Kousuke Nakano 
  
Oto Kohul Ák 
  
Abhishek Raghav 
  
Michele Casula 
  
Sandro Sorella 
  
TurboGenius: Python suite for high-throughput calculations of ab initio quantum Monte Carlo methods

TurboGenius is an open-source Python package designed to fully control ab initio quantum Monte Carlo (QMC) jobs using a Python script, which allows one to perform high-throughput calculations combined with TurboRVB [K. Nakano et al. J. Phys. Chem. 152, 204121 (2020)]. This paper provides an overview of the TurboGenius package and showcases several results obtained in a high-throughput mode. For the purpose of performing high-throughput calculations with TurboGenius, we implemented another open-source Python package, TurboWorkflows, that enables one to construct simple workflows using TurboGenius. We demonstrate its effectiveness by performing (1) validations of density functional theory (DFT) and QMC drivers as implemented in the TurboRVB package and (2) benchmarks of Diffusion Monte Carlo (DMC) calculations for several data sets. For (1), we checked inter-package consistencies between TurboRVB and other established quantum chemistry packages. By doing so, we confirmed that DFT energies obtained by PySCF are consistent with those obtained by TurboRVB within the local density approximation (LDA), and that Hartree-Fock (HF) energies obtained by PySCF and Quantum Package are consistent with variational Monte Carlo energies obtained by TurboRVB with the HF wavefunctions. These validation tests constitute a further reliability check of the TurboRVB package. For (2), we benchmarked atomization energies of the Gaussian-2 set, binding energies of the S22, A24, and SCAI sets, and equilibrium lattice parameters of 12 cubic crystals using DMC calculations. We found that, for all compounds analyzed here, the DMC calculations with the LDA nodal surface give satisfactory results, i.e., consistent either with high-level computational or with experimental reference values.

I. INTRODUCTION

In recent years, there has been a surge of interest in materials informatics and digital transformation paradigms in the materials science community, which involve utilizing information science and computational chemistry/physics techniques to design or search for novel materials. The kernel method for high-throughput electronic structure calculations is most commonly the Density Functional Theory (DFT), which has been successfully used for designing various materials in silico [1][2][3][4][5][6][7][8] . However, DFT sometimes loses the quantitative predictive power in particular cases, such as materials at extreme conditions or with strong electronic correlation [9][10][11][12][13][14] . Instead, ab initio quantum Monte Carlo (QMC) gives more reliable results for such materials because it explicitly treats the many-body electron interaction in its formalism 15 . While approximations still exist in QMC implementations such as the so-called fixed node approximation 15 , QMC does not suffer from the drawback of having to choose one particular exchange-correlation functional.

When it comes to ab initio QMC applications, one of the biggest drawbacks is its complicated computational procedure. Indeed, a QMC study usually requires many involved a) Electronic mail: kousuke 1123@icloud.com operations, such as generating trial wavefunctions (WFs), variational optimizations, time-step or lattice-size extrapolation, and finite-size corrections. For instance, a typical workflow of a QMC calculation using the TurboRVB quantum Monte Carlo package 16,17 , is shown in Fig. 1. Automating such required tasks can offer a significant improvement in our productivity, enabling researchers to spend more time doing physics and chemistry rather than launching and monitoring jobs. So far, many workflow management packages have been developed to achieve a more productive research activity and high-throughput calculations. Some representatives are Ai-iDA 18 , AFLOW 19 , Fireworks 20 , and atomate 21 , which have been widely used for generating and/or managing material science database such as NOMAD 22 and Materials Projects 23 . One could immediately exploit these established workflow systems also in QMC calculations, but the combination of a QMC code with these workflow packages is not straightforward due to the complexity of the QMC calculations. Thus, to manage them, we need to implement interfaces, if possible in Python, because most of the established workflow packages are also implemented based on Python, due to its appealing features. In fact, several packages for high-throughput QMC calculations, such as Nexus 24 and QMC-SW 25 , are Python implementations. Wheeler 26 . PyQMC is an all-Python package; thus, it enables one to develop algorithms and complex workflows more flexibly and user-friendly.

TurboGenius is an open-source Python package meant to manage TurboRVB calculations using a python script. In this paper, we explain the basic concepts, designs, functionalities, implemented classes, user interfaces, command-line tools of the package. TurboGenius provides Python classes and command-line tools that fully control TurboRVB jobs, which allow one to realize high-throughput QMC calculations. TurboGenius includes PyTurbo as a sub-package for providing users with more fundamental but more flexible building blocks to control TurboRVB jobs. For demonstrating high-throughput QMC calculations, we also implemented another open-source python package, TurboWorkflows. The demonstrations contain: (1) validations of DFT and QMC implementations of the TurboRVB package and (2) benchmarks of Diffusion Monte Carlo (DMC) calculations for several data sets. As per (1), we confirmed that DFT energies obtained by PySCF 27,28 are consistent with those obtained by Tur-boRVB within the local density approximation (LDA), and Hartree-Fock (HF) energies obtained by PySCF and Quantum Package 29 are consistent with variational Monte Carlo (VMC) energies obtained by TurboRVB computed with the HF WFs. The validation tests constitute a further reliability check of the TurboRVB package. As far as point ( 2) is concerned, we benchmarked atomization energies of the Gaussian-2 set 30 , binding energies of the S22 31 , A24 32 , and SCAI 33 sets, and equilibrium lattice parameters of 12 cubic crystals using the lattice regularized diffusion Monte Carlo calculations (LRDMC) 34,35 . We found that, for all compounds analyzed in this study, the LRDMC calculations with the LDA nodal surface give satisfactory results, i.e., consistent either with computational or with experimental reference values. This paper is organized as follows: in Sec. II, we provide an overview of the TurboGenius program structure; in Sec. III, we provide an overview of the PyTurbo program structure; in Sec. IV, we describe the command-line tool and user interface implemented in TurboGenius; in Sec. V, we introduce TurboWorkflows, a python package for realizing highthroughput calculations using TurboGenius; and in Sec. VI, we showcase several validation and benchmark results obtained using TurboGenius and TurboWorkflows.

II. TURBOGENIUS: PROGRAM OVERVIEW

TurboGenius is implemented in Python 3 (the minimal requirement is Python 3.7). Python was chosen because it allows seamless integration with other major workflow frameworks. The main classes of TurboGenius are mainly composed of two types of classes. One is Wavefunction that stores and manipulates a WF information including nuclear positions and pseudopotentials. The others are classes inheriting an abstract class (genius class). The classes enable one to control TurboRVB tasks, such as generating input files, launching jobs, and analyzing outcomes. The major classes of TurboGenius are listed in Table I. Hereafter, we will describe the functionalities of the two main classes. A typical workflow of a QMC calculation using Tur-boRVB;

(1) Preparation of a JAGP(s/u) ansatz file from a chosen basis set, pseudo potentials, and a structure using makefort10.x binary. AGPs stands for the symmetric antisymmetrized geminal power (i.e., singlet correlation in the pairing function) 36 , while AGPu stands for the broken symmetry antisymmetrized geminal power, (i.e., singlet + triplet correlations in the pairing function) 36 . The generated WF is fulfilled with random numbers; thus, one needs to initialize it, typically using DFT; 

A. Wavefunction

Wavefunction is a class manipulating WFs, such as This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0179003

for generating a JSD (Jastrow Slater Determinant) or JAGP (Jastrow correlated Antisymmetrized Geminal Power 16 ) WF for a subsequent DFT initialization, and for converting a WF ansatz to another one (e.g., JSD to JAGP). The details about the WF implementation in the TurboRVB package are briefly explained in Sec. III A and also described in Ref. 17. The listing 1 shows a script to generate a WF file for the water molecule with the cc-pVQZ and cc-pVDZ basis sets for the determinant and the Jastrow parts, respectively, accompanied with the correlation consistent effective core potentials (ccECPs [37][38][39][40] ). The generated WF and PP files are fort.10 and pseudo.dat, respectively. Notice that Wavefunction currently has pre-defined keywords for correlation-consistent basis sets implemented in Basis Set Exchange 41 for all-electron calculations, and correlation-consistent effective core potentials (ccECPs) [37][38][39][40] and Burkatzki-Filippi-Dolg (BFD) 42,43 basis sets for pseudopotential calculations. One can also use different basis set and pseudopotentials by providing them as a text list. The generated WF is a Slater Determinant WF with randomized MO coefficients. Indeed, a user should initialize it using the built-in DFT (prep) code before doing QMC calculations.

The Wavefunction class also allows one to generate a WF file from a TREXIO file 44 . The TREXIO library has a standard format for storing WFs, together with a C-compatible API such that it can be easily used in any programming language, which is being developed in TREX (Targeting Real Chemical Accuracy at the Exascale) project [START_REF]Targeting Real Chemical accuracy at the EXascale (TREX)[END_REF] . The listing 2 shows a script to convert a TREXIO file. Thus, instead of using the built-in DFT program, prep, one can use standard quantum chemistry packages such as GAMESS [START_REF] Barca | [END_REF] and PySCF 27,28 , then convert it to TurboRVB WF format. The class supports both all-electron and pseudopotential WF with/without periodic boundary conditions (i.e., for both molecules and crystals), and both restricted (ROHF) and unrestricted (UHF) open-shell WFs. Notice that a restricted WF is converted to the symmetric antisymmetrized geminal power (AGPs) (i.e., singlet correlation in the pairing function) 36 , while an unrestricted WF is converted to the broken symmetry antisymmetrized geminal power (AGPu), (i.e., singlet + triplet correlations in the pairing function) 36 

B. GeniusIO classes

GeniusIO is a parent class of the wrappers to manage complex QMC procedures. Several classes inheriting GeniusIO are implemented in TurboGenius, as shown in Table I. Here, to make the explanation simple, we focus on one of the classes, VMC genius. VMC genius is a class to control VMC job of TurboRVB. The listing 3 shows a Python script to compute VMC energy of the hydrogen dimer. # generate the input file and run vmc_genius.generate_input(input_name="datasvmc.input") vmc_genius.run(input_name="datasvmc.input", output_name="out_vmc") # reblock the MCMC samples vmc_genius.compute_energy_and_forces(bin_block=10, warmupblocks=5) # VMC energy energy, error = vmc_genius.energy, vmc_genius.energy_error print(f"VMC-JDFT energy = {energy:.5f} +-{error:3f} Ha")

III. PYTURBO: PROGRAM OVERVIEW

PyTurbo is a sub-package of the TurboGenius package, which contains fundamental but flexible functionalities. The reason for implementing several classes in an independent sub-package is that there is a trade-off between flexibility and complexity (i.e., the availability of more sophisticated functionality). Indeed, we suppose advanced users will develop and exploit more elaborated procedures than the ones we expect at present. TurboGenius in its present status may not be flexible enough to support all of them. Therefore, we leave PyTurbo as an independent sub-package and keep its implementation as simple as possible, so that advanced users can be provided with the fundamental building blocks to fully control TurboRVB jobs in a Python environment. The major classes of PyTurbo are shown in shown in Table . II. fort.10 is the most fundamental file containing all the WF information except for that of pseudo potentials. The information of pseudo potential is stored in a separate file, pseudo.dat. IO fort10 and Pseudopotentials are classes for manipulating a WF file and PP files, respectively. PyTurbo contains several classes inheriting the abstract class fortranIO. They are essentially Fortran90 wrappers, i.e, in a one-to-one correspondence between a PyTurbo class and a TurboRVB Fortran binary (e.g., Makefort10 class in PyTurbo corresponds to makefort10.x in TurboRVB). The corresponding Tur-boRVB modules are listed in Table III.

A. IO fort10

IO fort10 is a class to manipulate the TurboRVB WF file fort.10 and to extract particular information (e.g., the basis set for the determinant and the Jastrow parts). TurboRVB employs a many-body WF ansatz Ψ written as the product of two terms, Ψ = Φ AS × exp J, where the term exp J, conventionally dubbed Jastrow factor and the term Φ AS is referred to as the antisymmetric part of the WF. The antisymmetric part is composed of the so-called pairing function, f r i ,

r j = Σ M l,m λ l,m ψ l (r i )ψ m (r j )
, where ψ l and ψ m are primitive or contracted atomic orbitals, their indices l and m indicate different orbitals centered on each atom, while i and j label the electron coordinates. The antisymmetric part is, in general, a Pfaffian ansatz considering all spin pairs (i.e., |↑↑⟩, |↑↓⟩, |↓↑⟩, and |↓↓⟩) in the pairing function. One can restrict the degrees of freedom to only spin-up and spin-down pairs, resulting in the (spatial) symmetric antisymmetrized geminal power (AGPs) (i.e., including singlet correlation, |↑↓⟩ -|↓↑⟩) 36 or the broken symmetry antisymmetrized geminal power (AGPu), (i.e., including both singlet and triplet correlations, |↑↓⟩ + |↓↑⟩) 36 . In any case, the λ l,m associated to the orbital pairs (ψ l , ψ m ) are the variational parameters that are stored in the IO fort10 class. Basis set information used to construct the orbitals is stored in the Basis sets class, as described later. The Jastrow factor (exp J) is associated with the antisymmetric part for improving the correlation of the WF and for fulfilling Kato's cusp condition 49 . The Jastrow term implemented in TurboRVB is composed of one-body, two-body, and three/four-body factors (J = J 1 + J 2 + J 3/4 ). The one-body and two-body factors are meant to fulfill the electron-ion and electron-electron cusp conditions, respectively, and the three/four-body factors consider further electronic correlations. The Jastrow terms contain several scalar variational parameters. The ones present in J 3/4 can be written in a matrix form λ l,m associated to the Jastrow orbital pairs (χ l , χ m ), in a form analogous to the pairing function f . The variational parameters and Jastrow basis set information are also stored in IO fort10 class.

As mentioned above, IO fort10 internally uses the Basis sets class that can store basis-set information for both the determinant and the Jastrow parts. Other information, such as lattice vectors, atomic positions, MO coefficients, AGP and Jastrow matrix elements, are stored in the corresponding attributes implemented in IO fort10. The Atomic Simulation Environment (ASE) 50 package is used to read-/write molecule and crystal structures for supporting various file formats. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. Generates a JSD/JAGP WF using a given basis set and structure. convertfort10mol.x Adds molecular orbitals. If the number of molecular orbitals is equal to (larger than) the half of the number of electrons in a system, the resultant WF becomes JSD (JAGPn). convertfort10.x Converts a JSD/JAGP/JAGPn WF to a JAGP one. It also converts an uncontracted atomic basis set to a hybrid (contracted) one using the geminal embedding scheme. convertfortpfaff.x Converts a JAGP WF to JPf one.

PLEASE CITE THIS ARTICLE AS

prep.x Performs a DFT calculation. turborvb.x Performs VMC optimization, VMC evaluation, LRDMC, structural optimization and molecular dynamics. readforward.x Performs correlated samplings, and calculates various physical properties.

B. Basis sets

The Basis sets class can store basis-set information for both the determinant and the Jastrow parts. TurboGenius supports the Gaussian-type localized atomic orbitals (GTOs):

ψ Gaussian l,±m,I (r; ζ) = |r -R I | l e -ζ|r-R I | 2 • ℜ[(-i) 1±1 2 Y l,m,I (θ, ϕ)], (1) 
where the real and the imaginary part (m > 0) of the spherical harmonic function Y l,m,I (θ, ϕ) centered at R I are taken and rewritten in Cartesian coordinates in order to work with real defined and easy to compute orbitals, l is the corresponding angular momentum and m ≥ 0 is its projection number along the z-quantization axis. For the compatibility with TREXIO, the variables in the classes are defined in the exactly same way as in TREXIO. One can refer to the TREXIO documentation for the details 44 . The class also implements several parsers to write/read specific formats, such as GAMESS 51 and NWCHEM 52 .

C. Pseudopotentials

Pseudopotentials class can store pseudopotential information. PyTurbo supports only the standard semi-local form

VI pp (r i ) = V I loc r i,I + l max l=0 V I l r i,I l m=-l Y l,m Y l,m (2) 
where r i,I = |r i -R I | is the distance between the i-th electron and the I-th ions, l max is the maximum angular momentum of the ion I, and

l max l=0 l m=-l
Y l,m Y l,m is a projection operator on the spherical harmonics centered at the ion I. As it is now becoming a common practice not only in QMC, both the local V I loc r i,I and the non-local V I l r i,I functions, are expanded over a simple Gaussian basis parametrized by coefficients (e.g., effective charge Z eff and other simple constants), multiplying simple powers of r, and a corresponding Gaussian term:

r 2 V l (r) = k α k,l r β k,l -2 exp -γ k,l r 2 , (3) 
where α k,l , β k,l (usually small positive integers), and γ k,l are the parameters obtained by appropriate fitting. α k,l , β k,l and γ k,l are the parameters stored in the Pseudopotentials class. For the compatibility with TREXIO, the variables in the classes are defined in the exactly same way as in TREXIO.

We refer to the documentation of TREXIO for the details 44 .

D. Fortran90 wrappers

PyTurbo has several classes inheriting the fortranIO class, which are basically Fortran90 wrappers for the corresponding TurboRVB fortran binaries. The Listing 5 shows an example to compute the VMC energy of the Hydrogen This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0179003 dimer (assuming the optimized WF is given by a user) using PyTurbo. The input variable of VMC class is namelist instance that is an encapsulated dictionary with keys=fortran keyword and value=value of each parameter, as shown in Listing 5. Indeed, the input parameters used in the Python script contains all parameters given to TurboRVB; thus, one can fully control TurboRVB jobs via PyTurbo. # Reblock the MCMC samples energy, error = vmc.get_energy(init=10, bin=10) print(f"VMC energy = {energy:.4f} +-{error:.4f}")

IV. COMMAND-LINE TOOL AND USER INTERFACE

TurboGenius provides a useful command-line interface, named turbogenius cli. The command-line tool can be run on a terminal by calling turbogenius, which is automatically installed during the setup procedure e.g., by pip. The command-line tool allows one to manipulate input and output files very efficiently and user-friendly. One of the most useful functions of the command-line tool is its helper, as shown in Listings 6 and 7 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0179003

V. TURBOWORKFLOWS: A PYTHON PACKAGE FOR REALIZING HIGH-THROUGHPUT CALCULATIONS USING TURBOGENIUS

Since TurboGenius is able to fully control TurboRVB jobs, one can implement workflows by combining it with a file/job managing package. To demonstrate it, as a proof of concept, we developed an open-source python package, TurboWorkflows, that enables one to compose simple workflows by combining TurboGenius with a job managing python package, TurboFilemanager. We notice that one can exploit other established workflow packages such as AiiDA 18 and Fireworks 20 as job-managing systems. Combining established workflow managers with TurboGenius is an intriguing future work. The main classes of TurboWorkflows are summarized in Table IV. Each workflow class inherits the parent Workflow class with options useful for a QMC calculation. For instance, in the VMC workflow, one can specify a target accuracy (i.e., statistical error) of the VMC calculation. The VMC workflow first submits an initial VMC run to a machine with the specified MPI and OpenMP processes to get a stochastic error bar per Monte Carlo step. Since the error bar is inversely proportional to the square root of the number of Monte Carlo samplings, the necessary steps to achieve the target accuracy is readily estimated by the initial run. The VMC workflow then submits subsequent production VMC runs with the estimated necessary number of steps. Similar functionalities are also implemented in other workflow scripts such as VMCopt workflow, LRDMC workflow, and LRDMCopt workflow. TurboWorkflows can solve the dependencies of a given set of workflows and manage sequential jobs. The Launcher allows one to pass values and files obtained by a workflow to another workflow by using the Variable class, as shown in the listing 8. As shown in the listing 8, the Launcher class accepts workflows as a list, solves the dependencies of the workflows, and submits independent sequential jobs simultaneously. Launcher realizes this feature by the so-called topological ordering of a Directed Acyclic Graph (DAG) and the built-in python module, asyncio. The listing 8 shows a TurboWorkflows workflow script to perform a sequential job, PySCF → TREXIO → TurboRVB WF (JSD ansatz) → VMC optimization (Jastrow factor optimization) → VMC → LRDMC (lattice space → 0). Finally, we get the extrapolated LRDMC energy of the water dimer. From the practical point of view, the step where a user should be particularly careful is the WF optimization, which corresponds to VMCopt workflow in the listing 8. Therefore, a more detailed explanation about the methodological background and its connection to the TurboGenius implementation is deserved here. There are two WF optimization methods implemented in TurboRVB, the so-called stochastic reconfig-uration (SR) 54 and the linear method (LR) [55][56][57] . A user can choose the optimization method via vmcopt_optimizer = sr (SR method) or lr (LR method). In the SR method, variational parameters are defined by means of a positive-definite preconditioning matrix S and the generalized force vector f as

α k → α k + ∆ • (S ′-1 f) k , (4) 
where α k is the k-th variational parameter. The matrix S and vector f are evaluated in a Monte Carlo calculation as:

f k = -2ℜ[ 1 M M i=1 e * L (x i )(O k (x i ) -Ōk )], (5) 
S k,k ′ = 1 M M i=1 (O k (x i ) -Ōk ) * (O k ′ (x i ) -Ōk ′ ), (6) 
and

S ′ i,i = S i,i (1 + ε), (7) 
where e L (x i ) ≡ ĤΨ(x i )

Ψ(x i ) is the local energy, O k (x i ) = ∂ ln Ψ(x i ) ∂α k , Ōk = 1 M M i=1 O k (x i ),
M is the number of Monte Carlo samplings, and x stands for a many-electron coordinate. It indicates that a user should provide two hyperparameters in the SR method, namely, ∆ (denoted as vmcopt_learning_rate in the code input) and ε (denoted as vmcopt_regularization in input. A typical value of ∆ is ∼ 10 -3 , though its precise value is system dependent. ε controls the accuracy of the optimization and the stability of the matrix inversion, affected by the MCMC noise. Instead, in the linear method [55][56][57] , the generalized eigenvalue problem is solved:

Hz = ES ′ z, (8) 
where S ′ is the same as in the SR method, while H is defined as follows:

H k,k ′ = 1 M M i=1 (O k (x i ) -Ōk ) * ⟨x i | Ĥ(O k ′ -Ōk ′ )|Ψ α ⟩ ⟨x i |Ψ α ⟩ , (9) 
Then, the variational parameters are updated by using the obtained z 58 and a parameter ∆, according to

α k → α k + ∆ • z k /z 0 . (10) 
Thus, also in the LR method the user should provide two hyperparameters, namely, ∆ (denoted as vmcopt_learning_rate in the code input) and ε (denoted as vmcopt_regularization). A typical value of ∆ is ∼ 0.35, but once again, its optimal value is system dependent. ε controls the accuracy of the optimization. Hyperparameter tuning is not implemented in TurboGenius, which could be an intriguing future work.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 

PLEASE CITE THIS ARTICLE AS

# VMC calculation with the optimized WF. vmc_workflow = Encapsulated_Workflow( label="vmc-workflow", dirname="vmc-workflow", input_files=[ Variable(label="vmcopt-workflow", vtype="file", name="fort.10"), Variable(label="vmcopt-workflow", vtype="file", name="pseudo.dat"), ], workflow=VMC_workflow( # cluster information cores=1, openmp=1, # vmc parameters vmc_max_continuation=2, vmc_num_walkers=40, vmc_target_error_bar=5.0e-3, vmc_trial_steps=150, vmc_bin_block=10, vmc_warmupblocks=5, vmc_maxtime=172000, ), ) # LRDMC calculations with the optimized WF # LRDMC energies are computed with a = 0.20, 0.30, and 0.40, and then, extrapolated to a->0 limit. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 

PLEASE CITE THIS ARTICLE AS

VI. DEMONSTRATIONS OF HIGH-THROUGHPUT CALCULATIONS

In this section, we will show several results obtained using TurboGenius and TurboWorkflows. Earlier versions of TurboGenius was used for computing phonon dispersion calculations 59 , equation of state calculations 59 , potential energy surfaces of dimers 60,61 , binding energies of molecules [60][61][62] , hydrogen liquids 63 , and hydrogen solids 14 . However, they were not fully performed using a python script. The current versions of TurboGenius and TurboWorkflows allow one to fully control TurboRVB calculations using a python script. In this paper, we show two types of demonstrations, validations of the TurboRVB package and benchmarking QMC calculations using TurboRVB. The summary of the demonstrations are shown in Tables V and VI.

A. Validations of QMC implementations

Validation of scientific softwares, such as checking consistency among softwares that implement the same theory as employed in this study (i.e., inter-software test), is an important step to ensure one's software reliability. The widespread use of validation tests is also important to ensure the trustability of numerical simulations in general. Such validation tests have been performed not-so-widely in the ab initio QMC community, since QMC requires complex computational procedures, as mentioned in the introduction. TurboGenius and Tur-boWorkflows enable one to do the tests much more easily and efficiently. In this paper, we report the results of inter-software tests for the TurboRVB package (v1.0.0). We checked interpackage consistencies between TurboRVB and other established quantum chemistry packages, such as PySCF 27,28 and Quantum Package 29 . The details are written in Secs. VI A 1 and VI A 2. Notice that the data and Python scripts to reproduce the validation tests are available from our public repositories (see Sec. IX). This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 

PLEASE CITE THIS ARTICLE AS

Data set Description of the benchmark test G2-set

Benchmarking the atomization energies of 55 molecules. They were computed using LRDMC at the a → 0 limit. The JSD ansatz with the LDA-PZ nodal surface was employed. The references are experimental values.

The detail is written in Sec. VI B 1.

S22-set

Benchmarking the binding energies of 22 complex systems. They were computed using LRDMC at the a → 0 limit. The JSD ansatz with the LDA-PZ nodal surface was employed. The references are CCSD(T) values. The detail is written in Sec. VI B 1.

A24-set

Benchmarking the binding energies of 24 complex systems. They were computed using LRDMC at the a → 0 limit. The JSD ansatz with the LDA-PZ nodal surface was employed. The references are CCSD(T) values. The detail is written in Sec. VI B 1. SCAI-set Benchmarking the binding energies of 24 complex systems. They were computed using LRDMC at the a → 0 limit. The JSD ansatz with the LDA-PZ nodal surface was employed. The references are CCSD(T) values. The detail is written in Sec. VI B 1. CO dimer Benchmarking the equilibrium bond length and harmonic vibrational frequency of the CO dimer. They were estimated from potential energy surfaces with the JSD (LDA-PZ nodal surface) and JAGP ansatz. The references are experimental values. The details is written in Sec. VI B 2. Cubic crystals Benchmarking the equilibrium lattice parameters 12 cubic crystals. They were estimated by fitting the equation of states obtained by LRDMC. The JSD ansatz with the LDA-PZ nodal surface was employed. The references are experimental values. The detail is written in Sec. VI B 3.

Validation of DFT module: LDA ( PySCF) v.s. LDA ( TurboRVB-prep)

Using the implemented workflows, we have checked the consistency of the DFT-LDA calculations among packages. DFT energies should be consistent among packages as far as the same basis sets and ECPs are used even though those DFT codes employ different implementation schemes. For the reference calculations, we used the PySCF package (v2.0.1) 27,28 with the Perdew-Zunger (PZ81) local density approximation (PZ-LDA) 64 . For the test sets, we have chosen (1) 38 molecules with singlet spins, (2) 10 insulating crystals, where This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0179003

both orthorhombic and non-orthorhombic cells are included, and (3) 4 metallic crystals. For the crystals, we employed the k = 4 × 4 × 4 (i.e., twisted average) grid such that the reciprocal grid includes both real and complex points. For the real-space grid, which is needed for the numerical integration employed in the built-in DFT module (prep), we employed 0.05 Bohr for the molecules and insulating crystals, while 0.03 Bohr for the metallic crystals. We employed the Fermi-Dirac smearing method with 0.01 Ha for the metals. Figures. S-3, S-4, and S-5 show the consistencies between PySCF and TurboRVBprep LDA calculations for all the above cases. The very slight differences come from the implementations (i.e., TurboRVBprep module employs the numerical integration to compute the overlap and Hamiltonian matrix elements). The corresponding numbers are shown in Tables. S-I, S-II, and S-III. The consistencies between the packages show that the implementations of DFT calculations in the TurboRVB package is correctly done.

Validation of TurboRVB QMC module: HF ( PySCF) v.s. VMC ( TurboRVB w/o Jastrow)

One of the most prominent features of TurboGenius is the functionality to convert a TREXIO file to a TurboRVB WF because it allows one to use any quantum chemistry or DFT packages to generate trial WFs as long as they employ localized basis sets. We have carefully verified the implementation of the converter by confirming the consistency between HF and VMC energies without Jastrow factor, both for molecules (open systems) and crystals (periodic systems). More specifically, we computed the HF energies of 100 molecules and 9 crystals (such that both orthorhombic and non-orthorhombic cells are included) by PySCF v2.0.1, where the ccECP [37][38][39][40] with accompanied basis sets were employed. The obtained PySCF checkpoint files were converted to TurboRVB WFs via TREXIO files using the converter implemented in Tur-boGenius package. Then, we computed VMC energies of the TurboRVB WFs without Jastrow factor. The PySCF to TurboRVB conversion via TREXIO supports both restricted (i.e., ROHF) and unrestricted (i.e., UHF) open-shell WFs. We tested the former implementation using the 100 molecules, while the latter using the 49 molecules. For the 100 molecules, the same consistency checks were done between HF calculations by Quantum Package (v2.1.2) and TurboRVB. For the crystals, we tested both single-k and multi-k (i.e., twisted average) calculations. For the single-k tests, k=(0.00, 0.00, 0.00) and (0.25, 0.25, 0.25) were used. For the twisted average tests, we employed k = 4 × 4 × 4 such that the grid includes both real and complex points. Notice that, in the twisted average case, we compared the VMC energies with the averages of the HF energies obtained at each k-point independently, since the VMC is independently done for each k point (i.e., MCMC is done for each k.) We did not use metals for the VMC validation tests. This is because, for metals, the HF energy obtained with the smearing technique is not consistent with the VMC ones due to the fact that the orbital contributions above the Fermi energy are truncated when converting the DFT orbitals to the single Slater-Determinant ansatz. The HF and VMC energies should be consistent within the statistical errors (i.e., within 3σ) as long as the conversions are done correctly. The results of the validation tests are shown in Figs.S-6-S-10. The corresponding values are shown in Tables S-IV-S-VIII. The results show that the HF and VMC energies are consistent within the statistical errors (i.e., within 3σ), implying that the implementations of the WF converter and VMC calculations in the TurboRVB package are correctly done.

B. Benchmarking of QMC calculations

Benchmarking a theory with several typical systems is a task as important as the validation test, with the aim at examining the accuracy of the theory. Such benchmark calculations can also be performed efficiently using TurboGenius and TurboWorkflows. In this work, we benchmarked atomization energies of the Gaussian-2 set 30 , binding energies of the S22 31 , A24 32 , and SCAI 33 sets, and equilibrium lattice parameters of 12 crystals via equation of states calculations. We found that, for all the compounds, the diffusion Monte Carlo calculations with the PZ-LDA nodal surface give satisfactory results, i.e., consistent either with CCSD(T) or experimental values. The details of the results are reported in the following parts.

G2, S22, A24, and SCAI benchmark sets: atomization energy and binding energy calculations

We report the result of the benchmark tests using the G2 30 , S22 31 , A24 32 , and SCAI 33 sets. The G2-set targets atomization energies of 55 molecules, while the other sets benchmark binding energies of complex systems. The benchmark calculations were performed by TurboWorkflows. Our python workflow launched a sequential job for each atom and molecule, PySCF → TREXIO → TurboRVB WF (Jastrow Slater determinant ansatz) → VMC optimization (Jastrow factor) → VMC → LRDMC (lattice space → 0). Finally, we got extrapolated LRDMC energies of atoms and molecules of the benchmark sets. The quality of the Jastrow optimization did not affect the final extrapolated LRDMC energy because the determinant localization approximation (DLA) 65 was employed. Indeed, the workflow was fully automatic and fully reproducible since the determinant part which determines the nodal surface was obtained deterministically, and the Jastrow factor, which was obtained by stochastic optimization, did not affect the extrapolated FN energy. The geometries of the G2 set were taken from previous benchmark studies [66][67][68] , while those of the other dataset were taken from Benchmark Energy and Geometry DataBase (BEGDB) 69 Figure. 2 shows the benchmark result for the G2-set 30 . The corresponding numbers are shown in Table S-IX. We computed the atomization energies of the 55 molecules included in the G2-set by pseudo-potential LRDMC calculations with the JDFT ansatz. We employed the cc-pVQZ basis set with the This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0179003 FIG. 2. Deviation of the LRDMC atomization energies obtained in this study from the experimentally obtained values. Corrections for zeropoint energies and relativistic effects have been included before computing the differences between the LRDMC and experimental values 70 . The blue and red bounds represent discrepancies ± 5 kcal/mol and ± 1 kcal/mol, respectively. DFT calculations with PZ-LDA 64 exchangecorrelation functional were used to generate the trial WFs. The cc-pVQZ basis set with the accompanied ccECP pseudo potentials [37][38][39][40] were employed for the DFT calculations. FIG. 3. The binding energy comparison of the S22 benchmark set. The differences between the LRDMC values obtained in this study and the reference CCSD(T) values are plotted. The blue and red bounds represent discrepancies ± 5 kcal/mol and ± 1 kcal/mol, respectively. DFT calculations with PZ-LDA 64 exchange-correlation functional were used to generate the trial WFs. The cc-pVQZ basis set with the accompanied ccECP pseudo potentials [37][38][39][40] were employed for the DFT calculations. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 64 exchange-correlation functional were used to generate the trial WFs. The cc-pVQZ basis set with the accompanied ccECP pseudo potentials [37][38][39][40] were employed for the DFT calculations. FIG. 5. The binding energy comparison of the SCAI benchmark set. The differences between the LRDMC values obtained in this study and the reference CCSD(T) values are plotted. The blue and red bounds represent discrepancies ± 5 kcal/mol and ± 1 kcal/mol, respectively. DFT calculations with PZ-LDA 64 exchange-correlation functional were used to generate the trial WFs. The cc-pVQZ basis set with the accompanied ccECP pseudo potentials [37][38][39][40] were employed for the DFT calculations. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0179003 accompanied ccECP [37][38][39][40] pseudo potentials. For the DFT calculations, we used the PySCF package (v2.0.1) 27,28 with PZ-LDA 64 exchange-correlation functional. The obtained Mean absolute deviation (MAD) with the JDFT ansatz is 3.242 kcal/mol, which is consistent with previous studies. Nemec et al. 70 used all-electron DMC on Slater determinant (SD) WF to obtain the binding energies of the G2 set to an MAD of 3.2 kcal/mol. Grossman 71 reported a similar accuracy, a MAD of 2.9 kcal/mol, in binding energies by DMC pseudopotential calculations. Raghav et al. 62 reported a MAD of 3.2 kcal/mol by all-electron LRDMC calculations with the JDFT ansatz.

So far, we have discussed the atomization energies obtained using the Jastrow Slater determinant ansatz with the LDA-PZ nodal surface. We notice that the use of a multi-determinant ansatz is more promising in terms of accuracy. For instance, Petruzielo et al. 72 reported that DMC with multi-determinant ansatz constructed from multi-configurational self-consistent field theory (MCSCF) calculations achieved the MAD of 1.2 kcal/mol. Morales et al. 73 also achieved the MAD of 0.8 kcal/mol using multi-determinant ansatz constructed from natural orbitals of self-consistent second-order configuration interaction (SOCI) calculations. Yao et al. 74 applied the so-called semistochastic heat-bath configuration interaction method (SHCI) to the G2 set, and obtained the MAD of 0.46 kcal/mol. Recently, Raghav et al. 62 showed that a similar accuracy can be achieved even within the single-determinant approach by optimizing its nodal surface. They reported a MAD of 1.6 kcal/mol by all-electron LRDMC calculations with the JAGPs ansatz. TurboGenius and TurboWorkflows implement workflows to optimize the nodal surface of the JSD and JAGPs ansatz, by which one can reproduce Raghav's result. However, we notice that the fully automatic nodal surface optimization of WFs with many variational parameters is not always successful, especially for large systems, because optimization is easily stuck in a local minimum due to the complexity of the parameter space. The problem comes not only from the optimization algorithms but also from the functional form of the WF. To achieve a fully automatic optimization that works even for large systems, one should devise a compact WF form describing a target physical system with the smallest number of variational parameters for the targeted accuracy, a proper initial guess, and/or an optimization algorithm that can avoid being stuck in local minima. These drawbacks should be solved in the near future to realize robust high-throughput QMC calculations for large systems with optimized (i.e., beyond-DFT) nodal surfaces.

The S22 dataset was developed by Hobza et al. for testing interaction energies for small complex systems 31 . Figure . 3 shows the benchmark result for the S22-set. The corresponding numbers are shown in Tab. S-X. We employed the cc-pVQZ basis set with the accompanied ccECP [37][38][39][40] pseudo potentials. For the DFT calculations, we used the PySCF package (v2.0.1) 27,28 with PZ-LDA 64 exchange-correlation functional. The obtained MAD is 0.610 kcal/mol. A subset of the S22-benchmark was studied by Dubecky et. al. 75,76 . They extracted a subset of the S22 benchmark test, ammonia dimer, water dimer, methane dimer, ethene dimer, ethene-ethyne, benzene-water, benzene-methane, and benzene dimer (T-shape). They employed the ECPs with the corresponding basis sets (aug-TVZ) developed by Burkatzki et al. 42 . They used the B3LYP exchange-correlation functional for generating the trial WFs. Their obtained binding energies, -3.10(6), -5.15 (8), -0.44(5), -1.47(9), -1.56 (8), -3.53(13), -1.30 (13), and -2.88 (16) kcal/mol are very closed to ours, -3.68 (21), -5.26 (21), -0.35 (20), -1.75 (23), -1.47 (20), -3.73 (21), -1.77 (18) and -2.83 (22) kcal/mol for ammonia dimer, water dimer, methane dimer, ethene dimer, ethene-ethyne, benzene-water, benzene-methane, and benzene dimer (T-shape), respectively. The full set of the S22-benchmark was studied by Korth et. al. 77 . They used the guidance functions of the Slater-Jastrow type with Hartree-Fock determinants and Schmidt-Moskowitz type correlation functions. 78 . They used quadruple ζ valence GTO basis sets fully optimized for the ECPs developed by Ovcharenko et al. 79 . Their obtained MAD (0.68 kcal/mol) is very close to ours (0.61 kcal/mol).

The A24 dataset is a set of non-covalent systems large enough to include various types of interactions 32 . The dataset was intended for testing accuracy of computational methods which are used as a benchmark in larger model systems. Figure. 4 shows the benchmark result for the A24-set. The corresponding numbers are shown in Table S-XI. We employed the cc-pVQZ basis set with the accompanied ccECP [37][38][39][40] pseudo potentials. For the DFT calculations, we used the PySCF package (v2.0.1) 27,28 with PZ-LDA 64 exchange-correlation functional. The obtained MAD is 0.315 kcal/mol. The full set of the A24-benchmark was studied by Dubecky et. al. 76 . They investigated the effects of the basis set, Jastrow factor, and optimization protocols. They finally obtained MAD of 0.15 kcal/mol with the single-determinant trial WFs of Slater-Jastrow type using B3LYP orbitals and aug-TZV basis sets accompanied with the ECPs developed by Burkatzki et al. 42 . Their MAD (0.15 kcal/mol) is very closed to the value reported in this study (0.315 kcal/mol).

The SCAI dataset is developed to benchmark interactions between amino acid side chains 33 . The dataset contains a representative set of 24 of the 400 (i.e., 20 × 20) possible interacting side chain pairs. Figure . 5 shows the benchmark result for the SCAI-set. The corresponding numbers are shown in Table . S-XII. We employed the cc-pVQZ basis set with the accompanied ccECP [37][38][39][40] pseudo potentials. For the DFT calculations, we used the PySCF package (v2.0.1) 27,28 with PZ-LDA 64 exchange-correlation functional. The obtained MAD is 0.402 kcal/mol, which is as small as the S22 and A24 benchmark sets. To the best of our knowledge, no one has benchmarked the SCAI data set using QMC. Among the systems, 704-DH1 and 705-DHN1 show the largest deviations, -1.33 (26) kcal/mol and -2.15 (26) kcal/mol, respectively.

Potential Energy Surface (PES) calculations

Potential Energy Surface (PES) calculations are often computed for dimers in QMC for benchmarking, i.e., for comparing binding energies, equilibrium bond lengths, and harmonic This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0179003 frequencies with experimental values, and for checking if the obtained forces and pressures are biased or not 36,61,[80][81][82][83][84] . To reduce the computation costs of PES calculations and avoid being trapped at local minima, Jastrow factors are usually optimized at a certain bond length and copied to WFs with other bond lengths which will then be optimized with a better starting point. TurboWorkflows automatizes these procedure and, for a good point, solves the dependency automatically. An example workflow is shown in Listing S-1, where the initial Jastrow optimization procedure is defined for a bond length (1.10 Å) and the optimized Jastrow factors are copied to WFs at other bond lengths and optimized again. The point is the Value instance that defines workflows that should be completed before. The workflow for the PES calculation is showin in Fig. 7. The PESs were computed at both the VMC and LRDMC levels. Two ansatz were employed in this study, JDFT and JAGPs. The JDFT ansatz were optimized according to the procedure described above using the linear method 56 at the VMC level and then they were converted to the JAGPs ansatz. The JAGPs were further optimized using the linear method at the VMC level. The optimized JDFT and JAGP ansatz were used for the subsequent LRDMC calculations. The T-move approach 85 with the lattice discretization = 0.30 Bohr was employed for the LRDMC calculations. The obtained PESs are shown in Fig. 6. The left-hand side of Fig. 6 shows that the PESs obtained with JDFT and JAGPs ansatz at the VMC level, while the righthand of Fig. 6 shows that the PESs obtained with JDFT and JAGPs ansatz at the LRDMC level. Table VII summarizes the equilibrium bond length and the harmonic frequency obtained from the VMC and LRDMC calculations and those obtained from experiments. The LRDMC calculation with the JAGPs ansatz gives the closest values to the experiment, as expected. The remaining discrepancies can be solved using a larger determinant and Jastrow basis sets as they both affect the quality of the nodal surfaces. Such a benchmark test for other molecules is an intersting future work. The workflow will be also useful for benchmarking new ansatz and algorithms implemented in TurboRVB. 

Benchmarking Equations of State in Solids

We report the Equation of States (EOSs) of 12 solids computed at the VMC and LRDMC levels by TurboWorkflows. Such a benchmark has been done for several crystals to test the accuracy of QMC calculations [START_REF] Shulenburger | [END_REF]88 . Table VIII shows the Crystallography Open Database(COD)-IDs 89,90 of the 12 crystals computed in this demonstration. The 12 crystals were chosen because Ref. 91 summarizes experimental lattice parameters at 0 K with the zero-point energy subtracted, which are directly comparable with our results.

First of all, we carefully checked the basis-set convergence since PySCF, which generates trial WFs for the subsequent TurboRVB calculations, employs the localized basis set also for the periodic systems. In other words, the convergence is sometimes difficult to be achieved unlike the plane-wave one.

To check the basis-set convergence, we compared the EOSs of the 12 crystals obtained by PySCF (localized basis-set) and QuantumEspresso (Plane-Wave basis set with a 800 Ryd cutoff) with the same ccECP pseudopotentials [37][38][39][40] . The basis set convergence check using 1×1×1 supercell is shown in Fig. S-11 and the finally chosen basis sets are listed in Table VIII. We found that, to achieve the convergence, a large basis set (e.g., V5Z) is often needed. Notice that, in the localized basis sets, orbitals whose exponent is smaller than 0.10 were cut to avoid the numerical instability (i.e., linear-dependency 59 ). The consistency holds also for the 2×2×2 supercells as shown in Fig. S-12. The slow convergence with respect to the basis set size comes from the fact that the provided basis sets were tuned using molecules, not solids. Indeed, the exponents are not suitable for solids. Therefore, to achieve a better convergence, we recommend to use basis sets optimized for solids 92 .

We have confirmed that the 2×2×2 supercell with k=2×2×2 twisted average is large enough to mitigate the one-body finite size effect for Diamond (Fig. S-13). It should be common among all the compounds we are studying because they are all insulators with similar lattice parameters. We have not checked whether 2×2×2 supercells are large enough to mitigate the two-body error, but we can assume so because the EOS calculations depend on the relative energies. In fact, Ref. 93 shows that larger supercells do not change the lattice parameter.

Figure 8 shows the EOSs of the 12 crystals computed at the VMC and LRDMC levels with the LDA-PZ nodal surfaces with the converged basis sets. We employed the JDFT ansatz with the two-and three-body Jastrow factors 17 . The Jastrow basis sets employed for the three-body part are 3s1p for B, C, N, and O, and 4s1p for Na, Mg, Al, Si, P, S, Cl, Ca, and As. For comparison, we also performed DFT calculations with the XC=LDA-PZ 64 , PBE 94 , and PBEsol 95 using Quantum Espresso with the Ultra-soft PPs provided by the PS-library Project (v.1.0.0) 96 . The 2×2×2 supercells and k=2×2×2 meshes were employed for all the calculations. The obtained PESs were fitted by the Vinet function 97 . Table VIII shows the lattice parameters (a 0 ) obtained from the Vinet fittings and the available experimental values 91 . We evalu-This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. × 100)), where M is the sample size (i.e., M = 12 in this work). Fig. 9 shows percentage errors in the calculated lattice parameters compared to experimental ones.

PLEASE CITE THIS ARTICLE AS

On one hand, our results show that the accuracy of the VMC calculations on the lattice parameter is strongly dependent on crystals. For instance, the estimated equilibrium lattice parameter of Diamond is well consistent with the experimental value both at the DFT and VMC levels, while that of NaCl was severely underestimated. The MARE for the VMC calculations is 0.5087(75) %, which is slightly better than that for the DFT-LDA calculations, while worse than that of the DFT-PBEsol calculations. The results imply the VMC calculations (with the small Jastrow factor employed in this study) is sometimes not sufficient to get accurate EOSs.

On the other hand, our results show that the DMC calculations with the LDA-PZ nodal surfaces are much less depen-dent on the choices of XCs for generating the trial WFs, showing the accuracy of the methods. The conclusion is in line with the benchmark calculations presented in Refs. 87 and 88, showing that DMC is highly accurate in describing the structural properties of a broad range of solids and that these structural properties are rather insensitive to the given nodal surfaces. The MARE for the DMC calculations is 0.229(11) %, which is the best result among the methods tested in this study. The remaining discrepancy between the experiments and calculations could come either from the fixed nodal surface (i.e., the LDA-PZ is used in this study), from the qualities of the PPs (ccECP), or from their related non-local properties (i.e., in case of T-moves, the quality of the Jastrow factor can still affect the results). In these regards, more comprehensive benchmark tests on the EOS calculations using TurboWorkflows will be an interesting perspective. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 

PLEASE CITE THIS ARTICLE AS

PLEASE CITE THIS ARTICLE AS

VII. CONCLUSIONS

In this paper, we describe the features of the recently developed TurboGenius and demonstrate its applications. Tur-boGenius is a collection of python wrappers for the ab initio QMC code, TurboRVB. The users can combine the modules implemented in TurboGenius with their python scripts to manage QMC tasks in a python script. TurboWorkflows, which is implemented using TurboGenius, is a python package realizing QMC workflows. TurboWorkflows enables one to run sequential QMC calculations fully automatically and manage file and job transfers from/to cluster machines. As demonstrated in this paper, these Python packages are particularly helpful in performing validations of the methods and algorithms and in conducting benchmark calculations for various materials. In terms of future works, for example, generating a materials database with the ab initio QMC would be a very intriguing work, considering the recent successes of the DFT-based materials databases. As mentioned in the introduction, the importance of data provenance and data curation in the field of materials science has increased thanks to the development of information science and technology. In this regard, an accurate QMC database can be utilized, for instance, for the construction of machine learning potentials with accuracy exceeding DFT-based ones and for training machine learning exchange-correlation functionals. A package for high-throughput electronic structure calculations is an infrastructure technology in the materials science community. Thus, it should be continuously developed and maintained as an open-source package for the long-term perspective.

VIII. SUPPLEMENTARY MATERIAL

See the supplementary material for UML diagrams of the TurboGenius and TurboWorkflows packages, examples of This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 

PLEASE CITE THIS ARTICLE AS

FIG. 1 .

 1 FIG. 1.A typical workflow of a QMC calculation using Tur-

( 2 )

 2 Conversion of the generated JAGP(s/u) ansatz to JSD one using convertfort10mol.x binary because the subsequent DFT calculation works only with molecular orbitals, where SD stands for Slater Determinant; (3) Initializing the WFs using the build-in DFT module (prep.x); (3') If one wants to use JAGP(s/u) ansatz, one can convert the initialized JSD ansatz to a JAGP(s/u) ansatz before the VMC optimization; (4) Optimization of a WF at the VMC level using turborvb.x binary; (4') One can convert the optimized WF to another type of ansatz. Pf stands for the Pfaffian ansatz, which is the most general form of the AGP WF 17 . (5) Computation of observables such as energy and forces at the VMC level using turborvb.x binary; (6) Computation of observables such as energy and forces at the LRDMC level using turborvb.x; (7) Computation of other physical properties such as electron density.

Listing 2 .

 2 A python script to read a TREXIO file # import module from turbogenius.wavefunction import Wavefunction # Read a TREXIO File of water and convert # it to the TurboRVB format. wavefunction = Wavefunction() wavefunction.from_trexio( trexio_filename="trexio.hdf5" ) wavefunction.to_jsd() # Jastrow-Slater WF. wavefunction.to_jagps() # Jastrow-AGPs WF.

  DOI: 10.1063/5.0179003

  Figure S-1 shows a Unified Modeling Language (UML) diagram of the VMC workflow. The users can also define their own workflows inheriting the Workflow class.

  Figure S-2 shows the UML diagram corresponding to the script shown in the listing 8. If one wants to manipulate files or values in a more complex way, one should define a new workflow class inheriting the Workflow class and pass it into the Encapsulated Workflow class.

  DOI: 10.1063/5.0179003 Accepted to J. Chem. Phys. 10.1063/5.0179003

  DOI: 10.1063/5.0179003

  FIG.4. The binding energy comparison of the A24 benchmark set. The differences between the LRDMC values obtained in this study and the reference CCSD(T) values are plotted. The blue and red bounds represent discrepancies ± 5 kcal/mol and ± 1 kcal/mol, respectively. DFT calculations with PZ-LDA64 exchange-correlation functional were used to generate the trial WFs. The cc-pVQZ basis set with the accompanied ccECP pseudo potentials[37][38][39][40] were employed for the DFT calculations.

  FIG.6. PESs of the CO dimer computed by a python workflow implemented using TurboWorkflows. The left and right PESs were computed at the VMC and LRDMC levels, respectively. The green and blue vertical broken lines represent the equilibrium distances obtained from the JSD (with the LDA-PZ nodal surface) and JAGP PESs, respectively. The red vertical broken line shows the experimental equilibrium distance.

  FIG. 8. Results of the equation of state calculations for the 12 crystals by DFT, VMC, and LRDMC. The dot points are obtained values, and the solid lines are the curves obtained by a fit of the Vinet equation to calculations. The VMC and DMC points have statistical errors. In the plots, the error bars represent 2σ. The experimental equilibrium volumes and those obtained by a fit of the Vinet equation to calculations are plotted as vertical broken lines. XC and NS stand for exchange-correlation functional and nodal surface, respectively. Notice that the finite temperature thermal expansion and zero point energy were corrected in the experimental values 91 .

FIG. 9 .

 9 FIG. 9. Percentage errors in the obtained lattice parameters as compared to the experimental values 91 . In the plots, the error bars represent 2σ. The positive (negative) percentage indicates that the calculation overestimates (underestimates) the lattice parameter.

  DOI: 10.1063/5.0179003 Python scripts to construct QMC workflows, and details of the validation tests and benchmark results.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  et al. has very recently developed a new open-source Python-based package for real-space QMC, named PyQMC

  .

	# generate a WF file from water.xyz
	wavefunction = Wavefunction()
	wavefunction.read_from_structure(
	structure_file="water.xyz",
	det_basis_set="cc-pVQZ",
	jas_basis_set="cc-pVDZ",
	pseudo_potential="ccECP",
	)
	wavefunction.to_jsd() # Jastrow-Slater WF.
	Listing 1. A python script to generate a WF file
	# import module
	from turbogenius.wavefunction import Wavefunction

PLEASE CITE THIS ARTICLE AS DOI: 10

  This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

			vmc_genius = VMC_genius( P 1 vmcsteps=300,	Chain Monte Carlo (MCMC) steps and the number of walk-
				vmcsteps=600, # The number of MCMC steps 1 0.740212 1.00000000 num_walkers=40,	ers used in total, respectively. (2) One can generage the
			""" )	num_walkers=40, # The number of walkers	input file corresponding to the parameters. (3) One can
			) # (2) generate an input file vmc_genius.generate_input(input_name="datas_vmc.input") H2_jas_basis_sets = Jas_Basis_sets.parse_basis_sets_from_texts( launch the VMC job. (4) After the VMC job is com-pleted, one can post-process the outcomes depending on the [H_jastrow_basis, H_jastrow_basis], format="gamess" type of jobs. For instance, in the VMC genius class, the method compute energy and forces allows one to get the )
	typeset. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and	PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0179003 .1063/5.0179003	Listing 3. A python script to compute VMC energy of the hydrogen dimer # one needs "fort.10" (i.e., a WF file of the H2 dimer) for this calculation. means and variances of the energy, forces, and stresses us-ing the TurboRVB built-in scripts implementing the boot-strap and jackknife methods 47 , where one can use the reblock-ing (binning) technique to remove the autocorrelation bias. 48 . The related options are bin block (int): block length and warmupblocks (int): the number of disregarded blocks. The listing 4 shows a Python script to compute the VMC energy of the hydrogen dimer with JSD ansatz with DFT or-bitals (JDFT). We notice that TurboRVB commands launched by TurboGenius can be specified through an environmen-tal variable TURBOGENIUS QMC COMMAND. For instance, when one sets TURBOGENIUS QMC COMMAND='mpirun -np 64 turborvb-mpi.x', one can launch the VMC job with 64 MPI processes. One can run a serial job by an environmental value TURBOGENIUS QMC COMMAND='turborvb-serial.x'. Listing 4. A python workflow to obtain the VMC energy of the Hydrogen dimer. vmc_genius.run(input_name="datas_vmc.input", # (3) launch a VMC run output_name="out_vmc.o") # (4) compute energy and forces with reblocking vmc_genius.compute_energy_and_forces(bin_block=10, warmupblocks=10) # print vmc energy print(f"VMC energy = {vmc_genius.energy:.5f} +-{vmc_genius.energy_error:.5f} Ha") #!/usr/bin/env python # TREXIO -> JDFT WF (fort.10) -> VMCopt (only Jastrow) -> VMC (JDFT) # import modules import os, shutil from turbogenius.pyturbo.basis_set import Jas_Basis_sets from turbogenius.wavefunction import Wavefunction from turbogenius.vmc_opt_genius import VMCopt_genius from turbogenius.vmc_genius import VMC_genius # trexio filename (Hydrogen dimer) trexio_filename = "H2_trexio.hdf5" # Start a workflow root_dir = os.getcwd() # TREXIO -> TurboRVB WF trexio_dir = os.path.join(root_dir, "01trexio") os.makedirs(trexio_dir, exist_ok=True) shutil.copy( os.path.join(root_dir, trexio_filename), os.path.join(trexio_dir, trexio_filename) ) os.chdir(trexio_dir) # Jastrow basis (GAMESS format) H_jastrow_basis = """ S 1 1 1.873529 1.00000000 S 1 1 0.343709 1.00000000 S 1 1 0.139013 1.00000000 # convert the TREXIO file to the TurboRVB WF format (i.e., fort.10) wavefunction = Wavefunction() wavefunction.read_from_trexio( trexio_filename=os.path.join(trexio_dir, trexio_filename), jas_basis_sets=H2_jas_basis_sets, ) os.chdir(root_dir) # Optimization of Jastrow factor vmcopt_dir = os.path.join(root_dir, "02vmcopt") os.makedirs(vmcopt_dir, exist_ok=True) copy_files = ["fort.10", "pseudo.dat"] for file in copy_files: shutil.copy(os.path.join(trexio_dir, file), os.path.join(vmcopt_dir, file)) os.chdir(vmcopt_dir) # average the optimized variational parameters vmcopt_genius.average(optwarmupsteps=5) os.chdir(root_dir) # VMC calculation with the optimized WF vmc_dir = os.path.join(root_dir, "03vmc") os.makedirs(vmc_dir, exist_ok=True) copy_files = ["fort.10", "pseudo.dat"] for file in copy_files: shutil.copy(os.path.join(vmcopt_dir, file), os.path.join(vmc_dir, file)) os.chdir(vmc_dir) # generate a vmc_genius instance vmc_genius = VMC_genius( regularization=0.001, opt_onebody=True, opt_twobody=True, opt_det_mat=False, opt_jas_mat=True, opt_det_basis_exp=False, opt_jas_basis_exp=False, opt_det_basis_coeff=False, opt_jas_basis_coeff=False, ) # generate the input file and run vmcopt_genius.generate_input(input_name="datasmin.input") vmcopt_genius.run(input_name="datasmin.input", output_name="out_min") # generate a vmcopt_genius instance vmcopt_genius = VMCopt_genius( vmcoptsteps=100, steps=50, warmupblocks=0, num_walkers=40, optimizer="lr", learning_rate=0.35,

# import modules from turbogenius.vmc_genius import VMC_genius # (1) create a vmc_genius instance

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0179003

The procedure is composed of 4 steps, i.e., (1) create a vmc genius instance, (2) generate an input file, (3) run the VMC job, and (4) post-processing (reblocking):

(1) 

The input parameters used here are vmcsteps (int) and num walkers (int) specifying the total number of Markov

TABLE II .

 II Major classes of the PyTurbo package. Corresponding modules in TurboRVB are listed in Table III. Fortran binary turborvb.x, tuned for VMC optimizations. VMC Python wrapper for a Fortran binary turborvb.x, tuned for single-shot VMC calculations. LRDMCopt Python wrapper for a Fortran binary turborvb.x, tuned for LRDMC optimizations. LRDMC Python wrapper for a Fortran binary turborvb.x, tuned for single-shot LRDMC calculations. Readforward Python wrapper for a Fortran binary readforward.x TABLE III. Main modules in TurboRVB 17 .

	Parent Class	Class	Description
	-	IO fort10 Basis sets	Represents many-body WFs (i.e., fort.10). Allows WF manipulations. Represents basis sets.
		Pseudo potentials Represents pseudo potentials.
		Makefort10	Python wrapper for a Fortran binary makefort10.x
		Convertfort10 Python wrapper for a Fortran binary convertfort10.x
		Convertfort10mol Python wrapper for a Fortran binary convertfort10mol.x
		Convertpfaff	Python wrapper for a Fortran binary convertpfaff.x
	Prep VMCopt Python wrapper for a Module Python wrapper for a Fortran binary prep.x Fortran IO Description
	makefort10.x		

  . One can readily know what options are available and what each option does. This functionality is realized with the click package 53 .

	Listing 6. The helper implemented in TurboGenius.
	% turbogenius --help
	Usage: turbogenius [OPTIONS] COMMAND [ARGS]...
	Options:	
	--help Show this message and exit.
	Commands:	
	convertfort10	convertfort10_genius
	convertfort10mol convertfort10mol_genius
	convertpfaff	readforward_genius
	convertwf	convert wavefunction
	correlated-sampling correlated_sampling_genius
	lrdmc	lrdmc_genius
	lrdmcopt	lrdmcopt_genius
	makefort10	makefort10_genius
	prep	prep_genius
	vmc	vmc_genius
	vmcopt	vmcopt_genius
	Listing 7. The VMCopt helper implemented in TurboGenius.
	% turbogenius vmcopt --help
	Usage: turbogenius vmcopt [OPTIONS]
	Options: (-g, -r, and/or -post is mandatory.)
	-post	Postprocess
	-r	Run a program
	-g	Generate an input file
	-vmcoptsteps INTEGER Specify vmcoptsteps
	-optwarmup INTEGER Specify optwarmupsteps
	-steps INTEGER	Specify steps per one iteration
	-bin INTEGER	Specify bin_block
	-warmup INTEGER	Specify warmupblocks
	-nw INTEGER	Specify num_walkers
	-maxtime INTEGER	Specify maxtime
	-optimizer TEXT	Specify optimizer, sr or lr
	-learn FLOAT	Specify learning_rate
	-reg FLOAT	Specify regularization
	-opt_onebody	flag for opt_onebody
	-opt_twobody	flag for opt_twobody
	-opt_det_mat	flag for opt_det_mat
	-opt_jas_mat	flag for opt_jas_mat
	-opt_det_basis_exp flag for opt_det_basis_exp
	-opt_jas_basis_exp flag for opt_jas_basis_exp
	-opt_det_basis_coeff flag for opt_det_basis_coeff
	-opt_jas_basis_coeff flag for opt_jas_basis_coeff
	-twist	flag for twisted average
	-kpts INTEGER... kpts, Specify Monkhorst-Pack
	grids and shifts,
		[nkx,nky,nkz,kx,ky,kz]
	-plot	flag for plotting graph
	-log TEXT	logger level, DEBUG, INFO, ERROR
	--help	Show this message and exit.
	%	

TABLE IV .

 IV Major classes of the TurboWorkflows package.This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

		)
		Parent Class # VMC optimization of Jastrow factor Class Description -Workflow # One-, two-, and three-body Jastrow are optimized Abstract class for implementing workflows vmcopt_workflow = Encapsulated_Workflow( Encapsulated Workflow Encapsulated workflow class including input and output file handlings Launcher label="vmcopt-workflow", A class for managing Encapsulated Workflow instances, e.g., solving dependency. Workflow DFT workflow dirname="vmcopt-workflow", A workflow implementation based on DFT genius VMC workflow input_files=[ A workflow implementation based on VMC genius Variable(label="trexio-workflow", vtype="file", name="fort.10"), VMCopt workflow A workflow implementation based on VMCopt genius Variable(label="trexio-workflow", vtype="file", name="pseudo.dat"), LRDMC workflow A workflow implementation based on LRDMC genius ], LRDMCopt workflow A workflow implementation based on LRDMCopt genius Workflow PySCF workflow workflow=VMCopt_workflow( A workflow implementation based on PySCF # cluster information TREXIO workflow A workflow implementation based on TREXIO cores=1,
		openmp=1,
		# vmc optimization, parameters
		vmcopt_max_continuation=2, Listing 8. A python workflow to obtain the extrapolated LRDMC energy (a → 0) of the water molecule. vmcopt_num_walkers=40,
		vmcopt_target_error_bar=7.5e-3,
		#!/usr/bin/env python vmcopt_trial_optsteps=10,
		vmcopt_trial_steps=50,
		# python packages vmcopt_production_optsteps=40,
		import os vmcopt_optwarmupsteps_ratio=0.8,
		import shutil vmcopt_bin_block=1,
		vmcopt_warmupblocks=0,
	PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0179003	# turboworkflows packages from turboworkflows.workflow_trexio import TREXIO_convert_to_turboWF from turboworkflows.workflow_vmc import VMC_workflow from turboworkflows.workflow_vmcopt import VMCopt_workflow from turboworkflows.workflow_lrdmc_ext import LRDMC_ext_workflow from turboworkflows.workflow_encapsulated import Encapsulated_Workflow from turboworkflows.workflow_lanchers import Launcher, Variable # dictionary of Jastrow basis (GAMESS format) jastrow_basis_dict = { "H": """ S 1 1 1.873529 1.00000000 S 1 1 0.802465 1.00000000 S 1 1 0.147217 1.00000000 """, "O": """ S 1 1 1.686633 1.00000000 S 1 vmcopt_optimizer="lr", vmcopt_learning_rate=0.35, vmcopt_regularization=0.001, vmcopt_onebody=True,
		1	0.237997 1.00000000
		S 1
		1	0.125346 1.00000000
		P 1
		1	1.331816 1.00000000
		""",
		}
		# Convert from a TREXIO file to a WF with TurboRVB format
		trexio_workflow = Encapsulated_Workflow(
		label="trexio-workflow",
		dirname="trexio-workflow",
		input_files=["water.hdf5"],
		workflow=TREXIO_convert_to_turboWF(
		trexio_filename="water.hdf5",
		jastrow_basis_dict=jastrow_basis_dict,
		),

TABLE V .

 V Summary of the validation tests using TurboGenius and TurboWorkflows.

	Data set	Target (TurboRVB) Ref. (PySCF) Purpose of the validation
	38 molecules LDA-DFT (prep) LDA-DFT Consistency check between the DFT module of PySCF and that of TurboRVB
				for open-boundary condition systems (molecules). The detail is written in
				Sec. VI A 1.
	10 crystals	LDA-DFT (prep) LDA-DFT Consistency check between the DFT module of PySCF and that of TurboRVB
				for periodic-boundary condition systems with insulating electronic states (with-
				out the smearing technique). k = 4×4×4 was used. The detail is written in
				Sec. VI A 1.
	4 crystals	LDA-DFT (prep) LDA-DFT Consistency check between the DFT module of PySCF and that of TurboRVB
				for periodic-boundary condition systems with metallic electronic states (with
				the smearing technique). k = 4×4×4 was used. The detail is written in
				Sec. VI A 1.
	100 molecules VMC (turborvb) RHF/ROHF Consistency check between HF calculations done by PySCF and VMC calcula-
				tions without Jastrow factor done by TurboRVB for open-boundary condition
				systems (molecules). RHF and ROHF were used for spin-unpolarized and spin-
				polarized systems, respectively. The same consistency check was done between
				TurboRVB and Quantum Package. The detail is written in sec. VI A 2.
	49 molecules VMC (turborvb)	UHF	Consistency check between HF calculations done by PySCF and VMC calcula-
				tions without Jastrow factor done by TurboRVB for open-boundary condition
				systems (molecules) with spin-polarized states (UHF was used). The detail is
				written in Sec. VI A 2.
	9 crystals		

VMC (turborvb) RHF/ROHF Consistency check between HF calculations done by PySCF and VMC calculations without Jastrow factor done by TurboRVB for periodic-boundary condition systems. RHF and ROHF were used for spin-unpolarized and spinpolarized systems, respectively. k = Γ, k = (0.25, 0.25, 0.25), and k = 4×4×4 were tested. The detail is written in Sec. VI A 2. TABLE VI. A summary of the benchmarks using TurboGenius and TurboWorkflows.

TABLE VII .

 VII Equilibrium bond distances r eq (Å) and harmonic frequencies ω (cm -1 ) of the CO dimer obtained with the JDFT and JAGPs ansatz both at the VMC and LRDMC levels.

	Method Ansatz r eq (Å)	ω (cm -1 )
	VMC	JDFT 1.1150(2) JAGPs 1.1186(2)	2272(3) 2233(3)
	LRDMC	JDFT 1.1223(2) JAGPs 1.1240(2)	2212(3) 2194(3)
	Exp.	-	1.128323 a 2169.81358 a

a These values are taken from Ref.

86. 

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.PLEASE CITE THIS ARTICLE ASDOI: 10.1063/5.0179003

ACKNOWLEDGMENTS

K.N. is grateful for computational resources from the Numerical Materials Simulator at National Institute for Materials Science (NIMS). K.N. and M.C. are grateful for computational resources of the supercomputer Fugaku provided by RIKEN through the HPCI System Research Projects (Project IDs: hp200164, hp210038, hp220060, and hp230030). K.N. acknowledges financial support from the JSPS Overseas Research Fellowships, from Grant-in-Aid for Early Career Sci-

We dedicate this paper to the memory of Prof. Sandro Sorella (SISSA), who passed away during the collaboration. He has been one of the most influential contributors to the QMC community. In particular, he deeply inspired this work, with the development of his ab initio QMC code, TurboRVB.

IX. DATA AVAILABILITY

The TREXIO files used for the validation tests are available from our ZENODO repository [https://doi.org/ [https://github.com/kousuke-nakano/ turboworkflows], respectively. To ensure the reliability of the TurboGenius package, we have adopted standard continuous integration and deployment (CD/CI) practices. Specifically, we have prepared unit tests as well as regression tests that are executed automatically using GitHub actions whenever changes are pushed to the repository. These tests cover many functionalities in the packages; Thus, they help us with identifying any potential issues and/or bugs in the packages. As open-source projects, we encourage contributions from anyone interested in the development of these packages. The QMC kernel, TurboRVB, is also available from the GitHub repository [https://github.com/sissaschool/turborvb].

XI. CONFLICT OF INTEREST

The authors declare no conflict of interest.