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Abstract

The field of XAI aims at providing explanations about the behavior of AI
methods to a user. In particular, local post-hoc interpretability approaches
aim at generating explanations for a particular prediction of a trained ma-
chine learning model. It is generally recognized that such explanations should
be adapted to each user: integrating user knowledge and taking into account
the user specificity allows to provide personalized explanations and to im-
prove the explanation understandability. Yet these elements appear to be
rarely taken into account, and only in specific configurations. In this paper,
we propose a general framework to allow this integration of user knowledge
in post-hoc interpretability methods, relying on the addition of a compati-
bility term in the cost function. We instantiate the proposed formalization
in two scenarios, varying in the explanation form they propose, in the case
where the available user knowledge provides information about the data fea-
tures. As a result, two new explainability methods are proposed, respec-
tively named Knowledge Integration in Counterfactual Explanation (KICE)
and Knowledge Integration in Surrogate Model (KISM). These methods are
experimentally studied on several benchmark data sets to characterize the
explanations they generate as compared to reference methods.

Keywords: eXplainable Artificial Intelligence, XAI, user knowledge,
compatibility, counterfactual explanation, surrogate model explanations,
local feature importance
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1. Introduction

The democratization of Machine Learning (ML) applications has led to
a raise in the awareness of the potential issues these systems may have. The
eXplainable Artificial Intelligence (XAI) domain [1, 2, 3] focuses on answer-
ing questions a user may ask when faced with the result of such a ML model
that constitutes a black box. Such questions can be expressed as ”Why do
I get this prediction?” or ”What do I need to do to get the prediction I
want?”. Among the large variety of approaches proposed in this domain,
post-hoc methods focus on explaining the predictions obtained from a given
pretrained classifier. Different formats of explanations can be proposed, such
as feature importance (e.g LIME [4] and SHAP [5]) or counterfactual ex-
amples [6] (e.g. Growing Spheres [7] and FACE [8]). Explanation methods
also differ depending on the hypotheses they make regarding the information
considered available: model agnostic and data agnostic approaches consider
that no knowledge is available, neither on the ML model (e.g. on the form
of the decision boundary), nor on data (e.g. on their distribution). This
absence of knowledge has been shown to lead to numerous issues, such as
their risk of generating meaningless explanations [9] or their lack of connec-
tion to the real-world actions required to change features [10]. As a result,
they may then not be always understood by the user [11]. To tackle these
issues, as detailed in Section 2, some methods propose to enrich the consid-
ered input and integrate the user in the loop by taking into account user
knowledge [12, 13, 14], so the explanation is more understandable.

Focusing on the same issue, this paper takes over the general formal-
ization we proposed in previous work [15]. It relies on the definition of
a generic cost function that integrates the aforementioned user knowledge
in the search for an explanation, independently of the explanation form
and the knowledge representation. It consists in adding, to the traditional
explanation-generation-optimization objective, a complementary compatibil-
ity term, taking as parameter the considered user knowledge. This general
framework can be used to augment traditional post-hoc explanation methods
of different types, e.g. counterfactual and surrogate model-based approaches,
and make them compatible, or complementary depending on the considered
context and objective, with knowledge of various forms.

The paper provides a discussion about the need for such a framework, as
well as two instantiations of the framework, for different types of explana-
tions, in a model and data agnostic paradigm. First, we focus on the case
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of counterfactual explanations that favor actions along the features that are
known by the user. Then, we consider the case of surrogate models to reach
the same objective. To solve these two instantiations, two new explainabil-
ity approaches are proposed, respectively named Knowledge Integration in
Counterfactual Explanation (KICE) and Knowledge Integration in Surrogate
Model (KISM), and their relevance is studied empirically. Finally, the paper
proposes an exploratory discussion for the case of user knowledge expressed
in a different, enriched, form: beyond the set of features the user indicates
he/she understands, it considers user knowledge represented in the form of
a rule-based system. It discusses the interest and challenges of using it to
augment counterfactual explanations.

The paper is structured as follows: Section 2 details the background
of XAI and existing dedicated approaches that take into account specific
user knowledge forms for generating specific explanation forms. Section 3
describes the general framework we propose for integrating user knowledge
into interpretability methods. Its instantiations to the case of feature based
knowledge, for explanations in the form of counterfactual examples and sur-
rogate models, are respectively presented in sections 4 and 5. Section 6
describes the experimental study conducted on several benchmarks to char-
acterize the explanations generated by these approaches, as compared to
reference methods. Perspectives for the case where the user knowledge is ex-
pressed as a rule-based system are discussed in Section 7. Finally Section 8
concludes the paper.

2. Background

This section provides background information to which the paper refers: it
first describes some post-hoc explanation methods; then, it discusses different
possible forms the user knowledge can take, before presenting some existing
approaches that integrate knowledge in explanation generation.

2.1. Post-hoc Explanations

There exist numerous post-hoc explanation methods, i.e. methods that
take as input a trained classifier considered as a black box and that can only
request it to label new data points (see e.g. [16] for a survey). Many of them
rely on generating explanations as a solution to an optimization problem, for
a well-defined cost function. Among those, we are particularly interested in
counterfactual and surrogate approaches.
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The first ones [17, 18, 19] aim at answering the question: ”What do I have
to change to get the prediction I want?”, generating so-called contrastive
explanations that oppose the predicted output to the desired one [20]. They
provide local explanations, i.e. explanations that depend on the instance the
user asks a question about. The explanation is defined as the data point that
is both predicted to belong to the desired class and as close as possible to the
instance of interest: the difference between this generated data point and the
reference instance indicates the required changes and as such constitutes the
explanation. From the first propositions [6, 21], numerous variants have been
proposed to take into account additional requirements, such as reducing the
number of features to modify [7], improving the feasibility of the changes [8]
or their realism [22] to name a few (see e.g. [17, 18, 19] for recent surveys).
Most approaches consist in optimizing, under constraint, a cost function that
expresses the desired characteristics of the counterfactual example. The basic
form of this cost function is defined as the distance between the considered
instance and the explanation, e.g. the Euclidean distance, possibly combined
with the l0 norm [7, 21] under the constraint its prediction equals the desired
class.

On the other hand, surrogate-based explanations rather answer the ques-
tion: ”Why do I get this prediction?”: they aim at capturing locally the
behavior of the considered machine learning model, representing it by a local
approximation performed by a simple interpretable model, such as decision
trees, linear regressions or classification rules [4, 23, 24], that mimics its be-
havior. One popular surrogate model approach is LIME [4] that relies on a
local linear approximation of the studied classifier: it optimizes the coeffi-
cients of a linear regression model and the number of non-zero coefficients
to maximize the fidelity to the black box classifier and outputs the features
with the highest absolute values of the coefficients. LIME bridges the gap to
local feature importance explanation approaches that aim at extracting the
locally most influential features.

2.2. Knowledge Representation

As discussed in the introduction, post-hoc explanations, as well as any
explanation building method, can be enriched by the integration of avail-
able user knowledge, so as to improve their quality and intelligibility, in a
human-in-the-loop paradigm. A preliminary question, before its integration
in the explanation methods, concerns the formalism used to express this user
knowledge. Many have been considered, with numerous variants in each case,
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one can cite among others: class prototypes [25] (representative instances of
classes that satisfy the characteristics necessary to belong to a class), dis-
tribution of data [8] (real data set in the studied context) or feature-based
knowledge. In the latter case, detailed below as the case on which this paper
focuses, the user provides personal information according to which all fea-
tures are not equivalent: some of them may be more important, or related
to others, which should be exploited to formulate the explanations.

A first type of such feature-based user knowledge provides information
on the individual features: the user can for instance indicate the so-called
actionable features [14], i.e. the features that can be modified, as opposed to
the ones that must remain unchanged. This information may be in particular
crucial in the case of explanation expressed as counterfactual examples, as a
way to express preferences regarding the features that need to be changed to
be predicted in a different class. For instance in a credit application scenario,
a user may indicate that the budget is not actionable, whereas the duration
of the credit reimbursement is. At a more refined level, knowledge may also
indicate that some modifications can only apply in a given direction: common
knowledge for instance indicates that age cannot be decreased [21]. The user
can also give the importance of each feature. The knowledge is then a feature
importance vector. This type of knowledge gives an idea of the impact of
the features on the prediction according to the user. This information can
be used in the case of feature importance explanations [26].

A second type of feature knowledge provides information on their inter-
actions. It may be expressed through their covariation [12, 27] (e.g. ”An
increase in education level leads to an increase in age”) or, more generally
and more formally, through a causal graph that expresses functional depen-
dencies between the feature values [12, 13].

It can be underlined that knowledge can have different sources and it
can be useful to distinguish between the notions of prior, expert or user
knowledge: all three can be represented in the same formalism, but may have
different impacts on the explanation. Prior knowledge can be considered as
common knowledge, normally shared between various users and that needs
to be taken into account generally. On the other hand, expert and user
knowledge are more specific and are the ones that should lead to personalized
explanations. The difference between these two types is that all users are
not experts and that their own knowledge may be sometimes unreliable or
imposing strong constraints that may endanger the existence of explanations
satisfying them all. For instance a user may have too few actionable features

5



for counterfactual examples to exist. This case of user knowledge is however
the one this paper focuses on.

2.3. Integration of Knowledge

Beside the question of the form the available knowledge can take, the
question of its exploitation and integration in the explanation must be con-
sidered. Several approaches have been proposed, to the best of our knowledge
they are dedicated to specific combinations of the knowledge type and the
explanation form they consider.

In the case where knowledge indicates actions which are possible or not
and explanations take the form of counterfactual examples, Ustun et al. [14]
propose to generate actionable explanations. The set of actions is defined as
a set of features where an action is feasible, i.e when values can be modified.
This allows to avoid proposing inapplicable explanation such as ”In order to
get the credit, you need to decrease your age”. To the classic choice of a
distance-based cost function (see Section 3.2.1), Ustun et al. add a density-
based criterion which is the Cumulative Distribution Function. One of the
limits of this approach is that it can only applied in the case where the
classifier or regressor to explain is a linear models. The KICE method we
propose in this paper (see Section 4) relies on the same form of explanation
and user knowledge as Ustun et al. but it considers a model agnostic context.

For image data, Zhao et al. [26] consider the integration of feature weight
knowledge in feature importance explanations: in this case the considered
knowledge and explanation types are identical, the final explanation is a
compromise between the two feature score vectors.

Considering the case of counterfactual explanations, Mahajan et al. [12]
focus on the case where knowledge is expressed as causal interactions be-
tween features. They propose to integrate the latter in the definition of a
distance measure that quantifies the extent to which a candidate explanation
satisfies the causal relationships. Unlike Ustun et al. [14], they do not ex-
clude candidates that do not satisfy these constraints, but penalize them, in
a more flexible approach. This method makes it possible to avoid unrealistic
explanations of the form ”In order to get the credit, you need to increase
your budget and to decrease your salary”.

Frye et al. [13] are also interested in the integration of causal relationships,
in the case of explanations in the form of local feature importance vectors.
They focus on the asymmetry brought by the causal link orientation and
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propose to exploit it by deriving weights to define personalized variants of
the cost function.

These four approaches integrate different types of user knowledge into
different forms of explanation. They consider the available knowledge as
an additional constraint in the explanation generation. This constraint is
represented in different forms: reduction of the search space, addition of
penalty in the cost function or weight in the cost function. In the following
section, we propose a general formalization for such methods integrating
knowledge.

3. Proposed General Framework

This section describes the general framework for building explanations
that takes into account user knowledge, independently of the type of ex-
planation and the type of knowledge. After describing the notations used
throughout the paper, the proposed model is described and then its general-
ity is illustrated showing how it can be instantiated to represent a reference
existing approach.

3.1. Notations

The considered objective is to explain the prediction of a machine learning
model denoted f : X −→ Y where X and Y respectively denote the input
and the output spaces. We consider a domain whose elements are described
by d numerical features, i.e. X ⊆ Rd, equipped with the Euclidean distance.
The case of categorical features, not explicitly studied in this paper, requires
to modify this distance. Focusing on the common case of explanation for
classification tasks, we consider Y to be a discrete set, e.g. {0, 1} for binary
classification or {c1, . . . , ck} for k classes. In the considered model and data
agnostic paradigm, no further information is available about f nor about X
except for the user knowledge. The latter is denoted E in its most general
form, it will be instantiated in the following sections, Sections 4, 5 and 7.
E denotes the set of candidate explanations, independently of the their

type: it may contain counterfactual examples or surrogate models. e ∈ E
denotes a candidate explanation.

In the considered local explanation case, the explanation is required for
a reference instance x ∈ X whose prediction f(x) needs to be explained. In
the following x may be used as subscript of the elements depending on it.
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3.2. Proposed Optimization Problem

Following the principle of most post-hoc explanation methods, briefly
reminded in Section 2.1, the generic framework we proposed is formulated as
an optimization problem of an enriched cost function: the latter adds, to the
classical penalty term that assesses the quality of a candidate explanation
with respect to the considered instance x and classifier f , a term that depends
on the user knowledge E. It is formally defined as

argmin
e∈E

agg(penaltyx(e, f), incompatibilityx(e, E)) (1)

where penaltyx, incompatibilityx and agg are three functions described in
turn in the following. As discussed below, the exact expression of these three
functions depends on the studied context: the motivations of the user, the
type of explanation to be generated or the considered type of knowledge.

3.2.1. Penalty Function

As recalled in Section 2.1, most existing approaches to generate explana-
tions minimize a cost function denoted here penaltyx: it takes as argument
a candidate explanation e and the classifier to be explained f , and it may
depend on the studied instance x in the case of local explainers. The lower
the penalty, the better the candidate explanation e.

In the case of counterfactual examples, penalty can be defined as the
distance between the candidate and the considered instance, d(x, e), to which
an arbitrary high value Z is added if the class predicted for e is the same1 as
the one for x, i.e. f(e) = f(x): penaltyx(e, f) = d(x, e) + 1f(e)=f(x) × Z. As
a consequence, only candidates with a predicted class different from the one
of x are considered. This is equivalent to restricting the set of explanations E
to a local definition Ex = {e ∈ E/f(e) ̸= f(x)}. Regarding the distance, usual
choices include the Euclidean distance [21], or the l0 norm to incorporate a
sparsity constraint [7] to name a few.

In the case of surrogate explainers, penalty can be defined as the local
fidelity of the surrogate e to the classifier f in the neighborhood of the studied
instance x.

1In the case where the user makes explicit the class he/she is interested in, denoted
c∗ ∈ Y with c∗ ̸= f(x), the additional term penalises candidates such that f(e) ̸= c∗ and
not only f(e) = f(x). In the following we keep to the simple case where c∗ is only required
to differ from f(x).
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3.2.2. Incompatibility Function

In order to integrate the user knowledge, we propose to add a function
that measures the extent to which the candidate explanation is incompatible
with this knowledge, so as to favor the explanations that are in agreement
with the latter.

Indeed, in the case of non-expert users, the aim is to increase the intelli-
gibility of the explanation, relying on a common language. For instance in a
credit application scenario, an explanation for a non-expert customer asking
how to get his/her credit application accepted needs to focus on common
knowledge actions such as increasing his/her salary. On the other hand, in
the case where the explanation is generated for a domain expert, the incom-
patibility can represent the level of fidelity of the explanation with respect
to the expert’s comprehension of the domain. The lower the incompatibility,
the more fidel the explanation.

Detailed instantiations are discussed in the next sections, we illustrate
here the principle with a basic case. For a given candidate explanation e,
we denote Ae the set of features is involves, independently of its form. For
counterfactual example, it can for example contain the modified features,
for local feature importance, it can be defined as the set of features with
non-zero scores. Similarly, we denote AE the features involved in the user
knowledge, independently of its form. An incompatibility function then aims
at measuring the discrepancy between Ae and AE. Decreasing incompatibil-
ity can then mean minimizing the number of features the explanation takes
into account that are not part of the user knowledge:

incompatibilityx(e, E) = Card(Ae \ AE) (2)

Note on a Different Semantics for Knowledge Integration. The above discus-
sion considers that the explanation must be compatible with the user knowl-
edge, which appears as a relevant choice that may contribute to increase the
user’s confidence in the machine learning models and his/her willingness to
use it. However, we wish to discuss here an alternative, and actually contra-
dictory, semantics for knowledge integration, that makes sense in a different
scenario, for a different type of users with different objectives.

Indeed, in some cases, a user may be interested in an explanation that
is actually orthogonal to his/her knowledge: he/she may wish to get a com-
plementary explanation, likely to provide him/her new information he/she
did not dispose of. In other words, his/her aim in such a case is to acquire
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new, enriching, pieces of knowledge that should not be redundant with what
he/she already knows. The desired explanation should then be not redun-
dant with the knowledge he/she expresses, which is at cross-purposes of the
knowledge integration principle discussed above.

In such a case, considering the example and notations given above, ex-
pressing that the explanation needs to be complementary to the knowledge,
i.e. minimizing the redundancy, may for instance advocate for a function
such as

incompatibilityx(e, E) = Card(Ae ∩ AE)

3.2.3. Aggregation Function

The aggregation function combines the penalty and incompatibility func-
tions. There exists an abundant literature on aggregation operators (see
e.g. [28, 29]) which can be divided into several categories depending on their
behavior and semantics. For illustration purposes, we focus on three of them,
called conjunctive, disjunctive or compromise operators. A conjunctive op-
erator, for example the minimum function, returns a high value only if all
criteria to be aggregated, here both penalty and incompatibility, are high.
A disjunctive operator, such as the maximum function, requires only at least
one value to be high. Trade-off operators such as the weighted average allow
for the compensation of low values by high values. Other categories include
operators offering a so-called reinforcement behavior, according to which if
all criteria take high values, they result in an even higher value.

The choice of the aggregation function can be made according to the user
preferences, instead of necessarily considering the same function for all of
them: one way to personalize the explanation to a user is to let him/her
choose the aggregation he/she wants to perform.

3.3. Illustration of the Proposed General Framework

In order to illustrate the generality of the proposed framework, we show
in this section how it can be instantiated to express the state-of-the-art ap-
proach proposed by Ustun et al. [14], highlighting the definition of the three
involved functions.

In Ustun et al. [14] approach, the user knowledge E is local and depends
on the instance of interest: it is denoted A(x) and defined as the set of
allowed modifications, that can be applied to instance x. Its integration
makes it possible to generate an actionable counterfactual explanation. The
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latter is defined as the solution to the following optimization problem [14]:

η∗ = argmin
η∈A(x)

cost fct(η, x) with f(x+ η) ̸= f(x)

cost fct is defined as the distance between x and x + η. The generated
explanation η∗ expresses the move between the instance of interest x and the
closest instance in the opposite class x+ η∗.

We propose to rewrite this optimization problem as:

e∗ = argmin
e∈Ex

cost fct(e− x, x) + 1|x−e|/∈A(x) × Z

where Ex = {x′ ∈ X | f(x′) ̸= f(x)} and Z is an arbitrarily large real
number. Here e∗ is the closest instance in the opposite class, and it enables
to retrieve η∗ as η∗ = e∗ − x.

This expression, equivalent to the previous one, makes it possible to iden-
tify the penalty, incompatibility and agg functions, respectively defined as,
for an arbitrary high value Z ′

penaltyx(e, f) = cost fct(e− x, x) + 1f(e)=f(x) × Z ′

incompatibility = 1|x−e|/∈A(x) × Z

agg(u, v) = u+ v

Indeed, the penalty function equals cost fct defined in [14] with the intro-
duction of a arbitrary high value Z ′ for candidates that are predicted to be
in the same class as x as discussed in Section 3.2.1. The latter expresses the
restriction of the search space E to Ex. The incompatibility function repre-
sents the presence or absence of the modified feature in the user knowledge;
it takes only two values 0 or Z. An incompatible counterfactual explanation
thus has a very high cost function, resulting in only compatible counterfactu-
als being considered. Finally, aggregation is performed by a sum. However,
as the incompatibility function is binary, only compatible counterfactuals are
considered, so the resulting counterfactual is both compatible and of good
quality. In this setting, the aggregation function has a conjunctive behavior.

4. Knowledge Integration in Counterfactual Explanation (KICE)

This section introduces a first instantiation of the general framework de-
scribed in the previous section, leading to a new explanation method taking
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into account user knowledge in the case of counterfactual example explana-
tions. It first describes the characteristics and motivations for the considered
type of user knowledge, relevant both for counterfactual explanations and
surrogate models considered in Section 5. It then describes in turn the pro-
posed cost function and the algorithm optimizing it.

4.1. Characteristics of the Knowledge Type and Motivations

The knowledge we propose to consider takes the simple form of a set of
features, E = {Xi, i = 1 . . .m} with m ≤ d where d is the total number of
features: within the framework discussed in Section 2.2, it corresponds to a
case of individual feature-based user knowledge. It can be seen as similar
to the case of actionable features, but its meaning differs: the information
provided by the user does not provide indication about his/her ability to
modify the associated values, but refers to a more basic level. As discussed in
Section 3.2.2, two interpretations can be distinguished depending on whether
the user is an expert or not, as illustrated in the following.

We consider the following fictitious example regarding a classification of
vegetables: let us consider a sample predicted to be a carrot. We are inter-
ested in two candidate explanations e1 and e2 which explain why the model
predicts that the sample is a carrot. The first explanation e1 is: ”The color
of the sample is orange and the taste is sweet”. The second explanation e2 is:
”The sample has a high rate of provitamine A and a high rate of saccharose”.

We consider two users: a non-expert and an expert of the domain who
express the same knowledge: E = {color, f lavor}. Even if the knowledge
is the same, it represents two different semantics. For the non-expert user,
this knowledge represents the characteristics that he knows about and that
he agrees to find in an explanation in order to better understand it. A non-
expert user wants an explanation in his language so that it is understandable.
He then prefers explanation e1 because it contains only features presented in
his knowledge. For the expert user, this knowledge represents the features
whose impacts on the prediction are already known by him. He then wants
additional information and an explanation that is not redundant with his
knowledge. Thus, he wants a complementary explanation that does not con-
tain the elements he already knows. He then prefers explanation e2 because
it has features that he has not expressed. In the following, we focus on the
case of non-expert users who expect explanations in their language.
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4.2. Proposed Cost Function: Instantiation of the Framework

This section describes the instantiation of the general cost function given
in Eq. (1) for the case of explanation in the form of counterfactual examples
Ex = {x′ ∈ X | f(x′) ̸= f(x)}, user knowledge as a set of features and an
explanation expressed in the user language. It describes in turn the penalty
and incompatibility functions and the aggregation operator.

Penalty Function. For the penalty function, we propose to use the classical
counterfactual function which is the Euclidean square distance:

penaltyx(e, f) =∥ x− e ∥2 (3)

with the restriction of the search space E to Ex to guarantee the prediction as-
sociated with the counterfactual example differs from the one of the reference
instance.

Incompatibility Function. As specified above, the objective is to propose a
counterfactual explanation in agreement with the user knowledge, meaning
that ideally, the counterfactual modifications must be only performed accord-
ing to features appearing in E. However, for some instances, focusing only
on a subset features raises the risk of never being able to meet the decision
boundary of f , leading to no counterfactual explanation being generated.

Therefore, we propose to relax this constraint by penalizing the modifi-
cations according to the features from E, i.e. features that are not present
in the knowledge E. This allows, when the boundary cannot be found along
the sole features of E, to make sure that a solution can still be found. Thus,
we propose the incompatibility function that computes the Euclidean square
distance only using absent features:

incompatibilityx(e, E) =∥ x− e ∥2
E
=

∑
i/∈E

(xi − ei)
2 (4)

Minimizing this incompatibility avoids generating counterfactual explana-
tions that greatly modify the unknown features.

Aggregation Function. In order to combine the penalty function with the
incompatibility function, we propose to use a compromise operator, more
precisely a weighted average:

agg(u, v) = u+ λv (5)
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where λ ∈ R+ is a user-set hyper-parameter. The higher λ, the more intransi-
gent the user is with respect to to his/her knowledge, i.e. the less open he/she
is to features he/she may not understand. A high value of λ implies that
the counterfactual example may be located further away from the reference
instance, meaning the user may need to perform more modifications. On the
other hand, these modifications only apply to features he/she understands
the meaning of.

Global Function. We then obtain the following optimization problem:
Denoting Ex = {x′ ∈ X | f(x′) ̸= f(x)} and λ ∈ R+,

e∗ = argmin
e∈Ex

costx,E(e) (6)

with costx,E(e) = ∥ x− e ∥2 +λ ∥ x− e ∥2
E

4.3. Description of algorithm KICE

This section describes the algorithm we propose to solve the optimisation
problem defined in Equation (6) named KICE for Knowledge Integration in
Counterfactual Explanation. Its general principle is presented below before
a more detailed description of its generation step.

Principle. KICE exploits the principle of iterative generation of instances
proposed by the Growing Spheres algorithm [7]: given f the considered clas-
sifier, x the instance for which an explanation is requested, E the set of
user known features and λ the weight of the incompatibility, KICE generates
instances around x in increasingly larger spaces until it finds one predicted
by f with a different class. The integration of E in the incompatibility term
in the cost function calls for a non uniform generation: the space is distorted,
with features being associated to different weights.

Indeed, for any ν, the equation costx,E(e) = ν with cost presented in
Equation (6) defines an ellipse with center x and radius

√
ν

1+λ
with respect

to features in E and
√
ν with respect to features in E. The spaces to be

considered are thus not spherical layers, but ellipsoidal ones.
This principle is illustrated on Figure 1 that shows a toy 2D-data set, the

classifier prediction with the colored regions and an instance of interest x.
The considered user knowledge is defined as E = {X2}. As a consequence,
it is less costly to modify feature X2 than feature X1. Tentative countefac-
tual examples are thus iteratively generated in the ”vertical” ellipses until
reaching an instance predicted in the other class e∗.
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Figure 1: Illustration of KICE ellipsoidal layers generation step for a toy 2D data set:
f is indirectly defined by the colored regions, user knowledge E is {X2}, x denotes the
instance of interest, the ellipses the considered increasingly large spaces around x, e∗ the
finally generated counterfactual.

Uniform Generation in Ellipsoidal Layers. In order to generate candidates
uniformly in the ellipsoidal layers, KICE relies on a modified version of the
HLG algorithm [30] presented in Algorithm 1. The latter generates instances
uniformly in the spherical layer SL(x, a0, a1) defined as the set of points at
a distance greater than a0 and less than a1 from x. Modification of the
algorithm HLG we propose relies on the random variable U = {ui} ∼
U([0, 1]) used to generate points according to a0 + a1U

1
dim(X ) .

To modify HLG we propose to distinguish between features in E and
in E: for the former, the same procedure as HLG is applied, considering
a0 + a1ui for i ∈ E. For the latter, the generation is weighted by 1/

√
1 + λ,

i.e. considers a0√
1+λ

+ a1√
1+λ

ui for i ∈ E.

KICE overview. Globally, the KICE algorithm covers the space by generat-
ing instances iteratively: in an initialisation step, n instances are generated
in the ellipse of center x and radius

√
ν0
1+λ

with respect to the features in E
and
√
ν0 with respect to the features in E, where n and ν0 are hyperparame-

ters. If none of these instances belong to the opposite class, KICE generates
instances in the ellipsoidal layer between ν0 and ν0 + ϵ where ϵ > 0 is a
third hyperparameter. Then, at each iteration if none of generated instances
belong to the opposite class, new instances are generated in a new layer with
new base radius ν0 ← ν0 + ϵ.
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Algorithm 1 Ellipsöıdal Layer Generation

Require: x, the center of the ellipsöıdal layer
Require: E, the prior knowledge
Require: a0 and a1 the bounds of the layer
Require: n, number of desired points
Ensure: Z = {zi}i≤n

Y = {yi}i≤n ∼ N (0, 1)
Y ← Y

∥Y ∥2
U ← {ui}i≤n ∼ U([0, 1])
R← a0 + a1U

1/dim(X)

W ← RTY + x
R′ ← a0√

1+λ
+ a1√

1+λ
U1/dim(X)

W ′ ← R′TY + x
for i← 1 to n do

if i ∈ E then
Zi ← Wi

else
Zi ← W ′

i

end if
end for
return Z

5. Knowledge Integration in Surrogate Models (KISM)

This section presents a second instantiation of the general framework
described in Section 3: it considers the same type of user knowledge as KICE,
as discussed in Section 4.1, but describes its integration to explanations in
the form of linear surrogate models. This section first describes the proposed
cost function and then presents the algorithm proposed to optimize it.

5.1. Proposed Cost Function: Instantiation of the Framework

This section discusses in turn the three components of the general cost
function, penalty, incompatibility and aggregation function, using the same
notations as in Section 4. E denotes the set of candidate surrogate models,
for instance linear regression models in the case of LIME [4]. In this case,
E = {g|∀z ∈ X , g(z) =

∑d
i=1wizi+w0} and the final explanation is a feature

importance vector obtained from the w∗ associated to the chosen e∗ ∈ E . To
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simplify the notations, we do not note the link between the model g and his
coefficients w, i.e. we use a simplified notation wi instead of wg

i . The set E
may also be a set of decision trees which are then considered as transparent
models and thus directly define an interpretable explanation. For any e ∈ E ,
and for any data point z ∈ X , e(z) then denotes the prediction performed
by the surrogate model e for z. For such surrogate approaches the black
box classifier f to be explained is usually considered to output continuous
probability scores that are later thresholded to get a prediction result.

Penalty Function. We propose to define the penalty using the classical sur-
rogate cost function: it assesses the fidelity of e which respect to f , measured
by their l2 difference on a neighborhood Zx around the instance of interest x.
The definition of the neighborhood Zx is a crucial and non trivial step of the
processus, as a.g discussed by Laugel et al. [31]. Formally,

penaltyx(e, f) =
∑
z∈Zx

(f(z)− e(z))2 + Ω(e) (7)

The first term captures the local fidelity of the surrogate model to f and the
second term Ω(e) captures the complexity of the candidate explanation e.
The latter depends on the type of surrogate classifiers. In the classical case
of linear regression models, the complexity can be the l0, l1 of l2 norms of
the regression coefficients, depending on whether a simple, lasso or ridge
regression is performed. In the following, we consider the case of the l2 norm
with weight α: Ω(e) = α

∑d
i=1 w

2
i .

Incompatibility Function. In order to value the agreement with the user
knowledge, we consider that the surrogate-model explanation can be associ-
ated with weights on the features, denoted wi: this is obviously the case for
linear regression surrogates; when decision trees are considered, the depth of
the occurrence of the feature allows to derive such weights.

We then interpret the user knowledge E as providing the most important
features and wish to favor, when possible, the coefficients associated to these
variables. For this purpose, we thus propose to penalize the coefficients
associated to features that do not belong to E.

To match our choice to define the complexity Ω using a l2 penalty, we
propose to define the incompatibility function as:

incompatibilityx(e, E) =
∑
i∈E

w2
i (8)
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with wi the weights associated with the features.

Aggregation Function. As in Section 4.2, we propose to formulate the new
explanation objective as an explicit trade-off between the quality and the
compatibility of the explanation, through a weighted average.

Global Function. As a consequence, the proposed optimization problem is:

e∗ = argmin
e∈E

costx,E(e) (9)

with costx,E(e) = argmin
e∈E

∑
z∈Zx

(f(z)− e(z))2 + α

d∑
i=1

w2
i + λ

∑
i∈E

w2
i

with α and λ ∈ R+.

5.2. Algorithm Description
We propose to solve the optimization problem defined in Eq. 9 in the case

of linear surrogate models, i.e. when E = {g|∀z ∈ X , g(z) =
∑d

i=1 wizi + w0}.
The solution of a typical ridge regression problem to minimize can be ex-
pressed as:

W = (X tX + αI)−1X ty

where X denotes the matrix representing the neighborhood data, W the
vector of wi, y the labels associated to X and I the identity matrix.

Now the cost function defined in Eq. 9 belongs to this framework, with
an additional λ to weight the features outside the user knowledge. Thus,
denoting IE an identity matrix containing 1 only on the rows associated to
unknown features, the solution to the considered optimization problem can
be rewritten

(X tX + αI + λIE)
−1X ty

where X denotes the data points generated in the neighborhood Zx and y
the vector of their associated prediction by the classifier f to be explained.

This solution makes explicit the integration of knowledge within the
method. The integration of a new term does not change the complexity
and the procedure to apply the algorithm.

6. Experiments

This section presents the experiments performed to study the explana-
tions generated by the proposed methods KICE and KISM and to assess
their relevance.
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Datasets λ ϵ n ν0
Half-moons 4 0.01 200 0.1
Boston 3 0.02 1000 0.2

Breast Cancer 6 0.3 2000 5

Table 1: Values of the hyperparameters λ, ϵ, n and ν0 of KICE chosen for the three
datasets.

6.1. Experimental Protocol

Experiments are conducted on three classical benchmark tabular data
sets: Half-Moons, Boston and Breast Cancer where the first one is a dataset
generated with the package sklearn and the two last ones are UCI datasets.
As a pre-treatment, the data are normalized and in the case of the Boston
data set, the regression value is transformed into a binary class by discretiza-
tion: the price is ”expensive” if it is greater than $21, 000, and ”cheap”
otherwise. The data sets are split into train and test data subsets (80%-
20%).

Within the considered post-hoc explanation framework, the classifier choice
does not matter, we apply SVM with a Gaussian kernel, that achieves a high
accuracy on the three data sets: 0.99, 0.98 and 0.93 respectively for Half-
Moons, Boston and Breast cancer.

Explanations e∗ are then generated for each instance x of the test data set
using different methods. First, python implementation of KICE and KISM,
using the numpy, sklearn and lime libraries, are run, using the λ, ϵ, n and ν0
parameters values shown in the Table 1. ϵ, n and ν0 are chosen accord-
ing to the dimension of the datasets and the number of features considered
for E: the more features the dataset contains, the higher the value of the
parameters. λ is chosen arbitrarily, in order to obtain interesting results, to
have explanations that differ from the competitor ones, for the competitors
described below.

The first competitor, generating the explanation denoted eref , corre-
sponds to the case where no knowledge is taken into account: it solves the
reference optimization problem that only minimizes the penalty function.
This competitor corresponds to Growing Spheres [7] in the case of counter-
factual explanations, and LIME [4] in the case of surrogate models. This
corresponds to an extreme case of aggregation of Eq. (6) where the incom-
patibility term is ignored, i.e. setting λ = 0.

In the case of counterfactual explanation, a second competitor is proposed
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by imposing to comply strictly with the knowledge under the constraint it
is predicted in the opposite class. Its associated cost function thus equals
the incompatibility function, a naive way of integrating knowledge in the
explanation. In this case, we denote euser the counterfactual instance that
solves the associated problem:

euser = argmin
e∈E

∥ x− e ∥2
E

This corresponds to the other extreme case of aggregation of Equation (6),
where the penalty term is ignored, i.e. λ arbitrarily large. We do not con-
sider Ustun et al. as competitor although it shares common points with the
proposed KICE because it is restricted to linear classifiers and cannot be
applied to the SVM with Gaussian kernel considered here).

Finally, regarding user knowledge E, we consider that the user disposes
of less features than the classifier. In order to build somehow realistic knowl-
edge, we train a decision tree with low depth on the train data (more precisely
the maximal depth is set to half the number of data features), the set of fea-
tures E then contains the ones that occur in this tree.

6.2. KICE Experimental Study

This section presents the experiments conducted to evaluate the KICE
algorithm: the purpose of these experiments is to show that the proposed
method finds the expected counterfactual instance, i.e. it allows to achieve
a trade-off between the quality and the compatibility of the explanation.

6.2.1. Illustrative Examples

First, we illustrate the behavior of the methods with the 2D Half-Moons
data set, denoting X0 and X1 the two dimensions. Figure 2 shows the coun-
terfactual examples obtained for three different instances x. The other points
represent the training examples, the blue and red regions represent the pre-
dicted classes. The considered knowledge system contains a single feature, it
is represented by the horizontal line: E = {X1}.

As expected, we can observe that: (i) the counterfactual instance eref is
the closest point belonging to the opposite class; (ii) euser is further away
than eref and only modifies feature X1 which is the knowledge feature; (iii)
e∗ is a compromise between eref and euser. It requires less modifications
according to X0 than eref , hence it is more compatible. It is also closer to
the studied instance than euser.
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Figure 2: Examples of resulting eref , euser and e∗ for three instances x (+++: x, ▲: eref ,
■: euser, •: e∗)

In the graph, on the right, we notice that there is no euser. In this case,
there is no counterfactual instance modifying only feature X1. The proposed
KICE method is then useful because it allows to obtain a more compatible
counterfactual than eref .

6.2.2. Evaluation of the KICE Method

In this section, we further compare KICE with its competitors and study
quantitatively the gain in terms of the proposed cost function.

We apply the three methods described in the previous section on the test
set of the three data sets. Among the test set, for some instances no coun-
terfactual example is found by the method that modifies only the features
in E (euser). This happens to the half-moons and breast cancer data sets, for
respectively 20% and 11% of the instances. For the other instances, Table 2
shows the mean and standard deviation values of the penalty, incompatibility
and cost functions for the three approaches.

We observe that, as expected, the proposed counterfactual examples have
a penalty greater than that of eref but lower than that of euser. Moreover,
the incompatibility function is much smaller than that of eref . Thus, the
modifications on the unknown features decrease, which increases the under-
standing of the explanation. Finally, e∗ cost function is the lowest. We can
notice that the standard deviations are high, which is due the fact that the
instances are at different distances from the boundary.

Table 3 shows the execution times to obtain the three counterfactuals.
As expected, for all three data sets, we notice that the time associated with
e∗ is higher than that of eref . Since only one feature is taken into account,
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penaltyx(e) incompatibilityx(e, E) costx,E(e)

Half
moons

eref 0.32 ± 0.21 0.14 ± 0.13 0.86 ± 0.56
euser 1.48 ± 1.3 0.0 ± 0.0 1.48 ± 1.3
e∗ 0.42 ± 0.29 0.08 ± 0.11 0.73 ± 0.52

Boston

eref 1.48 ± 1.75 0.7 ± 1.03 3.57 ± 4.72
euser 2.26 ± 2.71 0.0 ± 0.0 2.26 ± 2.71
e∗ 1.72 ± 2.09 0.13 ± 0.19 2.12 ± 2.54

Breast
cancer

eref 8.82 ± 9.22 7.27 ± 8.25 52.41 ± 58.63
euser 22.42 ± 24.87 0.0 ± 0.0 22.42 ± 24.87
e∗ 10.74 ± 9.85 1.25 ± 1.33 18.24 ± 16.83

Table 2: Quantitative evaluation of the three considered approaches on the three datasets
for metrics: penalty defined in Eq. (3), incompatibility defined in Eq. (4) and cost defined
in Eq. (6). Average and standard deviation are computed on all instances x of the test
set for which all three approaches provide an explanation.

eref euser e∗

Half-moons 0.06 ± 0.04 0.25 ± 0.11 0.15 ± 0.10
Boston 0.17 ± 0.23 0.22 ± 0.19 0.30 ± 0.47

Breast Cancer 0.69 ± 0.65 0.19 ± 0.09 1.61 ± 1.57

Table 3: Execution times of the three considered approaches to obtain eref , euser and e∗

for the three datasets.

the euser counterfactuals are further away, and require more iterations to be
identified, increasing the execution time. For the two datasets Boston and
Breast Cancer, the time associated with e∗ is higher than the other two. The
higher the dimension of the dataset, the longer the execution time. As in the
evaluation of the metrics, we also note that the standard deviations are high
as the studied instances are located in different areas of the data space.

To verify that KICE minimizes the cost function as opposed to the other
two on all instances, Figure 3 shows the value of the cost function obtained
by e∗ (that is defined as minimizing it) as compared to the value it takes
for eref (left) and euser (right), for each of the test instances of the Half-
moons dataset. The figures show that, as expected, all points are above the
line y = x.

On the right hand graph, the points are more scattered but they remain
above the line. We notice that the generated counterfactual instances are
closer to the cost function of eref than to euser. The user knowledge contains
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Figure 3: Cost functions cost as defined in Eq. (6) of eref , euser and e∗ for the 80% of the
Half-moons test set for which all three counterfactual instances are defined. (left) Cost
functions associated to eref and e∗, (right) cost functions associated to euser and e∗.

a single feature, it is difficult to get a close counterfactual instance only by
modifying this feature. It is then necessary to move further away from the
studied instance to get 100% compatible one. It is also possible to increase λ
so that the points are less scattered.

6.3. KISM Experimental Study

This section describes the experiments conducted with the KISM method
by presenting illustrative examples and by showing that the algorithm achieves
its goal, i.e. it associates a more important weight to the features included
in the user knowledge. For the experiments, we arbitrarily set their weight
in the ridge regression to 1.

In order to make the numerical evaluation easier, through the study of the
rank associated to the features present in the user knowledge, we restrict the
latter to contain a single feature: for Half Moons, except for the illustrative
examples given below, E = {X1}, for Boston, E = {X7} and for Breast
Cancer, E = {X3}. The value of λ is set to 500, the LIME parameters are
set to their default values.

Explanations e∗ are compared to one competitor that corresponds to
LIME. This competitor solves the reference optimization problem that only
minimizes the penalty function, the explanation is denoted eref .

6.3.1. Illustrative Examples

First, we illustrate the behavior of the methods using the same 2D Half-
Moons data set as before: for the instance x represented with a +, Figure 4
shows the decision boundaries (corresponding to a 0.5 probability) of the
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Figure 4: Surrogate models for KISM e∗ and reference eref for the same instance x and
different user knowledge: left E = {X0}, right E = {X1} (+++: x, —: eref , —: e∗)

eref e∗ Ranking gain
Half-Moons 1.63 ± 0.48 1.55 ± 0.5 0.09 ± 0.28
Boston 6.08 ± 2.89 4.49 ± 2.74 1.58 ± 1.35

Breast Cancer 13.18 ± 5.19 8.51 ± 4.86 4.67 ± 2.46

Table 4: Average rank, with standard deviation, of the user defined feature, for the two
considered methods and the three data sets, together with the ranking gain.

two surrogate models obtained by KISM, denoted e∗ and shown in green,
and the reference eref shown in red. On the left graph, the considered user
knowledge is E = {X0} and on the right graph, it corresponds to the other
feature E = {X1}.

In both graphs, the classic surrogate model eref shown in red, that does
not take into account any user knowledge, provides the same result. On the
left graph, we observe the weight according the feature X0 is higher for e∗

(green line) than for eref (red line). On the right graph, we observe the
weight according to feature X1 is higher for e

∗ (green line) than for eref (red
line). The proposed KISM method is thus useful, as it effectively allows for
an explanation to give more importance to known features than to unknown
features.

6.3.2. Evaluation of the method

This section discusses the evaluation of the proposed method according to
different criteria. First, for each obtained explanation, we rank the features
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penaltyx(e) incompatibilityx(e, E) costx,E(e)

Half-moons
eref 274.11 ± 166.31 0.05 ± 0.03 298.93 ± 190.32
e∗ 279.18 ± 171.00 0.03 ± 0.03 291.91 ± 183.23

Boston
eref 213.19 ± 169.60 0.08 ± 0.11 245.22 ± 186.16
e∗ 204.97 ± 171.79 0.04 ± 0.05 233.82 ± 180.03

Breast cancer
eref 10.00 ± 12.24 0.04 ± 0.08 31.94 ± 48.67
e∗ 14.47 ± 18.56 0.02 ± 0.04 25.65 ± 37.55

Table 5: Results with the two considered approaches on the three data sets for metrics:
penalty defined in Eq. (7), incompatibility defined in Eq. (8) and cost defined in Eq. (10)

of the explanation in increasing order of absolute value of weights. Then,
we study the position in this ranking of the user’s feature, denoted E with a
notation abuse below. Table 4 gives, in the first column, the average ranking
(with standard deviation) over all instances of the test set in the explana-
tions obtained without taking into account the knowledge (eref , provided by
LIME). In the second column, the same average ranking is shown for the
proposed KISM approach. The third column gives the number of positions
gained between the two methods. We observe that the studied feature moves
upward in the ranking in average (between 0.09 for half-moons and 4.67 for
the breast cancer data set) when it is taken into account by the method.
This effect is more visible for the data sets with more features. Indeed, in
the 2D Half-Moons case, only two rank values are possible, which makes it
harder to modify the values. Altogether, this shows that the proposed KISM
method helps increasing the importance given to the user feature.

Second, we study the two methods according to the three criteria pre-
sented in Section 3: penalty, incompatibility and cost function. To do so,
we apply LIME and the proposed method on all test instances of the differ-
ent data sets. As expected eref minimizes the penalty function and e∗ the
incompatibility function. As compared to eref , the proposed explanation e∗

does have a higher penalty, a lower incompatibility and altogether a lower
cost function, meeting the desired behavior.

The proposed approach is based on the same procedure as LIME and only
changes the type of considered model. Thus, the complexity of the proposed
approach is the same as that of LIME, the time needed to obtain eref and e∗

is the same.
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7. Discussion on Knowledge Expressed as Rules

This section proposes to discuss the relevance and challenge of considering
a richer type of user knowledge, beyond the case of a set of features, in the
form of logical rules, and integrating it into counterfactual explanations. We
name rKICE this rule Knowledge Integration in Counferfactual Explanation
principle.

7.1. Characteristic of the Knowledge Type and Motivations

User knowledge expressed as a rule based system is defined as a set of
logical implications that allow the user to make his/her own prediction for
any instance. Formally, for any x ∈ X , a rule is defined as

d∧
i=1

xi ∈ [viinf , v
i
sup] =⇒ class = y

with viinf ∈ R and visup ∈ R the lower and upper bounds of the interval over
the i-th feature, possibly with infinite values. Such a rule can also be written∧

i∈AR

xi ∈ [viinf , v
i
sup] =⇒ class = y

where AR denotes the set of features whose associated interval is not R. AR

then corresponds to the user knowledge considered in the previous section.
As compared to the knowledge type considered in the previous sections,

defined as set of features, rule-based knowledge is much richer, as it provides
two additional pieces of information: each involved feature is associated with
an interval and the associated prediction of a class.

We consider that for any instance of interest x, a single rule of the user
knowledge E is triggered. This rule could be denoted E(x), we use the
notation and keep E, not making explicit this dependency. This hypothesis
is not restrictive as several rules can be combined into a single one using the
appropriate logical operators.

It seems reasonable to make the assumption that the user requests an
explanation for instances for which the prediction of the classifier differs
from the rule’s decision.
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7.2. Proposed Cost Function for rKICE

As in Sections 4 and 5, this section discusses the definition of the three
components of the generic framework, the penalty, incompatibility and aggre-
gation functions, for the integration of rule-based knowledge in counterfactual
explanations.

Penalty Function. We propose to evaluate a candidate counterfactual exam-
ple using the classical counterfactual penalty, as in Eq. (3):

penaltyx(e) =∥ x− e ∥2

with the restriction of E to Ex to guarantee the prediction associated with
the counterfactual example differs from the one of the reference instance.

Incompatibility Function. In order to integrate the user knowledge in the
explanation, we propose to impose that the counterfactual example belongs
to the same region as defined by the user rule set, as the instance of interest:
in other words the generated example needs to satisfy the premise of the rule
triggered by the instance. Indeed, this premise describes a region where the
user possesses some knowledge and makes sens to him/her.

Hence we propose to penalize counterfactual candidates whose values for
the features involved in the rule premise do not satisfy the associated rule
constraints. Formally the incompatibility function is thus defined as:∑

i∈AE

(xi − ei)
2 × 1ei /∈[viinf ,v

i
sup]

with AE the set of features present in the premise of the rule E.

Aggregation Function. As in the previous proposed instantiations of the generic
framework, we propose to aggregate the two terms of penalty and incompat-
ibility using a trade-off operator, the weighted average.

Global Function. The derived optimization problem for rKICE can thus be
rewritten

e∗ = argmin
e∈E

costx,E(e) (10)

with costx,E(e) = argmin
e∈Ex

∥ x− e ∥2 +λ
∑
i∈AE

(xi − ei)
2 × 1ei /∈[viinf ,v

i
sup]
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Figure 5: Right: rKICE generation mode, as a combination of the Growing Sphere (left)
and KICE (middle) modes. The user rule is ”if X1 < t, then class=blue”.

7.3. Comparison of KICE and rKICE principles

This section analyzes the rKICE optimization problem defined in Eq. (10)
and compares it to the KICE optimization problem defined in Eq. (6). The
first difference between these two problems is that rKICE incompatibility
function depends on the features present in the user knowledge, whereas, on
the contrary, the KICE one depends on the features absent from the user
defined set of features. The principle of KICE may be combined to that of
rKICE, through a more complex incompatibility function additionally pe-
nalizing the use of features absent from the premise of the triggered rule.
However, the KICE incompatibility term is motivated by the notion of fea-
tures known to the user, i.e. that he/she may understand. Following these
lines it could be relevant to define the rule induced set of features as the union
of the sets of features involved in all the rules. This variety of possibilities,
that are all instantiations of the proposed generic framework, shows that the
definition of an incompatibility term for rich knowledge as expressed by a
rule set is a complex task that requires a refined study, out of the scope of
this paper.

Focusing on the basic definitions given in Eq. (10) and Eq. (6) for rKICE
and KICE respectively, one can distinguish between two cases for a given
candidate explanation e: in the case where it satisfies the triggered rule
premise, the incompatibility term equals zero and the cost function reduces
to the classical counterfactual example case. Otherwise, let us denote A′

E

the set of features involved in the triggered rule E whose interval constraint
is not satisfied: the cost function is then of the form of the KICE one, for a
user feature set defined as A′

E. Figure 5 illustrates the combination of these
two cases in a 2D toy data set, in the case where the user triggered rule is
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”if X1 < t, then class=blue”, where t is a threshold value as represented on
the graph (this rule is chosen to be a not appropriate one with respect to
the classification task, for illustrative purposes). For the given instance x
predicted as pink for the considered black box, the candidate counterfactual
examples are generated along spherical layers in the region that does satisfy
the rule premise, i.e. below the line and along ellipsoidal layers, in a KICE
mode, above the line. The resulting combined generation form for rKICE is
shown on the right graph.

8. Conclusion

In this paper, we propose a general framework defining an optimization
problem to integrate user knowledge in post-hoc model-agnostic explana-
tions. Using this framework, we propose two methods integrating knowledge
as a set of features, interpreted as the features the user understands and can
thus be exploited to build the explanation: KICE for the case of counter-
factual explanations and KISM for the case of linear surrogate model expla-
nations. KICE generates counterfactual explanations in the knowledge lan-
guage by minimizing modifications according to unknown features, Similarly,
KISM generates a linear model approximating the classifier to be explained
in the knowledge language by minimizing the weights of unknown features.
The relevance of these approaches are illustrated and evaluated numerically
on several benchmark data sets. The paper also proposes a discussion ex-
tending the principles to the case of richer user knowledge in the form of
a set of logical rules, showing the challenges of defining the incompatibility
function.

The opened directions for future works are numerous and first include ex-
periments with real users, to assess their satisfaction of the offered enriched
explanations. A crucial question is also that of collecting their knowledge
to be integrated in the generated explanations, which probably calls for the
design of dedicated and user-friendly interfaces. It seems that an interactive
process, e.g. generating first explanations and allowing the users to react and
ask questions regarding some involved features, might be a direction to ex-
plore, in line with the desirable interactive property of explanations [20]. On-
going works aim at developing the exploitation of user knowledge expressed
as rule-based systems, among others the impact of rule fidelity with respect
to the classifier to be explained. Other works aim at exploring and proposing
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instantiations of the proposed generic framework for other explanation and
knowledge types.
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