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Abstract
We address the problem of learning the dynam-
ics of an unknown non-parametric system link-
ing a target and a feature time series. The feature
time series is measured on a sparse and irregular
grid, while we have access to only a few points
of the target time series. Once learned, we can
use these dynamics to predict values of the target
from the previous values of the feature time se-
ries. We frame this task as learning the solution
map of a controlled differential equation (CDE).
By leveraging the rich theory of signatures, we
are able to cast this non-linear problem as a high-
dimensional linear regression. We provide an or-
acle bound on the prediction error which exhibits
explicit dependencies on the individual-specific
sampling schemes. Our theoretical results are
illustrated by simulations which show that our
method outperforms existing algorithms for re-
covering the full time series while being compu-
tationally cheap. We conclude by demonstrating
its potential on real-world epidemiological data.

1. Introduction
Time series are ubiquitous in many areas such as finance,
economics, robotics, agriculture, and healthcare. One is
typically interested in modelling the evolution of a target
quantity through time, which is known to be affected by a
set of time-evolving features. For example, pollution lev-
els in a city are driven by quantities such as temperature,
pressure, traffic, or economic activity measured through
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time. Mathematically, one wishes to model the evolution
of a quantity yt ∈ Rp, p ≥ 1, as a function of some time
evolving features xt ∈ Rd, d ≥ 1, for t ∈ [0, 1]. In other
words, the goal is to learn the dynamics that link the target
to the features.

Such an interaction is typically modelled via differential
equations, which are a common choice of model in natural
sciences (Zwillinger, 1989). In this article, we assume that
there exists a function G : Rp × Rd → Rp such that

yt = y0 +

∫ t

0

G(ys, xs)ds (1)

or equivalently

dyt = G(yt, xt)dt, y0 ∈ Rp.

The value yt depends on the trajectory of the features time
series xs up to time t. Learning the dynamics of the system
can be framed as learning the solution map of (1), i.e., a
function Ψ which, given a time t, an initial point y0 ∈ Rp,
and the history of the path up to time t, denoted by x[0,t] =
(xs)s∈[0,t], outputs the value of y at time t.

If we know Ψ, we gain access to the values of y at any
point in time provided we know the values of x up to this
point ; this encompasses many tasks such as forecasting or
interpolating between points of y. We specifically have in
mind applications where we have an easy access to x but a
limited one to y.

This problem is extremely common in healthcare. For ex-
ample, in obstetrics, the lactic acidosis (LA) of the fetus,
which is a proxy for fetal distress, is a quantity of high
medical interest for predicting complications in the first
hours after birth. This biomarker cannot be measured dur-
ing pregnancy but only at birth because the measurement
is highly invasive. Some vitals such as heart rate and fetal
movement are however easy to measure during pregnancy.
In this case, x is the non-invasive measurements made dur-
ing pregnancy, while y is the invasive measurement of LA
at birth. Predicting the value of y at any time t (both before
and at birth) would allow for early diagnosis. Similarly,
after surgery, patients are often monitored to detect hemor-
rhage. While some vitals such as heart rate of saturation
are monitored in continuous time, haemoglobin—which
is highly predictive of hemorrhage—is only measured by
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Learning the Dynamics of Sparsely Observed Interacting Systems

blood samples taken a few times a day, which can signifi-
cantly delay hemorrhage diagnostic.

Irregular data. In practice, the functions x and y are
measured on discrete grids and take the form of time se-
ries. These often present a lot of heterogeneity, both within
and across individuals.

(i) For every individual, the time between any two mea-
surements can vary, and thus individuals may not be
recorded on the same grid.

(ii) The number of total sampling points might vary be-
tween individuals.

(iii) Each measurement in time might be corrupted by
measurement noise.

Mathematically, we consider n pairs of functions
{(x1, y1), . . . , (xn, yn)}. Each xi deterministically pro-
duces a specific yi through the Ordinary Differential Equa-
tion (ODE) (1). We call xi the feature path and yi the tar-
get path. Both xi and yi are only observed at a finite set of
times specific to every individual. We denote by

Di =
(
ti1, . . . , t

i
ki

)
, i = 1, . . . , n,

the sampling grid of xi and by D̄i the sampling grid of
yi. We stress that both the number of sampling times ki
and the sampling times ti1, . . . , t

i
ki

themselves are individ-
ual specific, as described in (i) and (ii). Moreover, the
observations are corrupted by additive noise, such that we
observe

Xi
t = xit + ξit

for all t ∈ Di, and similarly Y it = yit + εit for every
t ∈ D̄i, where the ξit and εit are sub-gaussian i.i.d. ran-
dom vectors. Each input may therefore be written as a ma-
trix Xi = (Xi

t)t∈Di ∈ Rki×d which we call the feature
time series. Similarly, the quantity of interest is a matrix
Yi = (Y it )t∈D̄i ∈ Rmi×p (where mi is the length of D̄i)
and is called the target time series. The grid D̄i is assumed
to be a subset of Di: in our setup yi is hard to sample and
therefore measured at only a few points (and sometimes
only one) while xi is easy to access and measured at high
frequency. Our goal is to approximate the dynamics linking
x and y from the irregular, heterogeneous, and fuzzy data
Xi and Yi.

Such heterogeneity is difficult to handle by classical ma-
chine learning algorithms such as Long short-term memory
networks (LSTM, Hochreiter & Schmidhuber, 1997) which
assume that the data is regularly sampled. Some more re-
cent approaches (Rubanova et al., 2019; De Brouwer et al.,
2019; Kidger et al., 2020; Herrera et al., 2021) have adapted
these models by introducing continuously evolving hidden

states to account for the irregular spacing between observa-
tion times.

We build upon the approach of Neural Controlled Differ-
ential Equations (Neural CDE, Kidger et al., 2020; Morrill
et al., 2021b), which have proven to be very successful for
time series classification and online prediction tasks (Mor-
rill et al., 2021a). The key idea of Neural CDE is that under
some fairly mild assumptions, any general ordinary differ-
ential equation of the form (1) can be rewritten as

yt = y0 +

∫ t

0

F(ys)dxs, (2)

where F : Rp → Rp×d is a matrix-valued vector field,
such that the right-hand-side of (2) is a matrix-vector prod-
uct (see, e.g., Fermanian et al., 2021, Proposition 2, for
a proof). The function x is often called the driver of the
CDE. In a Neural CDE setting, the driver x is a continu-
ous interpolation of the feature times series, y corresponds
to a continuously-evolving state, and F is chosen to be a
neural network. This network is then trained such that the
values of (yt) can be used as features for classification or
regression tasks. While Neural CDE have been shown to
outperform other architectures with limited memory usage,
their training time is considerable and no statistical guaran-
tees exist.

Model. We model the interactions between the target and
the feature paths through a CDE of the form (2). This mod-
elling choice encapsulates a broad variety of settings, since
the vector field F can be any (regular enough) function. A
priori, the solution map Ψ of this CDE is a complex func-
tion of time and the history of x up to t; however, by lin-
earizing the model, we are able to approximate Ψ by a sim-
ple scalar product between a deterministic transformation
of the history of x, called the signature of x at order N ≥ 1
and denoted by SN (x[0,t]), and a time independent matrix
θ∗N . Informally, we have

Ψ
(
x[0,t], t

)
≈ SN

(
x[0,t]

)⊤
θ∗N .

Two striking features of this linearized model are (i) that
θ∗N can be learned on any time horizon [0, t] since it is in-
dependent of time, and (ii) that once it has been learned,
the model can be called at any time t.

Contributions. Our contributions are threefold. First, we
frame the task of learning the interactions between two time
series as learning the flow of a CDE, which can be lin-
earized in the signature space. While the connection be-
tween CDEs and signatures is well-known, this is the first
time CDEs are used as a statistical model. We then lever-
age this linearization to derive statistical guarantees on the
prediction error with an explicit dependence on both sam-
pling irregularities and the noise affecting measurements.
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To our knowledge, this is the first bound of this type for
signature-based models, allowing for better understand-
ing of the dependencies between prediction performance
and sampling roughness. Finally, the resulting algorithm,
called SigLasso, is shown to be computationally cheap and
competitive compared to existing baselines on a wide range
of simulated data and a real-world example of hospitaliza-
tion growth rate prediction during the Covid pandemic.

Related works. Signatures originated as a prominent
tool in stochastic analysis (Chen, 1958; Lyons et al., 2007;
Friz & Victoir, 2010) and have proven to be a powerful
feature extraction method in machine learning in various
domains such as healthcare (Morrill et al., 2020b; Wang
et al., 2020), human action recognition (Yang et al., 2022),
or financial modelling (Lyons et al., 2014; Buehler et al.,
2020). Their appealing properties include a capacity to
handle irregular data, to capture dependence between co-
ordinates, and their links with the theory of CDE. We refer
to Lyons & McLeod (2022) for a recent survey on their
use cases. However, the statistical properties of signatures
based algorithms have received little attention so far, with
a few notable exceptions (Papavasiliou & Ladroue, 2011;
Lemercier et al., 2021; Fermanian, 2022).

On the other hand, the interplay between dynamical sys-
tems and machine learning has received considerable at-
tention in the recent years. A first line of work has fo-
cused on approximating the solution of ODE and Partial
Differential Equations (PDE) with neural networks (La-
garis et al., 1998; Han et al., 2018; Zubov et al., 2021) and
directly learning dynamical systems (Long et al., 2018;
Fattahi et al., 2019). Recent approaches have been inter-
ested in combining deep learning algorithms with physical
knowledge (Greydanus et al., 2019; Brunton et al., 2020;
Willard et al., 2020). Finally, dynamical systems, seen as
continuous versions of neural network architectures, have
also been a great source of inspiration for analysing and
designing machine learning algorithms in the recent years
(Chen et al., 2018; Fermanian et al., 2021; Marion et al.,
2022). We refer to Kidger (2022) for an extensive review.

We stress that our problem is different in nature from most
problems encountered in the time series literature, since we
seek to model the relationship between two sparsely ob-
served systems with heterogeneous sampling. We do not
model the evolution of the feature time series, and take it
as an input, contrarily to methods such as Gaussian Pro-
cess. Most models either focus on the case where one
time series is observed and forecasted, or on regular sam-
pling, or on univariate time series. Our problem bears close
resemblance to frameworks encountered in sequence-to-
sequence learning (Sutskever et al., 2014; Gehring et al.,
2017) and functional regression (Ramsay & Dalzell, 1991;
Marx & Eilers, 1999).

Overview. Section 2 introduces the CDE model for inter-
acting systems, the mathematical context and the learning
procedure. Our main theoretical result is presented in Sec-
tion 3. We conclude by an empirical study on synthetic and
real-world data in Section 4. All proofs are postponed to
the appendix and the code to reproduce the experiments is
available at https://github.com/LinusBleistein/SigLasso.

2. Model and Assumptions
A summary table of all notations introduced in the main
body of this article is provided to the reader in Appendix
A.

2.1. A CDE-Based Model on the Dynamics

We start by describing our assumptions on the feature and
target paths, which are linked by Equation (2). To correctly
define the integral of Equation (2), we need to impose some
conditions on the xi and on F. Note that we consider that
the xi are defined on [0, 1] but our results extend easily to
any compact time interval [a, b].

Assumption 1. All paths (xi)1≤i≤n are continuous and
there exists 0 < L < 1 such that, for all i = 1, . . . , n,∥∥xi∥∥1-var,[0,1] = sup

D

∑
k

∥∥xitk+1
− xitk

∥∥ ≤ L,
where ∥·∥ is the Euclidean norm and the supremum is taken
over all finite dissections D = {0 = t1 < · · · < tk = 1}.

We write C1-var
L ([0, 1],Rd) for the set of continuous paths

of total variation bounded by L. Outside the statistical con-
text, when referring to general paths, we will drop the su-
perscripts i and simply write x and y to alleviate notations.

We assume that the target path y is the solution of the
ODE (1). This modelization choice means that the evolu-
tion of y is governed by a dynamical system whose dynam-
ics itself are allowed to vary with the current value of the
feature path. Observe that this model can be seen as a gen-
eralized form of a non-autonomous system (Lyons et al.,
2007), which we recover by taking xt = t. Since Equa-
tion (1) can be rewritten as a CDE, the starting point of our
work is to assume that the true dynamics of the data follow
such a CDE, as stated in the following assumption.

Assumption 2. There exists a smooth vector field F :
Rp → Rp×d such that, for all i = 1, . . . , n, yi is the so-
lution of the CDE (2) driven by xi with initial condition
yi0 = y0 ∈ Rp homogeneous amongst individuals.

By “smooth” we mean that each coordinate of F is in-
finitely differentiable, that is, is C∞. The vector field F
and the initial condition y0 are common to all individu-
als, which can be seen as homogeneity assumptions on our

3
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sample. On the other hand, since every individual i has her
own feature path xi, the target paths yi are individual spe-
cific. In other words, there exists a solution map Ψ that de-
pends only on y0 and F and is such that, for any t ∈ [0, 1],
Ψ(xi[0,t], t) = yit.

The vector field F encapsulates the common physical dy-
namics governing the evolution of yi, which are affected by
the changes in xi. Note that there is no parametric model
on F (although some strong smoothness requirements will
be needed) contrarily to functional or traditional time series
models (Ramsay & Silverman, 2005; Morris, 2015).

2.2. Linearizing the CDE with Signatures

Before defining the Taylor expansion of the CDE (2), which
will allow us to linearize the solution map Ψ, we need to
introduce the notion of signature, which have emerged as
a powerful tool to model time series (Levin et al., 2013;
Kidger et al., 2019).

From now on, for any feature path x with values in Rd, we
denote by x(j) its jth coordinate, for j = 1, . . . , d.

Definition 2.1. Let x ∈ C1-var
L ([0, 1],Rd). Take a word of

length k from the alphabet {1, . . . , d}, that is, an element
I = (i1, . . . , ik) ∈ {1, . . . , d}k. For all t ∈ [0, 1], the
signature coefficient associated to this word is the scalar

SI
(
x[0,t]

)
=

∫
· · ·
∫

0<u1<···<uk<t

dx(i1)u1
· · · dx(ik)uk

.

We introduce a series of notation on signature coefficients,
grouping them by the length k of the words. For any k ∈ N
and t ∈ [0, 1], the signature of order k of x[0,t] is

Xk,[0,t] =
(
SI(x[0,t])

)
I∈{1,...,d}k ∈ Rd

k

,

where the words (i1, . . . , ik) are in lexicographic order. We
then denote the full signature by

S(x[0,t]) =
(
1,X1

[0,t], . . . ,X
k
[0,t], . . .

)
and, for any N ≥ 1, the signature truncated at order N by

SN (x[0,t]) =
(
1,X1

[0,t], . . . ,X
N
[0,t]

)⊤
.

The size of the signature truncated at order N grows expo-
nentially with N , since, for d ≥ 2, it is equal to

sd(N) = 1 + d+ d2 + · · ·+ dN =
dN+1 − 1

d− 1
.

When computing signatures, it is common practice to add
time as a coordinate to the path (Fermanian, 2021), that is,
consider the path (t, xt)

⊤. From now on, we assume that
the first dimension of x always corresponds to time, so that
d ≥ 2.

Signatures encode geometric properties of paths and have
numerous appealing properties as a feature set for time se-
ries. We refer to Chevyrev & Kormilitzin (2016); Ferma-
nian (2021); Lyons & McLeod (2022) for more detailed
introductions to signatures. In order to provide supplemen-
tary intuition, we first give three insights on signatures.

A geometric insight. Signatures are a geometric alter-
native to representations based on frequency such as the
Fourier transform. Indeed, consider a function f ∈
C∞([0, 1], [0, 1]) and the two dimensional path (t, f(t)).
For simplicity assume that f(0) = 0. Then, the first order
signature coefficients are equal to the last positions t and
f(t). The second order signature coefficients are equal to∫ t
0
f(s)ds, 12 t

2, 12f(t)
2, and f(t)t−

∫ t
0
f(s)ds, and capture

how the area under the curve evolves with time.

A computational insight. Consider the linear path xt =
at + b for t ∈ [0, 1], where a = (a1, . . . , ad)

⊤ ∈ Rd.
For any word (i1, . . . , ik) of size k the associated signature
coefficient is

ai1 . . . aik
k!

tk.

In the linear case, signatures are therefore simply polyno-
mials in t with path-specific coefficients. This result gener-
alizes nicely to piecewise linear paths (via a result known
as Chen’s Lemma) and allows for computational efficiency
when computing the signature. We refer to Kidger & Lyons
(2020) for further computational details.

A functional insight. Recall that we are interested in ap-
proximating functions f(xt, t) which depend both on time
and on the values of the feature path (xt). When computing
signatures, we always consider the time-augmented path
(t, xt). The coefficients will thus be divided in two parts:
a first set of coefficients related to the time dimension, and
a set of coefficients related to the path dimensions. The
time-specific coefficients are simply

t,
t2

2!
,
t3

3!
, . . . ,

tN

N !
(3)

and thus form a polynomial basis. Roughly speaking, these
coefficients approximate the time dependant part of the
function f . The path-specific coefficients, which can be
thought of as polynomials of a path, approximate the part
of f depending on (xt). This highlights that the Taylor de-
velopment of a CDE, which is the cornerstone of our work,
is very similar in nature to the approximation of a function
by its classical Taylor development (see Appendix B.4).

With these insights in hand, we are now ready to properly
define the Taylor expansion of a CDE.

Definition 2.2. Let N ≥ 1. The Taylor expansion of order
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N of the solution y of Equation (2) is defined by

yN,t = y0 +

N∑
k=1

∑
I∈{1,...,d}k

SI
(
x[0,t]

)
× ΦIF (y0) , (4)

where ΦIF(·) ∈ Rp is the differential product of the vec-
tor field F along I , whose definition is postponed to Ap-
pendix B.3.

The differential products ΦIF(y0) are essentially a combi-
nation of multiplication and summation of derivatives of
the different components of F, evaluated at y0.

The Taylor expansion crucially allows to write the solution
map as a product between a time-varying term (the signa-
ture of the feature path) and a constant-over-time term (the
differential product). This is similar to a regular Taylor ex-
pansion; we discuss this analogy in Appendix B.4. Note
that Equation (4) may also be written as a matrix-vector
product

yN,t
⊤ = SN (x[0,t])

⊤θ∗N ∈ Rp, (5)

where θ∗N ∈ Rsd(N)×p is a matrix collecting all differential
products ΦIF(y0) up to order N and the offset y0. Since
θ∗N depends neither on x nor on t, the Taylor expansion of
y at order N is simply a linear function of the truncated
signature.

For this expansion to become exact in the sens of pointwise
convergence, we need quite strong regularity assumption
on F. This is the price to pay for the non-parametric nature
of our model.
Assumption 3. The vector field F has fast decaying deriva-
tives. In other words, defining

Λk(F) = sup
I∈{1,...,d}k

∥∥ΦIF (y0)
∥∥ ,

we assume that
∑∞
k=0 d

kΛk(F)/k! <∞.

Let y be the solution of the CDE (2), and let (yN,t)t∈[0,1] be
its N -th Taylor expansion. Under Assumptions 1, 2, and 3,
we then have, for any t ∈ [0, 1],∥∥yt − yN,t∥∥ −→

N→+∞
0. (6)

We refer the reader to Friz & Victoir (2008) and Fermanian
et al. (2021, Proposition 4) for more details on this result.

While we impose relatively strong regularity assumptions
on the vector field F, the assumptions on x are mild (see
Assumption 1). Therefore, our assumptions, while enforc-
ing a fairly high amount of regularity on the dynamical
structure, still accommodate most of the real world data.
Also note that Fermanian et al. (2021) give conditions un-
der which Assumption 3 is satisfied when F is a layer of a
neural network with smooth activation functions.

2.3. The Learning Problem

We go back to the statistical learning problem. Recall
that in practice, we do not observe the continuous paths
{(x1, y1), . . . , (xn, yn)} but their discretized and fuzzy
counterparts {(X1,Y1), . . . , (Xn,Yn)} measured on a
set of individual grids D = {D1, . . . , Dn} and D̄ =
{D̄1, . . . , D̄n}. We allow for high data heterogeneity: two
individuals can be sampled at very different frequencies
and at different time-points, and therefore have different
observation grids.

The meshsize of a sampling grid D, denoted by |D| is de-
fined as the largest gap between two successive sampling
times, that is,

|D| = max
ti∈D

|ti+1 − ti|.

Its cardinality, denoted by #D, is the number of sampling
points in D. We make the following assumption on the
sampling procedure.

Assumption 4. There exists η ∈ [0, 1] such that for all
i = 1, . . . , n, one has

0 ∈ Di, #Di ≥ 2, tiki ≥ η and D̄i ⊂ Di.

Let us briefly comment on this assumption. We require
that the measurements on all individuals start at 0. We
also do not allow for arbitrarily short time series: for every
individual i, the last observation time tiki must be greater
than η. Finally, we require the sampling grid of Yi to
be coarser than the sampling grid of Xi. We also let
|D| = maxi|Di| be the biggest gap between two succes-
sive sampling times within the whole set of individual grids

and #D =
n∑
i=1

#Di the total number of sampling points of

the feature time series. We recall that the random vectors
ξit , t ∈ Di, are the noises affecting the measurements of
xi. The random vectors εit affect the measurements of yi.
We end with assumptions on the law of these measurement
noises.

Assumption 5 (Noise on the feature time series). The
noises (ξit)i∈{1,...,n},t∈Di are i.i.d. vξ-subgaussian random
vectors.

Assumption 6 (Noise on the target time series). The noises
(εit)i∈{1,...,n},t∈D̄i are i.i.d. vε-subgaussian random vectors
and independent from (ξit)i∈{1,...,n},t∈Di .

The goal of the learning procedure is to learn the solution
map Ψ, in order to infer the value of y at any time t, given
observations of x up to time t. We have seen previously
that this problem boils down to estimating the matrix θ∗N
via Equation (5). The truncation order N ≥ 1 is an hyper-
parameter and will be selected by cross-validation.
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Figure 1: The workflow of our model. Starting from the left, the first panel describes our modelling hypothesis: the target
and feature time series are linked through an unknown CDE. The second panel shows the observed data. The third panel
shows how every observation of the target is mapped to the signature of the corresponding path, how to construct the
dataset SD

N ,Y from this data and finally how to learn the SigLasso estimator.

Single target measurement. For the sake of simplicity,
we first present the case where Y i is measured only at the
end of the observation period, as in the example of LA mea-
surements in obstetrics. In this case, for all i = 1, . . . , n,
we have mi = 1 such that M = n,

Di = (ti1, . . . , t
i
ki), and D̄i = (tiki).

Then Yi ∈ Rp, and we denote by

Y =
[
Y1, . . . ,Yn

]⊤ ∈ Rn×p

the matrix containing all target measurements. Since we
do not have access to the feature paths xi but only to the
discrete measurements Xi, we compute the signature of its
linear interpolation normalized by its total variation, sam-
pled up to final time tiki , and denote by SD

N ∈ Rn×sd(N)

the matrix of stacked signatures. Note that signatures of
piecewise linear functions are fast to compute with pack-
ages such as signatory (Kidger & Lyons, 2020) or
iisignature (Reizenstein & Graham, 2020). The com-
plexity to compute the signature truncated at orderN of the
ith feature time series is of the order O(#DidN ). Finally,
we approximate θ∗N ∈ Rsd(N)×p by solving the optimisa-
tion problem

min
θ∈Rsd(N)×p

1

2n

∥∥Y − SD
Nθ
∥∥2

F +Ω(θ), (7)

where Ω : Rsd(N)×p → R+ is a regularization term and
∥·∥F is the Frobenius norm. We have reduced the complex
problem of learning the solution map Ψ to a simple penal-
ized linear regression in the signature space. This linear
model on the signature is close to the one studied by Levin
et al. (2013); Lyons et al. (2014); Fermanian (2022).

Multiple target measurements. We also cover the case
when #D̄i > 1, that is, the target is measured at multi-
ple times for every individual, as in the example of hem-
orrhage detection. In this case, we have Yi ∈ Rmi×p and
we stack the different measurement matrices Yi to obtain
a matrix Y of sizeM×p, whereM = m1+ · · ·+mn. For
any i = 1, . . . , n and every t ∈ D̄i, we predict Y it using
the signature of the linear interpolation of the normalized
(Xi

0, . . . , X
i
t). In this manner, we will be able to predict

Y it at every point where Xi
t is sampled. The exact work-

flow of our model is described in Figure 1.

3. Theoretical Guarantees
3.1. Mathematical Setup

We consider a general multiple target measurements set-
ting. To simplify the exposure of our results, we consider
a univariate target path, i.e., p = 1. In this case, the true
parameter θ∗N is a vector of size sd(N) and not a matrix.
The general case p ≥ 1, which our algorithm handles as
running p Lasso regressions in parallel, is considered in
Appendix C, and all theoretical results are proved in this
general case. In addition, to lighten the presentation of the
oracle inequality, we also focus in this section on the case
of ω-Lipschitz feature paths, that is, for every i = 1, . . . , n
and for all s, t ∈ [0, 1],

∥∥xit − xis∥∥ ≤ ω|t − s|. We stress
that our results are valid for continuous paths of bounded
variations. We let y ∈ RM be the matrix collecting all un-
observed values of the target paths at measurement times
such that y = E

(
Y
)
, where the expectation is taken over
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the noises εit, and define θ̂N,M as

θ̂N,M ∈ argmin
θ∈Rsd(N)

1

2M

∥∥Y − SD
Nθ
∥∥2
2
+Ω(θ). (8)

For δ ∈ (0, 1), we define the set

Aξ(δ) =
{
max

∥∥ξit∥∥ ≤ vξ√d+ vξ

√
1

c
log

#D
δ︸ ︷︷ ︸

=:Cδ

}
(9)

where the maximum is taken on all i = 1, . . . , n and t ∈
Di, and c is a universal constant. This set is of probability
greater than 1−δ under Assumption 5 (see Appendix B.5).
Similarly, for k ≥ 0 and δ̄ ∈ (0, 1), let

Ck(δ̄) =
√
vε log(2Ndk/δ̄)

and define

Aε(δ̄) =

N⋂
k=0

{∥∥ε⊤SD
·,[k]
∥∥
∞ ≤

M
1
2Ck(δ̄)

k!

}
, (10)

where SD
·,[k] is the sub-matrix of sizeM ×dk of SD

N associ-
ated to the signature coefficients of order k, and ε ∈ RM is
a vector of i.i.d. noise terms satisfying Assumption 6 (see
Appendix C.1). Under Assumptions 5 and 6, Aε(δ̄) is of
probability at least 1 − δ̄, and Aξ(δ) ∩ Aε(δ̄) is of proba-
bility at least (1− δ)(1− δ̄). Let

Ω(θ) =

N∑
k=0

Ck(δ̄)

k!
√
M

∥∥θ[k]∥∥1, (11)

where θ[k] is the subvector of size dk that collects all el-
ements of θ associated to words of size k (see Appendix
C.1). This penalization can be implemented by rescaling
the feature matrix SD

N and solving a standard ℓ1-penalized
regression problem (see Appendix D.1). Our result ex-
tends to more general penalties by adapting existing tech-
niques from Chesneau & Hebiri (2008) for the group-lasso,
or Lederer et al. (2019) for the hierarchical lasso.

3.2. Main Results

The error made when learning θ∗N by θ̂N,M comes from
three different sources. (i) Truncating the signature used
in the regression at depth N ≥ 1 results in a truncation
bias. (ii) Discretization of the feature path and the noise af-
fecting each measurement point induce a discretization er-
ror. In particular, there is a trade-off between sampling fre-
quency and variance of the noise. (iii) The measurement
error on yi and the finite-sample setting induce a classical
estimation error.

The following lemmas bound each of those errors. We first
bound the variance of the estimator with arguments bor-
rowed from Bickel et al. (2009).

Lemma 3.1. Under Assumptions 1 and 2, on the set
Aε(δ̄) ∩Aξ(δ), the prediction error

1

2M

∥∥y − SD
N θ̂N,M

∥∥2
2

is bounded above by

1

2M

∥∥y − SD
Nθ

∗
N

∥∥2
2
+

2CN (δ̄)√
M

N∑
k=0

dkΛk(F)

k!
.

See Appendix C.2 for a proof. This inequality decom-
poses the error into a bias and a variance term. We de-
note the signature matrix of the unobserved paths xi by
SN ∈ RM×sd(N).

As for the bias term, notice that one can write

1

2M

∥∥y − SD
Nθ

∗
N

∥∥2
2
≤ 1

M
∥y − SNθ

∗
N∥22︸ ︷︷ ︸

Truncation bias

+
1

M

∥∥SNθ∗N − SD
Nθ

∗
N

∥∥2
2︸ ︷︷ ︸

Discretization error

.

Bounding each of these terms corresponds to, respectively,
Lemmas 3.2 and 3.3. We stress that the truncation bias is
of a different nature than the discretization error since it
depends on a choice of hyperparameter while the latter is
inherent to the data at hand.

Lemma 3.2. Under Assumptions 1 and 2, for any N ≥ 1,

1

M
∥y − SNθ

∗
N∥22 ≤

(
dN+1ΛN+1(F)

(N + 1)!

)2

.

Under Assumption 3, the right-hand-side decays exponen-
tially fast with N . This lemma is an immediate conse-
quence of Fermanian et al. (2021) (see Appendix C.3). We
now turn to the error induced by the discretization of the
feature path.

Lemma 3.3. Under Assumptions 1, 4, and 5, on the set
Aξ(δ), one has

1

M

∥∥(SN − SD
N )θ∗N

∥∥2
2
≤ CD,N (δ)

N∑
k=0

dkΛk(F)
2

k!2
,

where CD,N (δ) is equal to

4e2L2N !2×(
ω|D|+ Cδ +

1− L+ 2#DCδ
η

(
∥x0∥+ L+ Cδ

))2
.

This lemma relies on a fine analysis of the distance between
two signature layers. The dependence of CD,N (δ) on sam-
pling mechanisms and noise is of particular interest. First,
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Table 1: Performance of SigLasso, GRU and Neural CDE in different simulation settings, averaged over 10 iterations. In
every setting, n = 50, #D̄i = 5 for all i = 1, . . . , n (and therefore M = 250).

L2 error MSE on last point

Setting SigLasso GRU Neural CDE SigLasso GRU Neural CDE

Well-specified 0.13 ± 0.07 1.05 ± 0.42 0.61 ± 0.38 0.73 ± 0.56 3.32 ± 1.60 1.46 ± 1.20
Ill-specified 0.15 ± 0.02 0.24 ± 0.11 0.29 ± 0.15 0.09 ± 0.05 0.19 ± 0.09 0.22 ± 0.15
OU 0.01 ± 0.02 0.05 ± 0.06 0.17 ± 0.12 0.018 ± 0.025 0.014 ± 0.020 0.013 ± 0.016
Tumor growth 0.16 ± 0.02 0.66 ± 0.09 5.29 ± 1.38 0.35 ± 0.12 2.00 ± 0.38 8.76 ± 9.26

the term ω|D| refers to the longest time between two obser-
vations amongst individuals. Not sampling an individual
during a long period of time causes a loss in information,
which is bounded by the Lipschitz control ω of the feature
path.

The second part of CD,N (δ) is a consequence of the noises
ξit affecting the measurement points of the feature time se-
ries and does not vanish with n. The emergence of such
a bias is a well studied phenomenon in errors-in-variable
models, and cannot be corrected without precise knowl-
edge of the noise’s variance (Loh & Wainwright, 2011).

The last term corresponds to a bias coming from the inter-
play of the normalisation of the signatures by the total vari-
ation of the path and the noise, which is a standard practice
(Morrill et al., 2020a). We found that this normalization
performs best empirically. Note that this bias term is equal
to 0 if the path has total variation exactly equal to 1 and is
observed without noise.

From Lemmas 3.1 to 3.3 and the definitions of Aξ and Aε
finally we get the following oracle inequality. The proof is
given in Appendix C.6.
Theorem 3.4 (An oracle inequality for learning with signa-
tures). Under Assumptions 1, 2, 4, 5, and 6, with probabil-
ity at least (1− δ)(1− δ̄), the prediction error is bounded
above by

1

2M

∥∥∥y − SD
N θ̂N,M

∥∥∥2
2
≤
(
dN+1ΛN+1(F)

(N + 1)!

)2

(12)

+ CD,N (δ)

N∑
k=0

dkΛk(F)
2

k!2
(13)

+
2CN (δ̄)√

M

N∑
k=0

dkΛk(F)

k!
. (14)

All terms depend on the regularity of the vector field F
via the constants Λk(F): the bigger these constants, the
faster the vector field F may vary, making the CDE harder
to predict. The convergence speed in 1/

√
M is classical.

Also note that our bound is non-asymptotic and is valid for
any M ≥ 1.

The dependence of the bound on N is highly non-trivial
and requires an in-depth analysis of the regularity of F in

order to bound Λk(F), which is out of the scope of this
paper. The asymptotic behaviour of this oracle inequality
is discussed in Appendix C.7.

4. Experiments
We study the performance of SigLasso obtained by solv-
ing the optimization problem (8), where Ω(θ) is defined by
Equation (11). All details are given in Appendix D.

4.1. Simulations

We consider several settings of data generation. First, in the
well-specified setting, the data is generated from a model
with regular feature paths x (piecewise polynomials) and
target paths y wich are solutions to the CDE

dyt = tanh(Ayt)dxt,

where A is a randomly drawn matrix. In the ill-specified
setting, the target y is equal to

yt = log ∥
10∑
h=1

xt−h∥

for any t ∈ [0, 1]. In the third setting, called OU setting, the
feature paths are realizations of Brownian motions and the
target paths are Ornstein-Uhlenbeck processes (Borodin &
Salminen, 2012) driven by the feature paths. The last set-
ting corresponds to the tumor growth model from Simeoni
et al. (2004). The feature path represents the concentration
of a treatment drug, generated as the squared value of the
smooth paths used in the well-specified setting, and the tar-
get path y, the weight of the tumor, is governed by a system
of differential equations given in Appendix D.6.

We compare SigLasso to a GRU and Neural CDE (Kidger
et al., 2020). We measure the performance of the models
with two metrics on a test set: the mean squared error for
predicting the last observation point of the target paths and
the L2 error for predicting the full path on a fine grid.

The results are shown in Table 1 and Figure 2. In Figure 2
we consider the well-specified setting and vary the number
of sampling points of the target paths between 1 and 20. In
Table 1 it is fixed to 5 but the simulation settings change.
Sampling of both the target and the feature time series is
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Figure 2: L2 reconstruction error of SigLasso, GRU and
Neural CDE in the well-specified setting, for varying num-
ber of target samples.

highly irregular. SigLasso outperforms Neural CDE and
GRU models in generalizing from a few learning points of
the target to its full trajectory in all settings. We conduct
supplementary experiments with RNN and LSTM, which
are also outperformed by SigLasso (see Table 2 in Ap-
pendix D.9). An additional byproduct of SigLasso’s sim-
ple form is its training speed: its is approximately 10 times
faster than GRU and 100 times faster than Neural CDE,
including cross-validation to select N and regularization
strength (see Appendix D.9).

4.2. Forecasting the Growth Rate of Hospitalizations in
France During the Covid-19 Pandemic

Forecasting hospitalizations in real time during the Covid-
19 pandemic is a notably difficult task. In this experiment,
we train our model to learn the dynamics linking popu-
lation data related to mobility, vaccination, and weather,
and the hospitalization growth rate (HGR) in each of the 9
metropolitan regions of France based on the data of Paireau
et al. (2022). The feature time series is regularly sampled
and specific to each region and 12-dimensional. We con-
sider prediction horizons h = 1, . . . , 14, meaning that we
predict the hospital saturation at time t using the history of
the feature time series up to t − h. Using our notations,
we have for each region d = 12, p = 1, n = 1. Con-
cretely, this means that we train one Siglasso model per
region and per horizon. The target is sampled every day
during the training period left of the dotted line in Figure 3,
and the models are fitted to those values: on this time span,
the models learns to interpolate the target time series. The
model is then asked to predict the HGR on the days right
of the dotted line seing only the feature time series. This
means that it performs a prediction task on this time span.

Both GRU and SigLasso learn smooth and precise dynam-
ics, which generalize well above the learning horizon and
yield similar prediction performance (see Appendix D.8).
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Figure 3: Interpolation (left of dotted line) and prediction
(right of dotted line) of HGR in region Île de France for Si-
gLasso, GRU and NCDE. The lighter the blue, the smaller
the horizon h. Ground truth is in red. NCDE overfits and is
unable to predict the HGR during the test period.

Our model is slightly outperformed by GRU for h ≥ 7 for
the prediction task, the difference in MSE being always less
than 0.08. It performs similarly or better for most values of
h for the interpolation task. Neural CDE and the original
method proposed by Paireau et al. (2022) perform poorly.
Figure 3 shows an example of reconstruction and predic-
tion of HGR obtained with SigLasso, GRU and NCDE.

5. Conclusion
We have introduced a novel CDE-based model for interact-
ing systems. Drawing on the theory of signatures, we de-
rive an oracle bound that depends explicitly on the rough-
ness of the data sampling. We illustrate the high perfor-
mance of our approach on synthetic and real-world data.

The obtained theoretical guarantees rely on strong regular-
ity assumptions on the vector field F. The exact approx-
imation properties of this class of vector field are a very
interesting direction for future work. Considering other
penalties that take into account the underlying structure of
θ∗N would also be an interesting extension of our work.

Acknowledgement. We thank anonymous ICML re-
viewers for their remarks, which helped us improve this
paper. LB thanks Gérard Biau and Claire Boyer for su-
pervising a previous internship which sparked his interest
in signatures. LB and AF thank the Sorbonne Center for
Artificial Intelligence (SCAI) and its team.

9



Learning the Dynamics of Sparsely Observed Interacting Systems

References
Bickel, P. J., Ritov, Y., and Tsybakov, A. B. Simultane-

ous analysis of lasso and dantzig selector. The Annals of
Statistics, 37(4):1705–1732, 2009.

Borodin, A. N. and Salminen, P. Handbook of Brownian
Motion-Facts and Formulae. Birkhäuser, Basel, 2012.
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Supplementary Material

A. Summary of used notations
The following table provides an exhaustive list of notations used in the main body of the paper. Notations are grouped by
subsections.

Notation Definition Reference

yt Target path Introduction, page 1
xt Feature path —
Yt Target time series Introduction, page 2
Xt Feature time series —
Di Sampling grid of the features of individual i —
D̄i Sampling grid of the target of individual i —
ξit Noise on the feature time series —
εit Noise on the target time series —
mi Number of sampling points of the target for individual i —
n Number of samples —
M Total number of sampling points of the target —
Xi Matrix of measurements of the feature time series for individual i —
Yi Matrix of measurements of the target time series for individual i —

∥x∥1-var,[0,t] Total variation of the path x on the interval [0, t] Section 2, page 3, Assumption 1

C
1-var([0,1],Rd)
L Set of continuous paths of total variation bounded by L —

F Unknown smooth generative vector field Section 2, page 3, Assumption 2

SI(x[0,t]) Signature coefficient of the path x on [0, t] associated to the word I Section 2, page 4, Definition 2.1
Xk,[0,t] Signature of order k —
S(x[0,t]) Full signature at order N —
SN (x[0,t]) Truncated signature at order N —
sd(N) Size of the signature truncated at order N of a d dimensional path —
ȳN,t Taylor expansion of the solution of a CDE of order N evaluated in t Section 2, page 4, Definition 2.2
ΦI

F Differential product of the vector field F along I Appendix B.3, page 15, Definition B.3
θ⋆N Matrix collecting all differential products up to order N Section 2, page 5, Equation (5)

Λk(F) Norm on the differential product of F Section 2, page 5, Assumption 3

η Minimal sampling time Section 2, page 5, Assumption 4
D Set of individual specific sampling grids of features Section 2, page 5
D̄ Set of individual specific sampling grids of targets —
|D| Meshisze of a sampling grid D —
#D Number of sampling points in a sampling grid —
Y Matrix collecting all target measurements of the sample —
SD
N Matrix of stacked signatures Section 2, page 6

y Expectation of Y Section 3, page 6
θ̂N,M Siglasso estimator Section 3, page 6, Equation (7)
Aξ(δ) Set bounding the magnitude of noises (ξit) Section 3, page 6, Equation (9)
Ck(δ̄) Constant Section 3, page 6
Aε(δ) Set bounding the magnitude of the noises (εit) Section 3, page 7, Equation (10)
Ω(θ) Penalty evalutated at θ Section 3, page 7, Equation (11)

B. Mathematical details
B.1. The Riemann-Stieltjes integral

We fitst recall two key properties on the Riemann-Stieljes integral. For a general presentation of the Riemann-Stieltjes
integral, we refer to Friz & Victoir (2010).
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Proposition B.1. Let x ∈ C1-var
L ([0, 1],Rd) and y : [0, 1]→ Rd be a continuous path. Then∥∥∥∥∫ t

0

ysdxs

∥∥∥∥ ≤ ∥y∥∞,[0,t] ∥x∥1-var,[0,t]

We refer the reader to Friz & Victoir (2010, Proposition 2.2) for a proof.

Proposition B.2 (Integration by parts). Let x, y ∈ C1-var
L ([0, 1],Rd). Then∫ t

s

yudxu +

∫ t

s

xudyu = ytxt − ysxs

See Friz & Victoir (2010, Proposition 2.4) for a proof.

B.2. The truncated tensor algebra

This section introduces notations and definitions on the space in which signatures are defined, namely, the tensor algebra.
While for the exposition of our main results, the truncated signature of a path x ∈ C1-var

L ([0, 1],Rd) at depth N ≥ 1 can
be assimilated to an element of Rsd(N), it is often useful to place ourselves in the tensor algebra to obtain finer bounds or
technical results.

Let x ∈ C1-var
L ([0, 1],Rd) be a path of bounded variation. For a word I = (i1, . . . , ik) ∈ {1, . . . , d}k of size k, the

signature coefficient SI(x[0,1]) can be seen as an element of the k-th tensor product of Rd with itself, denoted by
(
Rd
)⊗k

.
For instance, the coefficients of order k = 1 can be written as a vector and the coefficients of order k = 2 as a matrix, and
so on, i.e.,

X1
[0,1] =


∫ 1

0
dx

(1)
s

...∫ 1

0
dx

(d)
s

 and X2
[0,1] =


∫ 1

0
dx

(1)
s dx

(1)
s . . .

∫ 1

0
dx

(1)
s dx

(d)
s

...
...∫ 1

0
dx

(d)
s dx

(1)
s . . .

∫ 1

0
dx

(d)
s dx

(d)
s

 .

We now define a norm on (Rd)⊗k. Let a ∈ (Rd)⊗k and (e1, . . . , ed) be the canonical basis of Rd. Then (ei1 ⊗ · · · ⊗
eik)(i1,...,ik)∈{1,...,d}k is a basis of (Rd)⊗k. We can thus write a as a = (aI)I∈{1,...,d}k . For every k ≥ 0, the vector space
(Rd)⊗k is naturally endowed with the norm

∥a∥2(Rd)⊗k =
∑

I∈{1,...,d}k

(
aI
)2
.

Remark that this norm satisfies for any x ∈ (Rd)⊗k and y ∈ (Rd)⊗m,

∥x⊗ y∥(Rd)⊗(k+m) = ∥x∥(Rd)⊗k ∥y∥(Rd)⊗m . (15)

We refer to Fermanian et al. (2021) for further deails. The signature truncated at depth N ≥ 1 collects elements from
R,
(
Rd
)⊗2

, . . . ,
(
Rd
)⊗N

. It can thus be seen as an element of the truncated tensor algebra

TN (Rd) = R⊕
(
Rd
)⊗2 ⊕ · · · ⊕

(
Rd
)⊗N

.

Let a = (a0, . . . , aN ) ∈ TN (Rd), where every ak ∈ (Rd)⊗k. We define the norm

∥a∥TN (Rd) =
( N∑
k=0

∥ak∥2(Rd)⊗k

)1/2
.
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To clarify, if we consider the truncated signature of x at depth N ≥ 1, which is an element of TN (Rd), then

∥∥SN (x[0,t])
∥∥
TN (Rd)

=
( N∑
k=0

∥∥∥Xk[0,t]∥∥∥2
(Rd)⊗k

)1/2
=
( N∑
k=0

∑
I∈{1,...,d}k

SI(x[0,t])
2
)1/2

.

Note that this norm is exactly equivalent to the Euclidian norm of Rsd(N), which is the space we consider in the exposition
of our main results for the sake of simplicity.

We are now ready to define the tensor product on the truncated tensor algebra. For two elements a = (a0, . . . , aN ) and
b = (b0, . . . , bN ) both in TN (Rd), we define

a⊗ b = (c0, . . . , cj , . . . , cN ), where cj =
j∑

k=0

ak ⊗ bj−k.

For any k = 0, . . . , N , we let πk : TN (Rd) → (Rd)⊗k be the canonical projection of TN (Rd) onto (Rd)⊗k. More
precisely, for every a = (a0, . . . , aN ) ∈ TN (Rd),

πk(a) = ak

We also define the canonical projection Πk : TN (Rd)→ Tk(Rd) defined by

Πk(a) = (a0, . . . , ak) .

B.3. The differential product

We first define the differential product, in order to give a precise statement of Assumption 3.

Definition B.3. Let F,G : Rp → Rp be two smooth vector fields, i.e., each of their components is C∞. Denote by J(·)
the Jacobian matrix. The differential product F ⋆ G : Rp → Rp is the smooth vector field defined for any h ∈ Rp

(F ⋆ G)(h) =

e∑
j=1

∂G

∂hj
(h)Fj(h) = J(G)(h)F (h).

The differential product is not associative. We therefore use the convention to evaluate it from right to left, that is,

F 1 ⋆ F 2 ⋆ F 3 = F 1 ⋆
(
F 2 ⋆ F 3

)
.

Let F : Rp → Rp×d be a smooth vector field. We write F 1, . . . , F d the columns of F. Every F i, for i = 1, . . . , d, can
thus be seen as a map from Rp to Rp. Recall that y0 ∈ Rp is the initial condition of the CDE defined in Assumption 2. Let
I = (i1, . . . , ik) ∈ {1, . . . , d}k. We now define

ΦIF(y0) =
(
F i1 ⋆ · · · ⋆ F ik

)
(y0) ∈ Rp.

We refer to Fermanian et al. (2021) for greater details on the differential product. We now define for all k ≥ 1

Λk(F) = sup
1≤i1,...,ik≤d

∥∥ΦIF(y0)∥∥ ∈ R, (16)

and use the convention Λ0(F) = ∥y0∥. Remark that Assumption 3 implies that

dN+1ΛN+1(F)

(N + 1)!
−→

N→+∞
0.

As an immediate consequence, the truncation bias(
dN+1ΛN+1(F)

(N + 1)!

)2

introduced in Lemma 3.2, vanishes as N grows.
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B.4. Analogy with the Taylor extension

The definition of the Taylor expansion of a CDE exposed in the previous subsection is technical. However, it can simply
be thought of as a generalization of the the classical Taylor expansion of a C∞ function f : R → R. Recall that in this
case, the Taylor expansion at 0 evaluated at t ∈ R of order N ∈ N writes as a power series

f(t) ≈ f(0) + f ′(0)
1!

t+ · · ·+ f (N)(0)

N !
tN . (17)

Every element of this power series is a product of two terms: the derivatives of f encode some information about the
regularity of f at the initial point 0 and do not depend on t, while the polynomial terms tk allow this linearized form to
evolve with time t. Remark that these polynomial terms do not depend on f .

Similarly, Equation (4) is also a sum of products of two terms. On the one hand, the evolving nature of the system,
instead of being handled by the polynomial terms tk, are now captured by the signature coefficients SI(x[0,t]). As the
polynomial terms, they do not depend on F. On the other hand, the information about the initial value of the system at
time t = 0 and the dynamics of F are summarized by the differential product ΦIF (y0), which play the same role as the
successive derivatives in Equation (17). To capture the multivariate nature of the paths, the Taylor expansion is summed
over multi-indexes, or words, I = (i1, . . . , ik) ∈ {1, . . . , d}k of size k for k ∈ N.

B.5. Properties of subgaussian random vectors

We start with the definition of a subgaussian random variable, see Vershynin (2010) for more details.

Definition B.4. A real-valued random variable X is said to be σ2-subgaussian if for all t > 0

P(X > t) ≤ exp(−t2/σ2),

or, equivalently, if for all t ∈ R
E(etX) ≤ exp(−ct2σ2),

where c is an universal constant. A random vector Z is subgaussian if, for any vector c of norm 1, ⟨Z, c⟩ is subgaussian.

The norm of a sequence of d subgaussian random variables concentrates around
√
d, as stated by the following lemma.

Lemma B.5. Let X1, . . . , Xn be a sequence of i.i.d. σ2-subgaussian random variables. Let X = (X1, . . . , Xd) ∈ Rd.
There exists a universal constant c such that for all t > 0

P(∥X∥2 ≥ t+ σ
√
d) ≤ exp(−ct2/σ2).

Proof. We refer to Vershynin (2018, Theorem 3.1.1) for a proof.

We can use this lemma to bound the maximum of n sequences of d subgaussian random variables with high probability.

Lemma B.6. Let X1, . . . , Xn be a sequence of i.i.d. σ2-subgaussian random variables, such that for all i = 1, . . . , n,
Xi = (Xi1, . . . , Xid). Then there exists a universal constant c such that for all δ ∈ (0, 1)

P
(

max
i=1,...,n

∥Xi∥ ≤ σ
√
d+ σ

√
1

c
log(n/δ)

)
≥ 1− δ.

Proof. Using Lemma B.5 and a union bound, we have

P
(

max
i=1,...,n

∥Xi∥ ≥ σ
√
d+ σ

√
1

C
log(n/δ)

)
= P

( n⋃
i=1

{
∥Xi∥2 ≥ σ

√
d+ σ

√
1

C
log(n/δ)

})
≤

n∑
i=1

P
(
∥Xi∥2 ≥ σ

√
d+ σ

√
1

c
log(n/δ)

)
≤ δ,

which yields the desired inequality.
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Notice that the universal constant is identical between both lemmas. As a consequence of this last lemma, under Assump-
tion 5, the set

Aξ(δ) =
{

max
i=1,...,n,t∈Di

∥∥ξit∥∥ ≤ vξ√d+ vξ

√
1

c
log(#D/δ)

}
(18)

where #D =
n∑
i=1

#Di is of probability at least 1− δ.

We also need the following lemma.

Lemma B.7. Let X1, . . . , Xn be a sequence of i.i.d. σ2-subgaussian random variables. Let Z1, . . . , Zn be random vari-

ables such that for all i = 1, . . . , n, |Zi| ≤ α almost surely. Then
n∑
i=1

XiZi is nσ2α2-subgaussian.

Proof. We use the characterization of subgaussian random variables by their characteristic function. For all t > 0,

E
[
et

∑n
i=1XiZi

]
= E

[ n∏
i=1

E
[
etXiZi |Z1, . . . , Zn

]]
≤ E

[ n∏
i=1

E
[
etXiα

]]
≤ E

[
ect

2nα2σ2]
.

This finally yields that

E
[
et

∑
XiZi

]
≤ E

[
ect

2nα2σ2]
,

which concludes the proof.

C. Proofs
C.1. Preliminary notations

Let (E, ∥·∥E) be a normed vector space and x : [0, 1]→ E. The supremum norm of x is defined for all t ∈ [0, 1] as

∥x∥∞,[0,t] = sup
s∈[0,t]

∥xs∥E .

When referring to the total variation ∥x∥1-var,[0,1] of a path x : [0, 1] → Rd over the whole domain, depending on the
mathematical context, we will sometimes drop the time subscript and simply write ∥x∥1-var.

When referring to a matrix A = (Aij) ∈ Rn×p, we define classicaly the infinite and Frobenius norms by

∥A∥∞ = max
i=1,...,n
j=1,...,p

|Aij | and ∥A∥F =

√√√√ ∑
i=1,...,n
j=1,...,p

|Aij |2.

We now introduce some notations to take advantage of the structure of θ∗N . The true parameter of the Taylor expansion of
the model CDE, defined in Equation (5), can be written in block notation as
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θ∗N =



θ∗[0],1 · · · θ∗[0],p

θ∗[1],1 · · · θ∗[1],p

θ∗[2],1 · · · θ∗[2],p

...

θ∗[N ],1 · · · θ∗[N ],p



∈ Rsd(N)×p, where θ∗[k],ℓ ∈ Rd
k×1, k = 0, . . . , N, ℓ = 1, . . . , p. (19)

Every column of θ∗N corresponds to a dimension of the target, while blocks of lines correspond to signatures layers. Thus
for every k = 0, . . . , N and ℓ = 1, . . . , p, θ∗[k],ℓ is a column vector of size dk.

Similarly, for a general θ ∈ Rsd(N)×p and the SigLasso estimator θ̂N,M , we will refere to the blocks forming these matrices
as respectively θ[k],ℓ and θ̂[k],ℓ, for k = 0, . . . , N and ℓ = 1, . . . p.

Likewise, the signature feature matrix SD
N ∈ RM×sd(N) can be written in block notation as

SD
N =

[
1 SD

·,[1] SD
·,[2] · · · SD

·,[N ]

]
=

 1 SD
1,[1] SD

1,[2] SD
1,[N ]

...
...

... · · ·
...

1 SD
n,[1] SD

n,[2] SD
n,[N ]

 ,

where for any k = 1, . . . , N , SD
·,[k] ∈ RM×dk and, for every individual i = 1, . . . , n, SD

i,[k] ∈ Rmi×dk (recall that mi is
the number of measurements of the target path yi). More precisely, given her target sampling grid D̄i = (t̄i1, . . . , t̄

i
mi

), the
individual-specific signature block of depth k is equal to

SD
i,[k] =


1 S(1)(Xi

[0,t̄i1]
) · · · S(d,...,d)(Xi

[0,t̄i1]
)

...
...

...
1 S(1)(Xi

[0,t̄imi
]) · · · S(d,...,d)(Xi

[0,t̄imi
])

 ,

where the path t → Xi
t is a linear interpolation of the observed time series Xi. The same notations will be used for the

true signature feature matrix SN . We use the bracket notation [·] both in θ∗N and SD
N to emphasise that both the columns of

the feature matrix and the lines of learned parameter correspond to words of the alphabet {1, . . . , d}.
The unobserved matrix of true values of the target writes as
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y =

y
1

...
yn

 =

y
1
1 · · · y1

p
...

...
yn1 · · · ynp

 =



y1
1,t̄11

· · · y1
p,t̄11

...
...

y11,t̄1m1

· · · y1p,t̄1m1

...
...

yn1,t̄n1
· · · ynp,t̄n1

...
...

yn1,t̄nmn

· · · ynp,t̄nmn


∈ RM×p (20)

and the measurement matrix Y ∈ RM×p can be written in a similar fashion as

Y =

Y
1

...
Yn

 =

Y
1
1 · · · Y1

p
...

...
Yn

1 · · · Yn
p

 =



Y 1
1,t̄11

· · · Y 1
p,t̄11

...
...

Y 1
1,t̄1m1

· · · Y 1
p,t̄1m1

...
...

Y n1,t̄n1
· · · Y np,t̄n1

...
...

Y n1,t̄nmn

· · · Y np,t̄nmn


=



y1
1,t̄11

+ ε1
1,t̄11

· · · y1
p,t̄11

+ ε1
p,t̄11

...
...

y11,t̄1m1

+ ε11,t̄1m1

· · · y1p,t̄1m1

+ ε1p,t̄1m1

...
...

yn1,t̄n1
+ εn1,t̄n1

· · · ynp,t̄n1
+ εnp,t̄n1

...
...

yn1,t̄nmn

+ εn1,t̄nmn

· · · ynp,t̄nmn

+ εnp,t̄nmn


(21)

C.2. Proof of Lemma 3.1

Using the definition of Λk(F) (see Equation (16)), we get the following proposition which allows to obtain an explicit
dependence of the oracle bound on the regularity of F.

Proposition C.1. Let θ∗N be defined as in Equation (5). Then

∥θ∗N∥2F ≤
N∑
k=0

dkΛk(F)
2,

and, for all k = 0, . . . , N and ℓ = 1, . . . , p, ∥∥θ∗[k],ℓ∥∥1 ≤ dkΛk(F).
Proof. By definition,

∥θ∗N∥2F =

N∑
k=0

∑
1≤i1,...,ik≤d

∥∥F i1 ⋆ · · · ⋆ F ik(y0)∥∥22 .
Since for all (i1, . . . , ik) ∈ {1, . . . , d}k, ∥∥F i1 ⋆ · · · ⋆ F ik(y0)∥∥22 ≤ Λk(F)

2,

we get

N∑
k=0

∑
1≤i1,...,ik≤d

∥∥F i1 ⋆ · · · ⋆ F ik(y0)∥∥22 ≤ N∑
k=0

∑
1≤i1,...,ik≤d

Λk(F)
2

≤
N∑
k=0

dkΛk(F)
2.
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We now turn to the second inequality. For k = 0, the inequality holds by definition. For k = 1, . . . , N and ℓ = 1, . . . , p,
by definition of the ℓ1 norm, ∥∥∥θ∗[k],·∥∥∥

1
=

∑
1≤i1,...,ik≤d

∥∥ΦIF(y0)∥∥1 ,
This yields ∥∥∥θ∗[k],·∥∥∥

1
≤ dkΛk(F)

and thus ∥∥∥θ∗[k],ℓ∥∥∥
1
≤ dkΛk(F)

for ℓ = 1, . . . , p.

The following lemma is needed to leverage classical proof techniques to bound the prediction error of the Lasso estimator.

Lemma C.2. Let x ∈ C1-var
L ([0, 1],Rd). Then conditionally on Aξ(δ), for a given signature layer k ≥ 1, the maximum

among all signature coefficients and individuals is bounded from above, that is∥∥∥SD
·,[k]

∥∥∥
∞
≤ 1

k!
.

Proof. It is well known (see, e.g., Fermanian, 2022, Proposition 3) that if Xk is the signature of a path x ∈ C1-var
L ([0, 1],Rd),

then ∥∥Xk∥∥
(Rd)⊗k ≤

∥x∥k1-var

k!
.

As a consequence, for every word I of size k, one gets

∣∣SI(x))∣∣ ≤ ∥x∥k1-var

k!
.

The matrix SD
N is constructed by taking signatures of linear interpolations of the Xis normalized by their total variation. It

therefore contains only signatures of paths of total variation bounded by 1. Taking the maximum on I ∈ {1, . . . , d}k and
individuals i = 1, . . . , n, we get ∥∥∥SD

·,[k]

∥∥∥
∞
≤ 1

k!
.

This final inequality being stated, we can now go back to the proof of Lemma 3.1. We prove it in full generality for p ≥ 1.
In this proof, we make extensive use of the notations introduced in Subsection C.1 and refer the reader to it if a notation is
unclear.

Proof. In all the proof, we place ourselves on the set Aξ(δ) defined by Equation (9), which ensures that the matrix SD
N ,

seen as a random quantity, is well defined. Recall that we have two sources of randomness: the feature noises ξit on the
Xis and the target noises εit on the Yis. The feature noises appear only in SD

N and make it a random quantity. For SD
N to

be well-defined, we then need the total variation of the linear interpolation of the feature time series Xi to be finite. This
holds on the set Aξ(δ) since all noises are then bounded.

Recall that we have defined θ̂N,M as

θ̂N,M ∈ argmin
θ∈Rsd(N)×p

1

2M

∥∥Y − SD
Nθ
∥∥2

F +Ω(θ).

Note that
1

2M

∥∥Y − SD
Nθ
∥∥2

F +Ω(θ) =

p∑
ℓ=1

1

2M

∥∥Yℓ − SD
Nθ[·],ℓ

∥∥2
2
+Ω(θ[·],ℓ),

20



Learning the Dynamics of Sparsely Observed Interacting Systems

where Yℓ ∈ RM is the ℓ-th column of the target measurement matrix defined in Equation (21). The quantity θ[·],ℓ ∈ Rsd(N)

is the ℓ-th column of the parameter matrix defined in Equation (19).

By definition, for any θ ∈ Rsd(N), we have∥∥∥Yℓ − SD
N θ̂[·],ℓ

∥∥∥2
2
≤
∥∥Yℓ − SD

Nθ[·],ℓ
∥∥2
2
+Ω(θ[·],ℓ)− Ω(θ̂[·],ℓ).

Moreover, letting εℓ = (ε1
ℓ,t̄11

, . . . , εnℓ,t̄nmn

)⊤ ∈ RM be a vector of i.i.d. noises (see Equation (21)), we have Yℓ = yℓ + εℓ.

The Pythagorean theorem then yields for any θ ∈ Rsd(N),∥∥Yℓ − SD
Nθ
∥∥2
2
=
∥∥yℓ − SD

Nθ
∥∥2
2
+ ∥εℓ∥2 + 2⟨εℓ, yℓ − SD

Nθ⟩.

Applying this equation to θ[·],ℓ and θ̂[·],ℓ, we obtain

1

2M

∥∥∥yℓ − SD
N θ̂[·],ℓ

∥∥∥2
2
≤ 1

2M

∥∥yℓ − SD
Nθ[·],ℓ

∥∥2
2
+

1

M
⟨εℓ,SD

N (θ̂[·],ℓ − θ[·],ℓ)⟩+Ω(θ[·],ℓ)− Ω(θ̂[·],ℓ). (22)

We now work at each layer of the signature matrix SD
N . Towards that end, we rewrite

SD
N

(
θ̂[·],ℓ − θ[·],ℓ

)
=

N∑
k=0

SD
·,[k]
(
θ̂[k],ℓ − θ[k],ℓ

)
,

and bound

〈
εℓ,S

D
N (θ̂[·],ℓ − θ[·],ℓ)

〉
=

N∑
k=0

〈
εℓ,S

D
·,[k](θ̂[k],ℓ) − θ[k],ℓ)

〉
≤

N∑
k=0

∥ε⊤ℓ SD
·,[k]∥∞∥θ̂[k],ℓ − θ[k],ℓ∥1

by ℓ1 − ℓ∞ norms duality. We fix k and study the term ∥ε⊤ℓ SD
·,[k]∥∞. Lemma C.2 ensures that each of the words of the

signature layer of depth k is bounded by 1/k!. As a consequence, by Lemma B.7, under Assumption 6, every element of
the vector ε⊤ℓ S

D
·,[k] is vεM/k!2-subgaussian. It follows that, for any real number µ > 0,

P
(
∥ε⊤ℓ SD

·,[k]∥∞ > µ
)
≤ 2dk exp

(
− (k!)2µ2

vεM

)
.

We furthermore place ourselves on Aε(δ̄) defined by

Aε(δ̄) =

p⋂
ℓ=1

N⋂
k=0

{
∥ε⊤ℓ SD

·,[k]∥∞ ≤
1

k!

√
vεM log(2pNdk/δ̄)

}
.

We have just seen that, under Assumption 6 (and still conditionally on Aξ(δ)), one has P(Aε(δ̄)) ≥ 1− δ̄. Putting together
all terms in Equation (22) and plugging the definition of Ω given in Equation (11), we obtain that, on the setAε(δ̄)∩Aξ(δ),
for all θ ∈ Rsd(N)×p,

1

2M

∥∥∥y − SD
N θ̂N,M

∥∥∥2
F
≤ 1

2M

∥∥y − SD
Nθ
∥∥2

F

+

p∑
ℓ=1

N∑
k=0

( 1

M
∥ε⊤ℓ SD

·,[k]∥∞∥θ̂[k],ℓ − θ[k],ℓ∥1 +
Ck(δ̄)

k!
√
M

(
∥θ[k],ℓ∥1 − ∥θ̂[k],ℓ∥1

))
≤ 1

2M

∥∥y − SD
Nθ
∥∥2

F

+

p∑
ℓ=1

N∑
k=0

1

k!
√
M

√
vε log(2pNdk/δ̄)

(
∥θ̂[k],ℓ − θ[k],ℓ∥1 + ∥θ[k],ℓ∥1 − ∥θ̂[k],ℓ∥1

)
.

Choosing θ = θ∗N , by the triangular inequality,

∥θ̂[k],ℓ − θ∗[k],ℓ∥1 + ∥θ∗[k],ℓ∥1 − ∥θ̂[k],ℓ∥1 ≤ 2∥θ∗[k],ℓ∥1,

21



Learning the Dynamics of Sparsely Observed Interacting Systems

which finally gives us

1

2M

∥∥∥y − SD
N θ̂N,M

∥∥∥2
F
≤ 1

2M

∥∥y − SD
Nθ

∗
N

∥∥2
F +

2√
M

√
vε log(2pNdN/δ̄)

p∑
ℓ=1

N∑
k=0

∥θ∗[k],ℓ∥1
k!

≤ 1

2M

∥∥y − SD
Nθ

∗
N

∥∥2
F +

2p√
M

√
vε log(2pNdN/δ̄)

N∑
k=0

dkΛk(F)

k!

=
1

2M

∥∥y − SD
Nθ

∗
N

∥∥2
F +

2pCN (δ̄)√
M

N∑
k=0

dkΛk(F)

k!
,

where the second inequality comes from Proposition C.1. To conclude the proof, we just need to compute the probability
of the set Aξ(δ) ∩ Aε(δ̄). It is an immediate consequence of Lemma B.6 that P(Aξ(δ)) ≥ 1 − δ, and we have seen that
P(Aε(δ̄)|Aξ(δ)) ≥ 1− δ̄, which yields that

P(Aξ(δ) ∩Aε(δ̄)) ≥ (1− δ̄)(1− δ).

C.3. Proof of Lemma 3.2

This proof relies on bouding the remainder of the Taylor expansion of the CDE.

Proof. For every i = 1, . . . , n and a given point ti ∈ D̄i, one has, using the upper bound of the approximation error of a
CDE by its Taylor expansion provided by Fermanian et al. (2021, Proposition 4)∥∥∥yiti − SN (xi[0,ti])θ

∗
N

∥∥∥ ≤ dN+1ΛN+1(F)

(N + 1)!
.

This immediately gives

1

M
∥y − SNθ

∗
N∥2F =

1

M

n∑
i=1

∑
ti∈D̄i

∥∥∥yiti − SN (xi[0,ti])θ
∗
N

∥∥∥2 ≤ 1

M

M∑
i=1

(dN+1ΛN+1(F)

(N + 1)!

)2
=
(dN+1ΛN+1(F)

(N + 1)!

)2
,

which concludes the proof.

C.4. A layer-wise bound on the signature

We now prove that signature layers are locally Lipschitz mappings. We start with the following proposition.
Proposition C.3. Let x ∈ C1-var

L ([0, 1],Rd). Then for all t ∈ [0, 1], the path t 7→ Xk[0,t] has 1-variation bounded by

∥∥Xk∥∥1-var,[0,t] ≤
Lk

k!
.

Proof. By definition of the total variation,∥∥Xk∥∥1-var,[0,t] = sup
D

m∑
i=1

∥∥∥Xk[0,ti+1]
− Xk[0,ti]

∥∥∥
(Rd)⊗k

= sup
D

m∑
i=1

∥∥∥Xk[ti,ti+1]

∥∥∥
(Rd)⊗k

,

since Xk[0,t] =
∫ t
0
dxu1

⊗ · · · ⊗ dxuk
, and where the supremum is taken over finite dissections D = {0 = t1, . . . , tm = 1}

of [0, 1]. Notice that the signature layer of depth k is here written as an element of (Rd)⊗k, which is more convenient for
this proof. Then

sup
D

m∑
i=1

∥∥∥Xk[ti,ti+1]

∥∥∥
(Rd)⊗k

≤ sup
D

m∑
i=1

∥x∥k1-var,[ti,ti+1]

k!
≤ 1

k!
sup
D

( m∑
i=1

∥x∥1-var,[ti,ti+1]

)k
=

1

k!
sup
D
∥x∥k1-var,[0,1] ≤

Lk

k!
,

where the second inequality follows from the multinomial theorem and the last equality comes from the fact that for all
s < u < t, ∥x∥1-var,[s,u] + ∥x∥1-var,[u,t] = ∥x∥1-var,[s,t]. This ends our proof.
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We now state a bound on the difference between the k-th layer of the signatures of two different paths.
Theorem C.4. Let x, z ∈ C1-var

L ([0, 1],Rd). Then for all k ≥ 2, the difference in supremum norm between the paths
t→ Xk[0,t] and t→ Zk[0,t] is bounded by

∥∥Xk − Zk
∥∥
∞,[0,t]

≤ 2Lk−1
k−1∑
j=1

1

j!
∥x− z∥∞,[0,t] ≤ 2eLk−1 ∥x− z∥∞,[0,t]

and ∥∥∥X1
[0,t] − Z1

[0,t]

∥∥∥ ≤ 2 ∥x− z∥∞,[0,t] .

Proof. Our proof works by induction. Let x, z ∈ C1-var
L ([0, 1],Rd), and for t ∈ [0, 1] denote by Xk[0,t] (resp. Zk[0,t]) the k-th

layer of the signature of x (resp. z). For k = 1 and t ∈ [0, 1], remark that

X1
[0,t] − Z1

[0,t] =

∫ t

0

d(xu − zu) = xt − zt − (x0 − z0)

such that ∥∥∥X1
[0,t] − Z1

[0,t]

∥∥∥ ≤ ∥x− z∥∞,[0,t] + ∥x0 − z0∥ ≤ 2 ∥x− z∥∞,[0,t] .

Consider now k ≥ 2. We have

Xk[0,t] − Zk[0,t] =
∫ t

0

Xk−1
[0,s] ⊗ dxs −

∫ t

0

Zk−1
[0,s] ⊗ dzs =

∫ t

0

Xk−1
[0,s] ⊗ d(xs − zs + zs)−

∫ t

0

Zk−1
[0,s] ⊗ dzs,

and thus

Xk[0,t] − Zk[0,t] =
∫ t

0

Xk−1
[0,s] ⊗ d(xs − zs) +

∫ t

0

(
Xk−1

[0,s] − Zk−1
[0,s]

)
⊗ dzs.

We now bound each of these terms separately. First,∥∥∥∥∫ t

0

(
Xk−1

[0,s] − Zk−1
[0,s]

)
⊗ dzs

∥∥∥∥
(Rd)⊗k

≤
∥∥Xk−1 − Zk−1

∥∥
∞,[0,t]

∥z∥1-var,[0,t] ≤
∥∥Xk−1 − Zk−1

∥∥
∞,[0,t]

L.

Moving to the first integral, integration by parts yields∫ t

0

Xk−1
[0,s] ⊗ d(xs − zs) = Xk[0,t] ⊗ (xt − zt)− Xk[0,0] ⊗ (x0 − z0)−

∫ t

0

(xs − zs)⊗ dXk−1
[0,s].

We stress that Proposition (B.2) applies since the integral over the tensor product is taken coordinate-wise. Since Xk−1
[0,0] = 0,

we are left with ∫ t

0

Xk−1
[0,s] ⊗ d(xs − zs) = Xk[0,t] ⊗ (xt − zt)−

∫ t

0

(xs − zs)⊗ dXk−1
[0,s].

Using Lemma C.3 and submultiplicativity of the tensor norms, this can thus be bounded by∥∥∥∥∫ t

0

Xk−1
[0,s] ⊗ d(xs − zs)

∥∥∥∥
(Rd)⊗k

≤
∥∥∥Xk−1

[0,t]

∥∥∥
(Rd)⊗(k−1)

∥x− z∥∞,[0,t] + ∥x− z∥∞,[0,t]

∥∥Xk−1
∥∥

1-var,[0,t]

=
2Lk−1

(k − 1)!
∥x− z∥∞,[0,t] .

Finally, we are left with∥∥Xk − Zk
∥∥
∞,[0,t]

≤ 2Lk−1

(k − 1)!
∥x− z∥∞,[0,t] +

∥∥Xk−1 − Zk−1
∥∥
∞,[0,t]

L,

which can be recursively bounded by

∥∥Xk − Zk
∥∥
∞,[0,t]

≤ 2Lk−1 ∥x− z∥∞,[0,t]

k−1∑
j=1

1

j!
≤ 2Lk−1e ∥x− z∥∞,[0,t] .
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Note that this inequality implies that if z is chosen as the linear interpolation of a discretization of x on a grid D, and if the
grid gets finer, all signature layers converge at speed ∥x− z∥∞,[0,t] but the multiplicative constant increases with depth (if
L ≥ 1). Figure 4 illustrates this phenomenon.
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Figure 4: Difference between the signature of a continuous path x and the signature of its discretized and noisy counterpart
X , without noise on the discretization points (left), with noise of variance vξ = 0.082 (middle) and with noise of variance
vξ = 0.52. For every number of sampling points, we average the distance between the two signature over 50 randomly
chosen discretizations of the interval [0, 1]. The discretized path is generated as in the well-specified setting (see Appendix
D.4).

C.5. Proof of Lemma 3.3

First, recall that for a generic path x : [0, 1] → Rd, a modulus of continuity is a continuous function ωx : R≥0 → R≥0

vanishing at 0 such that for all s, t ∈ [0, 1]

∥xt − xs∥ ≤ ωx(|t− s|).

Also recall that by Heine’s theorem, we can define such a modulus of continuity for every continuous mapping [0, 1] to Rd.

We start by giving a general lemma that bounds the difference between the signature layers of a path and its discretized
version. Its proof is based on the results of the previous section.

Lemma C.5. Let x ∈ C1-var
L ([0, 1],Rd) and ωx : R≥0 → R≥0 its modulus of continuity. Let xD : [0, 1]→ Rd be the path

obtained by linear interpolation of the discretization of x on a grid D corrupted by additive noise ξ. Let Xk[0,t] and Xk,D[0,t]

be their respective k-th layers of signature on [0, t]. Then for all k ≥ 2

∥∥Xk − Xk,D
∥∥
∞,[0,1]

≤ 2Lk−1
k−1∑
j=1

1

j!

(
max

0≤s≤|D|
ωx(s) + max

t∈D
∥ξt∥

)
,

and for k = 1 ∥∥X1 − X1,D
∥∥
∞,[0,1]

≤ 2
(

max
0≤s≤|D|

ωx(s) + max
t∈D
∥ξt∥

)
.

Proof. Theorem C.4 yields for k ≥ 2

∥∥Xk − Xk,D
∥∥
∞,[0,1]

≤ 2Lk−1
k−1∑
j=1

1

j!

∥∥x− xD∥∥∞,[0,t]

Now, remark that ∥∥x− xD∥∥∞,[0,1]
≤ ∥x− x̃∥∞,[0,1] +max

t∈D
∥ξt∥ (23)
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from the triangular inequality, where x̃ is the piecewise linear path obtained by linear interpolation of x0, xt1 , . . . , xtj .
Now, since the paths x and x̃ coincide on 0, t1, . . . , tj , we have

∥x− x̃∥∞,[0,1] = max
i=0,...,j−1

∥x− x̃∥∞,[ti,ti+1]
≤ max
i=0,...,j−1

ωx
(
|ti+1 − ti|

)
= max

0≤s≤|D|
ωx(s).

This gives us

∥∥Xk − Xk,D
∥∥
∞,[0,1]

≤ 2Lk−1
k−1∑
j=1

1

j!

(
max

0≤s≤|D|
ωx(s) + max

t∈D
∥ξt∥

)
.

For the case k = 1, we immediately get∥∥X1 − X1,D
∥∥
∞,[0,1]

≤ 2
(

max
0≤s≤|D|

ωx(s) + max
t∈D
∥ξt∥

)
using the same technique as above.

This result is illustrated in Figure 4. One can notice that as predicted by our theoretical bounds, the convergence of signature
of high order happens at the same rate than the convergence of signatures of lower order. However, the multiplicative
constant controlling the tightness of the bound increases withN , leading to a slower convergence whenN increases. Strong
noise hinders the convergence of the signature of the discretized path since in this case, the noise’s variance is independent
of the number of sampling points : adding more sampling points means adding more noise. There are therefore two trade-
offs when learning with signatures. A first trade-off is between sampling frequency and order: with paths sampled at low
resolution, one should prefer lower order signatures, which trade model complexity against precise features. A second
trade-off is between sampling and noise: if the feature time series are very noisy, the precision of the features increases up
to a certain point, past which noise prevails.

With this result in hand, we can now prove Lemma 3.3.

Proof. We restrict ourselves to the ω-Lipschitz case.

In our setup, after linearly interpolation the time series to obtain xD, we normalize it by its total variation
∥∥xD∥∥1-var,[0,1],

which is a standard practice when learning with signatures (Morrill et al., 2020a). This means that we compute the signature
of the path

1

∥xD∥ 1-var,[0,tj ]
xD. (24)

Theorem C.4 gets us for k ≥ 2

∥∥Xk − Xk,D
∥∥
∞,[0,1]

≤ 2Lk−1
k−1∑
j=1

1

j!

∥∥∥∥∥x− 1

∥xD∥ 1-var,[0,1]
xD

∥∥∥∥∥
∞,[0,1]

(25)

≤ 2Lk−1
k−1∑
j=1

1

j!

∥∥x− xD∥∥∞,[0,1]
+ 2Lk−1

k−1∑
j=1

1

j!

∥∥∥∥∥xD − 1

∥xD∥ 1-var,[0,1]
xD

∥∥∥∥∥
∞,[0,1]

. (26)

The first term can be bounded by using the fact that in our setting, ωx(s) = ωs, and we thus get

2Lk−1
k−1∑
j=1

1

j!

∥∥x− xD∥∥∞,[0,1]
≤ 2Lk−1

k−1∑
j=0

1

j!

(
ω|D|+max

t∈D
∥ξt∥

)
≤ 2Lk−1e

(
ω|D|+max

t∈D
∥ξt∥

)
(27)
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The second term can be bounded by

2Lk−1
k−1∑
j=1

1

j!

∥∥∥∥∥xD − 1

∥xD∥ 1-var,[0,1]
xD

∥∥∥∥∥
∞,[0,t]

≤ 2Lk−1
k−1∑
j=1

1

j!

∥∥∥∥∥(1− 1

∥xD∥ 1-var,[0,1]

)
xD

∥∥∥∥∥
∞,[0,t]

(28)

≤ 2Lk−1
k−1∑
j=1

1

j!

∣∣∣1− 1

∥xD∥1-var,[0,1]

∣∣∣ ∥∥xD∥∥∞,[0,t]
. (29)

In order to bound ∣∣∣1− 1

∥xD∥1-var,[0,1]

∣∣∣ = ∣∣∣∣∣
∥∥xD∥∥1-var,[0,1] − 1

∥xD∥1-var,[0,1]

∣∣∣∣∣,
we need both an upper and a lower bound on

∥∥xD∥∥1-var,[0,1].

Remark that ∥∥xD∥∥1-var,[0,tj ]
=

∑
tu,tu−1∈D

∥∥xtu + ξtu − xtu−1
− ξtu−1

∥∥ . (30)

Recall that we assume the path (xt) to be time-augmented, and that the measurement times are not noisy. This means that∑
tu,tu−1∈D

∥∥xtu + ξtu − xtu−1
− ξtu−1

∥∥ ≥ ∑
tu,tu−1∈D

|tu − tu−1| ≥ t2 − t1 = t2 (31)

since t1 = 0 and Assumption 4 guarantees that there are at least two sampling points in every grid. This gives us that

1

∥xD∥ 1-var,[0,1]
≤ 1

t2
≤ 1

η
, (32)

since we have required that the last sampling time is at least η in Assumption 4. Turning to the upper bound, we get that∣∣∣1− ∥∥xD∥∥1-var,[0,1]

∣∣∣ ≤ 1− L+
∑

tu,tu−1∈D
∥ξu − ξu−1∥

by definition of the total variation of a piecewise linear path. Finally,∑
tu,tu−1∈D

∥ξu − ξu−1∥ ≤ 2#Dmax
t∈D
∥ξt∥ . (33)

Putting everything together gives us

∣∣∣1− 1

∥xD∥1-var,[0,1]

∣∣∣ ≤ 1− L+ 2#Dmax
t∈D
∥ξt∥

η
. (34)

In the end, we get that

2Lk−1
k−1∑
j=1

1

j!

∣∣∣1− 1

∥xD∥1-var,[0,1]

∣∣∣ ∥∥xD∥∥∞,[0,1]
≤ 2Lk−1e

1− L+ 2#Dmax
t∈D
∥ξt∥

η

∥∥xD∥∥∞,[0,1]
. (35)

Now, remark that since the path xD is piecewise linear,∥∥xD∥∥∞,[0,1]
=
∥∥xD − x0 + x0

∥∥
∞,[0,1]

≤ max
t∈D
∥xt + ξt − x0∥+ ∥x0∥ (36)

≤ max
t∈D
∥xt − x0∥+max

t∈D
∥ξt∥+ ∥x0∥ (37)

≤ ∥x0∥+ L+max
t∈D
∥ξt∥ (38)
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where the inequality
max
t∈D
∥xt − x0∥ ≤ L

follows from the definition of the total variation.

This means that

2Lk−1
k−1∑
j=1

1

j!

∣∣∣1− 1

∥xD∥1-var,[0,1]

∣∣∣ ∥∥xD∥∥∞,[0,1]
≤ 2Lk−1e

1− L+ 2#Dmax
t∈D
∥ξt∥

η

(
∥x0∥+ L+max

t∈D
∥ξt∥

)
. (39)

We have written these inequalities for a generic random variable. Let us now consider individual observations of our
dataset.

On the set Aξ(δ), one has

max
i=1,...,n,t∈Di

∥∥ξit∥∥ ≤ vξ√d+ vξ
√
c−1 log(δ−1#D). (40)

To simplify notations, let us write

Cδ := vξ
√
d+ vξ

√
c−1 log(δ−1#D). (41)

We get

2Lk−1
k−1∑
j=1

1

j!

∥∥xi − xi,D∥∥∞,[0,1]
≤ 2Lk−1e

(
ω|D|+ Cδ

)
, (42)

where we recall that D is the collection of individual grids, and |D| is the biggest sampling gap among individuals.
Similarly,

2Lk−1
k−1∑
j=1

1

j!

∣∣∣1− 1

∥xD∥1-var,[0,1]

∣∣∣ ∥∥xD∥∥∞,[0,1]
≤ 2Lk−1e

1− L+ 2#DCδ
η

(
∥x0∥+ L+ Cδ

)
(43)

Now moving to the feature matrices, we have

1

M

∥∥(SN − SD
N )θ∗N

∥∥2
F
≤ 1

M

n∑
i=1

N∑
k=0

∥∥∥(Si,[k] − SD
i,[k])θ

∗
[k],·

∥∥∥2
F

≤ 1

M

n∑
i=1

∑
t∈D̄i

N∑
k=0

dkΛk(F)
2
(
2eLk−1

(
ω|D|+ Cδ +

1− L+ 2#DCδ
η

(
∥x0∥+ L+ Cδ

)))2

≤ 4e2

(
ω|D|+ Cδ +

1− L+ 2#DCδ
η

(
∥x0∥+ L+ Cδ

))2

L2
N∑
k=0

dkΛk(F)
2

k!2
× k!2

≤ 4e2N !2

(
ω|D|+ Cδ +

1− L+ 2#DCδ
η

(
∥x0∥+ L+ Cδ

))2

L2
N∑
k=0

dkΛk(F)
2

k!2
.

Writing

CD,N (δ) = 4e2L2N !2

(
ω|D|+ Cδ +

1− L+ 2#DCδ
η

(
∥x0∥+ L+ Cδ

))2

,

one finally gets with probability 1− δ that

1

M

∥∥(SN − SD
N )θ∗N

∥∥2
F
≤ CD,N (δ)

N∑
k=0

dkΛk(F)
2

k!2
.

27



Learning the Dynamics of Sparsely Observed Interacting Systems

C.6. Proof of the main Theorem

We finally combine all Lemmas to obtain the desired oracle bound.

Proof. First, we have from Lemma 3.1 that on Aε(δ̄),

1

2M

∥∥∥y − SD
N θ̂N,M

∥∥∥2
F
≤ 1

2M

∥∥y − SD
Nθ

∗
N

∥∥2
F +

2pCN (δ̄)√
M

N∑
k=0

dkΛk(F)

k!
.

The first term of the right-hand side of this inequality is bounded by

1

2M

∥∥y − SD
Nθ

∗
N

∥∥2
F ≤

1

M
∥y − SNθ

∗
N∥2F +

1

M

∥∥SNθ∗N − SD
Nθ

∗
N

∥∥2
F .

By Lemma 3.2 and Lemma 3.3, this can in turn be bounded on Aε(δ̄) ∩Aξ(δ) by

1

2M

∥∥y − SD
Nθ

∗
N

∥∥2
F ≤

(
dN+1ΛN+1(F)

(N + 1)!

)2

+ CD,N (δ)

N∑
k=0

dkΛk(F)
2

k!2

Combining all the pieces, this finally gives us, on Aε(δ̄) ∩Aξ(δ),

1

2M

∥∥∥y − SD
N θ̂N,M

∥∥∥2
F
≤
(
dN+1ΛN+1(F)

(N + 1)!

)2

+ CD,N (δ)

N∑
k=0

dkΛk(F)
2

k!2

+
2pCN (δ̄)√

M

N∑
k=0

dkΛk(F)

k!
.

C.7. Asymptotics

We briefly discuss the asymptotic behaviour of the upper bound of the oracle inequality.

Truncation depth N . A natural question is whether the bias of our estimator vanishes as N → ∞. If we have perfect
sampling, i.e. the limit case where D = 0 and vξ = 0, our bound on the prediction error becomes on Aε(δ̄)

1

2M

∥∥∥y − SD
N θ̂N,M

∥∥∥2
F
≤
(
dN+1ΛN+1(F)

(N + 1)!

)2

+
2pCN (δ̄)√

M

N∑
k=0

dkΛk(F)

k!
.

The first term of this bound vanishes as an immediate consequence of Assumption 3, while the second term is a statistical

error term that behaves like
√

log(NdN )√
M

. In order to obtain an asymptotic convergence, we thus need that N log(dN) =

o(M).

In the more realistic setting where |D| > 0, the discretization bias behaves like LN−1N !|D|. It is thus sufficient to assume
that |D| = o(1/N !). If vξ > 0, our estimator is durably biased due to the measurement noise, and this bias increases with
N → ∞. This is due to a ”propagation of chaos” phenomenon: the difference between the unobserved feature path and
the interpolated feature time series is amplified by taking the successive iterated integrals that define the signature. This
advocates for using simple, low-order signature models in the presence of noise, as the gain in precision obtained when
taking higher N and reducing the truncation bias will at some point be lost because of the amplified noise.
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Dimension p of the target path. Our oracle bound only depends on p through the statistical error term. This term is
proportional to p

√
log p, which is expected in multitask regression.

Dimension d of the feature path. Our oracle bound exhibits multiple dependencies in d. First, the truncation bias grows
polynomially with d. Similarly, the discretization bias also depends polynomially on d. Finally, the statistical error term is
proportional to log d times a polynomial term.

D. Algorithms, experiments, and supplementary results
D.1. Implementation details

Recall that the SigLasso estimator θ̂N,M is defined as

θ̂N,M ∈ argmin
θ∈Rsd(N)×p

1

2M

∥∥Y − SD
Nθ
∥∥2

F +Ω(θ),

where

Ω(θ) =

N∑
k=0

M
1
2Ck(δ̄)

k!

∥∥θ[k],·∥∥1 ,
and

Ck(δ̄) =
√
vε log(2pNdk/δ̄)

for δ̄ ∈ [0, 1]. Our goal is first to rewrite the penalty Ω(θ) as

Ω(θ) = C

N∑
k=0

λk
∥∥θ[k],·∥∥1 ,

such that training will only require to scale each layer of θ and to crossvalidate the multiplicative constant C. Since for
k ≥ 1,

Ck(δ̄) =
√
k ×

√
vε(δ̄/k + log(pN)/k + log d) ≤

√
k ×

√
vε(δ̄ + log(pN) + log d),

we let λk =
√
k
k! .

We now show that the minimization problem with layer-specific penalty can be written as a standard regression problem
with ℓ1 penalization by rescaling the feature matrix, that is, multiplying SD

N by a well-chosen diagonal matrix. Consider
the ℓ1-penalized problem

min
θ∈Rsd(N)×p

1

2M

∥∥Y − SD
Nθ
∥∥2

F + C

N∑
k=0

λk
∥∥θ[k],·∥∥1 ,

where C > 0 controls the strength of the penalization.

Making the change of variable

θ̃ = diag(1, λ1, . . . , λ1︸ ︷︷ ︸
d repetitions

, λ2, . . . , λ2︸ ︷︷ ︸
d2 repetitions

, . . . , λk, . . . , λk︸ ︷︷ ︸
dN repetitions

)θ,

which is equivalent to
θ = diag(1, 1/λ1, . . . , 1/λ1, . . . , 1/λk, . . . , 1/λk)θ̃,
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and denoting by W this last weight matrix, we get the equivalent minimization problem

min
θ̃∈Rsd(N)×p

1

2M

∥∥∥Y − SD
NWθ̃

∥∥∥2
F
+ C

N∑
k=0

∥∥∥θ̃[k],·∥∥∥
1
.

We can thus obtain the SigLasso estimator by (i) multiplying the feature matrix SD
N by W and solving the associated

ℓ1-penalized problem (ii) multiplying the obtained solution by W .

The Learn-And-Reconstruct algorithm is the generic algorithm used in our work. It is applicable for a wide variety of tasks
such as missing values inference, trajectory reconstruction, forecasting and many more. It is described in Algorithm 1.

Algorithm 1 Learn-and-Reconstruct Algorithm. The algorithm infers for every individual in the test set a reconstructed
time series Ŷ it .

1. Learn the dynamics
Input: train dataset of normalized paths (X1,Y1), . . . , (Xn,Yn) sampled on (D1, D̄1), . . . , (Dn, D̄n).
Construct the feature matrix SD

N and the target vector Y
for i = 1 to n do

for t in D̄i do
SD
N ← Append SN (Xi

[0,t])

Y← Append Y it
end for

end for
Compute θ̂N,M by solving (7) with Y,SD

N using coordinate descent.
2. Reconstruct trajectories
Input: test dataset X̃1, . . . , X̃n sampled on D̃1, . . . , D̃n.
for i = 1 to n do

for t in D̃i do
Ŷ it = θ̂N,MSN (X̃i

[0,t])
end for

end for

D.2. Assessing feature importance

We two metrics used to asses the importance of the different dimensions of the feature path.

Given a truncation depth N and a dimension i ∈ {1, . . . , d}, we define its pure feature importance (PFI) as the sum of the
norm of the coefficients (or vectors in the case the target is multivariate) of θ̂N,M that are associated to signatures taken on
the words I1 = (i), I2 = (i, i), and so forth until IN = (i, . . . , i). Mathematically,

PFI(i) =
1

N

(∥∥θI1∥∥
2
+
∥∥θI2∥∥

2
+ · · ·+

∥∥θIN∥∥
2

)
.

Since signatures also capture interactions between dimensions of the feature path, we also define the cross feature impor-
tance (CFI) as the sum of norms of the coefficients (or vectors) of θ̂N,M that are associated to signatures coefficients of
words of length ≤ N in which the letter i appears. Mathematically,

CFI(i) =
1

sd(N)− sd−1(N)

∑
I s.t. i∈ I

∥∥θI∥∥
2
.

For a given truncation depth N , note that there are sd(N)− sd−1(N) =
N∑
k=0

dk−
N∑
k=0

(d− 1)k terms in the last sum, which

justifies our choice of normalization.
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D.3. Details on model implementation and evaluation

SigLasso. The SigLasso model is implemented using the CVLasso class in scikit-learn (Pedregosa et al., 2011).
This implementation optimises the objective function using coordinate descent and features automatic cross-validation of
the penalty strength. We use iisignature (Reizenstein & Graham, 2020) to compute the signature of the feature time
series. Every time series is standardized prior to this through division by its own total variation, as suggested by Morrill
et al. (2020a). The depth of the signature is a hyperparameter chosen between 2 and 9 or 6 depending on the experiment.
An intercept is added.

GRU. The GRU is of width 128 and systematically trained with 100 epoches using a learning rate of 0.001.

Neural CDE. We use the implementation of Neural CDE provided by torchcde (Kidger et al., 2020). We use the
original vector field described in the documentation of this package, with the small tweak that we use a smoother non-
linearity (tanh instead of ReLU). We observed that using the rk4 solver instead of dopri5 significantly accelerates the
training time of the Neural CDE without affecting the model’s performances. The learning rate is hand-tuned to either
0.001 or 0.0001 depending on the experiment. We train the model for 100 epochs and asses its convergence by using a
standard stopping criteria.

Metrics. The MSE is computed in a classical fashion. To compute the integrate MSE, we compute the L2 distance between
the piecewise constant interpolations of the true yt and the predicted ŷt.

D.4. Details on the well specified model

Generation of the training data. We generate a two-dimensional feature path by interpolating for every dimension 15
points in [0, 1], each of them being draw randomly for a normal distribution N (0, 1). The interpolation is done with
Hermite cubic splines with backward differences using the package torchcde (Kidger et al., 2020). Time is added as a
supplementary channel, which is a standard practice when learning with signatures and Neural CDEs. These paths are then
downsampled by randomly drawing sampling points for the target and the feature time series specific to every individual.
The target path is the solution of a CDE of the form

dyt = σ
(
Ayt

)
dxt

where σ : Rp → Rp is the hyperbolic tangent, A ∈ Rd×p is a matrix drawn randomly from N (0, Id×p) and xt is the
feature path constructed as above. The solution of this CDE is computed using torchcde.

Generation of the test data. We generate the test data in the same way than the training data. However, this data is not
downsampled as we wish to assess the generalization capacities of our model—i.e., is our model capable of approximating
the dynamics and extrapolating to continuous feature paths.

D.5. Details on Ornstein-Uhlenbeck experiment

We take (xt)t∈[0,1] to be a 1-dimensional Brownian motion with variance σ2 = 0.1, and generate (yt) as a 1-dimensional
Ornstein-Uhlenbeck process driven by (xt), that is, for all t ∈ [0, 1]

dyt = θ(µ− yt)dt+ dxt.

Simulation of (yt) is done using a standard Euler-Maruyama simulation scheme. We let θ = 3 and µ = 1. The training
data is then downsampled as in the well specified experiment.
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D.6. Details on the tumor growth experiment

We consider the following tumor growth model taken from (Simeoni et al., 2004). Let x ∈ C1−var([0, 1],R). The weight
y ∈ C([0, 1],R+) under the concentration of a treatment drug x is governed by the differential system

du1t =
[(
λ0u

1
t

[
1 + (

λ0
λ1
yt)

ψ
])−1/ψ

− k2xtu1t
]
dt

du2t =
[
k2xtu

1
t − k1u2t

]
dt

du3t =
[
k1(u

2
t − u3t )

]
dt

du4t =
[
k1(u

3
t − u4t )

]
dt

yt = u1t + u2t + u3t + u4t

with initial condition (u10, u
2
0, u

3
0, u

4
0, y0) = (2, 0, 0, 0, 2) and parameters (k1, k2, λ0, λ1, ψ) = (10, 0.5, 0.9, 0.7, 20). The

concentration (xt) is chosen to be the squared value of the paths used for the well-specified experiment. Notice that this
system is non-linear w.r.t. x. Indeed, writing dyt = G(yt, xt)dt, one has, for α ∈ R, G(yt, αxt) ̸= αG(yt, xt). The
training data is then downsampled as in the well specified experiment.

D.7. Supplementary results

Table 2: Performance of SigLasso, GRU, Neural CDE, RNN and LSTM in different simulation settings, averaged over 10
iterations. In every setting, n = 50, #D̄i = 5 for all i = 1, . . . , n (and therefore M = 250).

L2 error MSE on last point

Setting SigLasso GRU Neural CDE RNN LSTM SigLasso GRU Neural CDE RNN LSTM

Well-specified 0.13 ± 0.07 1.05 ± 0.42 0.61 ± 0.38 1.16 ± 0.45 0.87 ± 0.67 0.73 ± 0.56 3.32 ± 1.60 1.46 ± 1.20 3.56 ± 1.43 2.41 ± 1.75
Ill-specified 0.15 ± 0.02 0.24 ± 0.11 0.29 ± 0.15 0.18 ± 0.006 0.20 ± 0.01 0.09 ± 0.05 0.19 ± 0.09 0.22 ± 0.15 0.18 ± 0.05 0.10 ± 0.03
OU 0.01 ± 0.02 0.05 ± 0.06 0.17 ± 0.12 0.11 ± 0.09 0.46 ± 0.48 0.018 ± 0.025 0.014 ± 0.020 0.013 ± 0.016 0.02 ± 0.02 4.41 ± 3.77
Tumor growth 0.16 ± 0.02 0.66 ± 0.09 5.29 ± 1.38 0.75 ± 0.03 0.69 ± 0.04 0.35 ± 0.12 2.00 ± 0.38 8.76 ± 9.26 2.72 ± 0.24 2.25 ± 0.29

D.8. Details on the French Covid experiment

We illustrate the performance of our method and competitors on French Covid data from 2021-03-31 to 2021-07-07 avail-
able on Gitlab. Hospital data was obtained from the SI-VIC database, the national inpatient surveillance system.

Target path. Following Paireau et al. (2022), we chose the predict the growth rate of incident hospitalisations in each
of the 9 metropolitan regions of France. The exponential growth rate was computed from raw data using a 2 days rolling
window and then smoothed using local polynomial regression as in Paireau et al. (2022). Mathematically, our target time
series is the R-valued growth rate, and we fit a different model for every of the 12 regions. It is displayed for all 12 regions
in Figure 6.

Feature path. As in Paireau et al. (2022), we consider a set of 12 time-dependant predictors of different types summa-
rized in Table 3 and plotted in Figure 5. Both SIDEP (”Système d’Information de Dépistage Populationnel”) and VAC-SI
datasets are publicly available. The mobility data was obtained from Google. The mobility-related predictors describe
travel trends for different kind of public spaces such as such as shops and leisure spaces, food stores and pharmacies,
parks, public transport stations, workplaces and residential areas. The meteorological data was obtained from Météo
France.

Models. SigLasso, NCDE and GRU algorithms were trained on the period from 2021-03-31 to 2021-06-23 and tested on
the period from 2021-06-24 to 2021-07-07. We included a history of 10 days at each point and performed prediction for
different horizons ranging from 1 to 14. In others words, at horizon h, features values from day t− h− 10 to day t− h to
were used to compute the prediction at time t. All feature time series are normalized to have total variation equal to 1.
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Figure 5: The 12 different feature time series used to forecast the hospitalization growth rate. Every different color
corresponds to a given region of France.
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Predictor Type Source Description

prop pos symp Epidemiological SIDEP database proportion of positive tests among symptomatics
P r Epidemiological SIDEP database growth rate of positive tests
couv-complet Epidemiological VAC-SI database proportion of vaccinated
grocery and pharmacy Mobility Google visits to grocery and pharmacy stores
parks Mobility Google visits to parks
transit stations Mobility Google visits to transit stations
workplaces Mobility Google visits to workplaces
residential Mobility Google visits to residential places
IPTCC Meteorological Météo France Index PREDICT of climatic transmissivity
temperature Meteorological Météo France temperature
rel humidity Meteorological Météo France relative humidity
abs humidity Meteorological Météo France absolute humidity

Table 3: The set of time-dependant predictors used to predict the hospital admission growth rate
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Figure 6: Hospitalization growth rate through time during the full period for the 12 different regions of France.
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Figure 7: Interpolation (left of dotted line) and prediction (right of dotted line) of hospitalization growth rate for all 12
french regions using SigLasso.

Architectural details. The GRU has width 128 and is trained for 100 epochs with a learning rate of 0.0001. The NCDE
is trained for 30 epochs with a learning rate of 0.001. It has 2 hidden layers of width 128, an intermediate Tanh(·) non-
linearity and a final linear readout. This architecture is identical to the one proposed in (Kidger, 2022). Penalty strenght of
the SigLasso is crossvalided using the internal implementation LassoCV of scikit-learn (Pedregosa et al., 2011).

All details, in particular the features used for each individual prediction, can be found in Paireau et al. (2022).

We refer to the supplementary information file of Paireau et al. (2022) and our code for more details.

Results. Figure 11 displays the RMSE (on all regions) of NCDE, SigLasso, GRU, and the Ensemble method for all
prediction horizons h = 1, . . . , 14. Figures 7, 9 and 8 display the obtained interpolation for SigLasso, GRU and NCDE at
different horizons (corresponding to different line colors in winter matplotlib palette). The lighter the blue, the smaller
the time horizon: the lightest curve corresponds to a time horizon equal to h = 1. Truth is in red.

D.9. Additional results

We give in Table 4 some additional results on the experiments described above.

Table 4: Training time of SigLasso, GRU and Neural CDE in different simulation settings, averaged over 10 iterations. In
every setting, n = 50, #D̄i = 5 for all i = 1, . . . , n (and therefore M = 250).

Training time (s)

SigLasso GRU Neural CDE

Well-specified 0.37 ± 0.23 269 ± 109 1754 ± 587
OU 0.057 ± 0.005 27 ± 0.44 216 ± 2.7
Tumor growth 0.056 ± 0.007 31 ± 3.5 250 ± 14
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Figure 8: Interpolation (left of dotted line) and prediction (right of dotted line) of hospitalization growth rate for all 12
french regions using NCDE.
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Figure 9: Interpolation (left of dotted line) and prediction (right of dotted line) of hospitalization growth rate for all 12
french regions using GRU.
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Figure 10: Interpolation (left of dotted line) and prediction (right of dotted line) of hospitalization growth rate for all 12
french regions using ensemble methods (Paireau et al., 2022).
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Figure 11: RMSE accross all regions on the training period (left) and the testing period (right) for the ensemble methode
(Paireau et al., 2022), NCDE, GRU, and SigLasso. See Figure 12 for a zoom-in on GRU and SigLasso performances.
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Figure 12: RMSE accross all regions on the training period (left) and the testing period (right) for GRU and SigLasso.

Moreover, we show in Figure 13 the results of the L2 reconstruction error in the well-specified setting, when we vary the
number of sampling points of the feature paths between 10 and 103. We see that SigLasso always outperforms GRU and
Neural CDE but that the difference of performance is more important when there are only a few sampling points. In this
regime SigLasso is moreover more stable.
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Figure 13: L2 reconstruction error of SigLasso, GRU and Neural CDE in the well-specified setting, for varying number of
feature samples.
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