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Résumé : On démontre qu’un Hamiltonien convexe générique au sens de Mané n’a
que des orbites périodiques non-dégénérées sur un niveau d’énergie donné. Ce résultat
a déja été énoncé, mais pas démontré, dans la littérature. Abstract : We prove that
Mané generic convex Hamiltonians have only non-degenerate periodic orbits on a
given energy level. This result was stated, but not proved, in the literature.

It is known that a generic dynamical system has only hyperbolic periodic orbits,
this is part of the Kupka-Smale theorem, see [11, 17]. When some additional struc-
ture is preserved the situation can be different. Here we shall focus on Hamiltonian
systems. Such systems can stably have non-hyperbolic periodic orbits. This can
be understood at the linear level: hyperbolic matrices are not dense in symplectic
matrices. Yet the periodic orbits of generic Hamiltonian systems satisfy some prop-
erties, in particular they are non degenerate (on a given energy level), see [15, 16].
The Bumpy metric theorem states that this is also true for generic geodesic flows,
see [2, 3]. Mechanical systems, defined on a cotangent bundle from a Hamiltonian
which is the sum of a kinetic energy (a Riemannian metric) and a potential energy
(a function on the base) also form a natural case of study. For such systems, one can
ask what properties hold for a generic potential once the metric has been fixed (this
is the genericity in the sense of Mané). One of the outcomes of the present paper
is that the answer is actually the same as for general Hamiltonian : for a generic
potential, all periodic orbits on a given energy surface are non-degenerate. This is
not surprising, and actually follows from results previously stated in the literature,
see [13, 14]. However, the existing proofs apply only to energy levels higher than the
supremum of the potential energy but not below. The proof in [13] follows rather
closely Anosov’s proof of the Bumpy Metric Theorem with one different step, the
perturbation Lemma describing to what extent the linearized flow along a given orbit
can be modified by a perturbation preserving this orbit. This perturbation Lemma is
obtained in [13] in dimension 2, and then in [14] (with a correction in [4]) in higher
dimension, elaborating on a method introduced in [7] in the context of geodesic flows.

However, it is well known that the dynamics of a mechanical system on energy
levels lower than the supremum of the potential is significantly different from the one
of a geodesic flow, and its study requires different methods. As to the question we are
considering, the difficulty comes from the possible presence of what we will call round
trip orbits (also sometimes called librations) following back and forth a same path on



the base manifold. These orbits fall outside of the scope of the previous papers, and
the goal of the present work is to study them. The perturbation Lemma for these
orbits is harder than for geodesic-like orbits because a potential will necessary perturb
the two branches of the orbit, and one has to understand how these two perturbations
interact. In the case of mechanical system, the reversible structure allows to tame
these interactions, and we manage to prove a perturbation Lemma in that setting.

Round trip orbits can also exist in the more general class of Hamiltonian systems
convex in the fibers. In general there is no reversible structure associated to the
linearized flow along such an orbit, and the perturbation Lemma remains open. To
solve this difficulty, we prove that a round trip orbit either admits some kind of
reversibility which allows to prove a perturbation Lemma, or can be turned to a
geodesic-like orbit by the addition of a small potential. This allows us to provide
a full proof of the result previously stated, but unproved, in the literature claiming
that a Mané generic convex Hamiltonian has only nondegenerate periodic orbits on a
given energy level.

1 Introduction

We study the dynamics of convex Hamiltonian systems on the cotangent bundle of a
smooth manifold M of dimension d+ 1. In the present paper, smooth means C'*° and
convex Hamiltonian means that the fiberwise Hessian of the Hamiltonian function is
positive definite at each point. We usually denote by H the Hamiltonian, by V the
corresponding Hamiltonian vector-field and by ¢ the associated flow. We will focus
on the generic properties, in the sense of Mané, of the restricted linearized return
map of periodic orbits. More precisely, we can take a Poincaré section of the flow
restricted to the energy level of the orbit, and consider the differential at the orbit of
the return map, this is what we call the restricted linearized return map. It is, up
to a choice of coordinates, an element of the symplectic group Sp(2d) if the manifold
M has dimension d + 1. The restricted linearized return maps associated to different
sections or to different coordinates are conjugated in Sp(2d), so the conjugacy class
of the restricted linearized return map of a given orbit is well-defined. Let us define
T C Sp(2d) as the space of matrices having an eigenvalue equal to a root of the unity
or having a double eigenvalue. This is a countable union of closed sets with empty
interior in Sp(2d), invariant under conjugacy. Thanks to this conjugacy invariance,
the property, for a periodic orbit, to have a restricted linearized return map in Y or
out of T is intrinsically meaningful. Our main result is :

Theorem 1. Given a smooth (C*°) convex Hamiltonian H : T*M — R, the following
property is satisfied for a generic potential u € C°(M) :

The zero energy level of H 4+ w is regular, and it does not contain any periodic
orbit having its restricted linearized return map in Y.

As usual, generic means that the set of potentials which do not satisfy the conclu-
sion is a countable union of nowhere dense sets. As is well known, C°°(M) with its
usual topology is a separable Fréchet space, meaning that its topology can be defined
by a translation invariant complete distance with convex balls, and that it is separable
for this distance. In particular it satisfies the Baire property: a countable union of
nowhere dense sets has empty interior.

Theorem 1 is stated in [13] in dimension 2, and extended in [14] to all dimensions,
see also [7] where some important ideas are introduced. However, as was already



noticed in [5], there is a missing case in these works. In order to explain the difficulty,
we introduce the following definition:

We say that the periodic orbit 6(t) = (Q(t), P(t)) of minimal period T is neat if
there exists a non-trivial open interval I C R/TZ of times such that @ is an embedding
of I into M and such that Q(I) does not intersect Q(R/TZ — I).

The methods of [13, 14] apply only to neat orbits, see Section 6. So the statement
actually following from the proofs given in [13] and [14] (completed in [4]) is :

Theorem 2. Given a smooth conver Hamiltonian H : T*M — R, the following
property is satisfied for generic u € C°(M) :

The zero energy level of H + w is regular, and all neat periodic orbits of H + u
which have zero energy have their restricted linearized return map in the complement

of T.

A formal proof of the statement in this form is given in [5] where the non convex
case is also discussed. Any conjugacy invariant set T C Sp(2d) which is a countable
union of nowhere dense sets can be considered here instead of the explicit one defined
above.

However, not all periodic orbits are neat. In the case of a convex Hamiltonian
(which is the only case we consider in the present paper) the orbits which are not
neat are very specific :

Proposition 1. Let H be a smooth convex Hamiltonian, and let 6(t) = (Q(t), P(t))
be a periodic orbit of minimal period T .

If 0 is not neat, then it is a round trip orbit, meaning that there exists an orienta-
tion reversing diffeomorphism o of R/TZ such that Q(o(t)) = Q(t) for each t. This
diffeomorphism then has two fixed points vy and v1, and Q' (v;) = 0.

Below, we will also call o a lifting of o to a decreasing diffeomorphism of R. This
Proposition is proved in section 3. In the present paper, we prove the missing part of
Theorem 1, namely :

Theorem 3. Given a smooth (C*°) convex Hamiltonian H : T*M — R, the following
property is satisfied for generic uw € C>°(M) :

All round trip orbits of H + u which have zero energy have their restricted lin-
earized return map in the complement of Y.

It is not completely clear to what extent this statement can be extended to different
subsets T C Sp(2d). Clarifying this question would require a finer study of reversible
symplectic matrices than the basic one provided in Proposition 12 below.

The first intuition concerning round trip orbits might be that they do not usually
exist or more precisely that H + u does not admit any round trip periodic orbit for
generic u. However, this depends on H. For example, if H is reversible, meaning
that H(q,—p) = H(q,p), then round trip orbits, sometimes called librations in that
setting, do often exist. They are studied for example in [6, 10], and the results in these
papers imply that librations exist for open sets of potentials, so their study can’t be
avoided.

We denote by M the set of points ¢ € M such that the restriction of H to T;M has
a minimum, and then we denote by (¢, ©(¢)) this minimum. The fiberwise convexity
(with positive definite Hessian) implies that M is open in M, and that p is a smooth
section of T*M. We denote by I' € T*M its graph. In the reversible case, T' is the



zero section. All round trip orbits are contained in T*M , so there would not be much
loss of generality in assuming that M=M.

Given p € T;M, p # ©(q), there is one and only one point p # p € T, M such that
O0pH (gq,p) and 0,H(q,p) are proportional and H(q,p) = H(gq,p) =: e. This point is
the minimizer of the linear form d,H (q,p) on Ty M N{H = e}. We denote by &(q,p)

the point (g,p), so that & is a well defined involution of T*M —T. We denote by
3(q,p) > 0 the proportionality coefficient, defined by

pH(S(q,p)) = —3(q,p)0pH(q, p).
We study more precisely s and & in Section 2, where we prove:

Proposition 2. The function s extends with the values 1 on I' to a locally Lipschitz
function on T*M .
The involution & is smooth on T*M — T and it extends to a C' fiber preserving
diffeomorphism of T*M , which fizes T'. We have, for v = (¢q,9(q)) € T,
1d 0
6. = [deq —Id] '

When H is fixed and z is a regular point of H, we call linearized energy level
the kernel of the differential of H at z, it is a hypersurface of T,T*M. It contains
the vectorfield Vi (). The quotient of the linearized energy level by the vectorfield
is the symplectic reduction of the linearized energy level, it has dimension 2d if M
has dimension d 4 1, and it has a natural symplectic form descending from the one
on T*M. We call it the reduced tangent space. Note that it does depend on H, and
even on u. The reduced tangent spaces of a given Hamiltonian form a smooth vector
bundle above the set of regular points of H. A hyperplane of T, T*M transverse to
the vectorfield at x is called a linear section. It has a 2d dimensional intersection with
the energy level, called a restricted linear section. The restrictions of the symplectic
form to restricted linear sections are symplectic forms. The restricted linear sections
at a point are symplectically isomorphic to the reduced tangent space. Given two
points on a same non-constant orbit, the differential of the flow defines a linear map
between the tangent spaces at these points. This differential is symplectic and it
preserves the linearized energy level, hence it gives rise to a symplectic linear map
between the reduced tangent spaces, called the reduced linearized flow and denoted
by ®¢. If transverse sections are given near the points under consideration, then there
is a well defined transition map between theses sections. The differential of this map
preserves the linearized energy level, and its restriction is a symplectic linear map
between the restricted linear sections, called the restricted linearized transition map.
It is conjugated to the reduced linearized flow.

The symmetry & is preserving the energy H, hence its differential d&, maps the
linearized energy level {dH, = 0} at x to the linearized energy level at &(z). At
points x such that the Hamiltonian vectors Vi (&(z)) is proportional to d&, - Vi (),
(then Vy (&(x)) = —s(x)dS, - Vi (z)), the linear map dS, descends to a linear map
AR, between the reduced energy spaces, called the reduced linearized symmetry. This
holds at each points of round trip orbits, and at each points of I'. In the reversible
case, the reduced linearized symmetry is antisymplectic at each point, meaning that
the pull-back of the natural symplectic form is minus the natural symplectic form.
But in general, the reduced linearized symmetry is not necessarily antisymplectic at
the points where it is defined.



Definition 3. Let 6 be a round trip orbit for H of minimal period T and les vy € R
be a time such that 0(vy) € I'. We say that 0 is reversible if :

1. The time vy := vy + T/2 also satisfies O(v1) € T.
2. The reduced linearized symmetries Rg(,,) and Rq(,,) are antisymplectic.

3. The reversibility identity
me(Uo) (o) (I)Z(I)+T o] SRG(VI) o (I)Zé = Id

holds, where ®' is the reduction of the linearized Hamiltonian flow 0,p(t —

$,0(s)).

If H is reversible, then all round trip orbits of H are reversible, so the following
result covers the case of reversible Hamiltonians.

Theorem 4. Given a smooth conver Hamiltonian H : T*M — R, the following
property is satisfied for generic uw € C>°(M) :

All reversible periodic orbits of H+w which have zero energy have their restricted
linearized return map in the complement of Y.

The proof consists in using the reversibility relation to prove a perturbation
Lemma, see Section 6. We finally make precise the intuition that round trip orbits
should exist only in specific situations where some kind of reversibility holds :

Theorem 5. Given a smooth conver Hamiltonian H : T*M — R, the following
property is satisfied for generic uw € C*°(M) :
All round trip periodic orbits of H + u are reversible.

Theorem 3 obviously follows from Theorem 4 and 5. Theorem 5 is proved in

Section 8. The rough idea is that when a round trip orbit is not reversible, it can be
turned to a neat orbit by adding a small potential. In the course of the proofs, we
will use the notion of a chord :

Definition 4. A chord (of energy zero) for H is a point (t,z) €]0,00[xT" such that
H(x) =0 and o(t,x) €T.

The chord (t,x) is said transverse if x is not a fized point of the flow, and if the
flow map ¢, in restriction to R x I'g, is transverse to I' at the point (t,x), where
I'y=TnN{H =0}.

The chord (t,x) is called minimal if (s,x) is not a chord for s €]0,[.

Note, in the above definition, that I'g is a submanifold of I" near x if this point is
not a singular point of the Hamiltonian.

We know that each round trip orbit contains exactly two points of I'; each of which
is the starting point of a chord. In the reversible case, the converse is also true : The
starting point of a chord belongs to a round trip orbit. If a chord is transverse, it
persists after a small perturbation of the Hamiltonian. In the reversible case, if H
admits a transverse chord, then H + u also admits a chord for small u, and H + u is
still reversible, so H + u still admits a round trip orbit. The following result on the
transversality of chords follows from classical tools detailed in Section 5:

Proposition 5. In the context of Theorem 1, for generic u, all minimal chords of
energy zero are transverse.



Let us now make some general comments concerning the terminology used in the
sequel. We shall consider potentials u € C*°(M) both as functions on M and as
functions on T*M, which means that we still denote u the function u o w, where
w: T*M — M is the canonical projection. For each u, we thus consider H + u as
a Hamiltonian on 7% M, we denote by Vi (x,u) the corresponding vectorfield, and by
by ¢(t,x,u) the flow. We want to think of these maps as smooth, but since C°°(M)
is not a Banach space, some care is useful. The expression 9, - v shall be considered
as a directional derivative in the direction v. More generally, we will consider finite
dimensional subspaces E C C*°(M), and the derivative in the direction F, which
can be defined as the derivative 9,¢(¢, x,u,0) of the modified map @(t, z,u,v) :=
o(t,x,u+wv). It is a well defined linear map from FE to the appropriate tangent space
of T*M, and it depends continuously on (¢, z,u).

2 The Symmetry

We study the symmetry & and the function 4 defined in the introduction, and prove
Proposition 2. We assume, without loss of generality in this section, that M = M.
We denote &(q,p) = (¢,5(¢,p)). We first prove the smoothness of s and & outside of
I'. The equations defining 4 and s are

pH (q,5(q,p)) +(q,p)0pH(q,p) =0 , H(q,s(q,p)) — H(q,p) = 0.

We can apply the implicit function theorem to these equations provided the matrix

95, H(q,s)  9pH(q,p)
A) -— pp ? P )
Plared) =gy o |

is invertible at the point (g, p,s,4). Since (¢,p) € T, we have (¢,s) ¢ T, the vectors
OpH(q,p) and 0p,H(gq,s) are both non zero, and they are negatively proportional.
To verify that D(q,p,s,4) is invertible we consider an element (p,r) of its kernel.
Recall that B := BEPH(q,s) is positive definite. We have Bp + rd,H (q,p) = 0, hence
p = —rB719,H(q,p). The second equation (p,d,H(g,s)) = 0 (scalar product), is
thus equivalent to

H(BL0,H (g,p), 0,H(q,9)) = 0.

The scalar product is different from zero because B! is positive definite and because
the vectors 0,H(q,p) and 9,H/(q,s) are proportional and not null. We deduce that
r =0, and then that p = 0.

Before studying & and s near I', we need a Lemma.

Lemma 6. Let U be an open set in some R¥, and let f(y,z) : U x RY — R be a
smooth (C3 is enough) function such that f, : x — f(y, ) is minimal at x = 0 and
conver with positive definite Hessian at each point. Then for each y € U,x # 0, there
exists a unique point & # x which is proportional to x and such that h(y,T) = h(y, ).
The involution S : (y,z) — (y, &) is smooth outside of U x {0} and extends to a C*

diffeomorphism S of U x R? fizing U x {0} and satisfying dS(, o) = [Iod —(}d] .

PROOF. We assume, without loss of generality, that f(y,0) = 0 (adding a function
of y does not change the involution). We search the map S under the form S(y,z) =
(y, —s(y,x)z), s(y,z) > 0. It is clear that the map S is well-defined outside of 0. The



implicit function Theorem implies that it is smooth away from 0. Indeed, we can set
9(s,z,y) := f(y,—sz) and see that 0sg = —0,f, -x < 0 if z # 0, by convexity. Hence
locally the unique positive solution s of the equation g(s,z,y) = f(y,z) depends
smoothly on (y,x). It is moreover clear that the map S extends by continuity on
U x R? with S(y,0) = 0.

We claim that s extends to a locally Lipschitz function on U x R?, with the value
s(y,0) = 1. Assuming the claim for the moment, we return to the map S(y,z) =
(y, —s(y,x)x). The differential at a point  # 0 is

I 0
dS(y7 ,T) - |:_8y5(y7;[;) Rz —Bms(y,:c) ®x — s(y,x)f -

Here we denote by [ ® = the linear map v — [(v)2z when [ is a linear form. Since the
differential of s is bounded, we see that dS extends by continuity on U x {0}, with

the value
Id 0

This implies that S is actually C*.
We now prove the claim on s. We work in the neighborhood of a given point of
U, called 0. We denote A(y) := 02, f(y,0). We can suppose by possibly reducing U
to a smaller neighborhood of 0 that al < A(y) < I/a for some a > 0 and for all y.
Since the third derivative of f is bounded near (0,0), we have, locally

alz[?/4 < f <|zl*/a
and, since that f(y,z) = f(y, —s(y, x)z),
as®(y, vz /4 < f < 8 (y, 2)|2|2/a

hence
a’/4 < s%(y,x) <4/a® , a/2 <s(y,z) < 2/a.

In the next computations, we denote by O(|z|¥) a function of (y, x) which is bounded
by C|z|¥, with a locally uniform constant C. We have

fly, ) = Az? /2 + O(|z])
which implies, in view of the bound already obtained on s, that
Fly, @) = fy, —s(y,2)x) = $*(y, 2) Az* /2 + O(|z]*).
These equalities imply that
(s*(y, x) = 1)Az?/2 = O(jz]),
hence that s%(y,z) — 1 = O(]z|) and finally,
s(y,z) =14 O(|z]).

As a consequence, S(y, z) = (y, —z)+O(|z|?). Differentiating the equation f(y, —s(y,z)z) =
f(y,x) with respect to x at x # 0 gives:



Since 9. f(y,z) = A(y)z + O(|z|?) and s = 1 + O(|z|), we obtain

(0af(S(y, 7)) - 2)us(y, ©) = O(|z]).

We deduce that 9, s is bounded near (0,0) observing that 9, f(S(y,z))-x = A(y)z* +
O(|z?) > alz|*/2,
Similarly, differentiating the equation defining s with respect to y yields

— (021 (S(y, ) - 2)Oys(y, x) + 0y f(S(y, x)) = Iy f (y, ).

Moreover, from , f(y,0) = 0, we deduce that 02, f(y,0) = 0, hence that 9, f(y,z) =
O(]z|?). We obtain that

(0= f(S(y, ) - 2)dys(y, ) = O(|z]*)

and conclude as above that dys is locally bounded. O

The map
b:(¢,p) — (¢,9,H(q,p))

is a diffeomorphism from 7*M to an open neighborhood of the zero section in T'M
(this is the legendre transform, it is onto if one adds the assumption that H be
superlinear, which is not useful here). It maps T" to the zero section. We denote its
inverse by g and denote f := Hog. This is the energy expressed in the tangent bundle
(it is not the Lagrangian). We claim that 92, f is positive definite on the zero section.
Indeed, let us fix the first coordinate ¢ for the moment, and denote by h the map
p = OpH(q,p) and by g its inverse, so that h(q,p) = (¢, h(p)),8(q,v) = (g,9(v)).
We have
avf(q,v) =h(g(v)) 0 Opgy = v - Dugu

and dygy = (Ophg(v)) ' = ((?ngg(q)v))fl. At v = 0, we have

—1
93, f(4.0) = Bugo = (O, Ho(q0))

and this matrix is positive definite.
We apply Lemma 6 to f = H o g and deduce the existence of a unique positive
function s(gq,v), locally Lipschitz near the zero section, such that

H o g(q,—s(q,v)v) = H o g(q,v).
0 -1

Returning to s and &, the equation 9,H(S(q,p)) = —4(q,p)9,H (¢, p) can be
rewritten

Moreover, the map S(q,v) := (¢, —s(q,v)v) is C! with dS(q,0) = Lo ] .

&(q,p) = 9(q, —4(q,p)0pH (g, p)),

and since H o & = H we obtain

H o g(q,—(q,p)0pH(q,p)) = H(q,p) = H o g(q, 9, H (g, p)).

This equation implies that s = s o h, and then

ho&(q,p) = (q,—3(q,p)0pH(q,p)))(q, —5(q, 0 H(q,p))0p H(q,p) = S 0 bh(g, p).



Since
{J:SOh ) GZEOSOha

the regularity claimed for 4, S in the neighborhood of T follows from the regularity of
5,5 in the neighborhood of the zero section. Let us finally compute the differential
of & at a point = = (g, p(q)) of . For such a point, h(z) belongs to the zero section,
and S o h(z) = h(z), hence

dS, = dgy(s) © dSy(z) © bz = (dbz) ™" 0 dSy() 0 dbs.
Taking coordinates, we have, at x,

o I 0 -1 I 0 B T
dh—[ang ‘%H] » (dh) _[—(%H)—lang (ang)—l] ) d5h<x>—{0

from which follows that

I 0
162 = [_2(813?1790)18317]{1 _I] 7
and we can check by differentiating the equality 0,H (¢, p(¢)) = 0 that

dpg = _(‘ﬁpH(q,p(q)))718§pH(q,p(q))'

That the lower right block is 2dgp, can be recovered also from the fact that & is fixing
I. 0

3 Projected orbits

We study the projection of orbits and prove Proposition 1. Let 8(t) = (Q(t), P(t)) be
a periodic orbit of minimal period T" and energy e. We say that s € R/TZ is a neat
time if Q(s) # 0 and if there exists no time o # s in R/T7Z such that Q(s) = Q(0).
We say that s is a degenerate time if Q(s) = 0, and we say that s is a self-intersection
time if there exists o # s in R/TZ such that Q(s) = Q(¢).

Lemma 7. There are finitely many degenerate times, and they are not self-intersection
times.

PROOF. If s is a degenerate time, then P(s) = o(Q(s)) is the only minimum of the
function p — H(Q(s),p) on T}, M, hence there is no other point P # P(s) such
that H(Q(s), P) = H(Q(s), P(s)). This implies that s is not a self-intersection time.

Since Q(s) = 0 and since the orbit is not a fixed point, P(s) # 0. Differentiating
at t = s the equality Q(t) = 8,H(Q(t), P(t)) gives

Q(s) = 0, H(Q(s), P(s))P(s) # 0

and we deduce that the degenerate time s is isolated. n

The next Lemma implies that an orbit which admits a neat time is neat.

Lemma 8. The set of neat times is open in R/TZ.



PROOF. Let s, — 5,8, # s be a sequence of times which are not neat. We will
prove that the limit s is not neat (it’s either degenerate or self-intersection). Since
there are finitely many degenerate times, we can asume by taking a subsequence that
sy, are self intersection times. Let o, # s, be such that Q(s,) = Q(c,). Up to taking
a subsequence, we can assume that o, has a limit o, and then Q(o) = Q(s). If o # s,
then s is a self-intersection time. If o = s, then the equality Q(s,) = Q(o,) implies
that () is not one to one near ¢ = s, hence that Q(s) =0. n

We say that s is a transverse time of self-intersection if for each o # s mod T'
such that Q(o) = Q(s) the vectors Q(o) and Q(s) are linearly independant. If s is a
non-transverse self-intersection time, there exists exactly one 0 # s mod T such that

0(c) = &(6(s)).

Lemma 9. If a self-intersection time is transverse, then it is an isolated self-intersection
time.

ProOF. Consider a transverse self-intersection time s, and a sequence s,, —> 8, 8, #
of self-intersection times. For each n, there exists o, # s, such that Q(cy,) = Q(s,).
By taking a subsequence, we can assume that o, has a limit o, and then Q(c) = Q(s).
Since s is not a degenerate time we must have o # s, and the vectors Q(s) and Q(U) are
linearly independent (because s is assumed to be a transverse self-intersection time).
This implies that the geometric curves {Q(¢), |t — o < €} and {Q(¢), [t — s| < €}
intersect only at the point Q(s) = Q(o) when € > 0 si small. This is in contradiction
with the existence of the sequences s, and o, such that s,, — s, 0, — o and

Q(sn) = Q(on). O

From now on, we assume that 6 does not admit a neat time, and prove that it
is a round trip orbit. Let R C R/TZ be the set of non-degenerate times. In the
absence of neat points, all points of R are self-intersection points. Since R has a finite
complement, it contains no isolated point hence by Lemma 9, there is no tranverse
self-intersection; all points of R are non-transverse self intersections. For each s € R,
there exists a unique time o(s) such that 0(c(s)) = &(0(s)). If £ is smooth function
on M (a coordinate) such that dqs) - Q(s) # 0, then the equation Q(o(s)) = Q(s)
implies that £ 0 Q(o(s)) = £ o Q(s). By the implicit function theorem, the solution
o(s) of this equation is smooth and locally decreasing. The function o is thus smooth
and decreasing on each connected component of R. It is an involutive diffeomorphism
of R, which has no fixed point. Since all orientation-reversing homeomophism of the
circle or of the interval have a fixed point, we deduce that there are at least two points
in the complement of R. We consider a maximal interval |vg, 11| in R, with boundaries
vy # v1. Since Q(o(11)) = Q(v1), and since 14 is a degenerate time (hence not a self-
intersection time), we deduce that o(v1) = v1, and similarly o(vy) = vg. This implies
that o extends as a homemorphism which maps |vg, 1| onto R/TZ — [vg, v1].

The last step is to prove that o is actually smooth around v;, with differential equal
to —1. We assume without loss of generality that 0 is one of the fixed points of o.
Recall that this is a degenerate point of @, so Q’(0) = 0, Q”(0) # 0. We pick a smooth
function £ on M such that £0Q(0) = 0 and (£0Q)”(0) > 0. We denote by f : R — R
the function € o Q). Recall that a smooth function f: R — R satisfying f(0) = 0 can
be written f(t) = tfi(t) with a smooth function f; ( fi(t) = fol f'(ts)ds, it has one
derivative less than f at t = 0). Applying this twice yields that f(t) = t2f(t), with
f2(0) > 0. Taking the square root, we obtain that f(t) = g(t)?, with g = t\/f2 smooth
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and ¢’(0) > 0. The equation Q(o(t)) = Q(t) is now equivalent to g(o(t)) = —g(t).
The implicit function theorem can be applied to this equation and yields that o is
smooth at ¢t = 0 (it actually has two derivatives less than Q) with ¢/(0) = —1. 0

Note that o’ (t) = —4(0(¢)), which also implies that o is C', with o’(v;) = —1. The
above proof provides a better regularity for o. We finish with a remark on multiple

intersections. We say that ¢ is a multiple intersection time if there are at least three
different times in R/TZ (including ¢) at which @ takes the value Q(¢).

Lemma 10. Each periodic orbit 6 has finitely many multiple intersections.

PROOF. If there was infinitely many multiple intersections, there would exist injective
sequences s, — 8, t, —» t, 7, — 7 such that Q(s,) = Q(t,) = Q(7.), and such
that the three times s, t,,, 7,, are distinct for all n. At the limit, Q(s) = Q(t) = Q(7).

If two of the limits s,t,7 are equal, say s and ¢, then, s is a degenerate point
(because the curve @ is one to one near a non-degenerate point). Since a degenerate
point can’t be an intersection point, we deduce that 7 = s = ¢. But since Q" (s) # 0,
the curve @) takes each value at most twice near s, a contradiction.

The second possibility is that s,¢,7 are distinct, and non-degenerate. But then
at least two of the three derivatives Q'(s), Q'(t), Q' (7) are linearly independant, say
Q'(s) and Q'(t). This is in contradiction with the existence of the intersection points
S, — s and t, — t. n

4 Reversible symplectic matrices

We consider here the group Sp(2d) of real symplectic matrices and the space A (2d)
of antisymplectic involutions, which are 2d x 2d matrices R such that R?> = Id and

R*w = —w, where w is the standard symplectic form on R??. In matrix form, this
second equation can be rewritten R'JR = —.J, with the usual symplectic matrix
0 I
)

Two examples are the map Ry : (¢,p) — (¢, —p) and Ry : (¢,p) — (p,q). We also
denote by M(2d) the space of square real matrices of size 2d. The content of this
section is partly inspired by [8, Section V], but Devaney studies there the space of all
reversible matrices, not the anti-symplectic reversible ones.

Proposition 11. The subset A(2d) C M(2d) is a connected algebraic submanifold
without singularity of dimension d(d+1). The action of Sp(2d) on A(2d) by conjugacy
1s transitive and submersive, meaning that the map

Sp(2d) > M — M~'RM € A(2d)

is a surjective submersion for each R € A(2d).
PROOF. The eigenspaces Eq(R) and F_1(R) associated to an element R of A(2d) are
isotropic, and since R?? = E;(R) @ E_;(R), they must each have dimension d and

be Lagrangian. Conversely, two transverse Lagrangian subspaces of R?? determine a
unique element of A(2d). Since the group Sp(2d) acts transitively on ordered pairs of
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transverse Lagrangian subspaces (see e.g. [9, Theorem 1.26]), it also acts transitively
by conjugacy on A(2d). The isotropy subgroup of an element R C A(2d) is the
set of symplectic isomorphisms which preserve each of the two Lagrangian spaces
Ei(R) and E_;(R), it has dimension d?. As a consequence, the rank of the map
Sp(2d) > M +—— M~'RM € M(2d) is dim Sp(2d) — d* = d(d + 1).

On the other hand, we can linearize the equations R? = I and RT JR = —J which
determine A (2d) at the point Ry = [é _OI} . We obtain the equations RyR+RRy =0
and RyJR+ RTJRy = 0. A simple computation in block form reveals that the kernel

g 61] with A and
B symmetric. This is a d(d + 1) dimensional linear subspace of M(2d). This implies
that the orbit A (2d) of the action of Sp(2d) is an embedded submanifold of dimension

d(d+1). 0

of these linearized equations is the space of matrices of the form

Given R € A(2d), we say that M € Sp(2d) is R-reversible if RM is an involution,
and then RM € A(2d). The set of R-reversible matrices is thus RA(2d), it is a
submanifold of M(2d). The transitive action of Sp(2d) on A(2d) gives rise to a
transitive action on RA(2d), given by

Sp(2d) x RA(2d) > (M, L) — RM'*RLM € RA(2d).

For each fixed R, this map is a submersion from Sp(2d) onto RA(2d). If R and R are
two elements of A(2d), then the submanifolds RA(2d) and RA(2d) are conjugated
inside Sp(2d).

As is well known, the symplectic matrices which preserve the first component are

of the form [é ?] for some symmetric matrix S. Similaly, the elements of A(2d)

which preserve the first component are of the form { } for some symmetric

S -1

matrix S.

Proposition 12. For each R € A(2d), the matrices with multiple eigenvalues form a
closed and nowhere dense set in RA(2d). So do the matrices having a fized complex
number \ as an etgenvalue.

PROOF. We consider the algebric map A : RA — R which, to each M € RA(2d)
associates the discriminant of its caracteristic polynomial. The matrix X has a multi-
ple eigenvalue if and only if A(X) = 0. By analytic continuity, either A is identically
vanishing on RA(2d) or the set A~1(0) has empty interior. So we just need to show
the existence of an element of RA(2d) without multiple eigenvalues. We consider

M € Sp(2d) such that M~'RM = Ry = {(I) ﬂ Then, we consider a diagonal ma-
trix X, with diagonal elements (x1,...,24,1/21,...,1/zq), with 1 < 27 < -+ < x4.

This matrix X is symplectic and R;-reversible, and it has simple eigenvalues. Then,
MX M~ is symplectic, it has simple eigenvalues, and it is R-reversible since

MXM 'RMXM*R=MXRXRM ‘*=MM'=1.

We conclude similarly concerning the matrices having A\ as an eigenvalue by consid-
ering the algebraic map M —— det(M — \I). 0
To sum up:
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Corollary 13. Given R € A(2d), the intersection Y N RA(2d) is an F, with empty
interior in RA(2d).

5 Transverse Chords

We prove Proposition 5 using a variation on the parametric transversality principle,
see [1]. We represent chords by the set C C]0, co[xI' x C°°(M) of triples (¢, z,u) such
that (¢,x) is a chord (of energy 0) for H +w. It is a closed subset of the product. The
subset C™ C C of chords which are not transversal is also closed.

Lemma 14. The set of minimal chords is open in C.

Proor. Let (Ty,xn,u,) — (T,2,u) be a converging sequence of non-minimal
chords. There exist times S,, €]0,T,[ such that (S, 2., u,) are also chords, and,
up to a subsequence, S, has a limit S in [0,7T]. If x is a fixed point, then (T, z,u) is
not minimal. If z is not a fixed point, the vector-field Vi, is vertical at x, hence not
tangent to I'. Then there exists ¢ > 0 such that (¢, z,,u,) € I for ¢t €]0, €[ provided
n is large enough. This implies that S > 0. Similarly, Vg, is vertical at p(T,x, u)
and this implies that S < T. Finally, we have S €]0,T[, and (S, z, ) is a chord, hence
(T, z,u) is not minimal. 0

The following local version of Proposition 5 implies Proposition 5:

Proposition 15. Let (T,0) be a minimal chord of H. Then there exists an open
neighborhood Cioe of (T,6,0) in C such that the projection of C'. := C™ N Cioe 0N
C>(M) has empty interior.

Let us first explain how Proposition 15 implies Proposition 5. Let C’ be the set
of chords which are minimal and not transverse. For each (¢, 2,u) € C’, we can apply
Proposition 15 to H 4+ u at point (¢,2) and get the existence of an open neighborhood
C/,. of (t,xz,u) in €’ whose projection on C°°(M) has empty interior. Moreover, C; .
is locally closed (the intersection of an open set and of a closed set), hence it is an
F, in the product |0,00[xT' x C°°(M). Recalling that the projection of a closed set
of the product on the last factor is an F,,, we deduce that the projection of C},, is an
F, with empty interior. The separable metric space C’ can be covered by countably
many open neighborhoods €/, . having this property, so its projection is a countable
union of F, with empty interior. By the Baire property, the projection of C’ is an F,
with empty interior, Proposition 5 is proved. 0

PROOF OF PROPOSITION 15. We fix a minimal chord (7, 6) and denote by 6(t) =
(Q(t), P(t)) the H-orbit of the point §. Since T' > 0 and the chord is minimal, the
orbit 6(t) is not constant, hence, locally near 0(0) and near 0(T), the energy level is
a submanifold, and it is transverse to I'. The following key observation seems to first
appear in [3], Lemma 2:

Lemma 16. There exists a finite dimensional subspace E C C(M), formed by
potentials vanishing near Q(0) and near Q(T), such that the Gateau differential
Orup(T,0,0) maps R x E onto the linearized energy level of H at 0(T).

We omit the proof, which is similar to [3, Lemma 2| or [5, Lemma 7|. Since the
energy level of H at 6(T) is transverse to I', this implies that ¢, in restriction to
10, 00[x {0} x E, is transverse to I" at (T,0,0).
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Then, the map
(t,v) — @(t,0,u+v)

is transverse to I" on ]0, 00[10¢ X Ejoc provided (6, u) € Lo X Crg,, where ]0, 00106, Lioe, C2.,

locy
are sufficiently small open neighborhoods of 7', 6,0, 0 in the corresponding spaces. We
choose the neighborhoods such that the elements of £ vanish on I'j,. and such that
the restriction of H + u to I'j,. has no critical point for u € CX..
From now on, we fix u € C};, and prove that u does not belong to the interior of
the projection of C! . := C" NCiq¢, With Cppe 1= CN (]O, 00[10e X Lloe X Cl‘fc). We denote

by I'jt . the submanifold of I';,. of equation H + u = 0, or equivalently of equation
H +u+v =0 for each v € E. The map

¥ :]0, 00[10e X1 X Eloe 3 (t, x,v) — p(t,z,u +v) € T*M

is transverse to I'. As a consequence, the set 1~ (T') is a smooth submanifold. The
point (t,z,v) belongs to ¥ ~Y(T") if and only if (¢,2,u + v) is a chord of energy 0.
Moreover, this chord is transverse if (¢, x, v) is a regular point of the restriction 7,5 to
1~ 1(T) of the projection to the third factor. In order to check this, we denote by F the
product R x T, I'}; ., by V' C Toy(4,2,0)T" M the linear vertical, and by ¥ : Fx E — V
the composition of the differential di; , .y and of the projection on V' parallel to
Ty(t,e,0)L- This linear map is onto. By definition, the chord under consideration is
transverse if ¥ maps F' x {0} onto V. It is an easy exercise of linear algebra to check
that this is equivalent to the fact that the kernel of ¥, which is the tangent space to
1~ 1(T'), projects onto E.

Finally, we apply Sard’s Theorem to the restricted projection 7,..s; and deduce the
existence of arbitrarily small regular values v of this restricted projection. For such
a v, all chords of energy zero of H 4+ u + v in ]0, 00[j0c X M, are transverse, meaning
that v + v does not belong to the projection of C}} .. As a consequence, the function
u does not belong to the interior of this projection, and this holds for each v € Cy;,.. o

6 The return map of reversible orbits

We prove Theorem 4. As in [13, 14], we have to understand to what extent the return
map of a given orbit can be modified by adding a small potential to the Hamiltonian.
In that respect, the following result was established in [14] (completed in [4]):

Proposition 17. Let 0(t) = (Q(t), P(t)),t € [a,b] be an orbit segment of the convex
Hamiltonian H. Assume that the first component @ is an embedding of the interval
[a,b] into M, and let U C M be an open set intersecting Q(Ja,b]). Let & C C°(M)
be the space of adapted potentials supported in U, more precisely the space of smooth
potentials u supported in U, null near {Q(a),Q(b)}, and satisfying u = 0, du = 0
on the image of Q (which implies that 6 is still an orbit segment for the potentials
H+wu,u € &). The map
& 3 ur— ®(u) € Sp(2d)

which, to each potential u associates the restricted linearized transition map for the
Hamiltonian H + u between times a and b is well defined once symplectic coordinates
have been fized, independently from w, on the reduced tangent spaces at 6(a) and 6(b)
(these spaces do not depend on u € &). This map is weakly open, meaning that the
image of each non-empty open set of & contains a non-empty open set of Sp(2d).
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In this statement, we could replace "weakly open" by "open" using [12|. However,
this is much harder to prove and not necessary for our present study.

When 6 is a neat periodic orbit, one can find a time interval [a,b] such that the
above result applies, and such that moreover Q([b, a + T]) is disjoint from Q(]a, b|),
where T is the minimal period of the orbit. Then, the above result can be applied
with U = M — Q([b,a + T1]), and the restricted return map ®2*7 (u) of the periodic
orbit @ for the Hamiltonian H + u at 6(a) can be written

@5 (u) = 5T 0 @ (u),

where <I>§+T does not depend on u € & because the elements u € & vanish near
Q([b,a +T]). We deduce immediately that the map

&3 ur— 4T (u)

is weakly open, which is a way of saying that we have sufficient possibility to change
the return map by changing the potential. This is the main step in the proof of
Theorem 2.

However, if the orbit  is not neat, it is not possible to chose the interval [a, b]
such that Q([b,a + T1) is disjoint from @Q(]a,bd[), and then in the decomposition
a7 (u) = ¢ (u) o ®b (u), both factors depend on u, and it is not clear in general
how the composition behaves. This is why the above discussion, which summarizes
the strategy of [13, 14] is not sufficient to obtain Theorem 1.

The proof of Theorem 4 consists in solving this difficulty using the reversibility of
the orbit. So we assume that @ is reversible, and also for definiteness that 6(0) € T’
(then 6(7T'/2) € I'). We denote by %R; the reduction of the linearized symmetry dSg ).
In particular Ry and R/, are antisymplectic involutions of the reduced tangent
spaces at §(0) and 0(T/2). These reduced tangent spaces can be represented by 2d-
dimensional subspaces transverse to the vectorfield and contained in the linearized
energy level. These transverse subspaces can be chosen invariant under the linearized
symmetries dSg (), dSg(r/2), and then Ro, Ry o are just the restrictions of these
linearized symmetries to the linear sections.

Proposition 18. Let 6 be a reversible orbit of minimal period T, satisfying 6(0) € T.
Let & C C°(M) be the space of potentials which satisfy w=0,du =0 on Q([0,7/2]),
and such that moreover u = 0 in a neighborhood of {Q(0),Q(T/2)} (we call them
potentials adapted to the chord (6(0),T/2)). Assume that there exists an open subset
8loc C & such that the orbit 0 is reversible for H + u for each u € &o.. Then the
reduced return map ®F (u) along the orbit § for H + u belongs the space RoA(2d) of
Ro-reversible symplectic matrice for each u € e, and the image fIJOT(&OC) contains

an open subset of RoA(2d).

PRrROOF. We denote by ®¢(u) the reduction of the linearized flow 9,p'*(0(s),u). On
8ioc, the reversibility relation

Ro 0 B 5 (u) 0 Ry 0 g (u) = Id,
holds, it can be rewritten

®L (1) = Ro o (B2 (1)) L 0 Ry
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Then, for u € &,
OF (u) = L5 (u) 0 By (u) = Ro o (B9 (u)) ™ 0 Ry 0 g/ (u).

So the set ®1'(&0¢) is the image of the set fI)(:JFm((‘SlOC), which contains an open subset
of Sp(2d) by Proposition 17, by the map

Sp(2d) > M — RoM 'Ry M € RoA(2d).
This map is open by Proposition 11, the statement follows. n

In view of Proposition 5, Theorem 4 follows from :

Proposition 19. The following property is satisfied for generic u € C*°(M):

For each x € TN{H +u = 0} such that the (H +u)-orbit of x is reversible periodic
of minimal period 2T, and such that the chord (T, x) is transverse, the reduced return
map belongs to the complement of Y.

PrROOF. Let 1M CJ0,00[xT" x C°°(M) be the set of minimal transverse chords of
energy 0. In view of the implicit function theorem (see Appendix A) and of Lemma
14, the projection from 7111 to C°°(M) is a local homeomorphism. Let # C 111 be the
subset of transverse minimal chords (7,0, u) associated to reversible periodic orbits
with return map in Y. In other words, the chord (T,60,u) € 1 belongs to & if an
only if :

e ©(2T,0,u) = 0,

e The reduced symmetries Ry ) and R, (7,0,u),u) are antisymplectic.
® Rgu) 0 PF (0, u) o R(p(1,0,u),u) © P (0,u) = Id,

o &1 (0, u) €Y.

In these equalities, we denote by R, ,) the reduced linearized symmetry at point
for the Hamiltonian H +u, and by ®(z,u) the reduced linearized flow of H +u along
the orbit of x from time s to time ¢t. We have to prove that the projection of # on
the third factor is an F, with empty interior. Since the projection from 771 to the
third factor is a local homeomorphism, and since 771 is a separable metric space, it is
enough to prove that # is an F, with empty interior in 771. The first claim is clear,
using that T is an F,. To prove the second claim, we argue by contradiction and
assume that the interior of & contains a point (7,0, u).

As in Proposition 18, we denote by & C C°°(M) the space of potentials v which
are adapted to the chord #, meaning that v = 0,dv = 0 on Q([0,T]) (the first coor-
dinate of the (H + u)-orbit of #), and that v is vanishing near Q(0) and near Q(T).
Since (T,6,u) is in the interior of P, there exists an open neighborhood &;,. of 0
in & such that (¢,0,u +v) € P for v € &,.. We deduce from Proposition 18 that
the set ®27(&),.) contains an open subset of RoA(2d). In view of Corollary 13 this
contradicts the fact that ®1'(&,,.) is contained in Y. 0
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7 Non homogeneous linear systems.

In the present section, we expose a result on non-homogeneous linear systems which
is the key step for the proof of Theorem 5. We consider two smooth curves of Hamil-
tonian 2d x 2d matrices L; and L; defined on [0, T] which we think as the linearized
systems along the two branches of a round trip orbit near a given non-degenerate
point. We denote

_[or B - [c B
Lt - |:_At _Ot:| ) Lt - |:_At _ét )

where Ay, By, At, Bt are symmetric d X d matrices and C, C't are arbitrary matrices
of the same size. We assume that Et is invertible for each t. We also consider two
non-vanishing smooth functions a(t), a(t) on [0,7] and consider the inhomogeneous
linear systems

as well as their homogeneous counterparts. Note, and this is a key point, that the
same curve b appears in both systems. We think of b as a perturbation created by
adding a potential, so it will take values in {0} x (R%)*. We denote by W%, W' the
resolvants of the homogeneous systems z' = aLz, T’ = aL#. We recall the standard :

Lemma 20. Given a curve Ry of matrices, the conjugacy relation
R,oWU" = V"o R,
holds for each v near s if and only if the differential system
R+ a(s)R.L(s) = a(s)L(s)Rs

holds for each v near s.

PROOF. Setting A" = R, o " — U” o R,, we have

A" = (Rl + a(r)R,L(r))¥. — a(r)L(r)V: (u) Ry
= (R’T +a(r)R,.L(r) — EL(T)E(T)RT)\I/:(U) + &(r)f)(r)Ar.
We see from this differential equation that A”™ = 0 near r = s if and only if the

equation R
Rl +a(r)R.L(r) —a(r)L(r)R, =0

holds for r near s. 0

We are interested in particular in conjugacies preserving the first coordinates,

i.e. of the form R; = [i g] The first block line of the differential equation R] +

a(r)R,L(r) — a(r)L(r)R, = 0 indicates that the only possible conjugacy of that form
is

1 0

Ry = [(d(t)é(t))l(a(t)CT(t) —a(t)CT (1)) (alt)/a(t))B~*(t)B(t)
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Proposition 21. In the context described above, assume that E(t) is invertible for
eacht € [0,T]. Assume that, for each smooth curve b(t) : R — {0} x (R?)*, compactly
supported in [0,T], the solutions x and & of the two non-homogeneous linear systems
with the initial condition x(0) = 0 = #(0) have the same projection on R% x {0}. Then
the following conditions are satisfied for each t € [0,T] :

1. a/a is constant,

2. The matrices Ry are conformally symplectic of factor a/a, meaning here that

= LI <a/0a>f}

with s; symmetric.

3. The homogeneous systems x'(t) = a(t)Lyx(t) and &' (t) = a(t)L:z(t) are conju-
gated by NRy.

Conversely, if conditions 2 and 3 are satisfied, then Ry is conjugating the non-

homogeneous equations ¥’ = aLx + ab and T’ = aLx + ab for each curve b compactly

supported in 0, T[ and taking values in {0} x (RY)*, and in particular the solutions
emanating from 0 have the same projection on R? x {0}.

It might sound surprising to obtain a converse using only two of the three conclu-
sions. It means that conclusions 2 and 3 actually imply conclusion 1. We will give a
direct proof of this fact in the course of the following proof.

PrOOF. We first prove the converse. If z(t) solves the equation «’ = aLx + ab, then
y(t) := Ryx(t) satisfies

y'(t) = KRy () + a(t) R LRy y(1) + a(t)Red(2).
From the third assumed conclusion, we have
RIRT + a(t)R LR = a(t)Ly.

From the form of R; and b, we see that QR;b(t) = (a(t)/a(t))b(t). So y solves the
system 3’ = aLy + ab, which was our claim.

O

Let us now explain why conditions 2 and 3 imply condition 1. More generally, if
the matrices R are of the form

1o LTI 0
mt—[st al} , (Re) —[_a—lst a—l[}

and conjugate the homogeneous systems, 2/ = Lyz and & = L&, with L, and L,
Hamiltonian, then necessarily s; is symmetric and « is constant. Indeed, we can
compute
T -1 -1
Jeon—1 ~1_ |aC" —aa”'Bs; a ‘aB
mt%t + a(t)i)‘{tLtiRt = |: * 0/0471[ + CLO[ilﬁtB —aC
(the lower left block is not useful). In order for this matrix to be Hamiltonian, we

must have
C -1.Tp _ -1 ro—1
aC —aa” sy B=aC —aa” s:B—a'a™ "1
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which is equivalent to
a(s] —s;) =o' B

In this equality, the left hand side is antisymmetric, while the right hand side is
symmetric, so both most be null, which is precisely implying that « is constant and
that s; is symmetric.

Proving the direct implication in Proposition 21 is more delicate. We temporarily
work in a more general setting. Let L; = L(t) and L, = f/(t) be two smooth curves
of endomorphisms of a vector space E (= R? x (R%)* in our case), and let a and @
be non-vanishing functions. We consider a quotient 7 : E — G of E (the projection
to the first factor R? in our case) and a subspace F of E (the subspace {0} x (R%)*)
, we assume that mp = 0. Our goal is to give necessary conditions in order that the
solutions of the two non-homogeneous equations

2/ (t) = a(t)Lyz(t) + a(t)b(t)
F(t) = a(t) L,z (t) + a(t)b(t)

starting with the initial condition z(0) = 0 = Z(0) have the same projection on G
(meaning that 7 ox = w0 Z) on the time interval [0, T] for each curve b: [0,T] — F
smooth and compactly supported in ]0, T'[. Recall that the curve b appearing in both
differential equations is the same.

Given a linear map M on E, we denote by [M] : F' — G the block 7 o M|p of
M, it is the upper right block in our case.

Lemma 22. Ifrox = woZ on [0,T], for each curve b smooth and compactly supported
in 10, T, then .

[a(t) M, (t)] = [a(t)Mn ()]
for each n > 1 and each t € [0, T], where M, (t) is the sequence of curves of matrices
defined by My = I and M, +1 = M} + aM, L (and similarly for Mn) In the special
case where a = a, this implies that [L3] = [L3].

In the formulation of the problem, we have included two functions a and a to make
the expressions more symmetric. It would however be possible to multiply both a and
a by a same non vanishing function without changing the problem. This would for
example allow to assume that a or @ (but, in general, not both) is identically equal
tol

PROOF. If mox = 7o Z for each curve b smooth and compactly supported in |0, T'[,
then this also holds for all b € L'([0,77]), by a standard approximation argument
using that the maps b — z and b — & are continuous from L' to L.

A straightforward computation shows that

2 =ab+ aLz = ab + Msyx
2" =(ab)’ + aMab + M3z
23 =(ab)" + (aMab)' + aMsb + Myx
2™ =(ab) "V 4 (aMab)"" + -+ aMpb + My

We consider a discontinuous curve b which is null on [0, s], and has a prescribed
constant value b on [s,T]. The equation 7w o z”(s) = 7o #’(s) (the derivatives are
computed on the right of s) reduces to

a(m o My)b = a(m o Ma)b
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since z(s) = Z(s) = 0 and 7o (ab’)(s) = 0 = w o (ab)’(s). Since this holds for each b,
we have a[My(t)] = a[My(t)] for each s in |0, T[ hence in [0, T].

Assuming this equality, we have that [(aMy) (t)] = [(@M2)'(t)] hence the equation
moa'(s) = mo&" (s) simplifies to [a(s)M3z(s)] = [a(s)MS(s)]. Similarly by induction
the equality o z(")(s) = m 0 (") (s) reduces to [a(s)M,(s)] = [a(s)M (s)].

Assume now that @ = a. We have My = alL, M3 = (aL)’ + (aL)?,

My = M} + (aL)'(aL) + (aL)® = M} + ((aL)?) /2 + (aL)".

[aL]
Then, the equality [M;] = [Ms] reduces to [(aL)?] = [(aL)?]. Finally, the equality
(M) = [M}) implies [(aL)*] = [(aL)?%], hence [L?] = (7). .

Under the hypothesis of the proposition, we have [aL] = [aL] hence [(aL)'] = [(aL)'].
?]

PRrROOF. We now prove the direct implication in Proposition 21. The first conclusion
in Lemma 22 implies that

&2Bt = [dzfjt] = [ath] = 0,2Bt.

This implies that the lower right block (a/a)B~'B of R is actually equal to (a/a)I.
The first block line of L? is

noLl?=((C")?> - BA,C"B - BC)
and similarly for L2. The equality aMs = d3M; can be written alaL]’ + a’[L?] =
alaL) + a®[L?) and
a*(CTB — BC) — a(aB) = &*(CTB - BC) — a(aB)'.
Using that a2B = a®B, this is equivalent to
aCT(a®>B) — (a*B)aC — aC” (a®B) + (a®*B)aC = a(aB)' — a(aB)’
& a®B(aC — aC) — (a®B(aC — aC))” = a(aB) — a(aB)'.

In this last equality, the matrix on the left is antisymmetric, while the matrix on the
right is symmetric (recall that B is symmetric). The equality thus implies that each
of them is null. The nullity of the left hand side implies that the matrix B(aC — aC)
is symmetric, hence (using that B is symmetric) so is the transpose (aCT — aC7T)B,

and so is R R
B YaC? —aC?) = B~ (aCT —aCT)BB™!,

hence (using that a’B = a’B) so is the lower left block

se = (a()B(t) " (a(t)CT () — a(t)CT (1))
of M;. The nullity of the right hand side, a(aB)’ = a(aB)’ can be rewritten
(a®B) —d'aB = (a*°B)’ — &'aB
and, since a?B = a2B, this is equivalent to (a'/a — @'/a)B = 0 hence to a’/a =

@' /a, which implies that a/a is constant. We have proved the first and the second
conclusions of the Proposition.
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Let us now prove our last conclusion. At this stage, we know that

1 0
R = Lt (d/a)[} :
The computations made in the proof of the converse imply that 93; conjugates the
system «’ = aL;x + ab to the system y' = aGyy + ab, with

a(t)Gy = KR, + a(t)R; LR,

By definition of %Ry, the first block line of this matrix G is equal to the first block
line of L. Moreover, as seen in the proof of the converse above, the second conclusion
implies that the lower right block of GG is minus the transpose of its upper left block,

so that - -
C B
“= [—AG —@} ’

and we have to prove that Ag = A.

We apply Lemma 22 to the systems & = aL# + ab and v/ = aGy + ab, that is to
the pairs of data (L, @) and (G, a). We obtain that [G®] = [L?]. Using the expression
given above for the first block line of L?, we expand this equality to

(CTY? — BA)B — (CTB - BC)C = ((CT)? = BAg)B — (CTB — BC)C,

which simplifies to BAgB = BAB, hence to Ag = A. This implies that G = L, and
proves the third conclusion of the proposition. n

8 Reversible points and reversible orbits

The goal of this section and the next one is to prove Theorem 5, which will be deduced
from the stronger Theorem 6 below. We say that x € T*M is a two-way point if z & T,
and if S(p(t,x)) is, up to parametrization, an orbit of H near ¢ = 0. We say that
(x,u) € T*M x C°°(M) is a two-way point if z is a two way point for H + u. This
holds if and only if there exists € > 0 such that the equality

ng&(t,m,u) ! VH(@(tv Zz, u)a u) = _d(@(tv €z, u))VH(G © <P(t, xz, ’U,), u)

holds for each |t| < e. We denote by #(e) the set of points (z,u) which satisfy this
property, and by ) = UcoW(e) the whole set of two-way points. This union is
increasing, hence it can be made countable. It is clear from the definition that #’(e)
is closed, hence ¥ is an F.

If O(t), |t| < € is an orbit segment made of two-way points (which is equivalent to
(0(0),0) € W(e)), then there exists a decreasing diffeomorphism o form | —¢, €[ into an
open interval of R, satisfying ¢(0) = 0, and an orbit segment 0 such that S0 = foo.
The function o satisfies 0(0) = 0, and is determined by the equation o’(t) = —s(6(t)).

Definition 23. We say that the point 6 is reversible if it is a two way point, and if
moreover

1. dsg - VH(Q) =0,

2. the reduced linear symmetry Ry is conformally symplectic of factor —s(6),
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3. denoting by 0(t) the orbit of 6, we have

Ayji=0 (Re (o) © (i)g(t) °© Ry(r) 0 Bp) =0

where ®f is the reduced linearized flow along 6 and ®f is the reduced linearized
flow along 6.

We are going to prove :
Theorem 6. For generic u € C°(M), all two-way points are reversible.

That Theorem 6 implies Theorem 5 follows from the next Lemma, since all points
of a round trip orbit which do not belong to I' are two way points.

Lemma 24. Let 0(t) be a round trip periodic orbit. Assume that all points of the
image of 0 which are outside of T are reversible points. Then the orbit 0 is reversible.

PROOF OF LEMMA 24. We assume, without loss of generality, that 6(0) € ', and
denote by T' > 0 the minimal period of the orbit. There exists one and only one time
v €]0, T such that #(v) € I'. The first condition of the definition of reversible points
implies that 4 o 6 is constant on ]0, [ and on |v, T[. Moreover, we know that 4 o @ is
continuous and takes the value 1 at 6(0) and 6(v). We deduce that s = 1 on z, hence
that ¥ = T'/2. The time symmetry o associated to the orbit 6 is o(t) = —t.

For the sequel, we denote by %R, the reduction of d&g ;). Note that RyoR_; = Id.
The maps Ry, t €]0,1/2[ are conformally symplectic of factor s(6(t)), hence at the
limit Ry and Ry, are conformally symplectic of factor —1, i.e. antisymplectic.

We want to prove the reversibility relation 2Ry o CI% /2 © R/ 0 @g/ S d, which
is equivalent to
mo o (b(iT/2 O mT/Q o ¢§/2 - Id

By continuity, it is enough to prove that the reversibility relation
R_s0dP 7 oR,0d, = Id
holds for s and ¢ in |0, 7/2[. We denote
£i=0% M ;0P FoR0d) =P 0 R ;0P FoR, 0D 0D,

it is an endomorphism of the reduced tangent space at #(0), which depends smoothly
on s and ¢t. Note that £5 = Id, and the identity we try to prove is equivalent to
£l = Id. We have

£ =glogl

for each s, ¢, 7 in |0, T/2], as follows from the computation
=00 R 0P foN, 0d]
:(I)goi)‘{_sotl):fofl):io{)ﬁo@g
:fI)goS)‘LsoflJ:foSRtoS)‘Ltoé:ioﬁ%rofbg
=P%0M 0P FoR oD odoNR ;0D LoR, 0 D).
The third condition of the definition of reversible points implies that

3T|T:t£: - 0
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and in view of the above relation this implies that
6t£1; = 0,

and we deduce that £! = Id for each s and ¢ in ]0,7/2[, which implies the desired
reversibility relation. 0

The proof of Theorem 6 is based on the following Proposition :

Proposition 25. Let 0(t) = (Q(t), P(t)), |t| < € be an orbit segment made of two way
points of H (hence (0(0),0) C W(e)). Assume moreover that 0(0) is not reversible.
Then there exists an open neighborhood Wi..(€) of (6(0),0) in W (e) whose projection
on C®°(M) has empty interior.

PROOF OF THEOREM 6. We assume Proposition 25. Let 1’ (¢) be the set of elements
of #(e) which are not reversible. By Proposition 25, applied to H + u, each point
(0,u) € W (e) is contained in an open subset W,.(e) of ¥ (e) whose projection on
C°(M) has empty interior. Moreover, W,.(¢) is locally closed, hence it is an Fy, so
its projection is an F,, with empty interior. Since T*M x C*°(M) is a separable met-
ric space, the subset /' (e) can be covered by countably many such neighborhoods,
S0 its projection is contained in a countable union of F, with empty interior, hence,
by the Baire property, in an F, with empty interior. Then the projection of the set
W = UpW (1/k) of two-way points which are not reversible is contained in an F,
with empty interior. 0

PROOF OF PROPOSITION 25. The principle of the proof is that a point which is
stably a two way point has to be a reversible point. We assume, without loss of
generality, that H(0) = 0. We work in coordinates (qo,q1,--.,q94) = (qo,qx) of M
near Q(0) = Q(0) such that

Q(t) = (Qo(?),0),

with Q'(t) > 0, for ¢t €] — §,d] for some § €]0,¢[. Such coordinates exist because
@'(0) # 0. We could obviously impose that Qo(t) = ¢, but some expressions will
appear more symmetric if we don’t. The first coordinate Qg of the orbit maps | — ¢, [
diffeomorphically onto an open interval of R, and we denote by 7 its inverse, so that

QorT(r)=rey = (r,0).
The corresponding coordinates of T%M are

(qvp) = (%7‘]17-- -54d,Po,P1, - - pd) - (Qan*aPOap*) € Rd+1XRd+1 = RXRdXRXRd'

The coordinates x, := (g«,p«) are local symplectic coordinates on the restricted
sections {go = r, H = ¢}, hence on the restricted linear sections, hence on the reduced
energy levels.

Since #(0) is a two way point, the orbit 6(t) = (Q(t), P(t)) of the point &(6)
satisfies ) .

Q(t) = (Qo(t),0)

and we denote by 7 the inverse of Qo, it is a decreasing diffeomorphism from a
neighborhood of 0 to | — 6, 6[. The time symmetry is ¢ = 7 o Q.

We denote as usual by ®!, resp. <i>‘;, the reduced linearized flow along the orbit

~ 57

0, resp. 0, expressed in coordinates x.. It will actually be useful to parameterize
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orbits by the coordinate ¢y, and define, in coherence with section 7, U= @:g;; and
\if; = @ig;g These are the differentials at the orbit of the local transition maps

between the restricted sections {H = 0,q0 = p} and {H = 0,qp = r}, expressed in
coordinates z.. The matrices ¥}, \i/; are symplectic, hence the matrices L,, L, such
that

0V, =7/ (r)L, WL, 0.0 =7 (r)L, V]

are Hamiltonian, meaning that they are of the form

cT B, . cT B,

Lr= [—AT —Cr]  Lr = [—AT —CJ ’
with symmetric blocs A and B. We will use later the matrices A,, By, Cy, A,, By, C,
defined by the above equalities. If the coordinates could be chosen such that 6, and 6,
are constant, then we would have L, = J92_, H(@or(r)) and L, = J92_, H(0o7(r)).
However, coordinates satisfying these two conditions do not exist in general, and the
above relation between L and H does not necessarily hold, although only the blocks
B remain equal:

Lemma 26. We have
_ 92 5 o 92
B, = (’“)p*p*H(H or(r)) , By=20

PxPx

H (67 o 7(r))
hence they are positive definite.

Lemma 27. The expression in coordinates of the reduced linearized symmetry Roor ()
18

I 0
(7 (r)B(r) (7' (CT (r) =7/ (1)CT(r))  (7'(r) /7' (r)) B~ (r)B(r)

Note that this expression coincides (unsurprisingly) with the matrix called 2R
before Proposition 21 with a = 7/, @ = 7. For = € T*M near {6(0),0(0)}, u € C®
near 0, 7 € R near 0, we denote by ¢(r,z,u) € R?? the x, coordinate of the local
intersection of the orbit of z for H + u with the section {gy = '} (along 6 or along 6),
and set ¥ (r, z,u) = ¢¥(r, &(x), u).

Lemma 28. Given a potential v € C*(M) vanishing on Q(] — 9,9(), the direc-
tional derivatives y(s) := 0y,1(s,0,0) - u and y(s) := 0y (s,0,0) - u satisfy the non-
homogeneous differential equations

y'(s) =7'(s)L(s)y(s) + 7' (s)b(s) , §'(s) =7'(s)L(s)§(s) + 7' (s)b(s)
where b(s) = (0, —0,,u(s,0)) € R x (R?)*. They take the initial values y(0) = 0 =
4(0).

We postpone the proof of these Lemma to the next section and continue the proof
of Proposition 25. We will apply Proposition 21 to the two non-homogeneous linear
equations appearing in Lemma 28, so in the notations of Proposition 21 a(t) = 7/(t)
and a(t) = 7(t). If #(0) is not reversible we claim that the conclusions of Proposition
21 are violated on any subinterval of [0, §[, provided ¢ > 0 is small enough.

The first possibility is that ds - Viz # 0 at 0(0), or equivalently (s 0 ) (0) # 0.
Observing that

R, =

a(r) _7'(r) _ Qhoi(r)
i)~ 7(r)  Qporlr)

=—s00o7(r),
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we deduce that (a/a)’(0) # 0 and then we can assume by possibly taking a smaller
0 > 0 that (a/a)'(r) # 0 on [0,0[, hence a/a is not constant on any subinterval of
10, 6].

The second possibility is that Rg = Ry g is not conformally symplectic of factor
—4(0(0)), and then we can assume by taking § small enough that 2, is not conformally
symplectic of factor —s o 6 o 7(r) for any = € [0, d[.

The third and last possibility is that

Otjt=0 (Re(o(0)) © (i)g(t) 0 Ry 0 Py) # 0

which is equivalent to B
Orjr=0 (9‘{61 oWlo R, o0 \IJS) #£0

and then, taking 6 small enough, we deduce that the conjugacy equality
R, oWl = \ilg o R,

holds only for s = r if both s and r are in ]0, d].

In all cases, the conclusions of Proposition 21 are violated on all subintervals of
[0,4]. Fixing a large integer k and a sequence 0 < t1 < tg < --- < t, < § of times, we
deduce from Proposition 21 applied on each interval [¢;,¢,11] the existence of smooth
curves b;(t) = (0,—0;(t)) supported in |¢;,t;11[, such that the solutions y;, g; of the
systems

Y () =7 () Ley(t) + 7' (0bit) , § () =F () Leg(t) + 7 (£)ba(t)

emanating from y;(t;) = 0 = g;(¢;) have a different projection at some time s; €
Jtistix1[- We consider smooth potentials u; € C°(M), null on Q([—9,d]), with the
property that, for each t € [—4, d],

8q* ui(teo) = Bi (t)
In view of Lemma 28,
&ﬂ/)(sa 95 O) c U = y’L(S) ’ 8’&12)(55 95 O) U = gl(s)

Finally, there exists one coordinate ¢;, such that the R-valued function

Xi(x7 U) =4dj; © Q/J(Su xZ, U) — qj,; © 1/;(8“ xZ, U)
satisfies
Let E be the k-dimensional vector space of C*° (M) generated by the potentials u;, 1 <
1 < k. We define
X T*Mige x Ciy 3 (w,u) 7 (xa(z,u), - .., xw(z,u)) € RY,

where T Mj,. and C5. are open neighborhoods of x and 0 in T*M and C*(M).
By construction 9,xi(6,0) - u; # 0 and 9,x;(6,0) - u; = 0 for j > 4, hence the
restriction to E of the differential d,x(6,0) is an isomorphism from E to R*. If a
point (z,u) € T*Mjoe x Crs, belongs to ¥ (€), then x(x,u) = 0. Let us now consider
the modified map

X : T " Mipe X Ciy. X Eloe 3 (2, u,v) — x(2,u + v),
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where Fj,. is a small open neighborhood of 0 in E. By continuity of d,, if the neigh-
borhoods are small enough, then 0, X is an isomorphism at each point. Then, for each
fixed w € C72,, the map xu : (z,v) — X(z,u,v) is a submersion on T* Mo X Eje.
This implies that y,!(0) is a submanifold of codimension & in the finite dimensional
manifold T*M,. X FEjoe, hence of dimension 2d + 2. If k = dim F > 2d + 2, then
we deduce that the projection of y;!(0) on the second factor has no interior in E,
and in particular there exist arbitrarily small v € E which do not belong to this
projection. For such a v, we have y(z,u + v) # 0 for each x € T*M,,. hence the po-

tential u+ v does not belong to the projection of W,.(€) := W (e)N (T*MloC x C° ) 0

loc

9 Some computations in coordinates

The goal of the present section is to prove Lemma 26, 27, 28, which will end the proof
of Theorem 6, hence of Theorem 5. We work in the setting and with the notations
introduced in the proof of Proposition 25. We are interested in the local transition
maps between sections of the form {qo = r, H = 0}. These sections are symplectic
(for the restriction of the ambiant symplectic form) and the coordinates z. = (q«, p«)
are symplectic local coordinates on them. These restricted transition maps depend
only on the level set {H = 0}. Since 0,,H(0(t)) = Q'(t) # 0, this energy level can,
locally near 6, be written as a graph

{H =0} = {po = —r(qo, z+)},

this property being the definition of the function . Similarly, near 6 = S(0), the
energy level is given by the equation gy + £(go, z«) = 0. The dynamics on the energy
surface near 6 is, up to positive reparametrization, the same as the one generated by
the Hamiltonian pg + &, which is given by the equations

=1, 2,=J0 r(q,rs)
The local transition maps near 6 are thus the flow of the equations
2, = JO,, k(t, 34),
and the linearized transition maps ¥ solve the linearized equations
0V = JO2 . k(1,00 7(r)) ¥y,

where 0,(t) = x, 0 6(t) = (0, Pi(t)) is the 2, component of §(¢). In earlier notations
we have

L,=.J0?

Ty T

K(r, 0. o T(1)).
PROOF OF LEMMA 26. From the equation H(r, —k(r,z.),x.) = 0, we deduce that
Opo H(r, —K(r,x4), 24) - Op k(r, xs) = Op, H(r, —k(1, 1), T).

We differentiate again this equality with respect to p, at the point 6. o 7(r), using
that

Op k(r,0,07(r)) =0 , Op H(r,k(r,0,071(r)),0,07(r)) =0,
8100H(7'7 Ii(T‘, 7S T(T))v b 0 T(T)) = Q6 © T(T‘) = 1/7'/(7‘),
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and get
02 k(r, 0, o7(r)) =7/ (r)d%  H(r,k(r,0. o7(r)), 0 o 7(r)).

PxDx P«Px
O

PROOF OF LEMMA 27. The symmetry & preserves the sections {qo = r, H = 0}, and
it has the form
(Tv _K(Ta q*vp*)v Q*ap*) — (Ta _’%(Tv Qs Sx (Ta q*vp*))v Q*as*(Tv Q*ap*))a

and then
I 0

T 0q.8(r, 0. 071(r)) 0Op.s(r,0,07(r))

The map s, is determined by the equation

R

ap* ’%(Ta q*,ﬁ*(T, q*ap*)) - ap* K(Ta q*ap*)

Differentiating with respect to p. at 2. = . o7(r) and observing that s.(r, 0. o7(r)) =
P, o 7(r) yields

02 k(r, 0, o 7(r))0p.5:(r, 0, 0 T(1)) = 2 k(1,0 o7(r))

DD
which can be rewritten in terms of the blocs of L, as
7 (1) B(r)dy. 8. (r, 0, o 7(r)) = 7 () B(r).

From this equation, we find the stated expression for the lower right block 9, s.(r, 6.0
7(r)) of R,. We can also differentiate the equation determining s, with respect to ¢.
and get

9% R(r,0, o7(r)) + 02

g+ Px DxDx

7(r,0, 0 7(r))0q. 5+ (r, 0, 0 T(r)) = Dy p. (1, 0x 0 7(1))
which can be rewritten

#(r)CT (r) 4+ 7' (r)B(r)d,, 5. (r, 0. o 7(r)) = 7/ (r)CT (r),
from which we obtain the lower left block. 0
PRrROOF OF LEMMA 28. We fix the potential u and denote by £(qo, Z«, €) the function
such that the energy level {H + eu = 0} is locally the graph py = —k. Then 1 solves

the equation

05 (s, x, eu) = JOyp, k(8,0(s, x, cu), eu).

Taking the derivative with respect to € at = 0,e = 0 and recalling that (s, 6,0) =
0. o 7(s), we obtain

Y (s) = JO3 4. K(s,0x 0 7(s), 0)y(s) + JOZ, K(s,0s 0 7(s), 0).

We have J92_, k(s,0. 07(s),0) = 7/(s)L(s) by definition, and we now have to prove
that
JOZ, K(s,0,07(s),0) = 7'(s)b(s).

From the equation
H(s,—K(S, Ty, €),2x) + eu(s,q.) =0,
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we deduce that
8P0H(Sa _K’(Sv Ly 6)5 I*)ax*li(S, L 6) = e@x*u(s, Q*) =+ 817*H(57 _K(Sa T, 6)7 CC*)

Here we consider u both as a function of ¢ and as a function of = which depends only
on ¢, so that 9, u = (04, u,0). Since u(s,0) = 0, we observe that the equation

H(Sv —KR, q*ap*) + EU(S, Q*) = O

which defines (s, g«, p«, €) does not actually depend on e provided ¢, = 0, and this
implies that (s, 0, p., €) does not depend on ¢, and in particular x(s, 0, o 7(s), €) does
not depend on e. With this observation in mind, we differentiate the above equality
with respect to € at € = 0, z. = 6, o 7(s) and get

Op, H(O 0 T(s))('“)fm*m(s, 0. 07(s),0) = 0, u(s,0)
which can be rewritten

92, k(s 0, 07(s),0) = 7'(s)(B(s),0).

A A soft implicit function Lemma

In this text, the perturbation parameter u belongs to a Fréchet space, and we want to
avoid using differential calculus in Fréchet spaces. So we use the following elementary
version of the implicit function theorem, where U is a metric space. The proof is easy
and left to the reader.

Lemma 29. Let f(z,u) : R" xU — R"™ be a function which is Fréchet differentiable
in x for each (x,u), and such that the Fréchet differential 0, f : R" xU — L(R™,R"™)
is jointly continuous. Assume that f(0,up) = 0, where ug is some point of U, and
that 0, f(0,ug) is invertible. Then there exists open neighborhoods R} . and Upee of
0 and ug and a continuous function X : Upoe — R} . such that, for each u € Up,e,

X (u) is the only solution of the equation f(.,u) =0 contained in R}

loc*
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