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Abstract. Recursive definition of streams (infinite lists of values) have
been proposed as a fundamental programming structure in various fields.
A problem is to turn such expressive recursive definitions into an efficient
imperative code for their evaluation. One of the main approach is to re-
strict the stream expressions to interpret them as a temporal sequence of
values. Such sequential stream rely on a clock analysis to decide at what
time a new stream value must be produced. In this paper we present a de-
notational semantics of recursively defined sequential streams. We show
how an efficient implementation can be derived as guarded statements
wrapped into a single imperative loop.
Keywords: stream, clock, compilation of dataflow graphs.

1 Introduction

To simplify the formal treatment of a program, Tesler and Enea [1] have considered
single assignment languages. To accommodate loop constructs, they extend the concept
of variable to an infinite sequence of values rather than a single value. This approach
takes advantage of representing iterations in a “mathematically respectable way” [2]
and to quote [3]: “series expressions are to loops as structured control constructs are
to gotos”. Such infinite sequences are called streams and are manipulated as a whole,
using filters, transductors, etc.

This approach has led to the development of the stream data structure and the
dataflow paradigm, according to a large variety of circumstances and needs. Since
the declarative programming language Lucid [4], more and more declarative stream
languages have been proposed: Lustre [5] and Signal [6] in the field of real-time pro-
gramming, Crystal [7] for systolic algorithms, Palasm [8] for the programming of PLD,
Daisy [9] for VLSI design, 81/2 [10] for parallel simulation, Unity [11] for the design of
parallel programs, etc. Moreover, declarative definitions of streams can be a by-product
of the data-dependence analysis of more conventional languages like Fortran. In this
case, a stream corresponds to the successive values taken by a variable, e.g. in a loop.

1.1 Synchronous Streams

Synchronous streams in Lustre or Signal have been proposed as a tool for programming
reactive systems. In these two languages, the succession of elements in a stream is
tightly coupled with the concept of time: the evaluation order of the elements in a



stream is the same as the order of occurrence of the elements in the stream [12].
This is not true in Lucid, where the computation of element i in a stream A may
require the computation of an element j > i in A. In addition, synchronization between
occurrences of events in different streams is a main concern in Lustre and Signal. Lustre
and Signal rely on a clock analysis to ensure that synchronous expressions receive their
arguments at the same time (see [13] and [14] for a general introduction to synchronous
programming). For example, the expression A + B where A and B are streams, is
allowed in Lustre or Signal only if the production of the elements in A and B takes
place at the same instants (and so does the computation of the elements of A + B).
This requires that the streams A, B and A + B share a common reference in time:
a clock. Timed flow, synchrony, together with a restriction on stream expressions to
ensure bounded memory evaluation [15], make Lustre and Signal especially suitable
tools to face real-time applications.

1.2 Sequential Streams

Sequential streams in 81/2 share with the previous approach the idea of comparing the
order of occurrence of events in different streams. But, in contrast with the previous
approach, the expression A + B is always allowed in 81/2 emphasizing on a single
common global time. The instants of this time are called ticks. The 81/2 clock of the
stream is specified by the sequence of ticks where a computation must occurs to ensure
that, at each instant of the global clock, the relationship between the instantaneous
values of the streams A, B, and A+B is satisfied. Given streams A and B, it suffices
to recompute the value of A + B whenever a change happen to A or to B. The value
of a stream can be observed at any time and this value is the value computed at the
last change.

The idea of a clock in 81/2 corresponds more closely to the time where values
are computed rather than to the time when they must be consumed. In addition, a
stream value can be accessed at any time. This makes 81/2 unable to express real-
time synchronization constraints (for example, asserting that two streams must have
the same clock, like the synchro primitive in Signal), but makes more easy arbitrary
combinations of trajectories in the simulation of dynamical systems [16]. We call 81/2

streams sequential streams to stress that they have a strict temporal interpretation of
the succession of the elements in the stream (like Lustre and Signal and unlike Lucid)
without constraining to synchronous expressions.

1.3 Compiling Recursive Stream Equations into a Loop

The clock of a synchronous stream is a temporal predicate which asserts that the cur-
rent value of the stream is changing. The inference, at compile time, of the clock of
a stream makes the compiler able to check for consistencies (for example no temporal
shortcuts between stream definitions) and to generate straight code for the computa-
tion of the stream values instead of using a more expensive demand-driven evaluation
strategy.

Compiling a set of recursive stream equations consists in generating the code that
enumerates the stream values in a strict ascending order. The idea is just to wrap
a loop, that enumerates the ticks, around the guarded expression that computes the
stream values at a given tick. This is possible because we only admit operators on
streams satisfying a preorder restriction. The problem is to derive a static scheduling



of the computations and to generate an efficient code for the guards corresponding to
the clocks of the stream expressions.

Structure of the paper. In the following section, we sketch L a declarative language
on sequential streams. In section 3 we give a denotational semantics of L based on an
extension of Kahn’s original semantics for dataflow networks [17]. The main difference
between our semantics and that of Plaice [18] or Jensen [19] relies in a simpler presen-
tation of clocks. Moreover, our proposition satisfies a property of consistency between
clock and stream values: if the clock ticks, the corresponding stream value is defined.
Section 4 presents the translation of the clock definitions from the denotational se-
mantics to a boolean expression using C as the target language. The process involves
the resolution of a system of boolean expressions. Section 5 presents a benchmarks
corresponding to the performances of a 81/2 program compiled using the previous tools
compared to an equivalent hand-coded C program: it compares quite well. Finally,
section 6 examines related works.

2 Recursively Defined Sequential Streams

Conventions. We adopt the following notations. The value of a stream is a function
from a set of instants called ticks, to values called scalar values. We restrict ourself in
this paper to totally ordered unbounded countable set of ticks and therefore we use
N to represent this set ([20] and [21] show possible uses of a partially ordered set of
instants). The current value of a stream A refers to the scalar value at some tick t and
is denoted by A(t). The current value of a stream may be undefined, which is denoted
by nil. A sequential stream is more than a function from ticks to scalar values: we have
to represent the instants where a computation takes place to maintain the relationship
asserted by the definition of the stream. The set of ticks characterizing the activity
of the stream A is called its clock and written cl(A). For t ̸= 0, if t ̸∈ cl(A), then
A(t) = A(t − 1) because no change of value occurs and therefore the current value is
equal to the previous value. If 0 ̸∈ cl(A), then A(0) = nil. So, a stream A described
by > ; ; 1; ; 2; ; 3; . . . > means that A(0) = nil, A(1) = nil, A(2) = 1, A(3) = 1,
A(4) = 2, A(5) = 2, A(6) = 3, etc. The clock of A is the set cl(A) = { 2, 4, 6 . . . }. With
this notation, ticks are separated by “;” and a value is given only if the corresponding
tick is in the clock of the stream.

2.1 A Sequential Stream Algebra

The language L represents the core of 81/2 w.r.t the definition of streams. The set of
expressions in L is given by the grammar:

e ::= c | Clockn | x | e1 op e2 | $e | e1 when e2

where c ranges over integer and boolean constants (interpreted as constant streams), n
ranges over N, x over the set of variables Id and op over integer and boolean operations
such as +,∧,==, < etc.

Constant streams. Scalar constants, like 0 or true, are overloaded to denote also
a constant stream with clock reduced to the singleton {0} and current value always
equal to the scalar c: c(t) = c. A construct like Clockn represents a predefined boolean
stream with current value always equal to true and with an unbounded clock (the
precise clock is left unspecified).



Arithmetic expressions. An expression like e1 bop e2 extends the scalar operator
bop to act in a point-wise fashion on the elements of the stream: ∀t, (AbopB)(t) =
A(t) bopB(t). The clock of AbopB is the set of ticks t necessary to maintain this as-
sertion (in a first approximation, it is the union of the clocks of A and B, Cf. section
3).

Delay. The delay operator $, is used to shift “in time” the values of an entire stream.
It gives access to the previous stream value. This operator is the only one that does not
act in a point-wise fashion. Consequently, only past values can be used to compute a
current stream value, and references to past values are relative to the current one. So,
only the last p values of a stream have to be recorded where p is a constant computable
at compile time. This restriction enables a finite memory assumption and enforces a
temporal interpretation of the sequence of elements in a stream.

Sampling. The when operator is a trigger, corresponding to the temporal version of
the if then else construct. It appears also in Lustre and Signal. The values of the
stream A whenB are those of A sampled at the ticks where B takes the value true (Cf.
Tab. 1).

Table 1. Some examples of streams expression.

1 : > 1; ; ; ; ; . . . >
true : > true; ; ; ; ; . . . >

Clock 2 : > true; ; true; ; true; . . . >
1 when Clock 2 : > 1; ; 1; ; 1; . . . >

$1 : > ; ; ; ; ; . . . >
$(1 when Clock 2) : > ; ; 1; ; 1; . . . >

2.2 Recursively Defined Sequential Streams

A stream definition in L is given through an equation x = e where x is a variable and e
a stream expression. This definition can be read as an equation being satisfied between
x and the stream arguments of e.

A definition can be guarded to indicate that it is valid only for some ticks:

A@0 = 33, A = ($A+ 1) when Clock 0 .

The first equation is guarded by @0 which indicates that this equation is only valid
for the first tick in the clock of A (that is, the first tick of A is also the first tick of
the constant stream 33, which is the tick t = 0). The second equation is “universally”
quantified and defines the stream when no guarded equation applies. In this paper,
the only language we consider for temporal guards is @n where n is an integer which
denotes the nth tick in a clock. A L program is a set of such definitions (i.e. guarded or
non-guarded equations). For a given identifier x, there can only be a single universally
quantified equation and at most one equation quantified by n.



An example of a reactive system using sequential streams. A “wlumf” is a “crea-
ture” whose behavior (mainly eating) is triggered by the level of some internal state
(see [22] for such model in ethological simulation) More precisely, a wlumf is hungry
when its glycaemia subsides under the level value 3. It can eat when there is some food
in its environment. Its metabolism is such that when it eats, the glycaemia goes up to
the level 10 and then decreases to zero at a rate of one unit per time step. Essentially,
a wlumf is made of counters and flip-flop triggered and reset at different rates. The
operator {. . .} is used to group sets of logically related stream definitions but we shall
not be concerned with this aspect of the language for the rest of the paper .

System wlumf = {
hungry@0 = false
hungry = glycemia < 3

glycemia@0 = 6
glycemia = if eat then 10
else max(0, $glycemia−1)when(Clock 0) fi

eat@0 = false
eat = $hungry && environment.food

}

System environment = {
t@0 = 0
t = $t+ 1 when Clock − 4

food = (0 == (t%2))
}

Fig. 1. The dynamical behaviour of an artificial creature, the “wlumf”. The operator
% is for modulo and == for testing equality. So food is true or false depending on
the parity of the counter t which progresses randomly at an average rate of 1/4. The
operator && is the logical and.

3 A Denotational Semantics for L

For the sake of simplicity, we assume that guarded equations are only of the form
x@0 = e. Therefore, we replace a definition x@0 = e1, x = e2 by a single equation
x = e1 fby e2 where fby is a new operator waiting for the first tick in the clock of e1
and then switching to the stream e2. The denotational semantics of L is based on an
extension of Kahn’s original semantics for dataflow networks [17]. The notations are
slightly adapted from [23].

3.1 Stream Values and Clocks

The basic domain consists of finite and infinite sequences over the sets of integer
and boolean values extended with the value nil to represent the absence of a value:
ScValue = Bool ∪ Int ∪ {nil} and Value = ScValue∗ ∪ ScValue∞. The operation
“.” denotes the concatenation of finite or infinite sequences. In Value, u approximates
v, written u ≼ v if v = u.w. This order is chosen against the more general Scott order
(e.g. used for defining domains of functions [23]) in accordance with our interpretation
of the succession of elements in the stream as the progression in time of the evaluation
process.



A first idea to describe timed stream is to associate to the sequence of values, a
sequence of boolean flags telling if an element is in the clock of the stream (flag true: ⊤)
or not (flag false: ⊥). In other words, a sequence of booleans {⊥,⊤} is used to represent
cl(). For example, the sequence representing the clock of Clock 2 is: ⊤ ⊥ ⊤ ⊥ ⊤ . . .
Thus: ScClock = {⊥,⊤} and Clock = ScClock∗ ∪ScClock∞. We choose to com-
pletely order ScClock by ⊥ < ⊤. The motivation to completely order the domain
ScClock is the following: there is no particular reason for a stream definition eval-
uating into a sequence of undefined values, not to have a defined clock (with no true
values). Moreover, if we cannot evaluate the current value of a clock, we obviously can-
not evaluate the current value of the corresponding stream and this is observationally
equivalent to the value ⊥ in the clock sequence.

By convention, if s is a Clock, then t ∈ s means s(t) = ⊤ and t ̸∈ s means
s(t) = ⊥. We extend the logical or ∨ by ∨ and the logical and ∧ by ∧ to operate
point-wise on Clock: that is, (s ∧ s′)(t) = s(t) ∧ s′(t) and (s ∨ s′)(t) = s(t) ∨ s′(t)).
The ordering of clocks is also the prefix ordering.

In the work of Plaice [18] or Jensen [19], the definition of the clock of a stream is
loosely coupled with the value of the stream, in the following sense: a tick can be in
the clock of a stream while the current value of the stream is undefined. The simplest
example is the expression $e which has the same clock of e but with an undefined value
for the first tick in cl(e). On the contrary, we ask for a denotational semantics that
ensures that:

t ∈ cl(e) ⇒ e(t) ̸= nil (1)

A property like (1) is natural and certainly desirable but cannot be directly achieved.
This is best shown on the following example. Consider the stream defined by:

A = 1 fby (($A+ 1) when (Clock 0)) (2)

which is supposed to define a counter increasing every ticks. But, if we assume property
(1), then cl(A) can be proved to be {0}. As a matter of fact, 0 ∈ cl(A) because 0 ∈ cl(1)
and obviously the first tick in cl(e) is also in cl(efbye′). Furthermore, a delayed stream
$e cannot have a defined value the first time e has a defined value. So, using property
(1), it comes that 0 ̸∈ cl($A). Furthermore, the value of e when clock0 is defined only
when e has a defined value. So, again using property (1), we infer that

cl(A) = ⊤.Ok(cl($A+ 1)) = ⊤.Ok(cl($A)) (3)

where the predicate Ok tells if the clock has already ticked: Ok(⊥.s) = ⊥.Ok(s) and
Ok(⊤.s) = True (the sequence True is the solution of the equation True = ⊤.T rue).
The clock of $A depends of the clock of A and more precisely, except for the first tick
in cl(A), we have cl($A) = cl(A). So, for t ̸= 0, equation (3) rewrites in:

t ̸= 0, cl(A)(t) = Ok(cl(A))(t) (4)

Equation (4) is a recursive equation with solutions in Clock. This equation admits
several solutions but the least solution, with respect to the structure of Clock, is
cl(A) = ⊤.False (where False = ⊥.False). This is a problem because we expect the
solution True.

The collapse of the clock is due to the confusion of two predicates : “having a
definite value at tick t” and “changing possibly of value at tick t”. Then, to develop
a denotational semantics exhibiting a property similar to (1), our idea is to split the
clock of a stream A in two sequences D(A) and C(A) with the following intuitive



interpretation: D(A) indicates when the first non nil value of A becomes available
for further computations and C(A) indicates that some computations are necessary to
maintain the relationship asserted by the stream definition.

3.2 Semantics of Expressions

We call environment a mapping from variables to Clock or Value. An element ρ of
Env is a mapping Id → Clock×Clock×Value. Such an element really represents
three environments linking a variable to the two sequences representing its clock and
the sequence representing its value.

The semantics of L expressions is defined by the three functions:

D[[ ]], C[[ ]], V[[ ]] : Exp → Env → Value .

The reason of using an element of Env instead of an environment, is the value of an
expression involving variable may depend of the clocks D[[ ]] and C[[ ]] of this variable.
By convention, if ρ ∈ Env, then ρd, ρc and ρv represents the components of ρ, that is:
ρ(x) = (ρd(x), ρc(x), ρv(x)). In addition, we omit the necessary injections between the
basic syntactic and semantic domains when they can be recovered from the context.

A constant c denotes the following three sequences:

D[[c]]ρ = True, C[[c]]ρ = ⊤.False, V[[c]]ρ = c∞,

where c∞ denotes an infinite sequence of c’s, i.e. c∞ = c.c∞. The intuitive meaning is
that the current values of a constant stream are available from the beginning of time,
a computation being needed only at the first instant to build the initial value of the
constant stream and the current values being all the same. Some other constants are
needed if we want to have streams with more than singleton clocks. This is the purpose
of the constant stream Clockn which has an unbounded clock:

D[[Clockn]]ρ = True, C[[Clockn]]ρ = dev(n), V[[Clockn]]ρ = True,

where dev(n) is some device computing a boolean sequence depending on n, beginning
by ⊤ and with an unbounded number of ⊤ values. Variables are looked up in the
corresponding environment:

D[[x]]ρ = ρd(x), C[[x]]ρ = ρc(x), V[[x]]ρ = ρv(x) .

The predefined arithmetic and logical operators are all strict:

D[[e1 bop e2]]ρ = D[[e1]]ρ ∧ D[[e2]]ρ

C[[e1 bop e2]]ρ = D[[e1 bop e2]]ρ ∧ (C[[e1]]ρ ∨ C[[e2]]ρ)
V[[e1 bop e2]]ρ = V[[e1]]ρ bop V[[e2]]ρ

that is, the value of e1 bop e2 can be computed only when both e1 and e2 have a value.
This value changes as soon as e1 or e2 changes its value, when both are defined. Notice
that the definition of C[[e]]ρ takes the form D[[e]]ρ∧(. . .) in order to ensure the property:

∀t, C[[e]]ρ(t) ⇒ D[[e]]ρ(t) (5)

(Cf. section 3.3). For a delayed stream, the equations are:

D[[$e]]ρ = delD(D[[e]]ρ), C[[$e]]ρ = D[[$e]]ρ ∧ C[[e]]ρ
V[[$e]]ρ = delV (nil, nil;V[[e]]ρ, C[[e]]ρ)



where delD and delV are auxiliary functions defined by (s, s′′ are sequences and p, p′

are scalar values ̸= nil):

delD(⊥.s) = ⊥.delD(s)

delD(⊤.s) = ⊥.s

delV (nil, nil; v.s,⊥.s′) = nil.delV (nil, nil; s, s′)

delV (nil, nil; v.s,⊤.s′) = nil.delV (v, v; s, s′)

delV (p, p′; v.s,⊥.s′) = p.delV (p, p′; s, s′)

delV (p, p′; v.s,⊤.s′) = p′.delV (p′, v; s, s′)

In other words, if t is the first tick for which A has a defined value, then the value
of $A becomes available at t + 1. The computation needed for $A takes place at the
same instants, as for A, except the first instant, and the values are shifted in time
accordingly.
The sampling operator is specified by:

D[[e1 when e2]]ρ = D[[e1]]ρ ∧ D[[e2]]ρ

C[[e1 when e2]]ρ = D[[e1 when e2]]ρ ∧ (C[[e2]]ρ ∧ V[[e2]]ρ)
V[[e1 when e2]]ρ = trigger(nil;V[[e1]]ρ, C[[e1 when e2]]ρ)

where trigger is defined as:

trigger(p; v.s,⊥.s′) = p.trigger(p; s, s′)

trigger(p; v.s,⊤.s′) = v.trigger(v; s, s′)

The value of the sampling operator can be defined only when both operands are defined.
The clock is defined by the (sub)clock of e2 when e2 takes the value ⊤.
Finally, the fby construct takes the first defined element in its first argument and then
“switches” to its second argument:

D[[e1 fby e2]]ρ = D[[e1]]ρ

C[[e1 fby e2]]ρ = D[[e1]]ρ ∧ fbyC(C[[e1]]ρ, C[[e2]]ρ)
V[[e1 fby e2]]ρ = fbyV (C[[e1]]ρ,V[[e1]]ρ,V[[e2]]ρ)

where:

fbyC(⊥.s, b.s′) = ⊥.fbyC(s, s′)

fbyC(⊤.s, b.s′) = ⊤.s′

fbyV (⊥.w, v.s, v′.s′) = v.fbyV (w, s, s′)

fbyV (⊤.w, v.s, v′.s′) = v.s′

3.3 Semantics of Programs

The semantics of a set of recursive equations {. . . , xi = ei, . . .} is composed of an
element ρ ∈ Env assigning domain, clock and values to each stream variables xi in the
program. It can be computed as the least fixed point of the function

F (ρ) = [. . . , xi 7→ (D[[ei]]ρ, C[[ei]]ρ, V[[ei]]ρ), . . .]



where [. . . , x 7→ v, . . .] stands for an environment which maps x to v. All auxiliary func-
tions involved are monotone and continuous. Then, the fixed point can be calculated
in the standard way as the least upper bound of a sequence of iterations Fn starting
from the empty environments. We write (D(x),C(x),V(x)) for the value associated to
x in the meaning of a program.

The simple form of the semantics may accommodate several variations to specify
other stream algebra. The affirmation (5) holds for any environment ρ, and then it
holds also for the fixpoint:

∀t, C(e)(t) ⇒ D(e)(t) (6)

A proof by induction on the structure of an expression shows that a property similar
to (1) holds between C[[e]] and V[[e]] for any expression e in a program: ∀t, C(e)(t) ⇒
V(e)(t) ̸= nil. Another result will be extremely useful for the implementation. Once
defined, the current value of a stream may change on tick t only if the clock of the
stream takes the value ⊤ at t:

∀t, D(e)(t− 1) ∧V(e)(t− 1) ̸= V(e)(t) ⇒ C(e)(t) (7)

the proof is by induction on terms in L.

Example of a counter. As an example, we consider the semantics of the clock of the
program (2). We assume that dev(0) = True. The semantics of the counter A is defined
by the following equations:

D(A) = D(1 fby (($A+ 1) when Clock 0)) = D(1) = True

C(A) = C(1 fby (($A+ 1) when Clock 0))

= fbyC(C(1),C(($A+ 1) when Clock 0))

= fbyC(⊤.False,D(($A+ 1 when Clock 0) ∧ (C(Clock 0) ∧ True)) .

We have D(($A+1) when Clock 0) = D($A+1)∧D(Clock 0) = D($A+1) = D($A)∧
True = D($A) = ⊥.T rue because D(A) = True. So, as expected:

C(A) = True ∧ fbyC(⊤.False,⊥.T rue ∧ (C(Clock 0) ∧ True))

= fbyC(⊤.False,⊥.T rue) = True .

4 Compiling Recursive Streams into a Loop

We implement a sequence s as the successive values of one memory location associated
with (the current value of) s. We emphasize that successive means here successive in
time. The idea is to translate a set of equations {. . . , x = e, . . .} into the imperative
program (in a C like syntax):

for(;;) { ...; xd = ed; xc = ec; xv = ev; ...; }
where xd is associated to the current value of D(x), etc. This implementation is far
from the representation needed for Lucid (or for the lazy lists of Haskell) where several
elements of a sequence can be present at the same time in the memory so that a garbage
collector is involved to remove useless elements from the memory.

With the denotational semantics defined above, this representation implies the up-
date of the three memory locations at each tick (i.e. for each element in the sequence).
However, property (6) implies that it is sufficient to update the memory location rep-
resenting C(e) only when D(e)(t) evaluates to true. And property (7) implies that is



is sufficient to evaluate V(e)(t) when C(e)(t) evaluates to true. These two conditions
are sufficient but not necessary (e.g. Clock 0 has an unbounded clock but its current
value is always ⊤). So, a L program can be translated into the following C skeleton:

for(;;) { ...; if(xd = ed) { if(xc = ec) { xv = ev; }} ...; }
However, translating a set of definitions into imperative assignments is not straight-
forward because of the recursive definitions: how to evaluate fixed points of sequences
expressions without 1) handling explicitly infinite sequences and 2) iterations. In the
rest of the section, we will build the tools that are necessary for this translation.

4.1 LR(1) Functions

We say that a function f : ScValue×Valuen → Value is LR(1) if:

f(m; v1.s1, . . . , vn.sn) = f ′(m, v1, . . . , vn) . f(f
′′(m, v1, . . . , vn); s1, . . . , sn)

where f ′ and f ′′ are functions from scalar values to scalar values: f ′, f ′′ : ScValuen+1 →
ScValue. Being LR(1) means that computing f on sequences can be a left to right pro-
cess involving only computation on scalars, with only one memory location, assuming
that the arguments are also provided from left to right.

Suppose F is LR(1); to solve the equation v.s = F (m; v.s) on sequences (v and s
are unknown, m is a parameter) it is then sufficient to solve the equation

v = F ′(m; v) (8)

on scalars and then to proceed with the resolution of s = F (F ′′(m, v); s). Thus we have
to consider the two sequences:

vi = F ′(mi; vi), mi = F ′′(mi−1, vi−1), i ≥ 1

obtained by enumerating the successive solutions of (8) starting from an initial value
m0. The sequence of vi’s is obviously a solution of s = F (s) and moreover, it is the least
solution for ≼. The equation (8) is called the I-equation associated with the equation
s = F (s) (I stands for “instantaneous”). It is easy to show that all the functions
involved in the semantics of an expression given in section 3 are LR(1). This provides
the basis for the implementation of declarative sequential streams into an imperative
code.

4.2 Guarded LR(1) Semantic Equations

It is easy to rephrase the semantic definition of each L construct given in section 3 to
make explicit properties (6), (7) and LR(1). The semantic equations are rephrased in
Fig. 2 but due to the lack of place, we omit to rephrase some auxilliary functions. We
have explicitly stated the values for a tick t in order to give directly the expressions ed,
ec and ev corresponding to C skeleton. The notation s(t) refers to the tth element in
sequence s, where element numbering starts 0. Semantics of systems remains the same.
We will omit the tedious but straightforward proof by induction on terms to check that
the two semantic definitions compute the same thing.



for commodity, let D[[e]]ρ(−1) = ⊥, C[[e]]ρ(−1) = ⊥, V[[e]]ρ(−1) = nil
for any expression e and environment ρ, and assume t > −1 below:

D[[c]]ρ(t) = ⊤ C[[c]]ρ(t) = (t == 0) V[[c]]ρ(t) = c

D[[Clockn]]ρ(t) = ⊤ C[[Clockn]]ρ(t) = dev(n, t) V[[Clockn]]ρ(t) = ⊤
D[[x]]ρ(t) = ρ(x)(t) C[[x]]ρ(t) = ρ(x)(t) V[[x]]ρ(t) = ρ(x)(t)

D[[e1 bop e2]]ρ(t) = D[[e1]]ρ(t) ∧ D[[e2]]ρ(t)
C[[e1 bop e2]]ρ(t) = if D[[e1 bop e2]]ρ(t) then C[[e1]]ρ(t) ∨ C[[e2]]ρ(t) else ⊥
V[[e1 bop e2]]ρ(t) = if C[[e1 bop e2]]ρ(t) then V[[e1]]ρ(t) bop V[[e2]]ρ(t)

else V[[e1 bop e2]]ρ(t− 1)

D[[$e]]ρ(t) = D[[e]]ρ(t− 1)
C[[$e]]ρ(t) = if D[[$e]]ρ(t) then C[[e]]ρ else C[[$e]]ρ(t− 1)
V[[$e]]ρ(t) = if C[[$e]]ρ(t) then delV (nil, nil;V[[e]]ρ, C[[e]]ρ)(t) else V[[$e]]ρ(t− 1)

D[[e1 when e2]]ρ(t) = D[[e1]]ρ(t) ∧ D[[e2]]ρ(t)
C[[e1 when e2]]ρ(t) = if D[[e1 when e2]]ρ(t) then C[[e2]]ρ(t) ∧ V[[e2]]ρ(t) else ⊥
V[[e1 when e2]]ρ(t) = if C[[e1 when e2]]ρ(t) then V[[e1]]ρ(t) else V[[e1 when e2]]ρ(t− 1)

D[[e1 fby e2]]ρ(t) = D[[e1]]ρ(t)
C[[e1 fby e2]]ρ(t) = if D[[e1 fby e2]]ρ(t) then fbyC(C[[e1]]ρ, C[[e2]]ρ)(t) else ⊥
V[[e1 fby e2]]ρ(t) = if C[[e1 fby e2]]ρ(t) then fbyV (C[[e1]]ρ,V[[e1]]ρ,V[[e2]]ρ)(t)

else V[[e1 fby e2]]ρ(t− 1)

Fig. 2. Semantics of L in an explicit LR(1) form.

4.3 I-system Associated with a Program

Each equation x = F (x) in a L program is directly interpreted through the semantics
of an expression, as three equations defining D[[x]], C[[x]] and V[[x]], the images of x
by the program meaning. Each right hand-side, written respectively Fd[x], Fc[x] and
Fv[x], corresponds to a LR(1) function and therefore can be decomposed into the F ′ and
F ′′ forms. In order to implement the various environments simply as a set of memory
locations, we write xd, xc and xv for the current value of D[[x]], C[[x]] and V[[x]] and
xmd, xmc and xmv for the first argument in F ′. The three I-equations associated with
x = F (. . .) can then be rephrased as:

xd = F ′
d[x](xmd; . . .), xc = F ′

c[x](xmc; . . .), xv = F ′
v[x](xmv; . . .) .

For each variable in the program there is one equation defining xd, one for xc and one
for xv. The expression defining xc has the form: if xd then . . . else xmc and the
expression defining xv follow the pattern if xc then . . . else xmv, except for the
constants. The variables xmc and xmv are in charge to record the value xc or xv at the
previous tick (or equivalently, they denote the one-tick shifted sequence that appears
in the right hand side of the semantic equations). The expressions “. . . ” that appear
in the if then else expression are also LR(1) functions of the sequences xmd, xmc,
xmv, xd, xc and xv. Thus they may require some additional scalar variables x′

m.

The set of I-equations associated with a program is called the I-system associ-
ated with the program. Suppose we can solve an I-system, then a sketch of the code
implementing the computation of a L program is given in Fig. 3.



data declarations corresponding to the xd, xc, xv’s

data declarations corresponding to the xmc, xmv’s

for(;;) {
solve the I-system and update the xd, xc, xv’s

update the xmd, xmc, xmv’s according to the function F ′′
...[x]

}

Fig. 3. Sketch of the code implementing the computation of a L program.

4.4 Solving Efficiently an I-system

The problem of computing the least fixed point of a set of equations on sequences has
now be turned into the simpler problem of computing the least solution of the I-system,
a set of equations between scalar values. A straightforward solution is to compute it by
fixed point iterations. If l is the number of expressions in the program, the iterations
must become stationary after at most l steps, because the scalar domains are all flat.
The problem is that this method may require l steps (l can be large) and that each
step may require the computation of all the l expressions in the program.

Consider the dependence graph of an I-system: vertices correspond to variables
and an edge from x to y corresponds to the use of x in the definition of y. This graph
may be cyclic if the given definitions are recursive. For instance in a@0 = b, a = $a or b
which defines a signal a always true after the first true value in b, C[[a]] depends of C[[a]]
(and also of C[[b]] which imposes its clock).

Without recursive equations, solving the I-system is easily done by simple substitu-
tions: a topological sort can be used to order the equations at compile time. Non strict
operators, like the conditional expression if...then...else..., can rise a problem be-
cause they induce a dependence graph depending on the value of the argument, value
which is known only at evaluation time. Most of the time, it is possible to consider the
union of the dependence graphs without introducing a cycle (which enables a static
ordering of the equations). For the remaining rare cases, more sophisticated techniques,
like conditional dependence graphs [24], can be used to infer a static scheduling. Solv-
ing the sorted system reduces to compute, in the order given by the topological sort,
each right hand side and update the variables in the left hand side. In addition, the
environment is implicitly implemented in the xd, xc, xv, . . . variables.

For cyclic dependence graphs, the vertices can be grouped by maximal strongly
connected components. The maximal strongly components form an acyclic graph cor-
responding to a partition of the initial I-system into several sub-systems. We call this
graph the c-graph of the system (c stands for “component”). A root in the c-graph is
a minimal element, that is, a node without predecessor (because c-graphs are acyclic,
at least a root must exist). Each root of the c-graph represents a valid sub-system of
the I-system, that is, a system where all variables present are defined (this is because
roots are minimal elements). The solution of the entire I-system can be obtained by
solving the sub-systems corresponding to the roots, propagating the results and then
iterating the process. The processing order of the components can be determined by a
topological sort on the c-graph.

So, we have turned the problem of solving an I-system into the problem of solving
a root, that is: solving a subsystem of the initial system that corresponds to a maximal
strongly connected component without a predecessor. In a root, we make a distinction



between two kinds of nodes: the V -nodes corresponding to expressions computing the
current value of some stream and the B-nodes generated by the computation of the
current boolean value for the clock of some stream. It can be seen that if there is a cycle
between V -nodes, there is also a corresponding cycle involving only B-nodes (because
the computation of D[[e]] and C[[e]] involves the same arguments as the computation of
V[[e]] for any expression e).

First, we turn our attention on cycles involving only B-nodes: they correspond to
λx.x, ∧, ∨ and if then else operations between ScClock. We assume that the
root is reduced, that is, each argument of a B-node is an output of another B-node in
the root (e.g., expressions like ⊤∧ x are reduced to x before consideration). Then, the
output of any node in the root reduces to ⊥. This is because a B-node op is strict (i.e.
op(. . . ,⊥, . . .) = ⊥). Consequently, the fixed point is reached after one iteration.

Now, we turn our attention on cycles involving only V -nodes. Circular equations
between values result also in circular equations between domains and clocks. The as-
sociated clock then evaluates to false so there is no need to compute the associated
value (which therefore remains nil).

A cycle involving both V -nodes and B-nodes is not possible inside a reduced root
because there is no operator that promotes a clock into a value (clocks are hidden
objects to the programmer, appearing at the semantical and implementation levels
only).

5 Evaluation

The approach described in this paper has been fully implemented in the experimen-
tal environment of the 81/2 language [25–27] (available at ftp://ftp.lri.fr/LRI/

soft/archi/Softwares/8,5). The current compiler is written in C and in CAML. It gen-
erates either a target code for a virtual machine implemented on a UNIX workstation
or directly a straight C code (no run-time memory management is necessary).

To evaluate the efficiency of our compilation scheme, we have performed some tests.
We have chosen to compare the sequential generated C code from the 81/2 equations
with the hand-coded corresponding C implementation (because the application domain
of 81/2 is the simulation of dynamical systems, tests include a standard example of
the numerical resolution of a partial differential equation through an explicit scheme
and an implementation of the Turing’s equations of diffusion-reaction). We details the
results of the benchmark for the numerical resolution of a parabolic partial differential
equation governing the heat diffusion in a thin uniform rod (Cf. Tab. 2).

The mean execution time corresponding to the compiler generated code without
optimization is about 2.9 times slower than the hand-written one. The slight variation
of the ratio with the number of iterations (which is the tick at which the program
stops) are explained by a cache effect [28].

Four optimizations can be made on the generated C code to improve the perfor-
mances. The first two concern the management of arrays (array shifting instead of
gather/scatter and array sharing instead of copying for the concatenation) and does
not interfere with the stream compilation scheme.

The last two optimizations have to do with the management of streams. For each
delay $F appearing in the 81/2 code, a copy has to be performed. The current value
of a stream F is copied as many times as F is referenced by the delay operator. So,
the sharing of delay expressions removes the useless copies. Moreover, the copy of
expressions referenced by a delay operator (xd into xmd, etc.) can be time-consuming,



Table 2. The heat diffusion resolution. Each element represents the ratio of the gen-
erated code execution time by the hand-written one. They both have been compiled
using the GNU C compiler with the optimization option set -O. The evaluation has
been performed on a HP 9000/705 Series under the HP-UX 9.01 operating system.
The first number represents the ratio without high-level optimizations, the second with
the four optimizations sketched. The ratio does not depend of the number of iterations,
i.e. the number of stream elements that are computed, which shows the strict temporal
nature of the stream evaluation scheme.

Number of iterations →
100 500 1000 5000 10000

Size of the rod ↓
10 5.66 5.13 4.87 4.96 4.93

3.89 3.59 3.65 3.70 3.66

100 2.27 2.17 2.17 2.15 2.15
1.34 1.26 1.26 1.25 1.25

1000 2.80 2.76 2.76 2.76 2.76
1.10 1.09 1.08 1.08 1.08

10000 2.62 2.60 2.61 2.60 2.61
1.01 1.01 1.01 1.00 1.01

especially when large arrays are manipulated. However, the copy of the value of a
stream F is not required, under some conditions (a similar optimization is described in
Lustre [29]). If these conditions are not met, it is however possible to discard the delay
copy. But it is necessary to have a temporary variable associated with the stream $F .
This kind of delay optimization consists in the definition of a single variable for each
of the streams F and $F and to alternatively let it play the role of F or $F (a similar
optimization is proposed in Sisal [30]).

The second number in Tab. 2 underlines the impact of these improvements: the
mean ratio decreases to 1.5. Actually, it goes as far as 1.1 if we do not take into
account the tests for which the rod has less than 100 elements, that is a size such that
control structures are not negligible. However, it must be noted that there is a large
room for further optimizations. More benchmarks can be found in [28].

6 Conclusion

Denotational semantics of recursive streams goes back to [17]. Equivalence between the
denotational semantics and the operational behavior of a dataflow networks is studied
in the work of [31]. Denotational semantics of timed flow begins in the framework of
Lustre with [32, 18]. A very general framework has been formulated in [33] but its
sophistication makes its use uneasy. The work of Jensen [19] formalizes clock analysis
in terms of abstract interpretation and extends the works of Plaice and Bergerand.
We should mention the work of Caspi and Pouzet [34]: the clock calculus there is
different than most other in not using fixpoints. Our proposal fills a gap left open in
these approaches by providing a denotational semantics of clock tightly coupled with
the denotational semantics of values. Notice that there is a great difference between
our handling of time and the synchronous concept of time in reactive systems: our
clocks indicates when the value of a stream has to be recalculated as a result of other



changes in the system, while clocks in reactive systems tells when the value of a signal
is present.

If D(x) or C(x) reduces to False, there is no value produced in the sequence
V(x). This situation is a kind of deadlock. Deadlocks detection in declarative stream
definitions are studied in [35, 36] and for lazy lists in [37]. Thanks to the ROBDD [38]
representation of clocks, it is possible to detect at compile-time some cases of such
definitions. Clock reducing to True can also be detected and their implementation
optimized. Signal has developed a sophisticated clock calculus to solve clock equations
(dynamical system over Z/3Z and Grobner bases). This approach is powerful but
computation consuming. Its extension to our own stream algebra is not obvious and
must be carefully studied.

The transformation of stream expressions into loops is extensively studied in [3].
The expressions considered do not allow recursive definitions of streams. Our propo-
sition handles this important extension as well as “off-line cycle” expressions and is
based upon the formal semantics of the expressions. We share the preorder restriction,
i.e.: the succession of stream elements must be processed in time ascending order (this
is not the case in Lucid). We focus also on unbounded streams and therefore we do not
consider operations like concatenation of bounded streams. The work in [39] considers
the static scheduling of a class of dataflow graphs used in digital signal processing. The
translation of a (recursive) stream definition into a (cyclic) dataflow graph is straight-
forward. Their propositions apply but are limited to the subset of “on-line” programs
[40]. This restriction excludes the sampling operator and requires the presence of, at
least, one delay on each cycle of the dataflow graph.

The benchmarks performed validate the approach used in the compilation of the
clock expressions although all the needed optimizations are not currently implemented.
When made by hand, the ratio between the C version and the 81/2 version lies between
1.1 and 2.3 (in favor of C) for the benchmark programs. As an indication, the hand-
written C program for the Turing example of diffusion-reaction has 60 lines of code
whereas the 81/2 program is only 15 lines long (which are the straight transcription
of the mathematical equations governing the process). Thus the price to pay for high
expressivity (declarative definition of high-level objects) is not always synonym of low
efficiency provided that some carefully tuned optimization techniques are used. Never-
theless, the cost of the control structures cannot be neglected and several optimizations
must be performed [27].
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