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Wepropose an approach formeasuring seismic attenuation
at ultrasonic frequencies on laboratory-scale samples. We
use aGaussian filter to select a bandwidth of frequencies to
identify the attenuation in a small window and, by moving
the window across the frequency content of the data, we
determine the frequency-dependent attenuation function.
We assess the validity of the method with 3D numerical
simulations of seismic wave propagation across different
sample geometries, using free surface boundary conditions.
We perform the simulations using viscoelastic media under
various seismic attenuation models. Our numerical results
indicate that we can successfully recover the representa-
tive viscoelastic attenuation parameters of the media, re-
gardless of the sample geometry, by processing the seismic
signal recorded either within the volume or at the bound-
aries. Due to the equipartition phenomenon, the energy of
S-waves is consistently higher in seismic records than that
of P-waves. Therefore, we systematically recover the atten-
uating properties of S-waves in the medium. We also con-
duct experiments of seismic wave propagation on samples
of aluminum and Fontainebleau sandstone to validate our
approach with real data. The quality factor of the S-wave
Qs in the aluminummedium increases from300 to 7000 be-
tween 60 kHz and 1.2 MHz. The Fontainebleau sandstone,
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which ismore attenuating, exhibits aQs that increases from
200 at 60 kHz to 1000 at 1.2 MHz. With our approach, we
are not only able to recover the attenuation property, but
also identify the frequency-dependent attenuation model
of the samples. Our method allows for seismic attenuation
recovery at ultrasonic frequencies in low-attenuating me-
dia.
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1 | INTRODUCTION

The amplitude of a propagating seismicwave decays due to geometrical spreading, scattering, and intrinsic attenuation.
Attenuation is of particular interest in seismic datasets acquired in porousmedia (see Dasgupta and Clark (1998); Quan
and Harris (1997) for attenuation determination at a field scale) as it relates to physical properties of rocks such as
porosity, density of fractures, and saturation (Pang et al., 2019). The attenuation is frequency-dependent (Müller et al.,
2010; Gurevich and Pevzner, 2015; Carcione, 2007) and is usually associated with the dimensionless quality factor
(Q-factor) describing the ability of a medium to propagate a wave (Knopoff and MacDonald, 1958).

Viscoelastic materials are described using two components: an elastic one (represented by the elastic modulus)
that does not attenuate, and a damping one (represented by the viscous modulus) that causes attenuation. Multiple
viscoelastic models exist to cover the different attenuation behaviour of materials (Biot, 1954; Golden and Graham,
1988; Carcione, 2007). For porous rocks, Biot (1956a,b) developed poroelastic approaches that describe wave propa-
gation in an elastic porousmatrix filled with fluids, and in this case the intrinsic attenuation of themedium is defined as
the dissipation of the wave due to friction at the fluid/solid interface. Although poroelastic models are more accurate
in modeling wave propagation in rocks, they can be approximated by viscoelastic models (Bardet, 1992; Morochnik
and Bardet, 1996), which are easier to consider numerically, even though they may lead to inaccuracy near the bound-
aries (Geertsma and Smit, 1961). This is our choice for this work.

The frequency-dependent attenuation or Q-factor of a natural rock can be studied at the laboratory scale through
different methods (see Jackson (1993) and Subramaniyan et al. (2014) for reviews) where various external conditions
are applied to generate propagating waves on a wide range of frequencies, from a few Hz to MHz. At relatively
low frequencies (from 10 Hz to 100 kHz), the resonant bar method - also called free oscillations method - excites
eigenmode oscillations (Norris and Young, 1970) whose characteristics depend on the attenuation of the sample.
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This experimental method allowed for instance to highlight changes in attenuation with humidity content in air (Pandit
and King, 1979) or fluid saturation (Winkler and Nur, 1979, 1982) in Berea sandstone. In Fontainebleau Sandstone,
Bourbie and Zinszner (1985) measured the attenuation depending on the frequency and water saturation up to 10
kHz; they found for example a Q-factor of 100 in dry conditions around 10 kHz. Another experimental method at low
frequencies is the method of forced oscillations: it consists in imposing sinusoidal mechanical stress on a sample and
measuring the associated mechanical strain (Spencer Jr., 1981). The shift between stress and strain relates to Q-factor
of the samples. This technique is used up to 100 kHz for high attenuation values (Q-factor < 300) (see Tisato and
Madonna (2012); Tisato et al. (2014); Pimienta et al. (2015b, 2017) for measurements on sandstones).

For studies at ultrasound frequencies (around 1 MHz), the spectral ratio technique is largely used for high at-
tenuation samples (Q-factor < 200 in general): it consists in computing a relative spectral amplitude of the signal’s
study between a reference sample and the one of interest (Winkler and Plona, 1982) or between an initial and a final
state of the sample (Johnston et al., 1979; Toksöz et al., 1979). The spectral ratio technique allows the study of the
attenuation in a frequency range fixed by the frequency bandwidth of the seismic pulsed source. It is used in all kind
of materials such as natural rocks (Winkler and Plona, 1982; Johnston et al., 1979; Toksöz et al., 1979; Adam et al.,
2009), synthetic media (Bourbié and Nur, 1984), loose (non-consolidated) materials (Molyneux and Schmitt, 2000),
soils (Leong et al., 2004) or highly heterogeneous materials (Molero et al., 2010). Another approach is the reflection
method that analyzes the amplitudes of reflected waves within samples at ultrasonic frequencies as well to determine
the attenuation; this method is used for example by Best et al. (2007) and Agersborg et al. (2008) in sandstones or
carbonates at 750 kHz pulse-frequency in moderately low Q-factor materials (< 100). One difficulty in studying the
attenuation is also that the attenuation model of the material with respect to frequency is unknown and should be
recovered in addition to the physical viscous properties. In the aforementioned references, the attenuation model
is usually assumed to be known apriori; however with the method we propose, we show that we can identify the
attenuation model for the investigated frequency bandwidth.

In our study, we propose an approach to recover the frequency-dependent attenuation of low attenuation mate-
rials (attenuation β < 10 000 Np s−1), such as salt (Manthei et al., 2006), volcanic rocks (Rao et al., 2002) or dry pure
sedimentary rocks (Bourbie and Zinszner, 1985) at a laboratory scale (around decimeter-sized samples). The additional
interest of recovering a representative attenuation model and parameters with respect to frequency may be for imag-
ing purposes, such as quantitative inversion in viscoelastic media, where one needs initial guess (Faucher and Scherzer,
2023). We describe in Section 2 the theoretical framework of the study in the frequency domain where a mechanical
wave is propagating and attenuated. In Section 3, we propose amethod to recover the frequency-dependent viscoelas-
tic parameters using the multiple wave reflections from the free-surface boundaries at every face of the sample. After
some time, the beam spreading is no longer visible in the signals due to multiple reflections. Also, these multiple
reflections cause equipartition phenomenon, where P- and S- waves energies are partitioned in favor of the S-waves.
We then use a Gaussian filter to recover the attenuation with frequency, independently of the source wavelet because
we employ the relative amplitude decay in the seismogram. In Section 4, the method is tested on 3-D viscoelastic
numerical experiments, that is, considering synthetic data. In Section 5 we carry out laboratory experiments in an
aluminum cube sample and in a dry Fontainebleau sandstone cylinder, where we recover the attenuation properties
from the measurements of the global wavefield at ultrasound frequencies, between 60 kHz and 1.2 MHz. Finally,
we discuss the experimental data in the frame of the theoretical and numerical viscoelastic modeling in Section 6 and
give our conclusions in Section 7.
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2 | VISCOELASTIC WAVE PROPAGATION IN ISOTROPIC MEDIA

In this section we provide the mechanical wave equations that are considered for viscoelastic media. We consider the
time-harmonic formulation of the wave problems, that is, we work in the frequency domain. This approach is more
convenient to handle the frequency-dependent attenuation behaviour of materials (Carcione, 2007).

2.1 | Time-harmonic wave propagation

With the time-harmonic formulation, the time-domain vector displacement field û(x, t ) (given in [m] with x the spatial
position and t the time in [s]) and stress tensor σ̂ (x, t ) (in [Pa]) are considered in the form of,

û(x, t ) = u(x,ω ) · eiωt , (1a)
σ̂ (x, t ) = σ (x,ω ) · eiωt , (1b)

with the harmonic pulsation ω = 2πf where f is the ordinary frequency given in [Hz]. The equation of motion for
elastic waves is,

−ρ (x)ω2 u(x,ω ) = + · σ (x,ω ) + f(x,ω ) , (2)
where f is an internal volume source. The constitutive law of the material can be written as

σ (x,ω ) = M(x,ω) : ϵ (x,ω ) =
1

2
M(x,ω ) : (+u(x,ω ) + (+u(x,ω ) )T

)
, (3)

where ϵ is the strain and T denotes the transposed. Here, the medium is described by the viscoelastic stiffness
tensor M (in [Pa]) and density ρ (in [kgm−3]). To handle attenuation in the frequency domain, the viscoelastic tensor
M is complex-valued and frequency-dependent.

2.2 | Viscoelastic rheologic models

There exist several models of attenuation, each leading to a different definition ofM (Carcione, 2007; Lakes, 2009). To
illustrate attenuation, viscoelastic rheologic models are represented with springs and dashpots in one dimension. The
spring represents the elastic component Me in [Pa] while the dashpot represents the viscous component Mη in [Pa
s]. The combination of these components in series or in parallel - or both - allows us to describe several viscoelastic
behaviors as a function of frequency. In our work, we consider three different attenuation models: the Maxwell, the
Kelvin–Voigt and the Zener visocelastic models. They are depicted in Table 1 and we refer to Carcione (2007) for
more details. In the case of the Zener model (6), one works with relaxation times τσ and τϵ given in [s]. Note that at
a fixed frequency, one can consider the different models equivalently (Imperiale et al., 2020).

2.3 | Viscoelastic quantities for isotropic media

In the context of an elastic isotropic medium, the viscoelastic tensor M is defined from the two Lamé parameters
(which are complex-valued and frequency-dependent) λ and µ. Omitting the space and frequency dependency for
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TABLE 1 One-dimensional representation and constitutive laws of the Maxwell, Kelvin–Voigt and Zener
viscoelastic models.

Maxwell model1D representation
Me Mη

σ ϵ

Constitutive law
(
M−1

η + iω M−1
e

)
σ = iωϵ . (4)

Kelvin–Voigt model1D representation
Me

Mη

σ ϵ

Constitutive law
σ = Meϵ + iωMηϵ . (5)

Zener model1D representation
Me1

Mη

Me2
σ ϵ

Constitutive law
(1 + iωτσ )σ = Me (1 + iωτϵ )ϵ , (6)

with (Me1 +Me2 )Me = Me1Me2 , (Me1 +Me2 )τσ = Mη andMe1τϵ = Mη .

clarity, we have,

M =

©«

λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0

λ λ λ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ

ª®®®®®®®®®®®¬
. (7)

For the different models presented in Table 1 under the assumption of isotropy, the elastic tensorMe and viscous
tensorMη retain the same pattern of non-zeros as given by (7). We denote by λe and µe the entries forMe , and by ηλ
and ηµ the entries ofMη .

The wave speed of the body waves (vp for the longitudinal P-wave and vs for the shear S-wave) are define from
the Lamé parameters and therefore complex-valued, such that,

vp (x,ω ) =
√

λ (x,ω ) + 2µ (x,ω )
ρ (x) , and vs (x,ω) =

√
µ (x,ω )
ρ (x) . (8)

The level of attenuation is quantified by the imaginary part of the wavenumbers kp and ks , respectively associated
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with the P- and S-wavespeeds. We write (Carcione, 2007)
kp (x,ω ) =

ω

vp (x,ω )
= krealp (x,ω ) + iαp (x,ω ) , (9a)

ks (x,ω ) =
ω

vs (x,ω )
= kreals (x,ω ) + iαs (x,ω ) , (9b)

with the spatial attenuation parameters α{p,s} given in [Npm−1] (or [m−1]), which causes the amplitude of a plane
wave to exponentially decay in space (see equation (14a)). The temporal attenuation parameters β{p,s} in [Np s−1] (or
[s−1]) are defined such that,

βp (x,ω ) = αp (x,ω )Re(vp (x,ω ) ) , and βs (x,ω ) = αs (x,ω )Re(vs (x,ω ) ) . (10)

The quality factors (or Q-factors) associated with the P- and S- waves, respectively Qp and Qs , can be rewritten
as a function of the complex wavenumbers:

Qp (x,ω ) =
Re(vp (x,ω )2)
Im(

vp (x,ω )2
) , and Qs (x,ω ) =

Re(vs (x,ω )2)
Im(

vs (x,ω)2
) . (11)

The quality factor can be rewritten as function of the complex wavenumbers:

Qp (x,ω ) =
krealp (x,ω )2 − αp (x,ω )2

2 krealp (x,ω ) αp (x,ω )
=

krealp (x,ω )
2αp (x,ω)

−
αp (x,ω )

2 krealp (x,ω)
, (12)

and similarly for Qs . In the context of weak attenuation, it is assumed that kp ≫ αp such that we can neglect the term
αp/(2krealp ) resulting in the following approximations:

Qp (x,ω ) ≈
krealp (x,ω )
2αp (x,ω )

=
ω

2 βp (x,ω )
and Qs (x,ω ) ≈

kreals (x,ω )
2αs (x,ω )

=
ω

2 βs (x,ω )
. (13)

Quality factors Qp , Qs and attenuation factors αp , αs and βp , βs are used to describe the intrinsic attenuation of a
wave, and the use of viscoelasticity is a mean to model this attenuation. In the following, we analyze and compare the
behavior of waves for viscoelastic numerical simulations using the Maxwell and the Kelvin-Voigt rheologic models for
different viscous parameters.

3 | METHODOLOGY

The approach we develop uses the multiple reflections of seismic waves to recover the attenuation property. We con-
sider laboratory-sized samples of relatively weak attenuation and ultrasonic frequency waves. The waves reverberate
multiple times within the sample over a short time period. The distinctive aspect of our method is that it uses the
measurement of all types of seismic waves (P, S, and surface waves) in a single global signal envelope at any seismic
receiver location. In our method, we take advantage of the reflections from the free-surface boundary conditions
such that the wave energy is conserved within the medium, and the beam spreading effect is no longer visible in the
data. In this case, the interference between the different reflected / converted waves creates an equilibrium of energy
that is called equipartition, a phenomenon also used for coda waves (Ryzhik et al., 1996; Margerin et al., 2000). After
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several reflections (Snieder, 2002), the energy of the wavefield is dominated by that of the S-waves. Therefore, the
observed signals are overwhelmed by the S-waves and, consequently, the attenuation property we can recover will
be representative of the S-waves attenuation. Furthermore, our method uses a relative amplitude decay of the signal,
which makes it independent of the source wavelet, which makes it convenient for reproducibility.

Recorded time-domain seismo-
gram and Fourier transform

(i) Frequency domain Gaus-
sian filtering: selected
frequency ωc ± 10kHz

(ii) Inverse Fourier trans-
form of the bandwidth
selected in step (i)

(iii) Reconstruction of β (ωc )
using linear regression of
the natural logarithm of

the Hilbert envelope of the
signal obtained in step (ii)
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F IGURE 1 Flowchart of the signal processing for the recovery of the frequency-dependent attenuation. The
numerical illustrations correspond to the configuration described in Table 2 case d, using a central frequency of 70
kHz. a) Normalized time-domain seismogram. b) Normalized frequency domain Fourier transform: [ ] real part,
[ ] imaginary part, [ ] amplitude spectrum, [ ] amplitude spectrum of the Ricker seismic source. c)
Gaussian filtering. d) Normalized inverse Fourier transform of c). e) Hilbert envelope of d) and β (ωc ) recovery.

We present our approach for recovering the representative attenuation coefficients as a function of frequency
in the flowchart of Figure 1, where we illustrate with a specific example. The data shown in Figure 1 corresponds
to a 100 kHz Ricker seismic source emitted at time t = 0 in a medium following the viscoelastic model of case d
(Table 2). Figure 1a and b show the seismic signal recorded by receiver R3 for the uz component, respectively in time
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and frequency domains. In time, the seismogram displays an exponential characteristic decay of amplitude (equation
(14b), modified from Carcione (2007)) of the following form:

û(x, t ) = u0 · e−αx · ei(ωt−krealx) (14a)
⇔ û(x, t ) = u0 · e−β t · ei(ωt−krealx) , (14b)

with u0 the initial wave amplitude, e−β t its amplitude decay with attenuation parameter β , and e−i (ωt−krealx) its oscilla-
tion at frequency ω. As the seismogram is composed of a mix of P- S- and surface waves, we quantify a representative
parameter β instead of specific βp and βs , respectively related to P- and S-waves.

The method proceeds as follows. (i) We need to select a small bandwidth of frequency that will evolve from low
to high-frequency content. The use of a squared filter on the frequency data would lead to artifacts in time domain,
this is why a Gaussian filter is used on the frequency domain data (Figure 1b) to select a relatively small bandwidth.
In our case, we select a Gaussian filter of ± 10 kHz, span around the central chosen frequency ωc (Figure 1c). (ii) After
filtering, we apply an inverse Fourier transform in order to build the amplitude decay as a function of time for the
small frequency bandwidth selected (Figure 1d). (iii) The next step consists in using the Hilbert envelope of the signal
(Taner et al., 1979): the attenuation coefficient value β is given by the decrease of the envelope as a function of time,
and is computed through the natural logarithm of the signal (equation (14b), Figure 1e). (iv) Finally, the Q-factor is
deduced from β using equations (10) and (13). Then, we can move to the next frequency of interest and repeat these
steps in order to cover the entire frequency content of the recorded data.

Selecting the appropriate width of the Gaussian frequency filter is a crucial aspect of determining the Q-factor
and should be customized based on the analyzed dataset: insufficient frequencies within the chosen data window can
cause instability in the inverse Fourier transform and prevent themethod from accurately determining the attenuation
value (Figure 2a). On the other hand, if the width of the Gaussian filter is excessively large, the decrease in amplitude
observed in Figure 2c will not follow a linear trend due to the mixing of too many frequencies. Indeed, in the case of
a large bandwidth, we are less sensitive to the variations of attenuation with respect to frequency. Considering that
attenuation is frequency-dependent, the waves of high-attenuation frequencies decrease faster in the beginning of
the seismogram, while the waves of low-attenuation frequencies remain energetic until the end of the recorded data.
Currently, the optimal filter width is determined empirically in order to obtain a precise recovery of the attenuation
model (Figure 2b). Further analysis would be required to analyze quantitatively how the size of the window depends
on, e.g., the wavelength and signal-to-noise ratio.
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F IGURE 2 Comparison of Hilbert envelopes after 3 gaussian filtering of distinct window widths. The viscoelastic
simulations parameters correspond to the Table 2 case d, using the central frequency of 70 kHz. (a) ±0.5 kHz, (b)
±10 kHz, (c) ±50 kHz.
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4 | 3D VISCOELASTIC NUMERICAL SIMULATIONS

In this section, we detail our method to recover the representative viscoelastic properties based on wave measure-
ments. Subsequently, we carry out numerical simulations to verify the performance of our approach. The numerical
calculations are performed in samples whose dimensions are identical to the dimensions of the samples used in the
laboratory experiments of Section 5.

4.1 | Numerical set-up configurations

We perform isotropic viscoelastic 3-D numerical simulations of wave propagation for the Maxwell and Kelvin–Voigt
models of attenuation given in Table 1. The simulations are carried out through two types of geometries: a cube of
size 7 cm × 7 cm × 7 cm and a cylinder of height 9 cm and diameter 5 cm (see Figure 3a and b respectively). We
consider free surface boundary conditions such that,

σ · n = g , on the boundary, (15)
where n denotes the normal direction. Here, we impose the source g on the boundary, and use a point-source posi-
tioned on the upper surface of the sample.

ux

uz

uy

Source
R1 R2
R3

Source

R1
R2

R3
(a) Cube (b) Cylinder

F IGURE 3 Numerical set-up used for the numerical simulations. (a) 7x7x7 cm3 cube with the origin O located at
the lower-left corner of the cube. The source is located at [3.5 6 7] cm on the top surface of the cube. The receiver
R1 is located in the bulk of the cube at the position [2 2.5 4] cm, whereas R2 at [7 3.5 3.5] cm and R3 at [3.5 3.5 0]
cm are on the surface. (b) 9 cm height and 5 cm diameter cylinder with origin O located at the center of the cylinder.
The seismic source is located at [1 0.0 4.5] cm on the surface, the receiver R1 is at [1 1 1] cm inside the cylinder, R2
at [0 2.5 1] cm and R3 at [0 1 -4.5] cm on the surface.

We carry out simulations in the frequency domain and use open-source software Hawen (Faucher, 2021). The
simulations are performed for frequencies between 20 Hz to 300 kHz with a step of 20 Hz. We then apply an inverse
Fourier transform to obtain the time-domain seismogram for a duration of 50 ms, where we consider a Ricker wavelet
source of 100 kHz peak-frequency. The synthetic signals are extracted for three positions of receiver (see Figure 3),
located either inside the volume (R1) or at the boundary of the sample (R2 on a lateral face and R3 on the opposite
face with respect to the source).

Five different simulations (cases a to e) are analyzed using fixed elastic parameters λe = 55.95 GPa, µe = 25.95
GPa, ρ = 2700 kg m−3 and varying viscous parameters (ηλ , ην ) as detailed in Table 2: the choice of viscous parameters
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may differ significantly between cases, while we maintain a comparable Q-factor using the specificities of each of the
constitutive models used (Table 1). As an illustration of the variability of the attenuation induced by the Maxwell -
Kelvin-Voigt - Zener viscoelastic models, Figure 4 (top) and (bottom) shows respectively the behavior of αs and of the
S-quality factor Qs as a function of frequencies. We see that the viscoelastic Maxwell and Kelvin-Voigt models lead
respectively to a linear increase and decrease of the quality factor with frequencies, while the Zener viscoelastic model
follows the behavior of the Maxwell and Kelvin-Voigt models, respectively at low and high frequencies. Moreover, we
notice in Figure 4 (bottom) that around the frequency of 200 kHz, the Zener model can be used in the case of a locally
constant quality factor (Imperiale et al., 2020) that can be extended to generalized viscoelastic models for a broader
bandwidth of constant quality factor (Blanc et al., 2016).
TABLE 2 Viscoelastic models and viscous parameters used for the numerical simulations. The elastic parameters
λe = 55.95 GPa and µe = 25.95 GPa are kept constant.

Case Geometry Model ηλ ηµ Qp (100kHz) Qs (100kHz)
a Cube Maxwell 100 MPa s 2.5 MPa s 612 60
b Cube Maxwell 10 MPa s 20 MPa s 291 484
c Cube Kelvin-Voigt 100 Pa s 10 Pa s 1430 4130
d Cube Kelvin-Voigt 20 Pa s 40 Pa s 1717 1033
e Cylinder Maxwell 50 MPa s 5 MPa s 350 121
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F IGURE 4 S-waves attenuation coefficient (top) and quality-factor (bottom) behavior as a function of frequency
for [ ] Maxwell viscoelastic model with ηµ = 20.65 MPa s, [ ] Kelvin-Voigt viscoelastic model with ηµ = 20.65
Pa s and [ ] Zener viscoelastic model with τϵ = 796.57 ns and τσ = 794.98 ns. The parameters are chosen such
that all attenuation models coincide at frequency 200 kHz.
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4.2 | Analysis of the numerical experiments

We present the results of the numerical simulations described in Table 2, which serve to validate our methodology
and test its robustness. Figure 5 shows the propagating seismic wavefield at frequency 400 kHz, represented in a
cross-section and at the surface. We provide the three components of the displacement, ux , uy , and uz in Figure 5
(left), (middle) and (right) respectively. In this specific numerical simulation, the receiver R3 is located exactly in a plane
of symmetry of the domain, aligned with the seismic source. This configuration results in destructive interference for
the wavefield component ux at this receiver since waves arrive from opposite directions simultaneously and cancel
each other out, which means that there is no seismic energy in the ux component for receiver R3 in Figure 5. This
configuration is highly improbable in practice, but with numerical simulations, singular point measurements such as
this one can occur. Thus, we discard the ux component of receiver R3 from our analysis and consider the other
components in our signal processing.

F IGURE 5 Visualization of the real part of a seismic numerical wavefield generated in a cube at 400 kHz on a
cross-section, lateral and upper boundaries. Amplitude of the displacement for ux (left), uy (middle) and uz (right)components. Red asterisk: source location. Blue dot: receiver R3 location.

In the first simulation presented in Figure 6 case a, waves are propagating in a medium where the attenuation of
the S-waves βS is 10 times higher than the attenuation of the P-waves βP . Despite the P-waves being less attenuated,
we recover numerically with our method - by far - a representative attenuation very close to the attenuation of the
S-waves (see Figure 6 case a). For the sake of clarity in Figure 6, we have distinguished only the signal recorded by
R1 in the bulk from the receivers R2 and R3 at the surface, with no distinctions between components x ,y or z for all
the receivers. The important information from Figure 6a is that we recover approximately the same attenuation value
regardless of the location of the receivers and regardless of the component of the displacement field.

We have observed that the attenuation values recovered using our method consistently match the attenuation
values of S-waves in the numerical simulations. This can be explained by the partitioning of energy between P- and
S- waves, referred to as the equipartition phenomenon. It corresponds to the energy of seismic wavefield reaching
a state of equilibrium after sufficient time of propagation. It has been proven analytically by Ryzhik et al. (1996) and
Sánchez-Sesma et al. (2008) that after the equipartition time of propagation, the S-waves are more energetic than
the P-wave. This property has also been observed numerically by Margerin et al. (2000); Sánchez-Sesma et al. (2018),
and experimentally by Shapiro et al. (2000); Hennino et al. (2001); Margerin et al. (2009). In addition, Snieder (2002)
further derived an analytical formula to calculate the equipartition time τP S needed to reach the state of balance
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F IGURE 6 Attenuation β (case a) and Q-factor recovery from a numerical signal generated in a 7 cm × 7 cm × 7
cm cube (cases a to d) using Maxwell viscoelastic attenuation (cases a and b) or Kelvin-Voigt viscoelastic attenuation
(cases c and d) models in the media. Case e: Q recovery in a 9 cm height and 5 cm diameter cylinder with Maxwell
attenuation. See Figure 3 for the geometries and Table 2 for the viscoelastic parameters. [ ] Analytical βp or Qp ,[ ] Analytical βs or Qs , [ ] recovered from the signal at the surface of the medium (receiver 2: ux , uy and uzcomponents; receiver 3: uy and uz components), [ ] recovered from the signal inside the medium (receiver 1: ux , uyand uz components).

between the energy of the P- and S- waves in the case without attenuation, it corresponds to:

τP S =
a (v 3s + 2v 3p )

2vpv
3
s

. (16)

Using values for vp = 6320 ms−1, vs = 3100 ms−1 and a characteristic length of a = 7 cm, we expect to reach the
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state of equilibrium between P- and S- waves around τP S = 100 µs, a time small compared to the total duration of our
numerical simulations, confirming that we reach an equipartition state very fast in the numerical experiments. Indeed,
the experiments we have carried out (see Table 2 and Figure 6 cases a to e) show that we systematically retrieve
the attenuation of the S-waves, for simulations of Kelvin-Voigt and Maxwell viscoelastic models (that have different
Q-factor behavior with respect to frequency) in a cube or a cylinder, regardless of which receiver location or which
wavefield component is used for the determination of the attenuation.

Furthermore, we note that the maximum penetration depth of Rayleigh waves is of one wavelength (Kosevich
and Syrkin, 1985; Soczkiewicz, 1997; Vinh and Malischewsky, 2007). In our configuration, it means that for frequen-
cies higher than 150 kHz, the receiver R1 located at 2 cm depth captures only P- and S- body seismic waves while
receivers R2 and R3 (which are on the boundaries) capture both body and surface waves. Here, we recover the same
representative attenuation at all receivers. This can be explained as surface waves are formed by interferences of P-
and S-waves (Takeuchi and Saito, 1972), hence after equipartition the properties of the S-waves are dominant in the
observed surface waves, as it is the case for the interior wavefield.

4.3 | Conclusions of numerical simulations

Using numerical experiments, we have shown that for each receiver position, each component of the displacement
measured, and for different geometries of samples, we can recover the frequency-dependent attenuation parameter
of S-waves. This is explained by the equipartition phenomenon, that is, a state of balance of energy between prop-
agating waves after multiple reflections and conversions within the medium. This results in the S-waves being more
energetic than the P-waves, hence dominating the signals. We demonstrate that the method for the recovery of the
attenuation parameter is efficient and works well with numerical simulations. In the next section, we investigate the
case of experimental measurements with different rock samples.

5 | LABORATORY-SCALE EXPERIMENTAL MEASUREMENTS

We consider different samples of relatively low seismic attenuation and use ultrasonic wave measurements to recover
their attenuation properties. The specificity of laboratory experiments is that the measurements are obtained at the
surface of the sample and not in the bulk. In addition, having in mind that we want to reach the state of equipartition
of the wave’s energy (discussed in the numerical section), we need to record the signals for a sufficiently long time.

5.1 | Experimental set-up

The sample is laid on a platform as seen in Figure 7a. A seismic waveform is generated by a waveform generator Tabor
8024 and is emitted by a Panametrics piezoelectric transmitter (PZT) through the sample, the orginal signal being am-
plified by an amplifier Falco Systems WMA-300. The subsequent seismic displacement in the normal direction of the
sample’s surface is recorded by a laser Doppler interferometer Polytec VFX-I-120, and processed by an oscilloscope
Keysight DSO-S 054A (Shen et al., 2022) on the opposite and on the lateral face of each sample with respect to the
source (Figure 7b and Figure 10b). We further use two different piezoelectric sources to compare a large frequency
bandwidth from 60 kHz to 1200 kHz. One source has a nominal frequency of 250 kHz (Panametrics V150) and the
other one of 1 MHz (Panametrics V102). These two piezoelectric transducers are of same dimension (2.54 cm in
diameter) in order to prevent biases due to uncertainties in the mechanical contact zone between the source and the
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sample. Also, we used the same Gaussian filter width as in our numerical data processing, that corresponds to ± 10
kHz.

5.2 | Attenuation and quality factor recovery on natural samples

7cm

(a)

Opposite
Lateral

PZT

(b)
F IGURE 7 (a) Picture of the experimental set-up with the aluminum 7 cm × 7 cm × 7 cm cube, a piezoelectric
transducer (source) is located on top of the sample and the laser Doppler interferometer (receiver) records the
wavefield on the lateral surface. (b) Location of the two receivers points.

5.2.1 | Aluminum 5083C

Aluminum 5083C is considered as a homogeneous material and low attenuating compared to natural rocks; in some
cases, aluminum is even used as a non-attenuating reference material for relative measurements of attenuation (see
for instance Molyneux and Schmitt (2000)). In the following, we aim to precisely recover the frequency-dependent
attenuation and Q-factor of a 7 cm × 7 cm × 7 cm aluminum cube (Figure 7a) in the range of ultrasonic frequencies,
and to identify the viscoelastic model followed by the sample. We measure the density ρ = 2650 kgm−3, and the
P- and S- waves velocities respectively of 6320 ms−1 and 3100 ms−1 via transmission measurements between the
source and the receiver.

Following the acquisition setup, the seismic signals are recorded during 50 ms with a stack of 3000 traces for
the two different piezoelectric transducer sources as shown in Figure 8. The signal-to-noise ratio of the 250 kHz
piezoelectric is better compared to the 1 MHz; for both experiments, the duration of the exploitable seismic signal is
much longer than the estimated equipartition time (near 100 µs from equation (16)). As shown in Figure 8, the fre-
quency content of the records are from 60 to 400 kHz for the transducer of nominal frequency of 250 kHz (Figure 8a),
and from 300 to 1200 kHz for the transducer of nominal frequency of 1 MHz (Figure 8b). The overlap in frequency
between both experiments is used to evaluate the robustness of the method previously presented to compute the
seismic attenuation.

We show in Figure 9 (top) the results of the attenuation quantification from the experiments performed in the
aluminum cube, and the equivalent Q-factor in Figure 9 (bottom). The attenuation β has roughly a constant value
around 560 Np s−1 throughout all the scanned frequencies, from 60 to 1200 kHz; the consequence (see equation
(13)) is that the Q-factor linearly increases from 300 to 7000. Note that the data coming from the two sources and
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F IGURE 8 Experimental recorded seismogram and amplitude spectrum (normalised) of the Fourier transform for
the receivers positioned on the lateral face of the aluminum cube with (a) 250 kHz PZT source and (b) 1 MHz PZT
source.

different receiver’s locations recombine nicely to give quantitative and reliable values of the Q-factor with frequencies
in aluminum. In order to understand and interpret the increase of the quality factor with frequencies, we remind that
the definition of the Q-factor is roughly the inverse of the attenuation per wavelength (or per cycle) of a traveling
seismic wave (Aki and Richards, 2002). The consequence is that for the same value of amplitude decay of a seismic
wave as a function of time (β ) for various frequencies, the Q-factor will increase as the wavelength decreases (see
equation (13)).

Following the results shown in Figure 9 (constant β and increasing Q-factor), we deduce that the attenuation
model of the aluminum cube follows a Maxwell viscoelastic model. Using Table 1, we can further relate the Q-factor
to the viscoelastic physical parameter associated with the S-waves assuming that the measured attenuation follows
the S-waves attenuation. Deducing the elastic parameter µe = 25.5 GPa from Equation (8), we compute the viscous
parameter ηµ = 22.8 MPa s for the Aluminum 5083C within the frequency bandwidth 60 kHz to 1.2 MHz using
equations (4) and (11). We detail in Appendix A.1 the calculations of the viscous parameter.

5.2.2 | Fontainebleau sandstone

We now consider a sample of dry Fontainebleau sandstone which is well-cemented and composed of nearly 100% of
quartz, such that it has a relatively low attenuation (Pimienta et al., 2015a). The sandstone sample is a cylinder of 9
cm in height and 5 cm in diameter pictured in Figure 10a, whose density is ρ = 2500 kgm−3, the P-waves velocity is
5415 ms−1 (measured) and the S-waves velocity is 3400 ms−1 (Pimienta et al., 2018). Given the sample’s height of
9 cm, the equipartition state is expected to be reached at 75 µs (equation (16)). The seismic signals recorded in the
Fontainebleau Sandstone cylinder with the two piezoelectric transmitters V150 and V102 during 20 ms with a stack
of 3000 traces are shown in Figure 11. We observe that the attenuation is stronger at high frequencies (PZT V102)
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F IGURE 9 Attenuation β (top) and Q-factor (bottom) recovery on the aluminum cube from measurements: [ ]
on the lateral face for the 250 kHz PZT source, [ ] on the opposite face for the 250 kHz PZT source, [ ] on the
lateral face for the 1 MHz PZT source, [ ] on the opposite face for the 1 MHz PZT source. [ ] corresponds to the
best fit of a Maxwell model corresponding to parameters µe = 25.5 GPa and ηµ = 22.8 MPa s.
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(b)
F IGURE 10 (a) Picture of the Fontainebleau sandstone cylinder. (b) Location of the two receivers points.

compared to low ones (PZT V150) since the seismic signal decays faster in time in Figure 11b compared to Figure 11a.
We show in Figure 12 the Hilbert amplitude envelope of the signal recorded on the lateral face with the 1 MHz

PZT source (as in Figure 11b) for chosen central frequencies of 700 kHz ± 10 kHz (Figure 12a) and 1300 kHz ± 10
kHz (Figure 12b). We see that with the source of the central frequency 700 kHz (where the signal-to-noise ratio is
relatively high), Figure 12a, we are able to recover the attenuation of the S-waves starting from the equipartition
time τP S = 75 µs until the envelope reaches the noise level. On the contrary, for the central frequency of 1300 kHz
(Figure 12b), the noise level is too high and prevents us from having a sufficient signal to determine the attenuation.
In Figure 13, we study how the attenuation recovery may depend on the recording time of the signal. We see that we
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F IGURE 11 Experimental recorded seismogram and amplitude spectrum (normalized) on the lateral face of the
Fontainebleau sandstone cylinder with (a) 250 kHz PZT source and (b) 1 MHz PZT source.

need to record longer than the equipartition time τP S to obtain the appropriate shapes of the Hilbert envelopes and
to obtain the decrease in amplitude needed to recover the appropriate attenuation. Indeed, the recorded time affects
the sampling in frequency and consequently the Fourier transform from time to frequency domain, leading to a lack
of information in frequency when we do not record for a sufficiently long time. This undersampling eventually affects
the time-domain envelope when we perform the IFT after the Gaussian filtering used in our method (Figure 1).
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F IGURE 12 Comparison of Hilbert envelopes after Gaussian filtering on central frequency (a) 700 kHz ± 10 kHz
and (b) 1300 kHz ± 10 kHz of the data recorded on the lateral face of Fontainebleau sandstone with the 1 MHz PZT
source. [ ] Equipartition time τP S = 75µs. [ ] Estimated noise level.

We show that the attenuation β computed with our method increases with frequencies in Figure 14 (top), as
well as the Q-factor in Figure 14 (bottom) with values from 200 to 1000. As both attenuation β and Q-factor in-
crease, the sandstone sample can be modeled as a Zener viscoelastic medium (Figure 4). We can then compute the
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F IGURE 13 Comparison of Hilbert envelopes after Gaussian filtering on central frequency 700 kHz ± 10 kHz
depending on the recorded time tmax. [ ] Equipartition time τP S = 75µs.

associated viscoelastic relaxation times (Carcione, 2007) for the S-waves and we obtain τϵs = 633 ns and τσs = 630

ns using equations (6) and (11). The details of the computations for the Zener viscoelastic parameters are given in
Appendix A.2. We further obtain a good approximation of the evolution of attenuation with ultrasonic frequencies
for the dry Fontainebleau sandstone (Figure 14).
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F IGURE 14 Attenuation β (top) and Q-factor (bottom) recovery on the Fontainebleau sandstone cylinder from
measurements: [ ] on the lateral face for the 250 kHz PZT source, [ ] on the opposite face for the 250 kHz PZT
source, [ ] on the lateral face for the 1 MHz PZT source, [ ] on the opposite face for the 1 MHz PZT source. [ ]
corresponds to the best fit of a Zener model corresponding to parameters τϵ = 0.633 µs and τσ = 0.630 µs.
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6 | DISCUSSION

We quantified the ultrasonic attenuation in a cube made of 5083C aluminum, recovering a Maxwell viscoelastic atten-
uation model to represent the attenuation between 60 kHz to 1.2 MHz, with quality factors from 300 to 7000. There-
fore, the Qs factor is shown to increase within this frequency range. It is worth noting that, according to the authors,
no other literature reports on frequency-dependent attenuation measurements at these frequencies. Nonetheless,
McCann and Sothcott (1992) measured Qs > 700 for 0.85 MHz frequency in an aluminum sample using the reflec-
tion method under a pressure of 60 MPa, and Hurley (1999) found the Rayleigh-waves attenuation at 10 MHz to be
1852 Np s−1 in 6061-T651 an aluminum alloy sample; in conclusion, the attenuation values obtained in the current
study are in the same range to those measured in both previous studies.

Concerning the dry Fontainebleau sandstone, we also demonstrated that Qs increases, from 200 to 1000 within
the working frequencies, and its variation in frequency follows a Zener viscoelastic model. Bourbie and Zinszner
(1985) measured in the same type of sandstone Q = 100 at a frequency of 9.5 kHz with a resonant bar method,
while Pimienta et al. (2015a), with a forced oscillation method, measured a bulk Q-factor Q > 50; once more, the
values of attenuation that we obtain for Fontainebleau sandstone are consistent with those obtained in other studies.
Note that in the interpretation of our measurements developed in Section 5, we have used a single Zener model to
fit an increasing attenuation βs and an increasing quality factor Qs throughout the range of measured frequencies.
Although it would be possible to employ multiple viscoelastic systems in parallel, such as generalized attenuation
models to cover wider frequency bandwidth or to model a constant quality factor (Carcione, 2007; Cao and Yin,
2014; Blanc et al., 2016), this was not within the scope of our study which focuses on the reconstruction of the
ultrasonic frequency-dependent attenuation for low-attenuation media.

Finally, we have, both experimentally and numerically, observed the phenomenon of equipartition in media with
attenuation. This phenomenon implies that regardless of the initial distribution of P- and S-wave sources within the
system, the energy of the seismic signal is dominantly composed of S-waves after several seismic reflections/conversions
at the boundaries. As a result, using our method which relies on analyzing the seismic envelope signal at a receiver
location, we are only able to recover the attenuation factors associated with S-waves, due to the dominant nature of
the S-waves in the seismic signal after equipartition occurs. The limitation is that we cannot access the P-waves at-
tenuation values with our method. Nonetheless, we reconstruct the attenuation model, which characterizes both the
P- and S-waves. Then, considering a small bandwidth in frequency, the attenuation of the P-waves could be obtained
with other methods (such as spectral ratio methods), feeding in the attenuation model obtained with our approach.

Furthermore, in situations where the medium has high attenuation, the amplitude of the wavefield may diminish
to the point of being indistinguishable from the noise level prior to achieving the equipartition state. Consequently,
it is essential to initially calculate the time required for equilibrium state (Snieder, 2002) to guarantee the method’s
applicability to recorded seismograms. The accuracy of the reconstruction also depends on the choice of frequency
windowing to obtain the appropriate frequency-dependent evolution of attenuation. The precision of the window
certainly depends on the signal-to-noise ratio, sampling of the signal, and on the wavelength. This is part of ongoing
investigations.

7 | CONCLUSIONS

We quantified the attenuation characteristics of low-attenuating samples of aluminum and dry Fontainebleau sand-
stone in the laboratory, using ultrasonic frequencies. Our approach uses multiple seismic wave reflections within the
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samples. Prior to conducting laboratory measurements, we validated our method through 3D numerical simulations
of wave propagation.

We have shown that with our method, we are able to retrieve the attenuation of the sample, for any geometry
and regardless of or the receiver’s location (i.e., within or at the boundaries of the sample). We have also emphasized,
owing to the equipartition phenomenon, that the retrieved attenuation coefficient is associated with the S-waves. For
both aluminumand Fontainebleau sandstone samples, ourmeasurements provide newattenuation values at ultrasonic
frequencies. We were able to derive the attenuation models from the recovery of βs or Qs as a function of frequency
(between 60 kHz to 1.2 MHz) in aluminum and in the Fontainebleau sandstone.

More generally, our work leads the way to a better characterization of the attenuation properties in various media.
In particular, the evolution of the representative attenuation as a function of frequencies in samples is a first step to
the identification of structural heterogeneities, for instance, by using our findings as initial models for full waveform
inversion.
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A | APPENDIX: RECOVERY OF VISCOUS PROPERTIES

In this appendix we detail how to calculate the viscous parameters from the frequency-dependent Q-factor.

A.1 | Maxwell model

Using the representation of the viscoelastic tensor in (7) and the constitutive law of the Maxwell model (4), we can
express the complex-valued bulk modulus associated to the Maxwell attenuation model, µMax, in terms of the elastic
parameter µe and the viscous parameter ηµ , such that,

µMax =
µeη

2
µω

2 + iωµ2eηµ
η2µω

2 + µ2e
. (17)

The frequency-dependent Q-factor for the S-waves is given from equation (11) and writes as:

QsMax =
Re(µMax)Im(

µMax) = ω
ηµ

µe
. (18)

Therefore, the S-wave quality factor for the Maxwell model increases linearly with frequency. Since the elastic param-
eter µe can be recovered from the S-waves velocity (equation (8)), the remaining unknown in equation (18) is ηµ , which
is calculated by computing the linear function fitting the measured value of Q as a function of frequency (Figure 9).

A.2 | Zener model

The complex parameter associated to the Zener model, µZener is obtained from (6) such that,

µZener = µe
1 + iωτϵs
1 + iωτσs , (19)

with µe =
µe1µe2

µe1 + µe2
, τϵs =

ηµ

µe2
and τσs =

ηµ

µe1 + µe2
.

We rewrite the Q-factor for the S-waves from equation (11) for the Zener viscoelastic model to obtain:

QsZener =
1 + ω2τϵs τσs
ω (τϵs − τσs )

=
1

ω (τϵs − τσs )
+

ωτϵs τσs
τϵs − τσs

=
a

ω
+ bω, (20)

with a =
1

τϵs − τσs
and b =

τϵs τσs
τϵs

.

We can compute the values a and b by fitting the function QsZ ener (ω ) =
a

ω
+ bω to the measured Q values as a

function of frequency (Figure 14). Once the values of a and b are retrieved, we can recover the parameters τϵs and
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τσs by developing the system of equations:

a =

1

τϵs − τσs

b =
τϵs τσs

τϵs − τσs

⇔


τϵs =

1

a
+ τσs

b =
τϵs τσs

τϵs − τσs

⇔

τϵs =

1

a
+ τσs

b = τσs + aτ2σs .

(21)

We solve the second-order equation such that,
aτ2σs + τσs − b = 0. (22)

Using that τϵs and τσs are ≥ 0 (Carcione, 2007) and following the same development as equation (21) for τϵs , we have

τϵs =
1 +

√
1 + 4ab

2a
,

τσs =
−1 +

√
1 + 4ab

2a
.

(23)


