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Résumé : On démontre qu’un Hamiltonien convexe générique au sens de Mañé n’a que des
orbites périodiques non-dégénérées sur un niveau d’énergie donné. Ce résultat a déjà été énoncé,
mais pas démontré, dans la littérature.

Abstract : We prove that Mañé generic convex Hamiltonians have only non-degenerate peri-
odic orbits on a given energy level. This result was stated, but not proved, in the literature.

It is known that a generic dynamical system has only hyperbolic periodic orbits, this is part
of the Kupka-Smale theorem, see [11, 17]. When some additional structure is preserved the
situation can be different. Here we shall focus on Hamiltonian systems. Such systems can stably
have non-hyperbolic periodic orbits. This can be understood at the linear level: hyperbolic
matrices are not dense in symplectic matrices. Yet the periodic orbits of generic Hamiltonian
systems satisfy some properties, in particular they are non degenerate (on a given energy level),
see [15, 16]. The Bumpy metric theorem states that this is also true for generic geodesic flows,
see [2, 3]. Mechanical systems, defined on a cotangent bundle from a Hamiltonian which is
the sum of a kinetic energy (a Riemannian metric) and a potential energy (a function on the
base) also form a natural case of study. For such systems, one can ask what properties hold
for a generic potential once the metric has been fixed (this is the genericity in the sense of
Mañé). One of the outcomes of the present paper is that the answer is actually the same as
for general Hamiltonian : for a generic potential, all periodic orbits on a given energy surface
are non-degenerate. This is not surprising, and actually follows from results previously stated in
the literature, see [13, 14]. However, the existing proofs apply only to energy levels higher than
the supremum of the potential energy but not below. The proof in [13] follows rather closely
Anosov’s proof of the Bumpy Metric Theorem with one different step, the perturbation Lemma
describing to what extent the linearized flow along a given orbit can be modified by a perturbation
preserving this orbit. This perturbation Lemma is obtained in [13] in dimension 2, and then in
[14] (with a correction in [4]) in higher dimension, elaborating on a method introduced in [7] in
the context of geodesic flows.

However, it is well known that the dynamics of a mechanical system on energy levels lower
than the supremum of the potential is significantly different from the one of a geodesic flow,
and its study requires different methods. As to the question we are considering, the difficulty
comes from the possible presence of what we will call round trip orbits (also sometimes called
librations) following back and forth a same path on the base manifold. These orbits fall outside
of the scope of the previous papers, and the goal of the present work is to study them. The
perturbation Lemma for these orbits is harder than for geodesic-like orbits because a potential
will necessary perturb the two branches of the orbit, and one has to understand how these two
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perturbations interact. In the case of mechanical system, the reversible structure allows to tame
these interactions, and we manage to prove a perturbation Lemma in that setting.

Round trip orbits can also exist in the more general class of Hamiltonian systems convex in
the fibers. In general there is no reversible structure associated to the linearized flow along such
an orbit, and the perturbation Lemma remains open. To solve this difficulty, we prove that a
round trip orbit either admits some kind of reversibility which allows to prove a perturbation
Lemma, or can be turned to a geodesic-like orbit by the addition of a small potential. This
allows us to provide a full proof of the result previously stated, but unproved, in the literature
claiming that a Mañé generic convex Hamiltonian has only nondegenerate periodic orbits on a
given energy level.

1 Introduction

We study the dynamics of convex Hamiltonian systems on the cotangent bundle of a smooth
manifold M of dimension d+1. In the present paper, smooth means C∞ and convex Hamiltonian
means that the fiberwise Hessian of the Hamiltonian function is positive definite at each point.
We usually denote by H the Hamiltonian, by VH the corresponding Hamiltonian vector-field and
by ϕ the associated flow. We will focus on the generic properties, in the sense of Mañé, of the
restricted linearized return map of periodic orbits. More precisely, we can take a Poincaré section
of the flow restricted to the energy level of the orbit, and consider the differential at the orbit of
the return map, this is what we call the restricted linearized return map. It is, up to a choice of
coordinates, an element of the symplectic group Sp(2d) if the manifold M has dimension d+ 1.
The restricted linearized return maps associated to different sections or to different coordinates
are conjugated in Sp(2d), so the conjugacy class of the restricted linearized return map of a given
orbit is well-defined. Let us define Υ ⊂ Sp(2d) as the space of matrices having an eigenvalue
equal to a root of the unity or having a double eigenvalue. This is a countable union of closed sets
with empty interior in Sp(2d), invariant under conjugacy. Thanks to this conjugacy invariance,
the property, for a periodic orbit, to have a restricted linearized return map in Υ or out of Υ is
intrinsically meaningful. Our main result is :

Theorem 1. Given a smooth (C∞) convex Hamiltonian H : T ∗M → R, the following property
is satisfied for a generic potential u ∈ C∞(M) :

The zero energy level of H + u is regular, and it does not contain any periodic orbit having
its restricted linearized return map in Υ.

As usual, generic means that the set of potentials which do not satisfy the conclusion is a
countable union of nowhere dense sets. As is well known, C∞(M) with its usual topology is
a separable Fréchet space, meaning that its topology can be defined by a translation invariant
complete distance with convex balls, and that it is separable for this distance. In particular it
satisfies the Baire property: a countable union of nowhere dense sets has empty interior.

Theorem 1 is stated in [13] in dimension 2, and extended in [14] to all dimensions, see also
[7] where some important ideas are introduced. However, as was already noticed in [5], there
is a missing case in these works. In order to explain the difficulty, we introduce the following
definition:

We say that the periodic orbit θ(t) = (Q(t), P (t)) of minimal period T is neat if there exists
a non-trivial open interval I ⊂ R/TZ of times such that Q is an embedding of I into M and
such that Q(I) does not intersect Q(R/TZ− I).

The methods of [13, 14] apply only to neat orbits, see Section 6. So the statement actually
following from the proofs given in [13] and [14] (completed in [4]) is :
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Theorem 2. Given a smooth convex Hamiltonian H : T ∗M → R, the following property is
satisfied for generic u ∈ C∞(M) :

The zero energy level of H + u is regular, and all neat periodic orbits of H + u which have
zero energy have their restricted linearized return map in the complement of Υ.

A formal proof of the statement in this form is given in [5] where the non convex case is also
discussed. Any conjugacy invariant set Υ ⊂ Sp(2d) which is a countable union of nowhere dense
sets can be considered here instead of the explicit one defined above.

However, not all periodic orbits are neat. In the case of a convex Hamiltonian (which is the
only case we consider in the present paper) the orbits which are not neat are very specific :

Proposition 1. Let H be a smooth convex Hamiltonian, and let θ(t) = (Q(t), P (t)) be a periodic
orbit of minimal period T .

If θ is not neat, then it is a round trip orbit, meaning that there exists an orientation reversing
diffeomorphism σ of R/TZ such that Q(σ(t)) = Q(t) for each t. This diffeomorphism then has
two fixed points ν0 and ν1, and Q′(νi) = 0.

Below, we will also call σ a lifting of σ to a decreasing diffeomorphism of R. This Proposition
is proved in section 3. In the present paper, we prove the missing part of Theorem 1, namely :

Theorem 3. Given a smooth (C∞) convex Hamiltonian H : T ∗M → R, the following property
is satisfied for generic u ∈ C∞(M) :

All round trip orbits of H + u which have zero energy have their restricted linearized return
map in the complement of Υ.

It is not completely clear to what extent this statement can be extended to different subsets
Υ ⊂ Sp(2d). Clarifying this question would require a finer study of reversible symplectic matrices
than the basic one provided in Proposition 12 below.

The first intuition concerning round trip orbits might be that they do not usually exist or
more precisely that H + u does not admit any round trip periodic orbit for generic u. However,
this depends on H. For example, if H is reversible, meaning that H(q,−p) ≡ H(q, p), then
round trip orbits, sometimes called librations in that setting, do often exist. They are studied
for example in [6, 10], and the results in these papers imply that librations exist for open sets of
potentials, so their study can’t be avoided.

We denote by M̌ the set of points q ∈ M such that the restriction of H to T ∗
qM has a

minimum, and then we denote by (q, ℘(q)) this minimum. The fiberwise convexity (with positive
definite Hessian) implies that M̌ is open in M , and that ℘ is a smooth section of T ∗M̌ . We
denote by Γ ⊂ T ∗M its graph. In the reversible case, Γ is the zero section. All round trip orbits
are contained in T ∗M̆ , so there would not be much loss of generality in assuming that M̆ =M .

Given p ∈ T ∗
q M̆ , p 6= ℘(q), there is one and only one point p̃ 6= p ∈ T ∗

qM such that ∂pH(q, p)
and ∂pH(q, p̃) are proportional and H(q, p̃) = H(q, p) =: e. This point is the minimizer of the
linear form ∂pH(q, p) on T ∗

qM ∩ {H = e}. We denote by S(q, p) the point (q, p̃), so that S is

a well defined involution of T ∗M̆ − Γ. We denote by s(q, p) > 0 the proportionality coefficient,
defined by

∂pH(S(q, p)) = −s(q, p)∂pH(q, p).

We study more precisely s and S in Section 2, where we prove:

Proposition 2. The function s extends with the values 1 on Γ to a locally Lipschitz function on
T ∗M̆ .

The involution S is smooth on T ∗M̆−Γ and it extends to a C1 fiber preserving diffeomorphism
of T ∗M̆ , which fixes Γ. We have, for x = (q, ℘(q)) ∈ Γ,

dSx =

[

Id 0
2d℘q −Id

]

.
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When H is fixed and x is a regular point of H, we call linearized energy level the kernel
of the differential of H at x, it is a hypersurface of TxT

∗M . It contains the vectorfield VH(x).
The quotient of the linearized energy level by the vectorfield is the symplectic reduction of the
linearized energy level, it has dimension 2d if M has dimension d + 1, and it has a natural
symplectic form descending from the one on T ∗M . We call it the reduced tangent space. Note
that it does depend on H, and even on u. The reduced tangent spaces of a given Hamiltonian
form a smooth vector bundle above the set of regular points of H. A hyperplane of TxT

∗M
transverse to the vectorfield at x is called a linear section. It has a 2d dimensional intersection
with the energy level, called a restricted linear section. The restrictions of the symplectic form
to restricted linear sections are symplectic forms. The restricted linear sections at a point are
symplectically isomorphic to the reduced tangent space. Given two points on a same non-constant
orbit, the differential of the flow defines a linear map between the tangent spaces at these points.
This differential is symplectic and it preserves the linearized energy level, hence it gives rise to a
symplectic linear map between the reduced tangent spaces, called the reduced linearized flow and
denoted by Φts. If transverse sections are given near the points under consideration, then there
is a well defined transition map between theses sections. The differential of this map preserves
the linearized energy level, and its restriction is a symplectic linear map between the restricted
linear sections, called the restricted linearized transition map. It is conjugated to the reduced
linearized flow.

The symmetry S is preserving the energy H, hence its differential dSx maps the linearized
energy level {dHx = 0} at x to the linearized energy level at S(x). At points x such that the
Hamiltonian vectors VH(S(x)) is proportional to dSx · VH(x), (then VH(S(x)) = −s(x)dSx ·
VH(x)), the linear map dSx descends to a linear map Rx between the reduced energy spaces,
called the reduced linearized symmetry. This holds at each points of round trip orbits, and at
each points of Γ. In the reversible case, the reduced linearized symmetry is antisymplectic at each
point, meaning that the pull-back of the natural symplectic form is minus the natural symplectic
form. But in general, the reduced linearized symmetry is not necessarily antisymplectic at the
points where it is defined.

Definition 3. Let θ be a round trip orbit for H of minimal period T and les ν0 ∈ R be a time
such that θ(ν0) ∈ Γ. We say that θ is reversible if :

1. The time ν1 := ν0 + T/2 also satisfies θ(ν1) ∈ Γ.

2. The reduced linearized symmetries Rθ(ν0) and Rθ(ν1) are antisymplectic.

3. The reversibility identity

Rθ(ν0) ◦ Φν0+Tν1 ◦Rθ(ν1) ◦ Φν1ν0 = Id

holds, where Φts is the reduction of the linearized Hamiltonian flow ∂xϕ(t− s, θ(s)).

If H is reversible, then all round trip orbits of H are reversible, so the following result covers
the case of reversible Hamiltonians.

Theorem 4. Given a smooth convex Hamiltonian H : T ∗M → R, the following property is
satisfied for generic u ∈ C∞(M) :

All reversible periodic orbits of H+u which have zero energy have their restricted linearized
return map in the complement of Υ.

The proof consists in using the reversibility relation to prove a perturbation Lemma, see
Section 6. We finally make precise the intuition that round trip orbits should exist only in
specific situations where some kind of reversibility holds :
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Theorem 5. Given a smooth convex Hamiltonian H : T ∗M → R, the following property is
satisfied for generic u ∈ C∞(M) :

All round trip periodic orbits of H + u are reversible.

Theorem 3 obviously follows from Theorem 4 and 5. Theorem 5 is proved in Section 8. The
rough idea is that when a round trip orbit is not reversible, it can be turned to a neat orbit by
adding a small potential. In the course of the proofs, we will use the notion of a chord :

Definition 4. A chord (of energy zero) for H is a point (t, x) ∈]0,∞[×Γ such that H(x) = 0
and ϕ(t, x) ∈ Γ.

The chord (t, x) is said transverse if x is not a fixed point of the flow, and if the flow map ϕ,
in restriction to R× Γ0, is transverse to Γ at the point (t, x), where Γ0 = Γ ∩ {H = 0}.

The chord (t, x) is called minimal if (s, x) is not a chord for s ∈]0, t[.

Note, in the above definition, that Γ0 is a submanifold of Γ near x if this point is not a
singular point of the Hamiltonian.

We know that each round trip orbit contains exactly two points of Γ, each of which is the
starting point of a chord. In the reversible case, the converse is also true : The starting point of a
chord belongs to a round trip orbit. If a chord is transverse, it persists after a small perturbation
of the Hamiltonian. In the reversible case, if H admits a transverse chord, then H+u also admits
a chord for small u, and H + u is still reversible, so H + u still admits a round trip orbit. The
following result on the transversality of chords follows from classical tools detailed in Section 5:

Proposition 5. In the context of Theorem 1, for generic u, all minimal chords of energy zero
are transverse.

Let us now make some general comments concerning the terminology used in the sequel.
We shall consider potentials u ∈ C∞(M) both as functions on M and as functions on T ∗M ,
which means that we still denote u the function u ◦ π, where π : T ∗M −→ M is the canonical
projection. For each u, we thus consider H+u as a Hamiltonian on T ∗M , we denote by VH(x, u)
the corresponding vectorfield, and by by ϕ(t, x, u) the flow. We want to think of these maps as
smooth, but since C∞(M) is not a Banach space, some care is useful. The expression ∂uϕ · v
shall be considered as a directional derivative in the direction v. More generally, we will consider
finite dimensional subspaces E ⊂ C∞(M), and the derivative in the direction E, which can be
defined as the derivative ∂vϕ̃(t, x, u, 0) of the modified map ϕ̃(t, x, u, v) := ϕ(t, x, u + v). It is
a well defined linear map from E to the appropriate tangent space of T ∗M , and it depends
continuously on (t, x, u).

2 The Symmetry

We study the symmetry S and the function s defined in the introduction, and prove Proposition
2. We assume, without loss of generality in this section, that M̆ = M . We denote S(q, p) =
(q, s(q, p)). We first prove the smoothness of s and S outside of Γ. The equations defining s and
s are

∂pH(q, s(q, p)) + s(q, p)∂pH(q, p) = 0 , H(q, s(q, p)) −H(q, p) = 0.

We can apply the implicit function theorem to these equations provided the matrix

D(q, p, s, s) :=

[

∂2ppH(q, s) ∂pH(q, p)

(∂pH(q, s))t 0

]

,

is invertible at the point (q, p, s, s). Since (q, p) 6∈ Γ, we have (q, s) 6∈ Γ, the vectors ∂pH(q, p) and
∂pH(q, s) are both non zero, and they are negatively proportional. To verify that D(q, p, s, s)
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is invertible we consider an element (ρ, r) of its kernel. Recall that B := ∂2ppH(q, s) is positive
definite. We have Bρ + r∂pH(q, p) = 0, hence ρ = −rB−1∂pH(q, p). The second equation
〈ρ, ∂pH(q, s)〉 = 0 (scalar product), is thus equivalent to

r〈B−1∂pH(q, p), ∂pH(q, s)〉 = 0.

The scalar product is different from zero because B−1 is positive definite and because the vectors
∂pH(q, p) and ∂pH(q, s) are proportional and not null. We deduce that r = 0, and then that
ρ = 0.

Before studying S and s near Γ, we need a Lemma.

Lemma 6. Let U be an open set in some R
k, and let f(y, x) : U × R

d −→ R be a smooth (C3

is enough) function such that fy : x 7−→ f(y, x) is minimal at x = 0 and convex with positive
definite Hessian at each point. Then for each y ∈ U, x 6= 0, there exists a unique point x̃ 6= x
which is proportional to x and such that h(y, x̃) = h(y, x). The involution S : (y, x) 7−→ (y, x̃) is
smooth outside of U × {0} and extends to a C1 diffeomorphism S of U ×R

d fixing U × {0} and

satisfying dS(y,0) =

[

Id 0
0 −Id

]

.

Proof. We assume, without loss of generality, that f(y, 0) = 0 (adding a function of y does
not change the involution). We search the map S under the form S(y, x) = (y,−s(y, x)x),
s(y, x) > 0. It is clear that the map S is well-defined outside of 0. The implicit function
Theorem implies that it is smooth away from 0. Indeed, we can set g(s, x, y) := f(y,−sx) and
see that ∂sg = −∂xfx · x < 0 if x 6= 0, by convexity. Hence locally the unique positive solution
s of the equation g(s, x, y) = f(y, x) depends smoothly on (y, x). It is moreover clear that the
map S extends by continuity on U × R

d with S(y, 0) = 0.
We claim that s extends to a locally Lipschitz function on U × R

d, with the value s(y, 0) =
1. Assuming the claim for the moment, we return to the map S(y, x) = (y,−s(y, x)x). The
differential at a point x 6= 0 is

dS(y, x) =

[

I 0
−∂ys(y, x)⊗ x −∂xs(y, x)⊗ x− s(y, x)I

]

.

Here we denote by l⊗x the linear map v 7−→ l(v)x when l is a linear form. Since the differential
of s is bounded, we see that dS extends by continuity on U × {0}, with the value

dS(y,0) =

[

Id 0
0 −Id

]

.

This implies that S is actually C1.
We now prove the claim on s. We work in the neighborhood of a given point of U , called 0.

We denote A(y) := ∂2xxf(y, 0). We can suppose by possibly reducing U to a smaller neighborhood
of 0 that aI 6 A(y) 6 I/a for some a > 0 and for all y.

Since the third derivative of f is bounded near (0, 0), we have, locally

a|x|2/4 6 f 6 |x|2/a

and, since that f(y, x) = f(y,−s(y, x)x),

as2(y, x)|x|2/4 6 f 6 s2(y, x)|x|2/a

hence
a2/4 6 s2(y, x) 6 4/a2 , a/2 6 s(y, x) 6 2/a.

6



In the next computations, we denote by O(|x|k) a function of (y, x) which is bounded by C|x|k,
with a locally uniform constant C. We have

f(y, x) = Ax2/2 +O(|x|3)

which implies, in view of the bound already obtained on s, that

f(y, x) = f(y,−s(y, x)x) = s2(y, x)Ax2/2 +O(|x|3).

These equalities imply that
(s2(y, x) − 1)Ax2/2 = O(|x|3),

hence that s2(y, x)− 1 = O(|x|) and finally,

s(y, x) = 1 +O(|x|).

As a consequence, S(y, x) = (y,−x) + O(|x|2). Differentiating the equation f(y,−s(y, x)x) =
f(y, x) with respect to x at x 6= 0 gives:

−
(

∂xf(S(y, x)) · x
)

∂xs(y, x)− s(y, x)∂xf(S(y, x)) = ∂xf(y, x).

Since ∂xf(y, x) = A(y)x+O(|x|2) and s = 1 +O(|x|), we obtain

(∂xf(S(y, x)) · x)∂xs(y, x) = O(|x|2).

We deduce that ∂xs is bounded near (0, 0) observing that ∂xf(S(y, x)) · x = A(y)x2 +O(|x|3) >
a|x|2/2,

Similarly, differentiating the equation defining s with respect to y yields

−
(

∂xf(S(y, x)) · x
)

∂ys(y, x) + ∂yf(S(y, x)) = ∂yf(y, x).

Moreover, from ∂xf(y, 0) ≡ 0, we deduce that ∂2yxf(y, 0) = 0, hence that ∂yf(y, x) = O(|x|2).
We obtain that

(∂xf(S(y, x)) · x)∂ys(y, x) = O(|x|2)
and conclude as above that ∂ys is locally bounded.

The map
h : (q, p) 7−→ (q, ∂pH(q, p))

is a diffeomorphism from T ∗M to an open neighborhood of the zero section in TM (this is the
legendre transform, it is onto if one adds the assumption thatH be superlinear, which is not useful
here). It maps Γ to the zero section. We denote its inverse by g and denote f := H ◦g. This is the
energy expressed in the tangent bundle (it is not the Lagrangian). We claim that ∂2vvf is positive
definite on the zero section. Indeed, let us fix the first coordinate q for the moment, and denote
by h the map p 7−→ ∂pH(q, p) and by g its inverse, so that h(q, p) = (q, h(p)), g(q, v) = (q, g(v)).
We have

∂vf(q,v) = h(g(v)) ◦ ∂vgv = v · ∂vgv

and ∂vgv = (∂phg(v))
−1 =

(

∂2ppHg(q,v)

)−1
. At v = 0, we have

∂2vvf(q,0) = ∂vg0 =
(

∂2ppHg(q,0)

)−1
,

and this matrix is positive definite.
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We apply Lemma 6 to f = H ◦ g and deduce the existence of a unique positive function
s(q, v), locally Lipschitz near the zero section, such that

H ◦ g(q,−s(q, v)v) = H ◦ g(q, v).

Moreover, the map S(q, v) := (q,−s(q, v)v) is C1 with dS(q, 0) =

[

I 0
0 −I

]

.

Returning to s and S, the equation ∂pH(S(q, p)) = −s(q, p)∂pH(q, p) can be rewritten

S(q, p) = g(q,−s(q, p)∂pH(q, p)),

and since H ◦S = H we obtain

H ◦ g(q,−s(q, p)∂pH(q, p)) = H(q, p) = H ◦ g(q, ∂pH(q, p)).

This equation implies that s = s ◦ h, and then

h ◦S(q, p) = (q,−s(q, p)∂pH(q, p)))(q,−s(q, ∂pH(q, p))∂pH(q, p) = S ◦ h(q, p).

Since
s = s ◦ h , S = g ◦ S ◦ h,

the regularity claimed for s,S in the neighborhood of Γ follows from the regularity of s, S in
the neighborhood of the zero section. Let us finally compute the differential of S at a point
x = (q, ℘(q)) of Γ. For such a point, h(x) belongs to the zero section, and S ◦ h(x) = h(x), hence

dSx = dgh(x) ◦ dSh(x) ◦ dhx = (dhx)
−1 ◦ dSh(x) ◦ dhx.

Taking coordinates, we have, at x,

dh =

[

I 0
∂2qpH ∂2ppH

]

, (dh)−1 =

[

I 0
−(∂2ppH)−1∂2qpH (∂2ppH)−1

]

, dSh(x) =

[

I 0
0 −I

]

from which follows that

dSx =

[

I 0
−2(∂2ppHx)

−1∂2qpHx −I

]

,

and we can check by differentiating the equality ∂pH(q, ℘(q)) = 0 that

d℘q = −(∂2ppH(q,℘(q)))
−1∂2qpH(q,℘(q)).

That the lower right block is 2d℘q can be recovered also from the fact that S is fixing Γ.

3 Projected orbits

We study the projection of orbits and prove Proposition 1. Let θ(t) = (Q(t), P (t)) be a periodic
orbit of minimal period T and energy e. We say that s ∈ R/TZ is a neat time if Q̇(s) 6= 0 and if
there exists no time σ 6= s in R/TZ such that Q(s) = Q(σ). We say that s is a degenerate time
if Q̇(s) = 0, and we say that s is a self-intersection time if there exists σ 6= s in R/TZ such that
Q(s) = Q(t).

Lemma 7. There are finitely many degenerate times, and they are not self-intersection times.
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Proof. If s is a degenerate time, then P (s) = ℘(Q(s)) is the only minimum of the function
p 7−→ H(Q(s), p) on T ∗

Q(s)M , hence there is no other point P 6= P (s) such that H(Q(s), P ) =

H(Q(s), P (s)). This implies that s is not a self-intersection time.
Since Q̇(s) = 0 and since the orbit is not a fixed point, Ṗ (s) 6= 0. Differentiating at t = s the

equality Q̇(t) = ∂pH(Q(t), P (t)) gives

Q̈(s) = ∂2ppH(Q(s), P (s))Ṗ (s) 6= 0

and we deduce that the degenerate time s is isolated.

The next Lemma implies that an orbit which admits a neat time is neat.

Lemma 8. The set of neat times is open in R/TZ.

Proof. Let sn −→ s, sn 6= s be a sequence of times which are not neat. We will prove that
the limit s is not neat (it’s either degenerate or self-intersection). Since there are finitely many
degenerate times, we can asume by taking a subsequence that sn are self intersection times. Let
σn 6= sn be such that Q(sn) = Q(σn). Up to taking a subsequence, we can assume that σn has
a limit σ, and then Q(σ) = Q(s). If σ 6= s, then s is a self-intersection time. If σ = s, then the
equality Q(sn) = Q(σn) implies that Q is not one to one near t = s, hence that Q̇(s) = 0.

We say that s is a transverse time of self-intersection if for each σ 6= s mod T such that
Q(σ) = Q(s) the vectors Q̇(σ) and Q̇(s) are linearly independant. If s is a non-transverse
self-intersection time, there exists exactly one σ 6= s mod T such that θ(σ) = S(θ(s)).

Lemma 9. If a self-intersection time is transverse, then it is an isolated self-intersection time.

Proof. Consider a transverse self-intersection time s, and a sequence sn −→ s, sn 6= s of self-
intersection times. For each n, there exists σn 6= sn such that Q(σn) = Q(sn). By taking a
subsequence, we can assume that σn has a limit σ, and then Q(σ) = Q(s). Since s is not a
degenerate time we must have σ 6= s, and the vectors Q̇(s) and Q̇(σ) are linearly independent
(because s is assumed to be a transverse self-intersection time). This implies that the geometric
curves {Q(t), |t − σ| < ǫ} and {Q(t), |t − s| < ǫ} intersect only at the point Q(s) = Q(σ) when
ǫ > 0 si small. This is in contradiction with the existence of the sequences sn and σn such that
sn −→ s, σn −→ σ and Q(sn) = Q(σn).

From now on, we assume that θ does not admit a neat time, and prove that it is a round
trip orbit. Let R ⊂ R/TZ be the set of non-degenerate times. In the absence of neat points, all
points of R are self-intersection points. Since R has a finite complement, it contains no isolated
point hence by Lemma 9, there is no tranverse self-intersection; all points of R are non-transverse
self intersections. For each s ∈ R, there exists a unique time σ(s) such that θ(σ(s)) = S(θ(s)).
If ξ is smooth function on M (a coordinate) such that dξQ(s) · Q̇(s) 6= 0, then the equation
Q(σ(s)) = Q(s) implies that ξ ◦ Q(σ(s)) = ξ ◦ Q(s). By the implicit function theorem, the
solution σ(s) of this equation is smooth and locally decreasing. The function σ is thus smooth
and decreasing on each connected component of R. It is an involutive diffeomorphism of R,
which has no fixed point. Since all orientation-reversing homeomophism of the circle or of the
interval have a fixed point, we deduce that there are at least two points in the complement of R.
We consider a maximal interval ]ν0, ν1[ in R, with boundaries ν0 6= ν1. Since Q(σ(ν1)) = Q(ν1),
and since ν1 is a degenerate time (hence not a self-intersection time), we deduce that σ(ν1) = ν1,
and similarly σ(ν0) = ν0. This implies that σ extends as a homemorphism which maps ]ν0, ν1[
onto R/TZ− [ν0, ν1].
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The last step is to prove that σ is actually smooth around νi, with differential equal to −1.
We assume without loss of generality that 0 is one of the fixed points of σ. Recall that this is
a degenerate point of Q, so Q′(0) = 0, Q′′(0) 6= 0. We pick a smooth function ξ on M such
that ξ ◦ Q(0) = 0 and (ξ ◦ Q)′′(0) > 0. We denote by f : R −→ R the function ξ ◦ Q. Recall
that a smooth function f : R −→ R satisfying f(0) = 0 can be written f(t) = tf1(t) with a
smooth function f1 ( f1(t) =

∫ 1
0 f

′(ts)ds, it has one derivative less than f at t = 0). Applying
this twice yields that f(t) = t2f2(t), with f2(0) > 0. Taking the square root, we obtain that
f(t) = g(t)2, with g = t

√
f2 smooth and g′(0) > 0. The equation Q(σ(t)) = Q(t) is now equiv-

alent to g(σ(t)) = −g(t). The implicit function theorem can be applied to this equation and
yields that σ is smooth at t = 0 (it actually has two derivatives less than Q) with σ′(0) = −1.

Note that σ′(t) = −s(θ(t)), which also implies that σ is C1, with σ′(νi) = −1. The above
proof provides a better regularity for σ. We finish with a remark on multiple intersections. We
say that t is a multiple intersection time if there are at least three different times in R/TZ
(including t) at which Q takes the value Q(t).

Lemma 10. Each periodic orbit θ has finitely many multiple intersections.

Proof. If there was infinitely many multiple intersections, there would exist injective sequences
sn −→ s, tn −→ t, τn −→ τ such that Q(sn) = Q(tn) = Q(τn), and such that the three times
sn, tn, τn are distinct for all n. At the limit, Q(s) = Q(t) = Q(τ).

If two of the limits s, t, τ are equal, say s and t, then, s is a degenerate point (because
the curve Q is one to one near a non-degenerate point). Since a degenerate point can’t be an
intersection point, we deduce that τ = s = t. But since Q′′(s) 6= 0, the curve Q takes each value
at most twice near s, a contradiction.

The second possibility is that s, t, τ are distinct, and non-degenerate. But then at least two
of the three derivatives Q′(s), Q′(t), Q′(τ) are linearly independant, say Q′(s) and Q′(t). This is
in contradiction with the existence of the intersection points sn −→ s and tn −→ t.

4 Reversible symplectic matrices

We consider here the group Sp(2d) of real symplectic matrices and the space A(2d) of antisym-
plectic involutions, which are 2d × 2d matrices R such that R2 = Id and R∗ω = −ω, where ω
is the standard symplectic form on R

2d. In matrix form, this second equation can be rewritten
RtJR = −J , with the usual symplectic matrix

J =

[

0 I
−I 0

]

.

Two examples are the map R0 : (q, p) 7−→ (q,−p) and R1 : (q, p) 7−→ (p, q). We also denote
by M(2d) the space of square real matrices of size 2d. The content of this section is partly
inspired by [8, Section V], but Devaney studies there the space of all reversible matrices, not the
anti-symplectic reversible ones.

Proposition 11. The subset A(2d) ⊂ M(2d) is a connected algebraic submanifold without sin-
gularity of dimension d(d + 1). The action of Sp(2d) on A(2d) by conjugacy is transitive and
submersive, meaning that the map

Sp(2d) ∋M 7−→M−1RM ∈ A(2d)

is a surjective submersion for each R ∈ A(2d).
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Proof. The eigenspaces E1(R) and E−1(R) associated to an element R of A(2d) are isotropic,
and since R

2d = E1(R) ⊕ E−1(R), they must each have dimension d and be Lagrangian. Con-
versely, two transverse Lagrangian subspaces of R2d determine a unique element of A(2d). Since
the group Sp(2d) acts transitively on ordered pairs of transverse Lagrangian subspaces (see e.g.
[9, Theorem 1.26]), it also acts transitively by conjugacy on A(2d). The isotropy subgroup of
an element R ⊂ A(2d) is the set of symplectic isomorphisms which preserve each of the two
Lagrangian spaces E1(R) and E−1(R), it has dimension d2. As a consequence, the rank of the
map Sp(2d) ∋M 7−→M−1RM ∈ M(2d) is dimSp(2d) − d2 = d(d+ 1).

On the other hand, we can linearize the equations R2 = I and RTJR = −J which de-

termine A(2d) at the point R0 =

[

I 0
0 −I

]

. We obtain the equations R0R + RR0 = 0 and

R0JR + RTJR0 = 0. A simple computation in block form reveals that the kernel of these lin-

earized equations is the space of matrices of the form

[

0 A
B 0

]

with A and B symmetric. This is

a d(d+1) dimensional linear subspace of M(2d). This implies that the orbit A(2d) of the action
of Sp(2d) is an embedded submanifold of dimension d(d+ 1).

Given R ∈ A(2d), we say that M ∈ Sp(2d) is R-reversible if RM is an involution, and then
RM ∈ A(2d). The set of R-reversible matrices is thus RA(2d), it is a submanifold of M(2d).
The transitive action of Sp(2d) on A(2d) gives rise to a transitive action on RA(2d), given by

Sp(2d)×RA(2d) ∋ (M,L) 7−→ RM−1RLM ∈ RA(2d).

For each fixed R, this map is a submersion from Sp(2d) onto RA(2d). If R and R̃ are two
elements of A(2d), then the submanifolds RA(2d) and R̃A(2d) are conjugated inside Sp(2d).

As is well known, the symplectic matrices which preserve the first component are of the form
[

I 0
S I

]

for some symmetric matrix S. Similaly, the elements of A(2d) which preserve the first

component are of the form

[

I 0
S −I

]

for some symmetric matrix S.

Proposition 12. For each R ∈ A(2d), the matrices with multiple eigenvalues form a closed
and nowhere dense set in RA(2d). So do the matrices having a fixed complex number λ as an
eigenvalue.

Proof. We consider the algebric map ∆ : RA 7−→ R which, to each M ∈ RA(2d) associates
the discriminant of its caracteristic polynomial. The matrix X has a multiple eigenvalue if and
only if ∆(X) = 0. By analytic continuity, either ∆ is identically vanishing on RA(2d) or the
set ∆−1(0) has empty interior. So we just need to show the existence of an element of RA(2d)

without multiple eigenvalues. We consider M ∈ Sp(2d) such that M−1RM = R1 =

[

0 I
I 0

]

.

Then, we consider a diagonal matrix X, with diagonal elements (x1, . . . , xd, 1/x1, . . . , 1/xd), with
1 < x1 < · · · < xd. This matrix X is symplectic and R1-reversible, and it has simple eigenvalues.
Then, MXM−1 is symplectic, it has simple eigenvalues, and it is R-reversible since

MXM−1RMXM−1R =MXR1XR1M
−1 =MM−1 = I.

We conclude similarly concerning the matrices having λ as an eigenvalue by considering the
algebraic map M 7−→ det(M − λI).
To sum up:

Corollary 13. Given R ∈ A(2d), the intersection Υ ∩RA(2d) is an Fσ with empty interior in
RA(2d).
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5 Transverse Chords

We prove Proposition 5 using a variation on the parametric transversality principle, see [1]. We
represent chords by the set C ⊂]0,∞[×Γ× C∞(M) of triples (t, x, u) such that (t, x) is a chord
(of energy 0) for H +u. It is a closed subset of the product. The subset Cn ⊂ C of chords which
are not transversal is also closed.

Lemma 14. The set of minimal chords is open in C.

Proof. Let (Tn, xn, un) −→ (T, x, u) be a converging sequence of non-minimal chords. There
exist times Sn ∈]0, Tn[ such that (Sn, xn, un) are also chords, and, up to a subsequence, Sn has
a limit S in [0, T ]. If x is a fixed point, then (T, x, u) is not minimal. If x is not a fixed point,
the vector-field VH+u is vertical at x, hence not tangent to Γ. Then there exists ǫ > 0 such that
ϕ(t, xn, un) 6∈ Γ for t ∈]0, ǫ[ provided n is large enough. This implies that S > 0. Similarly, VH+u

is vertical at ϕ(T, x, u) and this implies that S < T . Finally, we have S ∈]0, T [, and (S, x, u) is
a chord, hence (T, x, u) is not minimal.

The following local version of Proposition 5 implies Proposition 5:

Proposition 15. Let (T, θ) be a minimal chord of H. Then there exists an open neighborhood
Cloc of (T, θ, 0) in C such that the projection of Cnloc := C

n ∩Cloc on C∞(M) has empty interior.

Let us first explain how Proposition 15 implies Proposition 5. Let C
′ be the set of chords

which are minimal and not transverse. For each (t, x, u) ∈ C
′, we can apply Proposition 15 to

H + u at point (t, x) and get the existence of an open neighborhood C
′
loc of (t, x, u) in C

′ whose
projection on C∞(M) has empty interior. Moreover, C′

loc is locally closed (the intersection of an
open set and of a closed set), hence it is an Fσ in the product ]0,∞[×Γ × C∞(M). Recalling
that the projection of a closed set of the product on the last factor is an Fσ, we deduce that the
projection of C′

loc is an Fσ with empty interior. The separable metric space C
′ can be covered by

countably many open neighborhoods C
′
loc having this property, so its projection is a countable

union of Fσ with empty interior. By the Baire property, the projection of C′ is an Fσ with empty
interior, Proposition 5 is proved.

Proof of Proposition 15. We fix a minimal chord (T, θ) and denote by θ(t) = (Q(t), P (t))
the H-orbit of the point θ. Since T > 0 and the chord is minimal, the orbit θ(t) is not constant,
hence, locally near θ(0) and near θ(T ), the energy level is a submanifold, and it is transverse to
Γ. The following key observation seems to first appear in [3], Lemma 2:

Lemma 16. There exists a finite dimensional subspace E ⊂ C∞(M), formed by potentials
vanishing near Q(0) and near Q(T ), such that the Gâteau differential ∂t,uϕ(T, θ, 0) maps R×E
onto the linearized energy level of H at θ(T ).

We omit the proof, which is similar to [3, Lemma 2] or [5, Lemma 7]. Since the energy level
of H at θ(T ) is transverse to Γ, this implies that ϕ, in restriction to ]0,∞[×{θ}×E, is transverse
to Γ at (T, θ, 0).

Then, the map
(t, v) 7−→ ϕ(t, θ, u+ v)

is transverse to Γ on ]0,∞[loc×Eloc provided (θ, u) ∈ Γloc × C∞
loc, where ]0,∞[loc,Γloc, C

∞
loc, Eloc

are sufficiently small open neighborhoods of T, θ, 0, 0 in the corresponding spaces. We choose the
neighborhoods such that the elements of E vanish on Γloc and such that the restriction of H +u
to Γloc has no critical point for u ∈ C∞

loc.
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From now on, we fix u ∈ C∞
loc and prove that u does not belong to the interior of the projection

of Cnloc := C
n ∩Cloc, with Cloc := C ∩

(

]0,∞[loc×Γloc×C∞
loc

)

. We denote by Γuloc the submanifold
of Γloc of equation H + u = 0, or equivalently of equation H + u + v = 0 for each v ∈ E. The
map

ψ :]0,∞[loc×Γuloc × Eloc ∋ (t, x, v) 7−→ ϕ(t, x, u + v) ∈ T ∗M

is transverse to Γ. As a consequence, the set ψ−1(Γ) is a smooth submanifold. The point (t, x, v)
belongs to ψ−1(Γ) if and only if (t, x, u + v) is a chord of energy 0. Moreover, this chord is
transverse if (t, x, v) is a regular point of the restriction πrest to ψ−1(Γ) of the projection to the
third factor. In order to check this, we denote by F the product R×TxΓuloc, by V ⊂ Tψ(t,x,v)T

∗M
the linear vertical, and by Ψ : F ×E −→ V the composition of the differential dψ(t,x,v) and of the
projection on V parallel to Tψ(t,x,v)Γ. This linear map is onto. By definition, the chord under
consideration is transverse if Ψ maps F × {0} onto V . It is an easy exercise of linear algebra
to check that this is equivalent to the fact that the kernel of Ψ, which is the tangent space to
ψ−1(Γ), projects onto E.

Finally, we apply Sard’s Theorem to the restricted projection πrest and deduce the existence
of arbitrarily small regular values v of this restricted projection. For such a v, all chords of
energy zero of H +u+ v in ]0,∞[loc×Mloc are transverse, meaning that u+ v does not belong to
the projection of Cnloc. As a consequence, the function u does not belong to the interior of this
projection, and this holds for each u ∈ C∞

loc.

6 The return map of reversible orbits

We prove Theorem 4. As in [13, 14], we have to understand to what extent the return map of
a given orbit can be modified by adding a small potential to the Hamiltonian. In that respect,
the following result was established in [14] (completed in [4]):

Proposition 17. Let θ(t) = (Q(t), P (t)), t ∈ [a, b] be an orbit segment of the convex Hamil-
tonian H. Assume that the first component Q is an embedding of the interval [a, b] into M ,
and let U ⊂ M be an open set intersecting Q(]a, b[). Let E ⊂ C∞(M) be the space of adapted
potentials supported in U , more precisely the space of smooth potentials u supported in U , null
near {Q(a), Q(b)}, and satisfying u = 0, du = 0 on the image of Q (which implies that θ is still
an orbit segment for the potentials H + u, u ∈ E). The map

E ∋ u 7−→ Φba(u) ∈ Sp(2d)

which, to each potential u associates the restricted linearized transition map for the Hamiltonian
H + u between times a and b is well defined once symplectic coordinates have been fixed, inde-
pendently from u, on the reduced tangent spaces at θ(a) and θ(b) (these spaces do not depend
on u ∈ E). This map is weakly open, meaning that the image of each non-empty open set of E
contains a non-empty open set of Sp(2d).

In this statement, we could replace "weakly open" by "open" using [12]. However, this is
much harder to prove and not necessary for our present study.

When θ is a neat periodic orbit, one can find a time interval [a, b] such that the above result
applies, and such that moreover Q([b, a + T ]) is disjoint from Q(]a, b[), where T is the minimal
period of the orbit. Then, the above result can be applied with U =M −Q([b, a+ T ]), and the
restricted return map Φa+Ta (u) of the periodic orbit θ for the Hamiltonian H + u at θ(a) can be
written

Φa+Ta (u) = Φa+Tb ◦Φba(u),
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where Φa+Tb does not depend on u ∈ E because the elements u ∈ E vanish near Q([b, a+T ]). We
deduce immediately that the map

E ∋ u 7−→ Φa+Ta (u)

is weakly open, which is a way of saying that we have sufficient possibility to change the return
map by changing the potential. This is the main step in the proof of Theorem 2.

However, if the orbit θ is not neat, it is not possible to chose the interval [a, b] such that
Q([b, a+T ]) is disjoint from Q(]a, b[), and then in the decomposition Φa+Ta (u) = Φa+Tb (u)◦Φba(u),
both factors depend on u, and it is not clear in general how the composition behaves. This is
why the above discussion, which summarizes the strategy of [13, 14] is not sufficient to obtain
Theorem 1.

The proof of Theorem 4 consists in solving this difficulty using the reversibility of the orbit.
So we assume that θ is reversible, and also for definiteness that θ(0) ∈ Γ (then θ(T/2) ∈ Γ).
We denote by Rt the reduction of the linearized symmetry dSθ(t). In particular R0 and RT/2

are antisymplectic involutions of the reduced tangent spaces at θ(0) and θ(T/2). These reduced
tangent spaces can be represented by 2d-dimensional subspaces transverse to the vectorfield and
contained in the linearized energy level. These transverse subspaces can be chosen invariant
under the linearized symmetries dSθ(0), dSθ(T/2), and then R0,RT/2 are just the restrictions of
these linearized symmetries to the linear sections.

Proposition 18. Let θ be a reversible orbit of minimal period T, satisfying θ(0) ∈ Γ. Let
E ⊂ C∞(M) be the space of potentials which satisfy u = 0, du = 0 on Q([0, T/2]), and such
that moreover u ≡ 0 in a neighborhood of {Q(0), Q(T/2)} (we call them potentials adapted to
the chord (θ(0), T/2)). Assume that there exists an open subset Eloc ⊂ E such that the orbit θ is
reversible for H + u for each u ∈ Eloc. Then the reduced return map ΦT0 (u) along the orbit θ for
H + u belongs the space R0A(2d) of R0-reversible symplectic matrice for each u ∈ Eloc, and the
image ΦT0 (Eloc) contains an open subset of R0A(2d).

Proof. We denote by Φts(u) the reduction of the linearized flow ∂xϕ
t−s(θ(s), u). On Eloc, the

reversibility relation

R0 ◦ΦTT/2(u) ◦RT/2 ◦ ΦT/20 (u) = Id,

holds, it can be rewritten

ΦTT/2(u) = R0 ◦ (ΦT/20 (u))−1 ◦RT/2.

Then, for u ∈ Eloc,

ΦT0 (u) = ΦTT/2(u) ◦ Φ
T/2
0 (u) = R0 ◦ (ΦT/20 (u))−1 ◦RT/2 ◦ΦT/20 (u).

So the set ΦT0 (Eloc) is the image of the set Φ
T/2
0 (Eloc), which contains an open subset of Sp(2d)

by Proposition 17, by the map

Sp(2d) ∋M 7−→ R0M
−1RT/2M ∈ R0A(2d).

This map is open by Proposition 11, the statement follows.

In view of Proposition 5, Theorem 4 follows from :

Proposition 19. The following property is satisfied for generic u ∈ C∞(M):
For each x ∈ Γ∩{H+u = 0} such that the (H+u)-orbit of x is reversible periodic of minimal

period 2T , and such that the chord (T, x) is transverse, the reduced return map belongs to the
complement of Υ.
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Proof. Let M ⊂]0,∞[×Γ × C∞(M) be the set of minimal transverse chords of energy 0. In
view of the implicit function theorem (see Appendix A) and of Lemma 14, the projection from
M to C∞(M) is a local homeomorphism. Let P ⊂ M be the subset of transverse minimal chords
(T, θ, u) associated to reversible periodic orbits with return map in Υ. In other words, the chord
(T, θ, u) ∈ M belongs to P if an only if :

• ϕ(2T, θ, u) = θ,

• The reduced symmetries R(θ,u) and R(ϕ(T,θ,u),u) are antisymplectic.

• R(θ,u) ◦ Φ2T
T (θ, u) ◦R(ϕ(T,θ,u),u) ◦ ΦT0 (θ, u) = Id,

• Φ2T
0 (θ, u) ∈ Υ.

In these equalities, we denote by R(x,u) the reduced linearized symmetry at point x for the
Hamiltonian H + u, and by Φts(x, u) the reduced linearized flow of H + u along the orbit of x
from time s to time t. We have to prove that the projection of P on the third factor is an Fσ with
empty interior. Since the projection from M to the third factor is a local homeomorphism, and
since M is a separable metric space, it is enough to prove that P is an Fσ with empty interior
in M. The first claim is clear, using that Υ is an Fσ . To prove the second claim, we argue by
contradiction and assume that the interior of P contains a point (T, θ, u).

As in Proposition 18, we denote by E ⊂ C∞(M) the space of potentials v which are adapted
to the chord θ, meaning that v = 0, dv = 0 on Q([0, T ]) (the first coordinate of the (H +u)-orbit
of θ), and that v is vanishing near Q(0) and near Q(T ). Since (T, θ, u) is in the interior of P,
there exists an open neighborhood Eloc of 0 in E such that (t, θ, u + v) ∈ P for v ∈ Eloc. We
deduce from Proposition 18 that the set Φ2T

0 (Eloc) contains an open subset of R0A(2d). In view
of Corollary 13 this contradicts the fact that ΦT0 (Eloc) is contained in Υ.

7 Non homogeneous linear systems.

In the present section, we expose a result on non-homogeneous linear systems which is the key
step for the proof of Theorem 5. We consider two smooth curves of Hamiltonian 2d×2d matrices
Lt and L̃t defined on [0, T ] which we think as the linearized systems along the two branches of
a round trip orbit near a given non-degenerate point. We denote

Lt =

[

CTt Bt
−At −Ct

]

, L̃t =

[

C̃Tt B̃t
−Ãt −C̃t

]

,

where At, Bt, Ãt, B̃t are symmetric d× d matrices and Ct, C̃t are arbitrary matrices of the same
size. We assume that B̃t is invertible for each t. We also consider two non-vanishing smooth
functions a(t), ã(t) on [0, T ] and consider the inhomogeneous linear systems

x′(t) = a(t)Ltx(t) + a(t)b(t)

x̃′(t) = ã(t)L̃tx̃(t) + ã(t)b(t)

as well as their homogeneous counterparts. Note, and this is a key point, that the same curve b
appears in both systems. We think of b as a perturbation created by adding a potential, so it
will take values in {0}× (Rd)∗. We denote by Ψt

s, Ψ̃
t
s the resolvants of the homogeneous systems

x′ = aLx, x̃′ = ãL̃x̃. We recall the standard :
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Lemma 20. Given a curve Rs of matrices, the conjugacy relation

Rr ◦Ψr
s = Ψ̃r

s ◦Rs

holds for each r near s if and only if the differential system

R′
s + a(s)RsL(s) = ã(s)L̃(s)Rs

holds for each r near s.

Proof. Setting ∆r = Rr ◦Ψr
s − Ψ̃r

s ◦Rs, we have

∂r∆
r = (R′

r + a(r)RrL(r))Ψ
r
s − ã(r)L̃(r)Ψ̃r

s(u)Rs

=
(

R′
r + a(r)RrL(r)− ã(r)L̃(r)Rr

)

Ψr
s(u) + ã(r)L̃(r)∆r.

We see from this differential equation that ∆r ≡ 0 near r = s if and only if the equation

R′
r + a(r)RrL(r)− ã(r)L̃(r)Rr = 0

holds for r near s.

We are interested in particular in conjugacies preserving the first coordinates, i.e. of the form

Rt =

[

I 0
∗ ∗

]

. The first block line of the differential equation R′
r + a(r)RrL(r)− ã(r)L̃(r)Rr = 0

indicates that the only possible conjugacy of that form is

Rt :=

[

I 0

(ã(t)B̃(t))−1
(

a(t)CT (t)− ã(t)C̃T (t)
)

(a(t)/ã(t))B̃−1(t)B(t)

]

.

Proposition 21. In the context described above, assume that B̃(t) is invertible for each t ∈
[0, T ]. Assume that, for each smooth curve b(t) : R −→ {0} × (Rd)∗, compactly supported in
[0, T ], the solutions x and x̃ of the two non-homogeneous linear systems with the initial condition
x(0) = 0 = x̃(0) have the same projection on R

d×{0}. Then the following conditions are satisfied
for each t ∈ [0, T ] :

1. ã/a is constant,

2. The matrices Rt are conformally symplectic of factor ã/a, meaning here that

Rt =

[

I 0
st (ã/a)I

]

with st symmetric.

3. The homogeneous systems x′(t) = a(t)Ltx(t) and x̃′(t) = ã(t)L̃tx̃(t) are conjugated by Rt.

Conversely, if conditions 2 and 3 are satisfied, then Rt is conjugating the non-homogeneous
equations x′ = aLx + ab and x̃′ = ãL̃x + ãb for each curve b compactly supported in ]0, T [ and
taking values in {0} × (Rd)∗, and in particular the solutions emanating from 0 have the same
projection on R

d × {0}.

It might sound surprising to obtain a converse using only two of the three conclusions. It
means that conclusions 2 and 3 actually imply conclusion 1. We will give a direct proof of this
fact in the course of the following proof.
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Proof. We first prove the converse. If x(t) solves the equation x′ = aLx+ab, then y(t) := Rtx(t)
satisfies

y′(t) = R′
tR

−1
t y(t) + a(t)RtLtR

−1
t y(t) + a(t)Rtb(t).

From the third assumed conclusion, we have

R′
tR

−1
t + a(t)RtLtR

−1
t = ã(t)L̃t.

From the form of Rt and b, we see that Rtb(t) = (ã(t)/a(t))b(t). So y solves the system
y′ = ãL̃y + ãb, which was our claim.

Let us now explain why conditions 2 and 3 imply condition 1. More generally, if the matrices
Rt are of the form

Rt =

[

I 0
st αI

]

, (Rt)
−1 =

[

I 0
−α−1st α−1I

]

and conjugate the homogeneous systems, x′ = Ltx and x̃′ = L̃tx̃, with Lt and L̃t Hamiltonian,
then necessarily st is symmetric and α is constant. Indeed, we can compute

R′
tR

−1
t + a(t)RtLtR

−1
t =

[

aCT − aα−1Bst α−1aB
∗ α′α−1I + aα−1stB − aC

]

(the lower left block is not useful). In order for this matrix to be Hamiltonian, we must have

aC − aα−1sTt B = aC − aα−1stB − α′α−1I

which is equivalent to
a(sTt − st) = α′B−1.

In this equality, the left hand side is antisymmetric, while the right hand side is symmetric, so
both most be null, which is precisely implying that α is constant and that st is symmetric.

Proving the direct implication in Proposition 21 is more delicate. We temporarily work in a
more general setting. Let Lt = L(t) and L̃t = L̃(t) be two smooth curves of endomorphisms of
a vector space E (= R

d × (Rd)∗ in our case), and let a and ã be non-vanishing functions. We
consider a quotient π : E −→ G of E (the projection to the first factor R

d in our case) and
a subspace F of E (the subspace {0} × (Rd)∗) , we assume that π|F = 0. Our goal is to give
necessary conditions in order that the solutions of the two non-homogeneous equations

x′(t) = a(t)Ltx(t) + a(t)b(t)

x̃′(t) = ã(t)L̃tx̃(t) + ã(t)b(t)

starting with the initial condition x(0) = 0 = x̃(0) have the same projection on G (meaning that
π ◦ x = π ◦ x̃) on the time interval [0, T ] for each curve b : [0, T ] −→ F smooth and compactly
supported in ]0, T [. Recall that the curve b appearing in both differential equations is the same.

Given a linear map M on E, we denote by [M ] : F −→ G the block π ◦M|F of M , it is the
upper right block in our case.

Lemma 22. If π ◦x = π ◦ x̃ on [0, T ], for each curve b smooth and compactly supported in ]0, T [,
then

[a(t)Mn(t)] = [ã(t)M̃n(t)]

for each n > 1 and each t ∈ [0, T ], where Mn(t) is the sequence of curves of matrices defined by
M1 = I and Mn+1 = M ′

n + aMnL (and similarly for M̃n). In the special case where a ≡ ã, this
implies that [L3

t ] = [L̃3
t ].
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In the formulation of the problem, we have included two functions a and ã to make the
expressions more symmetric. It would however be possible to multiply both a and ã by a same
non vanishing function without changing the problem. This would for example allow to assume
that a or ã (but, in general, not both) is identically equal to 1

Proof. If π ◦x = π ◦ x̃ for each curve b smooth and compactly supported in ]0, T [, then this also
holds for all b ∈ L1([0, T ]), by a standard approximation argument using that the maps b 7−→ x
and b 7−→ x̃ are continuous from L1 to L∞.

A straightforward computation shows that

x′ =ab+ aLx = ab+M2x

x′′ =(ab)′ + aM2b+M3x

x(3) =(ab)′′ + (aM2b)
′ + aM3b+M4x

x(n) =(ab)(n−1) + (aM2b)
(n−2) + · · ·+ aMnb+Mn+1x.

We consider a discontinuous curve b which is null on [0, s[, and has a prescribed constant value
b on [s, T ]. The equation π ◦ x′′(s) = π ◦ x̃′′(s) (the derivatives are computed on the right of s)
reduces to

a(π ◦M2)b = ã(π ◦ M̃2)b

since x(s) = x̃(s) = 0 and π ◦ (ab′)(s) = 0 = π ◦ (ãb)′(s). Since this holds for each b, we have
a[M2(t)] = ã[M̃2(t)] for each s in ]0, T [ hence in [0, T ].

Assuming this equality, we have that [(aM2)
′(t)] = [(ãM̃2)

′(t)] hence the equation π◦x′′′(s) =
π◦x̃′′′(s) simplifies to [a(s)M3(s)] = [ã(s)M ′

3(s)]. Similarly by induction the equality π◦x(n)(s) =
π ◦ x̃(n)(s) reduces to [a(s)Mn(s)] = [ã(s)M ′

n(s)].
Assume now that ã ≡ a. We have M2 = aL, M3 = (aL)′ + (aL)2,

M4 =M ′
3 + (aL)′(aL) + (aL)3 =M ′

3 + ((aL)2)′/2 + (aL)3.

Under the hypothesis of the proposition, we have [aL] = [aL̃] hence [(aL)′] = [(aL̃)′]. Then, the
equality [M3] = [M̃3] reduces to [(aL)2] = [(aL̃)2]. Finally, the equality [M ′

4] = [M̃ ′
4] implies

[(aL)3] = [(aL̃)3], hence [L3] = [L̃3].

Proof. We now prove the direct implication in Proposition 21. The first conclusion in Lemma
22 implies that

ã2B̃t = [ã2L̃t] = [a2Lt] = a2Bt.

This implies that the lower right block (a/ã)B̃−1B of Rt is actually equal to (ã/a)I.
The first block line of L2 is

π ◦ L2 = ((CT )2 −BA,CTB −BC)

and similarly for L̃2. The equality aM3 = ã3M̃3 can be written a[aL]′ + a3[L2] = ã[ãL̃]′ + ã3[L̃2]
and

a3(CTB −BC)− a(aB)′ = ã3(C̃T B̃ − B̃C̃)− ã(ãB̃)′.

Using that ã2B̃ = a2B, this is equivalent to

aCT (a2B)− (a2B)aC − ãC̃T (a2B) + (a2B)ãC̃ = a(aB)′ − ã(ãB)′

⇔ a2B(ãC̃ − aC)−
(

a2B(ãC̃ − aC)
)T

= a(aB)′ − ã(ãB)′.

In this last equality, the matrix on the left is antisymmetric, while the matrix on the right is
symmetric (recall that B is symmetric). The equality thus implies that each of them is null. The
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nullity of the left hand side implies that the matrix B(ãC̃− aC) is symmetric, hence (using that
B is symmetric) so is the transpose (ãC̃T − aCT )B, and so is

B−1(ãC̃T − aCT ) = B−1(ãC̃T − aCT )BB−1,

hence (using that ã2B̃ = a2B) so is the lower left block

st = (ã(t)B̃(t))−1
(

a(t)CT (t)− ã(t)C̃T (t)
)

of Rt. The nullity of the right hand side, a(aB)′ = ã(ãB̃)′ can be rewritten

(a2B)′ − a′aB = (ã2B̃)′ − ã′ãB̃

and, since a2B = ã2B̃, this is equivalent to (a′/a−ã′/ã)B = 0 hence to a′/a = ã′/ã, which implies
that ã/a is constant. We have proved the first and the second conclusions of the Proposition.

Let us now prove our last conclusion. At this stage, we know that

Rt =

[

I 0
st (ã/a)I

]

.

The computations made in the proof of the converse imply that Rt conjugates the system x′ =
aLtx+ ab to the system y′ = ãGty + ãb, with

ã(t)Gt = R′
tRt + a(t)R−1

t LtR
−1
t .

By definition of Rt, the first block line of this matrix Gt is equal to the first block line of L̃.
Moreover, as seen in the proof of the converse above, the second conclusion implies that the
lower right block of G is minus the transpose of its upper left block, so that

G =

[

C̃T B̃

−AG −C̃

]

,

and we have to prove that AG = Ã.
We apply Lemma 22 to the systems x̃′ = ãL̃x̃ + ãb and y′ = ãGy + ãb, that is to the pairs

of data (L̃, ã) and (G, ã). We obtain that [G3] = [L̃3]. Using the expression given above for the
first block line of L2, we expand this equality to

((C̃T )2 − B̃Ã)B̃ − (C̃T B̃ − B̃C̃)C̃ = ((C̃T )2 − B̃AG)B̃ − (C̃T B̃ − B̃C̃)C̃,

which simplifies to B̃AGB̃ = B̃ÃB̃, hence to AG = Ã. This implies that G = L̃, and proves the
third conclusion of the proposition.

8 Reversible points and reversible orbits

The goal of this section and the next one is to prove Theorem 5, which will be deduced from the
stronger Theorem 6 below. We say that x ∈ T ∗M is a two-way point if x 6∈ Γ, and if S(ϕ(t, x))
is, up to parametrization, an orbit of H near t = 0. We say that (x, u) ∈ T ∗M × C∞(M) is a
two-way point if x is a two way point for H +u. This holds if and only if there exists ǫ > 0 such
that the equality

dSϕ(t,x,u) · VH(ϕ(t, x, u), u) = −s(ϕ(t, x, u))VH (S ◦ ϕ(t, x, u), u)
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holds for each |t| < ǫ. We denote by W(ǫ) the set of points (x, u) which satisfy this property,
and by W = ∪ǫ>0W(ǫ) the whole set of two-way points. This union is increasing, hence it can
be made countable. It is clear from the definition that W(ǫ) is closed, hence W is an Fσ.

If θ(t), |t| < ǫ is an orbit segment made of two-way points (which is equivalent to (θ(0), 0) ∈
W(ǫ)), then there exists a decreasing diffeomorphism σ form ]− ǫ, ǫ[ into an open interval of R,
satisfying σ(0) = 0, and an orbit segment θ̃ such that S ◦ θ = θ̃ ◦ σ. The function σ satisfies
σ(0) = 0, and is determined by the equation σ′(t) = −s(θ(t)).

Definition 23. We say that the point θ is reversible if it is a two way point, and if moreover

1. dsθ · VH(θ) = 0,

2. the reduced linear symmetry Rθ is conformally symplectic of factor −s(θ),

3. denoting by θ(t) the orbit of θ, we have

∂t|t=0

(

RS(θ) ◦ Φ̃0
σ(t) ◦Rθ(t) ◦ Φt0

)

= 0

where Φt0 is the reduced linearized flow along θ and Φ̃t0 is the reduced linearized flow along
θ̃.

We are going to prove :

Theorem 6. For generic u ∈ C∞(M), all two-way points are reversible.

That Theorem 6 implies Theorem 5 follows from the next Lemma, since all points of a round
trip orbit which do not belong to Γ are two way points.

Lemma 24. Let θ(t) be a round trip periodic orbit. Assume that all points of the image of θ
which are outside of Γ are reversible points. Then the orbit θ is reversible.

Proof of Lemma 24. We assume, without loss of generality, that θ(0) ∈ Γ, and denote by
T > 0 the minimal period of the orbit. There exists one and only one time ν ∈]0, T [ such that
θ(ν) ∈ Γ. The first condition of the definition of reversible points implies that s ◦ θ is constant
on ]0, ν[ and on ]ν, T [. Moreover, we know that s ◦ θ is continuous and takes the value 1 at θ(0)
and θ(ν). We deduce that s ≡ 1 on x, hence that ν = T/2. The time symmetry σ associated to
the orbit θ is σ(t) = −t.

For the sequel, we denote by Rt the reduction of dSθ(t). Note that Rt ◦R−t = Id. The maps
Rt, t ∈]0, 1/2[ are conformally symplectic of factor s(θ(t)), hence at the limit R0 and RT/2 are
conformally symplectic of factor −1, i.e. antisymplectic.

We want to prove the reversibility relation R0 ◦ΦTT/2 ◦RT/2 ◦ΦT/20 = Id, which is equivalent
to

R0 ◦ Φ0
−T/2 ◦RT/2 ◦ΦT/20 = Id.

By continuity, it is enough to prove that the reversibility relation

R−s ◦ Φ−s
−t ◦Rt ◦ Φts = Id.

holds for s and t in ]0, T/2[. We denote

Lts := Φ0
s ◦R−s ◦Φ−s

−t ◦Rt ◦Φt0 = Φ0
s ◦R−s ◦Φ−s

−t ◦Rt ◦Φts ◦ Φs0,

it is an endomorphism of the reduced tangent space at θ(0), which depends smoothly on s and
t. Note that Lss = Id, and the identity we try to prove is equivalent to Lts ≡ Id. We have

Lrs = Lts ◦ Lrt
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for each s, t, r in ]0, T/2[, as follows from the computation

Lrs = Φ0
s ◦R−s ◦ Φ−s

−r ◦Rr ◦Φr0
= Φ0

s ◦R−s ◦ Φ−s
−t ◦ Φ−t

−r ◦Rr ◦ Φr0
= Φ0

s ◦R−s ◦ Φ−s
−t ◦Rt ◦R−t ◦ Φ−t

−r ◦Rr ◦ Φr0
= Φ0

s ◦R−s ◦ Φ−s
−t ◦Rt ◦ Φt0 ◦ Φ0

t ◦R−t ◦Φ−t
−r ◦Rr ◦ Φr0.

The third condition of the definition of reversible points implies that

∂r|r=tL
r
t = 0

and in view of the above relation this implies that

∂tL
t
s ≡ 0,

and we deduce that Lts = Id for each s and t in ]0, T/2[, which implies the desired reversibility
relation.

The proof of Theorem 6 is based on the following Proposition :

Proposition 25. Let θ(t) = (Q(t), P (t)), |t| < ǫ be an orbit segment made of two way points of
H (hence (θ(0), 0) ⊂ W(ǫ)). Assume moreover that θ(0) is not reversible. Then there exists an
open neighborhood Wloc(ǫ) of (θ(0), 0) in W(ǫ) whose projection on C∞(M) has empty interior.

Proof of Theorem 6. We assume Proposition 25. Let W
′(ǫ) be the set of elements of W(ǫ)

which are not reversible. By Proposition 25, applied to H + u, each point (θ, u) ∈ W
′(ǫ) is

contained in an open subset Wloc(ǫ) of W(ǫ) whose projection on C∞(M) has empty interior.
Moreover, Wloc(ǫ) is locally closed, hence it is an Fσ , so its projection is an Fσ with empty
interior. Since T ∗M × C∞(M) is a separable metric space, the subset W

′(ǫ) can be covered
by countably many such neighborhoods, so its projection is contained in a countable union of
Fσ with empty interior, hence, by the Baire property, in an Fσ with empty interior. Then the
projection of the set W′ = ∪kW′(1/k) of two-way points which are not reversible is contained in
an Fσ with empty interior.

Proof of Proposition 25. The principle of the proof is that a point which is stably a two
way point has to be a reversible point. We assume, without loss of generality, that H(θ) = 0.
We work in coordinates (q0, q1, . . . , qd) = (q0, q∗) of M near Q(0) = Q̃(0) such that

Q(t) = (Q0(t), 0),

with Q′(t) > 0, for t ∈]− δ, δ[ for some δ ∈]0, ǫ[. Such coordinates exist because Q′(0) 6= 0. We
could obviously impose that Q0(t) = t, but some expressions will appear more symmetric if we
don’t. The first coordinate Q0 of the orbit maps ]− δ, δ[ diffeomorphically onto an open interval
of R, and we denote by τ its inverse, so that

Q ◦ τ(r) = re0 = (r, 0).

The corresponding coordinates of T ∗M are

(q, p) = (q0, q1, . . . , qd, p0, p1, . . . pd) = (q0, q∗, p0, p∗) ∈ R
d+1 × R

d+1 = R× R
d × R× R

d.

The coordinates x∗ := (q∗, p∗) are local symplectic coordinates on the restricted sections {q0 =
r,H = c}, hence on the restricted linear sections, hence on the reduced energy levels.
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Since θ(0) is a two way point, the orbit θ̃(t) = (Q̃(t), P̃ (t)) of the point S(θ) satisfies

Q̃(t) = (Q̃0(t), 0)

and we denote by τ̃ the inverse of Q̃0, it is a decreasing diffeomorphism from a neighborhood of
0 to ]− δ, δ[. The time symmetry is σ = τ̃ ◦Q0.

We denote as usual by Φts, resp. Φ̃ts, the reduced linearized flow along the orbit θ, resp. θ̃,
expressed in coordinates x∗. It will actually be useful to parameterize orbits by the coordinate q0,

and define, in coherence with section 7, Ψr
ρ := Φ

τ(r)
τ(ρ) and Ψ̃r

ρ := Φ
τ̃(r)
τ̃(ρ). These are the differentials

at the orbit of the local transition maps between the restricted sections {H = 0, q0 = ρ} and
{H = 0, q0 = r}, expressed in coordinates x∗. The matrices Ψr

ρ, Ψ̃
r
ρ are symplectic, hence the

matrices Lr, L̃r such that

∂rΨ
r
s = τ ′(r)LrΨ

r
s , ∂rΨ̃

r
s = τ̃ ′(r)LrΨ̃

r
s

are Hamiltonian, meaning that they are of the form

Lr =

[

CTr Br
−Ar −Cr

]

, L̃r =

[

C̃Tr B̃r
−Ãr −C̃r

]

,

with symmetric blocs A and B. We will use later the matrices Ar, Br, Cr, Ãr, B̃r, C̃r defined
by the above equalities. If the coordinates could be chosen such that θ∗ and θ̃∗ are constant,
then we would have Lr = J∂2x∗x∗H(θ ◦ τ(r)) and L̃r = J∂2x∗x∗H(θ̃ ◦ τ̃(r)). However, coordinates
satisfying these two conditions do not exist in general, and the above relation between L and H
does not necessarily hold, although only the blocks B remain equal:

Lemma 26. We have

Br = ∂2p∗p∗H(θ ◦ τ(r)) , B̃r = ∂2p∗p∗H(θ̃ ◦ τ̃(r))

hence they are positive definite.

Lemma 27. The expression in coordinates of the reduced linearized symmetry Rθ◦τ(r) is

Rr :=

[

I 0

(τ̃ ′(r)B̃(r))−1
(

τ ′(r)CT (r)− τ̃ ′(r)C̃T (r)
)

(τ ′(r)/τ̃ ′(r))B̃−1(r)B(r)

]

.

Note that this expression coincides (unsurprisingly) with the matrix called Rt before Propo-
sition 21 with a = τ ′, ã = τ̃ ′. For x ∈ T ∗M near {θ(0), θ̃(0)}, u ∈ C∞ near 0, r ∈ R near 0, we
denote by ψ(r, x, u) ∈ R

2d the x∗ coordinate of the local intersection of the orbit of x for H + u
with the section {q0 = r} (along θ or along θ̃), and set ψ̃(r, x, u) = ψ(r,S(x), u).

Lemma 28. Given a potential u ∈ C∞(M) vanishing on Q(] − δ, δ[), the directional deriva-
tives y(s) := ∂uψ(s, θ, 0) · u and ỹ(s) := ∂uψ̃(s, θ, 0) · u satisfy the non-homogeneous differential
equations

y′(s) = τ ′(s)L(s)y(s) + τ ′(s)b(s) , ỹ′(s) = τ̃ ′(s)L̃(s)ỹ(s) + τ̃ ′(s)b(s)

where b(s) = (0,−∂q∗u(s, 0)) ∈ R
d × (Rd)∗. They take the initial values y(0) = 0 = ỹ(0).

We postpone the proof of these Lemma to the next section and continue the proof of Propo-
sition 25. We will apply Proposition 21 to the two non-homogeneous linear equations appearing
in Lemma 28, so in the notations of Proposition 21 a(t) = τ ′(t) and ã(t) = τ̃ ′(t). If θ(0) is
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not reversible we claim that the conclusions of Proposition 21 are violated on any subinterval of
[0, δ[, provided δ > 0 is small enough.

The first possibility is that ds ·VH 6= 0 at θ(0), or equivalently (s ◦ θ)′(0) 6= 0. Observing that

a(r)

ã(r)
=
τ ′(r)

τ̃ ′(r)
=
Q̃′

0 ◦ τ̃(r)
Q′

0 ◦ τ(r)
= −s ◦ θ ◦ τ(r),

we deduce that (a/ã)′(0) 6= 0 and then we can assume by possibly taking a smaller δ > 0 that
(a/ã)′(r) 6= 0 on [0, δ[, hence ã/a is not constant on any subinterval of ]0, δ[.

The second possibility is that R0 = Rθ(0) is not conformally symplectic of factor −s(θ(0)),
and then we can assume by taking δ small enough that Rr is not conformally symplectic of factor
−s ◦ θ ◦ τ(r) for any r ∈ [0, δ[.

The third and last possibility is that

∂t|t=0

(

RS(θ(0)) ◦ Φ̃0
σ(t) ◦Rθ(t) ◦Φt0

)

6= 0

which is equivalent to
∂r|r=0

(

R−1
0 ◦ Ψ̃0

r ◦Rr ◦Ψr
0

)

6= 0

and then, taking δ small enough, we deduce that the conjugacy equality

Rr ◦Ψr
s = Ψ̃r

s ◦Rs

holds only for s = r if both s and r are in ]0, δ[.
In all cases, the conclusions of Proposition 21 are violated on all subintervals of [0, δ[. Fixing

a large integer k and a sequence 0 < t1 < t2 < · · · < tk < δ of times, we deduce from Proposition
21 applied on each interval [ti, ti+1] the existence of smooth curves bi(t) = (0,−βi(t)) supported
in ]ti, ti+1[, such that the solutions yi, ỹi of the systems

y′(t) = τ ′(t)Lty(t) + τ ′(t)bi(t) , ỹ′(t) = τ̃ ′(t)L̃tỹ(t) + τ̃ ′(t)bi(t)

emanating from yi(ti) = 0 = ỹi(ti) have a different projection at some time si ∈]ti, ti+1[. We
consider smooth potentials ui ∈ C∞(M), null on Q([−δ, δ]), with the property that, for each
t ∈ [−δ, δ],

∂q∗ui(te0) = βi(t).

In view of Lemma 28,

∂uψ(s, θ, 0) · ui = yi(s) , ∂uψ̃(s, θ, 0) · ui = ỹi(s).

Finally, there exists one coordinate qji such that the R-valued function

χi(x, u) := qji ◦ ψ(si, x, u) − qji ◦ ψ̃(si, x, u)

satisfies
∂uχi(θ, 0) · ui 6= 0.

Let E be the k-dimensional vector space of C∞(M) generated by the potentials ui, 1 6 i 6 k.
We define

χ : T ∗Mloc × C∞
loc ∋ (x, u) 7−→ (χ1(x, u), . . . , χk(x, u)) ∈ R

k,

where T ∗Mloc and C∞
loc are open neighborhoods of x and 0 in T ∗M and C∞(M). By construction

∂uχi(θ, 0) · ui 6= 0 and ∂uχi(θ, 0) · uj = 0 for j > i, hence the restriction to E of the differential
∂uχ(θ, 0) is an isomorphism from E to R

k. If a point (x, u) ∈ T ∗Mloc × C∞
loc belongs to W(ǫ),

then χ(x, u) = 0. Let us now consider the modified map

χ̂ : T ∗Mloc × C∞
loc × Eloc ∋ (x, u, v) 7−→ χ(x, u+ v),
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where Eloc is a small open neighborhood of 0 in E. By continuity of ∂vχ̂, if the neighborhoods
are small enough, then ∂vχ̂ is an isomorphism at each point. Then, for each fixed u ∈ C∞

loc,
the map χu : (x, v) 7−→ χ̂(x, u, v) is a submersion on T ∗Mloc × Eloc. This implies that χ−1

u (0)
is a submanifold of codimension k in the finite dimensional manifold T ∗Mloc × Eloc, hence of
dimension 2d + 2. If k = dimE > 2d + 2, then we deduce that the projection of χ−1

u (0) on the
second factor has no interior in E, and in particular there exist arbitrarily small v ∈ E which
do not belong to this projection. For such a v, we have χ(x, u + v) 6= 0 for each x ∈ T ∗Mloc

hence the potential u+v does not belong to the projection of Wloc(ǫ) := W(ǫ)∩
(

T ∗Mloc×C∞
loc

)

.

9 Some computations in coordinates

The goal of the present section is to prove Lemma 26, 27, 28, which will end the proof of Theorem
6, hence of Theorem 5. We work in the setting and with the notations introduced in the proof of
Proposition 25. We are interested in the local transition maps between sections of the form {q0 =
r,H = 0}. These sections are symplectic (for the restriction of the ambiant symplectic form)
and the coordinates x∗ = (q∗, p∗) are symplectic local coordinates on them. These restricted
transition maps depend only on the level set {H = 0}. Since ∂p0H(θ(t)) = Q′(t) 6= 0, this energy
level can, locally near θ, be written as a graph

{H = 0} = {p0 = −κ(q0, x∗)},

this property being the definition of the function κ. Similarly, near θ̃ = S(θ), the energy level
is given by the equation q0 + κ̃(q0, x∗) = 0. The dynamics on the energy surface near θ is, up to
positive reparametrization, the same as the one generated by the Hamiltonian p0 + κ, which is
given by the equations

q′0 = 1 , x′∗ = J∂x∗κ(q0, x∗).

The local transition maps near θ are thus the flow of the equations

x′∗ = J∂x∗κ(t, x∗),

and the linearized transition maps Ψ solve the linearized equations

∂rΨ
r
ρ = J∂2x∗x∗κ(r, θ∗ ◦ τ(r))Ψr

ρ,

where θ∗(t) = x∗ ◦ θ(t) = (0, P∗(t)) is the x∗ component of θ(t). In earlier notations we have

Lr = J∂2x∗x∗κ(r, θ∗ ◦ τ(r)).

Proof of Lemma 26. From the equation H(r,−κ(r, x∗), x∗) = 0, we deduce that

∂p0H(r,−κ(r, x∗), x∗) · ∂p∗κ(r, x∗) = ∂p∗H(r,−κ(r, x∗), x∗).

We differentiate again this equality with respect to p∗ at the point θ∗ ◦ τ(r), using that

∂p∗κ(r, θ∗ ◦ τ(r)) = 0 , ∂p∗H(r, κ(r, θ∗ ◦ τ(r)), θ∗ ◦ τ(r)) = 0,

∂p0H(r, κ(r, θ∗ ◦ τ(r)), θ∗ ◦ τ(r)) = Q′
0 ◦ τ(r) = 1/τ ′(r),

and get
∂2p∗p∗κ(r, θ∗ ◦ τ(r)) = τ ′(r)∂2p∗p∗H(r, κ(r, θ∗ ◦ τ(r)), θ∗ ◦ τ(r)).
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Proof of Lemma 27. The symmetry S preserves the sections {q0 = r,H = 0}, and it has the
form

(r,−κ(r, q∗, p∗), q∗, p∗) 7−→ (r,−κ̃(r, q∗, s∗(r, q∗, p∗)), q∗, s∗(r, q∗, p∗)),
and then

Rr =

[

I 0
∂q∗s(r, θ∗ ◦ τ(r)) ∂p∗s(r, θ∗ ◦ τ(r))

]

.

The map s∗ is determined by the equation

∂p∗ κ̃(r, q∗, s∗(r, q∗, p∗)) = ∂p∗κ(r, q∗, p∗).

Differentiating with respect to p∗ at x∗ = θ∗ ◦ τ(r) and observing that s∗(r, θ∗ ◦ τ(r)) = P̃∗ ◦ τ̃(r)
yields

∂2p∗p∗κ̃(r, θ̃∗ ◦ τ̃(r))∂p∗s∗(r, θ∗ ◦ τ(r)) = ∂2p∗p∗κ(r, θ∗ ◦ τ(r))

which can be rewritten in terms of the blocs of L̃r as

τ̃ ′(r)B̃(r)∂p∗s∗(r, θ∗ ◦ τ(r)) = τ ′(r)B(r).

From this equation, we find the stated expression for the lower right block ∂p∗s∗(r, θ∗ ◦ τ(r)) of
Rr. We can also differentiate the equation determining s∗ with respect to q∗ and get

∂2q∗p∗ κ̃(r, θ̃∗ ◦ τ̃(r)) + ∂2p∗p∗ κ̃(r, θ̃∗ ◦ τ̃(r))∂q∗s∗(r, θ∗ ◦ τ(r)) = ∂q∗p∗κ(r, θ∗ ◦ τ(r))

which can be rewritten

τ̃ ′(r)C̃T (r) + τ̃ ′(r)B̃(r)∂q∗s∗(r, θ∗ ◦ τ(r)) = τ ′(r)CT (r),

from which we obtain the lower left block.

Proof of Lemma 28. We fix the potential u and denote by κ(q0, x∗, ǫ) the function such that
the energy level {H + ǫu = 0} is locally the graph p0 = −κ. Then ψ solves the equation

∂sψ(s, x, ǫu) = J∂x∗κ(s, ψ(s, x, ǫu), ǫu).

Taking the derivative with respect to ǫ at x = θ, ǫ = 0 and recalling that ψ(s, θ, 0) = θ∗ ◦ τ(s),
we obtain

y′(s) = J∂2x∗x∗κ(s, θ∗ ◦ τ(s), 0)y(s) + J∂2ǫx∗κ(s, θ∗ ◦ τ(s), 0).
We have J∂2x∗x∗κ(s, θ∗ ◦ τ(s), 0) = τ ′(s)L(s) by definition, and we now have to prove that

J∂2ǫx∗κ(s, θ∗ ◦ τ(s), 0) = τ ′(s)b(s).

From the equation
H(s,−κ(s, x∗, ǫ), x∗) + ǫu(s, q∗) = 0,

we deduce that

∂p0H(s,−κ(s, x∗, ǫ), x∗)∂x∗κ(s, x∗, ǫ) = ǫ∂x∗u(s, q∗) + ∂x∗H(s,−κ(s, x∗, ǫ), x∗).

Here we consider u both as a function of q and as a function of x which depends only on q, so
that ∂x∗u = (∂q∗u, 0). Since u(s, 0) = 0, we observe that the equation

H(s,−κ, q∗, p∗) + ǫu(s, q∗) = 0

which defines κ(s, q∗, p∗, ǫ) does not actually depend on ǫ provided q∗ = 0, and this implies
that κ(s, 0, p∗, ǫ) does not depend on ǫ, and in particular κ(s, θ∗ ◦ τ(s), ǫ) does not depend on ǫ.
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With this observation in mind, we differentiate the above equality with respect to ǫ at ǫ = 0,
x∗ = θ∗ ◦ τ(s) and get

∂p0H(θ ◦ τ(s))∂2ǫx∗κ(s, θ∗ ◦ τ(s), 0) = ∂x∗u(s, 0)

which can be rewritten
∂2ǫx∗κ(s, θ∗ ◦ τ(s), 0) = τ ′(s)(β(s), 0).

A A soft implicit function Lemma

In this text, the perturbation parameter u belongs to a Fréchet space, and we want to avoid
using differential calculus in Fréchet spaces. So we use the following elementary version of the
implicit function theorem, where U is a metric space. The proof is easy and left to the reader.

Lemma 29. Let f(x, u) : Rn × U −→ R
n be a function which is Fréchet differentiable in x

for each (x, u), and such that the Fréchet differential ∂xf : Rn × U −→ L(Rn,Rn) is jointly
continuous. Assume that f(0, u0) = 0, where u0 is some point of U , and that ∂xf(0, u0) is
invertible. Then there exists open neighborhoods R

n
loc and Uloc of 0 and u0 and a continuous

function X : Uloc −→ R
n
loc such that, for each u ∈ Uloc, X(u) is the only solution of the equation

f(., u) = 0 contained in R
n
loc.
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