ν > 0.

(ii) Similarly, the function

g(x, y; ν2 − 1)

g(x, y; ν1 − 1)
=

(
1− ρ

2
√
ρλ1λ2y

)ν2−ν1 uν2−1(x)Iν2−1 (u(x))

uν1−1(x)Iν1−1 (u(x))

is an increasing function of x due to Lemma 2-(ii). Hence, due to Lemma 1,
G(y; z, ν2 − 1)

G(y; z, ν1 − 1)
is an

increasing function of z for ν2 > ν1 > 1.

Proof of Theorem 1:

Proof. As MX < L, from equation (7)

P (Xt > MX |Yt = y, S > t) =

∫ L

MX
f1(y|x)f2(x)dx∫ L

0
f1(y|x)f2(x)dx

, (A.3)

and then by substituting equations (4)-(6), we have:

P (Xt > MX |Yt = y, S > t) =

∫ L

MX
x

αt−1
2 exp

(
− λ1x

1− ρ

)
Iαt−1

(
2
√
ρλ1λ2xy

1− ρ

)
dx

∫ L

0
x

αt−1
2 exp

(
− λ1x

1− ρ

)
Iαt−1

(
2
√
ρλ1λ2xy

1− ρ

)
dx

= 1−

∫MX

0
x

αt−1
2 exp

(
− λ1x

1− ρ

)
Iαt−1

(
2
√
ρλ1λ2xy

1− ρ

)
dx

∫ L

0
x

αt−1
2 exp

(
− λ1x

1− ρ

)
Iαt−1

(
2
√
ρλ1λ2xy

1− ρ

)
dx

= 1− G(y;MX , αt− 1)

G(y;L,αt− 1)
·
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(i) By properties of the modified Bessel function of the first kind (see [46]), we have:

∂

∂y
Iαt−1

(
2
√
ρλ1λ2xy

1− ρ

)
=

αt− 1

2y
Iαt−1

(
2
√
ρλ1λ2xy

1− ρ

)
+

√
ρλ1λ2x

(1− ρ)
√
y
Iαt

(
2
√
ρλ1λ2xy

1− ρ

)
,

consequently

∂

∂y
G(y; z, αt− 1) =

αt− 1

2y
G(y; z, αt− 1) +

√
ρλ1λ2

(1− ρ)
√
y
G(y; z, αt).

Thus

∂

∂y
P (Xt > MX |Yt = y, S > t) = −

√
ρλ1λ2

(1− ρ)
√
y

[
G(y;MX , αt)G(y;L,αt− 1)−G(y;L,αt)G(y;MX , αt− 1)

]
G2(y;L,αt− 1)

·

From Lemma 3-(i),
G(y; z, αt)

G(y; z, αt− 1)
is an increasing function of z for all t > 0 and as MX < L, the

expression in the brackets is negative. Thus, The derivative is positive which completes the proof.

(ii) For 1 < αt1 < αt2, the assumptions of Lemma 3-(ii) are satisfied. Then, for MX < L, we have:

G(y;MX , αt2 − 1)

G(y;MX , αt1 − 1)
<

G(y;L,αt2 − 1)

G(y;L,αt1 − 1)
,

in other words,

G(y;MX , αt2 − 1)

G(y;L,αt2 − 1)
<

G(y;MX , αt1 − 1)

G(y;L,αt1 − 1)
.

Hence, for t2 > t1 > 1
α , P (Xt1 > MX |Yt1 = y, S > t1) < P (Xt2 > MX |Yt2 = y, S > t2) which is the

desired conclusion.

Appendix B: Proof of remarks in Subsection 4.1

Remark 1. Given fixed values of MX and T , increasing p results in greater values of ξk for each k.

Proof. For a given k and MX , from Theorem 1-(i) we know that P (XTk
> MX |YTk

= y, S > Tk) is an

increasing function of y. Hence, if p(1) < p(2) then it is clear that

ξ
(1)
k = inf{y : P (XTk

> MX |YTk
= y, S > Tk) > p(1)} < inf{y : P (XTk

> MX |YTk
= y, S > Tk) > p(2)} = ξ

(2)
k

Figure B.5a shows this situation.

Remark 2. Given fixed values of p and MX , the value of ξk decreases with increasing T for each k.

Proof. For a given y, and MX , from Theorem 1-(ii) the probability P (Xt > MX |Yt = y, S > t) is an

increasing function of t on ( 1
α ,∞). Hence, if 1

α < T (1) < T (2) which is equivalent to 1
α < T

(1)
k < T

(2)
k

for a given k, then

P (X
T

(1)
k

> MX |Y
T

(1)
k

= y, S > T
(1)
k ) < P (X

T
(2)
k

> MX |Y
T

(2)
k

= y, S > T
(2)
k ), for all y.
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(a) (b) (c)

Figure B.5: Conditional probability and adaptive threshold for IMP as a function of decision variables

From Theorem 1-(i), we know that these functions are increasing in y. That means, for a given p,

ξ
(1)
k = inf{y : P (X

T
(1)
k

> MX |Y
T

(1)
k

= y, S > T
(1)
k ) > p} is greater than ξ

(2)
k = inf{y : P (X

T
(2)
k

>

MX |Y
T

(2)
k

= y, S > T
(2)
k ) > p}. Figure B.5b depicts the situation.

Remark 3. Given fixed values of p and T , the value of ξk increases with increasing MX for each k.

Proof. For a given k and y, the probability P (XTk
> z|YTk

= y, S > Tk) is a decreasing function of z.

Hence, if M
(1)
X < M

(2)
X then

P (XTk
> M

(1)
X |YTk

= y, S > Tk) > P (XTk
> M

(2)
X |YTk

= y, S > Tk), for all y.

From Theorem 1-(i), we know that these functions are increasing in y. That means, for a given p,

ξ
(1)
k = inf{y : P (XTk

> M
(1)
X |YTk

= y, S > Tk) > p} is less than ξ
(2)
k = inf{y : P (XTk

> M
(2)
X |YTk

=

y, S > Tk) > p}. Figure B.5c depicts the situation.
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[10] Caballé, N. C., Castro, I. T., Pérez, C. J., & Lanza-Gutiérrez, J. M. (2015). A condition-based

maintenance of a dependent degradation-threshold-shock model in a system with multiple degra-

dation processes. Reliability Engineering & System Safety, 134, 98-109.
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