
HAL Id: hal-04336418
https://hal.science/hal-04336418

Submitted on 15 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Annotations for Rule-Based Models
Matteo Cavaliere, Vincent Danos, Ricardo Honorato-Zimmer, William Waites

To cite this version:
Matteo Cavaliere, Vincent Danos, Ricardo Honorato-Zimmer, William Waites. Annotations for Rule-
Based Models. William S. Hlavacek. Modeling Biomolecular Site Dynamics, 1945, Springer New York,
pp.271-296, 2019, Methods in Molecular Biology, 978-1-4939-9100-6. �10.1007/978-1-4939-9102-0_13�.
�hal-04336418�

https://hal.science/hal-04336418
https://hal.archives-ouvertes.fr

ar
X

iv
:1

80
9.

05
70

8v
1

 [
q-

bi
o.

M
N

]
 1

5
Se

p
20

18

Annotations for Rule-Based Models

Matteo Cavaliere, Vincent Danos, Ricardo Honorato-Zimmer

and William Waites

All authors contributed equally.

Corresponding author:

William Waites

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

Edinburgh, EH8 9LE, UK

Email: wwaites@inf.ed.ac.uk

This manuscript has been prepared for inclusion in Modeling Biomolecular Site Dynam-

ics: Methods and Protocols (Ed. William S. Hlavacek), part of the Methods in Molecular Biology

series.

1

http://arxiv.org/abs/1809.05708v1
mailto:wwaites@inf.ed.ac.uk
https://www.springer.com/series/7651

Summary

The chapter reviews the syntax to store machine-readable annotations and describes the

mapping between rule-based modelling entities (e.g., agents and rules) and these anno-

tations. In particular, we review an annotation framework and the associated guidelines

for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen

languages, and present prototypes that can be used to extract and query the annotations.

An ontology is used to annotate models and facilitate their description.

Key words: Rule-Based Modelling, Kappa, BNGL, KaSim, BioNetGen, RDF, Turtle,

MIRIAM, SPARQL, Rule-Based Model Ontology (rbmo)

2

1 Introduction

1.1 The need for model annotation

The last decade has seen a rapid growth in the number of model repositories (1–5). It

is also well understood that the creation of models and of repositories requires expert

knowledge and integration of different types of biological data from multiple sources (6).

These data are used to derive the structure of, and parameters for, models. However which

data are used and how the model is derived from that data is not part of the model unless

we explicitly annotate it in a well-defined way.

In general, annotations decorate a model with metadata linking to biologically rele-

vant information (7). Annotations can facilitate the automated exchange, reuse and com-

position of complex models from simpler ones. Annotations can also be used to aid in

the computational conversion of models into a variety of other data formats. For example,

PDF documents (1) or visual graphs (8) can be automatically generated from annotated

models to aid human understanding.

On the computational and modelling side, rule-based languages such as Kappa (9, 10)

and the BioNetGen language (BNGL) (11) have emerged as helpful tools for modelling

biological systems (12). One of the key benefits of these languages is that they can be

used to concisely represent the combinatorially complex state space inherent in biolog-

ical systems. Rule-based modelling languages have facilities to add comments that are

intended for unstructured documentation and usually directed at the modeller or program-

mer. These comments are in general human and not machine-readable. This can be a

problem because the biological semantics of the model entities are not computationally

accessible and cannot be used to influence the processing of models.

3

Previous works have addressed the issue of annotations in rule-based models. In

particular, Chylek et al. (13) suggested extending rule-based models to include metadata,

focusing on documenting models with biological information using comments to aid the

understanding of models for humans. More recently, Klement et al. (14) have presented

a way to add data in the form of property/value pairs using a specific syntax. On the other

hand, machine-readable annotations have been applied to rule-based models using PySB,

a programming framework for writing rules using Python (15). However, this approach is

restricted as annotations cannot be applied to sites or states.

In this chapter we first discuss the general idea of annotation, its relation with the

concept of abstraction and then review an annotation framework for rule-based models

that has recently introduced and defined by Misirli et al. (16).

1.2 Reactions, rules, annotations and abstractions

Before entering into the technicalities of the annotation framework of interest, we would

like to discuss in an informal and intuitive manner the differences between models cre-

ated using reactions versus those obtained using rules, discussing the advantages of con-

sidering annotations and how they are strictly linked to the much more general notion of

abstraction.

1.2.1 Reactions and rules

Rules as they are to be understood in the present context are a sort of generalisation of

reactions of the type familiar from chemistry. The reason this generalisation is useful can

4

be easily seen. Consider the following toy example,

+ →

which can be understood as a step in the creation of a polymer from two monomers.

Multiple applications of this rule result in a progressively longer chain of molecules,

+ →

+ →

···

Writing this down in the notation of reaction, we would need to explicitly generate the

entire unbounded sequence of reactions with an unbounded number of chemical species,

A+A → A2

A2 +A → A3

A2 +A2 → A4

A3 +A → A4

· · ·

Clearly this is unworkable with finite resources. The solution is to allow a species to

have sites at which connections can be made. In the above example, the species could be

described as A(u,d), that is substance A with an upstream and a downstream site. The

5

interaction can then be written as,

A(d), A(u)→ A(d!1), A(u!1)

where the notation d means that the downstream site is unbound, and the d!1 means

it is bound with a particular edge. Note that this says nothing about the state of the

upstream site in the first instance of A nor the downstream site in the second, so there

can be an arbitrarily long chain of molecules attached at those sites. It is easy to see that

this compact notation captures both the infinite sequence of reactions and the infinite set

of species that would be required to express the same interaction as a set of chemical

reactions.

1.2.2 Annotations

Informally, the word “annotation” has a meaning similar to “documentation” but with a

difference in specificity. Whereas documentation connotes a rather large text describing

something (e.g., an object), annotation is expected to be much shorter. It also evokes

proximity: it should be in some sense “near” or “on” the thing being annotated. In both

cases there seems to be a sharp distinction between the text and its object. The object

should exist in its own right, be operational or functional in the appropriate sense without

need to refer to exogenous information. Annotation might help to understand the object

but the object exists and functions on its own.

This folk theory of annotation breaks down almost immediately under inspection.

A typical example is data about a book such as might be found in a library catalogue.

This is a canonical example used to explain what is meant by metadata or data about

data. The first observation is that if we look at a book and peruse the first few pages it

6

is almost certain that we will find information about who wrote it and where and when it

was published. This information is not the book, it is metadata about the book, but it is

contained within the covers of the book itself.

Perhaps this is not so serious a problem. It is possible in principle to imagine that a

book, say with the cover and first few pages torn out, is still a book that can be read and

enjoyed. Perhaps somehow the metadata is separable and that is the important idea. The

book-object can exist on its own and serve its purpose independently of any annotation or

metadata. While the metadata might usually be found attached to the book, can easily be

removed without affecting the fundamental nature of the book itself.

But what of other things that we might want to do with a book? A favourite activity of

academics is citing documents such as books and journal articles. This means including

enough information in one work to unambiguously refer to another. There is an urban

legend that Robarts Library at the University of Toronto is said to be sinking because the

engineers charged with building it did not account for the weight of the books within.

Supposing that this were true, these poor apocryphal engineers could have used metadata

within the university’s catalogue to sum up the number of pages of all the books and

estimate their weight to prevent this tragedy. This summing is a computation that operates

purely on the metadata and not on the books themselves.

More mundanely, categorising and counting books in order to plan for the use of

shelf space in a growing collection, or even locating a book in a vast library seem to be a

plausible things to do with metadata that do not involve any actual books. Manipulation

and productive use of annotation is possible in the absence of the objects and well-defined

even if the objects no longer exist. One imagines the despondent librarians and archivists

of Alexandria making such lists to document and take stock of their losses after the great

7

fire.

Now suppose that this list created by the librarians of Alexandria itself ended up in

a collection in some other library or museum. It is given a catalogue number, the year

it was acquired is marked. Now what was metadata has now itself become the object of

annotation! Here we arrive at the important insight: what is to be considered annotation

and what is to be considered object depends on the purpose one has in mind. If the interest

is the collection of books in Alexandria, the list is metadata, a collection of annotations,

about them. If the interest is in the documents held by a contemporary museum, among

which the list is to be found, the list is an object. The distinction is not intrinsic to the

objects themselves.

Turning to the subject at hand, the objects to be annotated are rules. According to

the folk theory of annotation, there should be a sharp distinction between rules and their

annotation. When it comes to executing a simulation, the software that does this need

not be aware of the annotations. Indeed the syntax for annotating rules described here is

specifically designed for backwards compatibility such that the presence of annotations

should not require any disruption or changes to existing simulation software.

So long as the purpose of the annotations is as an aid to understanding the rules the

location of the distinction between rule and annotation is fixed in this way. The obvious

question is, are there other uses to which the annotations can be put?

In the report of Misirli et al. (16), where the annotation mechanism of interest was first

described, one of the motivating examples was to create a contact map, a type of diagram

that shows which agents or species interact with each other and labels these interactions

with the rule(s) implementing them (an example of a contact map is provided later in this

chapter).

8

Use of a contact map is illustrative of how movable the separation between object and

annotation is (17). The entities of interest, rules and agents, are on the one hand decorated

with what seems to be purely metadata: labels, or friendly human-readable names that are

suitable for placing on a diagram, preferable to the arbitrary machine-readable tokens that

are used by the simulator (arbitrary because they are subject to renaming as required). On

the other hand, the interactions between the substances, what we wish to make a diagram

of, are written down in a completely different language with an incompatible syntax.

A minor change of perspective neatly solves this problem. It is simply to rephrase

the rule, saying “A and B are related, and the way they are related is that they combine

to form C”. This has the character of annotation: the rule itself is a statement about the

substances involved. More particularly it describes a relation between the substances. On

close inspection, giving a token used in a rule a human-readable name is also articulat-

ing a relation, that is the relation called “naming” between the substance and a string of

characters suitable for human consumption.

With this change of perspective, all of the information required to make the diagram

is now of the same kind. The only construct that must be manipulated is sets of relations

between entities (and strings of text, which are themselves a kind of entity). Fortunately

there exist tools and query languages for operating on data stored in just this form. Having

worked out the correct query to extract precisely what is needed to produce the diagram,

actually generating it is trivial.

1.2.3 Abstractions and annotations

The preceding section on annotation, describes what can be thought of as a “movable

line”. “Above” this line are annotations and “below” it are the objects. The sketch of a

9

procedure for producing a diagram to help humans understand something about a system

of rules as a whole illustrated that it can be convenient to place this line somewhere other

than might be obvious at first glance — and this example will be considered in more detail

below to demonstrate how this happens in practice. However the idea of such a line and

how it might be moved and what exactly that means is still rather vague. Let us now make

this notion more precise.

Formally, a relation between two sets, X and Y , is a subset of their Cartesian product,

X ×Y . In other words it is a set of pairs, {(x,y) |x ∈ X ,y ∈ Y}, and it is usually the

case that it is a proper subset in that not all possible pairs are present in the relation. In

order to compute with relations, the sets must be symbols, X ,Y ⊆ S, ultimately realised

as sequences of bits because a computer or Turing machine is defined to operate on such

sequences and not on every day objects such as books, pieces of fruit, molecules or sub-

atomic particles, or indeed concepts and ideas.

This last point is important. It is not possible to compute with objects in the world, be

they concrete or abstract, it is only possible to compute with symbols representing these

objects. Another kind of relation is required for this, R ⊆ S×W where W is the set of

objects in the world. It is not possible to write down such relations between symbols and

real-world objects any more than it is possible to write down an apple. So we have two

kinds of relations to work with: annotations which are relations among symbols in S×S

and representations which map between symbols and the world, S×W.

Some observations are in order. First, the representation relation has an inverse,

W×S. This is trivial and is simply “has the representation” as opposed to “represents”.

Second, of course, symbols are themselves objects in the world, so S ⊂W. Finally, rela-

tions among symbols—annotations—are likewise objects in the world, so S×S⊂W also.

10

This is useful because it means that it is possible to represent annotations with symbols

and from there articulate relationships among them using more annotations, constructing

a hierarchy of annotation as formalised by Buneman et al. (17). We run into trouble

though if we try to say that representations are in the world because S×W is larger than

W, and this is why they cannot be written down. Symbols represent, annotations are rela-

tions among symbols, and the character of representation is fundamentally different from

that of annotation.

We have enough background to explain the intuition behind the folk theory of an-

notation, that there is a difference of kind between the annotation and its object. This

difference is just the same as considering a notional pair (x ∈ S,−) qua annotation or qua

representation, that is, deciding the set from which the second element of the tuple should

be drawn. A similar choice is available, mutatis mutandis, for the inverse, (−,x ∈ S). If

the unspecified element is in W\S (i.e., tthose objects in the world that are not symbols),

there is only one choice: the relation can only be treated as representation. If it is in W∩S

then either interpretation is possible, and one or the other might be more appropriate de-

pending on the purpose or question at hand.

The ability to make this choice is no more than the ability to select an appropriate ab-

straction. Selecting an abstraction means deciding to interpret a relation as representation

and not annotation. This is best illustrated with an example. Here is a (representation of

an) agent or substance:

u d

b

A A(u,d,b)

Perhaps it is a fragment of DNA which can be connected up-stream and down-stream to

11

other such fragments, and it has a binding site where RNA polymerase can attach as part

of the transcription process. Some annotations involving A might be,

(A,“Promoter”) ∈ L

(A,TTGATCCCTCTT) ∈M

where the first is from the set of labellings, L, and the second is from the set of corre-

spondences with symbols representing nucleotide sequences, which we will call M. A

more conventional way of writing these correspondences more closely to the Semantic

Web practice is,

A label "Promoter"

A has sequence TTGATCCCTCTT

The labelling annotation is easy to understand. It simply provides a friendly string for

humans.

The second annotation is more challenging. It says that the DNA fragment represented

by A corresponds to a certain sequence of nucleotides. On the one hand the symbol for that

sequence could simply be taken as-is, if it does not play an explicit role in the computer

simulation of whatever interactions A is involved in. That corresponds to treating the

symbol TTGATCCCTCTT as a representation. It is the end of the chain; there only remains

the relation from that symbol to something in the world, which is not something that we

can write down or compute with.

On the other hand, it is equally possible to write down an annotation on the sequence

symbol that specifies the list of (symbols representing) the nucleotides that it consists of,

TTGATCCCTCTT consists [T,T,G,A,T,C,C,C,T,C,T,T] .

12

Such a verbose formulation might be useful if one had, for example, a machine for synthe-

sizing DNA molecules directly to implement an experiment in vitro for a genetic circuit

that had already been developed and tested by simulation in silico, or a computer simu-

lation that worked at a very detailed level. In this case the symbols, A, C, T and G play

the role of representing real-world objects and the symbol TTGATCCCTCTT is merely a

reference that can be used to find the (list-structured) relations among them. By making

this choice, the selected abstraction has become more granular.

Another example, pertinent because while we do not yet have machines for arbitrarily

assembling DNA molecules from individuals, we do have tools for drawing contact map

diagrams, is a rule involving this agent. This agent has a binding site which may be

occupied by an RNA-polymerase molecule at a certain rate. This could be expressed as,

#ˆ r1 label "Binding of RNAp to A"

'r1' A(b!_), RNAP(s!_) -> A(b!1), RNAP(s!1) @k

where now we have introduced a little bit more of the syntax that will be more fully

elaborated later for annotating rules written in a file using the Kappa language. Here a

rule is simply given a useful human-readable label, the canonical example of annotating

something. On its own, it is useful. Imagine a summary of the contents of a set of such

rules using labels like this. For that purpose the symbol r1 can be considered just to

represent the rule without looking any deeper.

A

b

RNAp

s
r1

For a contact map diagram, more information is needed.

At right is the diagram that corresponds to the example rule.

It shows that A and RNAp interact, that it happens through

the action of the rule r1 and in particular involves the sites b and s. Perhaps including

which sites are involved in the interaction is too granular and it might be desireable in

some circumstances to have a similar diagram involving just the agents and the rules. Or

13

perhaps more information is desired to be presented in the diagram such as whether the

rule involves creation or annihilation of a bond, say using arrows or a broken edge. No

matter the level of granularity required, it is clear that the necessary information is con-

tained within the rule itself, so simply considering the symbol r1 to opaquely represent

to the rule as an object is not enough. Such a level of abstraction would be too coarse, it

must be elaborated further. Instead it should be considered to represent annotations that

themselves represent the structure of the rule.

This discussion illustrates the idea of a contact map and how it can be generated

from annotations, but to elaborate the rule sufficiently to support the production of such

a diagram in practice involves a much greater amount of annotation structure than we

have seen so far. A rule has a left and a right side. Each of those has zero or more

agent patterns. A rule does not involve agents as such, rather it involves patterns that

can match configurations of agents, so patterns then relate, intra alia, to agents and sites,

and finally bonds between sites that are either to be matched (on the left-hand side) or

created or annihilated (on the right-hand side). It involves some work to represent a rule

as annotation in sufficient detail, but it is straightforward to do within the framework that

we have given.

2 Annotation of Rule-Based Models

We focus our attention on annotating models written using either the Kappa or BioNetGen

language. Software tools compatible with these modeling languages are available at the

following URLs:

1. https://kappalanguage.org

14

https://kappalanguage.org

2. https://github.com/RuleWorld

2.1 Rationale for recommended annotation conventions

Following our general discussion above about annotations and rule-based models, here

we move to the more technical aspects (focusing on two languages, Kappa and BNGL)

and follow the terminology and the definitions provided in Ref. (16).

Biological entities are represented by agents in Kappa and molecule types in BNGL

(we use ‘agent’ to generically refer to both types). Agents may include any number of

sites that represent the points of interactions between agents. For example, the DNA

binding domain of a transcription factor (TF) agent can be connected to a TF binding site

of a DNA agent. Moreover, sites can have states. For instance, a TF may have a site for

phosphorylation and DNA binding may be constrained to occur only when the state of

this site is phosphorylated.

For an agent with two sites, of which one with two internal states and the other with

three, the number of possible combinations is six (Figure 1A, B). A pattern is an (possi-

bly incomplete) expression of an agent in terms of its internal states and binding states.

Rules specifying biological interactions consist of patterns on the left-hand side which,

when matched, produce the result on the right-hand side (Figure 1C). Specific patterns of

interest can be declared as an observable of a model (i.e., a simulation output).

It is important to highlight that while the syntactic definition of an agent identifies

sites and states in rule-based models, the semantics of sites and states is usually clear only

to the modeller. Cleary, if one wishes to have machine access, then this information must

be exposed in a structured way. The key idea of the approach presented in Ref. (16) and

that we review in what follows, is to extend the syntax of rule-based models to incorporate

15

https://github.com/RuleWorld

A: An agent definition

A(site1˜u˜v, site2˜x˜y˜z)

B: Possible combinations of internal states

A(site1˜u,site2˜x)

A(site1˜u,site2˜y)

A(site1˜u,site2˜z)

A(site1˜v,site2˜x)

A(site1˜v,site2˜y)

A(site1˜v,site2˜z)

C: An example binding rule

A(site1˜v,site2˜z),A(site1˜v,site2˜y)

-> A(site1˜v!1,site2˜z),A(site1˜v!1,site2˜y) @kf

Figure 1: A. An agent with two sites. site1 has two possible internal states while

site2 has three. B. This agent can be used in six different ways depending on the

internal states of its sites. C. A rule that specifies how agent A forms a dimer when

the state of site1 is v and the states of site2 are z and y, respectively. The

symbol !n means that the sites where it appears are bound (connected) together.

The constant kf denotes the kinetic rate associated with the rule.

annotations.

Existing metadata resources include machine readable controlled vocabularies and

ontologies and Web services providing standard access to external identifiers and guide-

lines for the use of these resources. For example, the Minimum Information Requested in

the Annotation of Models (MIRIAM) standard (18) provides a standard for the minimal

information required for the annotation of models.

Following Ref. (16) we suggest that entities in models should be linked to external

information through the use of unique and unambiguous Uniform Resource Identifiers

(URIs), which are embedded within models. The uniqueness and global scope of these

URIs are then crucial for disambiguation of model agents, variables and rules.

We also choose to represent annotations using the Resource Description Framework

(RDF) data model (19, 20) as statements or binary predicates. A statement can link a mod-

elling entity to a value using a standard qualifier term (predicate), which represents the

16

relationship between the entity and the value. These qualifiers often come from controlled

vocabularies or ontologies in order to unambiguously identify the meaning of modelling

entities. URIs are used as values to link these entities to external resources, and hence

to a large amount of biological information by keeping the number of annotations min-

imal. The links themselves are typed, again with URIs. The qualifiers and resources to

which they refer are drawn from ontologies that encode the Description Logic (21) for a

particular domain.

Semantics can be unified by means of metadata with controlled vocabularies. There

are several metadata standard initiatives that provide controlled vocabularies from which

standard terms can be taken. For instance, metadata terms provided by the Dublin Core

Metadata Initiative (DCMI) (22) or BioModels qualifiers can be used to describe mod-

elling and biological concepts (1, 23). On the other hand, ontologies such as the Relation

Ontology provide formal definitions of relationships that can be used to describe mod-

elling entities (24). There are also several other ontologies and resources that are widely

used to classify biological entities represented in models with standard values (25): the

Systems Biology Ontology (SBO) (26) to describe types of rate parameters; the Gene

Ontology (GO) (27) and the Enzyme Commission (EC) numbers (28) to describe bio-

chemical reactions; the Sequence Ontology (SO) (29) to annotate genomic features and

unify the semantics of sequence annotation; the BioPAX ontology (30) to specify types of

biological molecules and the Chemical Entities of Biological Interest (ChEBI) (31) terms

to classify chemicals. URIs of entries from biological databases, such as UniProt (32) for

proteins and KEGG (33) for reactions, can also be used to uniquely identify modelling

entities.

Access to data should be unified and this can be done by accessing external re-

17

sources through URIs using MIRIAM or Identifiers.org URIs (34). It should be noted

that MIRIAM identifiers are not resolvable directly over the Internet and require out of

band knowledge to retrieve additional information though they are unique and unambigu-

ous. These URIs consist of collections and their terms, which may represent external

resources and their entries respectively. For example, the MIRIAM URI urn:miriam:

uniprot:P69905 (see Note 1) and the Identifiers.org URI http://identifiers.

org/uniprot/P69905 can be used to link entities to the P69905 entry from UniProt.

The relationships between modelling entities, annotation qualifiers and values can be rep-

resented using RDF graphs.

We recommend to use RDF syntax that represents knowledge as (subject, predicate,

value) triples, in which the subject can be an anonymous reference or a URI, the predicate

is a URI and the object can be a literal value, an anonymous reference or a URI.

Subjects and objects may refer to an ontology term, an external resource or an entity

within a model. RDF graphs can be then serialized in different formats such as XML or

the more human readable Turtle format (35). Modelling languages such as the Systems

Biology Markup Language (SBML) (36), CellML (37, 38) and Virtual Cell Markup Lan-

guage (5) are all XML-based and provide facilities to embed RDF/XML annotations (6).

Moreover, there are also other exchange languages, such as BioPAX and the Synthetic

Biology Open Language (SBOL) (39, 40), that can be serialised directly as RDF/XML

allowing custom annotations to be embedded.

Following the suggestion of Misirli et al. (16) one can extend the use of RDF and

MIRIAM annotations to describe a syntax to store machine-readable annotations and an

ontology to facilitate the mapping between rule-based model entities and their annota-

tions. We illustrate annotations using terms from this ontology and propose some exam-

18

urn:miriam:uniprot:P69905
urn:miriam:uniprot:P69905
http://identifiers.org/uniprot/P69905
http://identifiers.org/uniprot/P69905

ples.

2.2 Conventions for annotating Kappa- and BNGL-formatted

models

Here, we review the syntax originally defined by Misirli et al. (16) for storing annotations.

We start by noticing that a common approach, when trying to add additional structured in-

formation to a language where it is undesirable to change the language itself, is to define

a special way of using comments. This practice is established for structured documen-

tation or “docstrings” in programming languages (41, 42). The idea is to use this same

approach so that models written using the conventions that we describe here do not require

modification of modelling software, such as KaSim (43) or RuleBender (44).

For this reason, we use the language’s comment delimiter followed by the ‘ˆ’ char-

acter to denote annotations in the textual representation of rule-based languages. Kappa

and BNGL both use the ‘#’ symbol to identify comment lines, so in the case of these

languages, comments containing annotations are signalled by a line beginning with ‘#ˆ’.

This distinguishes between comments containing machine-readable annotations and com-

ments intended for direct human consumption. Annotation data for a single modelling

entity or a model itself can be declared over several lines and each line is prefixed with

the ‘#ˆ’ symbol.

Annotations are then serialised in the RDF/Turtle format. We claim that this leads to

a good balance between the need for a machine-readable syntax and a human readable

textual representation. Rule-based modelling languages are themselves structured text

formats designed for this same balance, so RDF/Turtle is more suitable than the XML-

based representations of RDF.

19

Annotations for a single rule-based model entity are a list of statements. It is important

to stress that annotations may refer to other annotations within the same model. When all

the lines corresponding to a rule-based model and the annotation delimiter symbols are

removed, the remaining RDF lines can represent a single RDF document. This enables

annotations to be quickly and easily extracted without special tools (see Note 2).

In textual rule-based models, it is difficult to store annotations within a modelling

entity since Kappa and BNGL represent modelling entities such as agents and rules as

single lines of text. As a result, there is no straightforward location to attach annotations

to an entity. Following Ref. (16) we achieve the mapping between a modelling entity and

its annotations by defining an algorithm to construct a URI from the symbol used in the

modelling language. The algorithm generates unique and unambiguous prefixed names

that are intended to be interpreted as part of a Turtle document. The algorithm simply

constructs the local part of a prefixed name by joining symbolic names in the modelling

language with the ‘:’ character, and prepending the empty prefix, ‘:’. This means that

one must satisfy the condition that the empty prefix is defined for this use. Using this

algorithm, we can derive a globally unique reference for the y internal state of site site2

of agent A from A(site1˜u˜v,site2˜x˜y˜z) as :A:site2:y.

In Kappa, rules do not have symbolic names but each rule can be preceded by free

text surrounded by single quotes. We require this free text to be consistent with the local

name syntax in the Turtle and SPARQL (45) languages. If this requirement is satisfied,

identifiers for subrules are created by just adding their position index, based on one, to the

identifier for a rule (see Figure 4B). A similar restriction is placed on other tokens used in

the models; agent and site names, variable and observable names must all conform to the

local name syntax.

20

Controlled vocabularies such as BioModels.net qualifiers are formed of model and

biology qualifiers. The former offers terms to describe models. BioModels.net qualifiers

are also appropriate to annotate rule-base models, but additional qualifiers are needed

to fully describe rule-based models. These are specific to the annotation of rule-based

models and this is done by using a distinct ontology – the Rule-Based Model Ontology

– in the namespace http://purl.org/rbm/rbmo# conventionally abbreviated as

rbmo (we omit the prefix if there is no risk of ambiguity). Each qualifier is constructed

by combining this namespace with an annotation term. A subset of significant terms are

listed in Table 1 while the full ontology is available online at the namespace URI.

In the rbmo vocabulary, the Model classes such as Kappa and BioNetGen spec-

ify the type of the model being annotated. The term Agent is used to declare physical

molecules. Hence, the Agent class can represent agents and tokens in Kappa, or molecule

types in BioNetGen. Site and State represent sites and states in these declarations re-

spectively. Rules are identified using Rule. The predicates hasSite and hasState and

their inverses are used to annotate the links between agents, sites and internal states dec-

larations. Table 1 reviews the terms related to the declaration of the basic entities from

which models are constructed. We assume that the terms that start with an uppercase letter

are types (In the sense of rdf:type, and also in this instance owl:Class) for the entities

in the model which the modeller could be expected to explicitly annotate. The predicates

begin with a lowercase letter and are used to link entities to their annotations.

Table 2 includes terms to facilitate representation of rules in RDF. This change of rep-

resentation (materialization), from Kappa or BNGL to RDF is something that can easily

be automated and a tool is already available (for models written in Kappa).

This representation in RDF is helpful for analysis of models because it merges the

21

http://purl.org/rbm/rbmo#

model itself with the metadata in a uniform way easy to query. Annotations that cannot be

derived from the model (as well as the model itself) are written explicitly in RDF/Turtle

using the terms from Table 1 embedded in comments using a special delimiter. Extra

statements can then be derived by parsing and analyzing the model using terms from

Table 2 and the same naming convention from the algorithm previously described. These

statements are then merged with the externally supplied annotations to obtain a complete

and uniform representation of all the information about the model.

The open-ended nature of the RDF data model means that it is possible to freely

incorporate terms from other ontologies and vocabularies, including application-specific

ones. In this respect, two terms are crucial. The dct:isPartOf predicate from DCMI

Metadata Terms is used to denote that a rule or agent declaration is part of a particular

model (or similarly with its inverse, dct:hasPart).

The bqiol:is predicate from the Biomodels.net Biology Qualifiers is used to link

internal states of sites to indicate their biological meaning. This term is chosen because it

denotes a kind of identification that is much weaker than the logical replacement seman-

tics of owl:sameAs. Using the latter would imply that everything that can be said about

the site qua biological entity can also be said about the site qua modelling entity. Clearly,

these are not the same and identifying them in a strong sense would risk incorrect results

when computing with the annotations.

Table 3 enumerates useful ontologies and vocabularies with their conventional pre-

fixes to annotate rule-based models. This list is not exhaustive and can be extended.

22

2.3 Adding annotations to model-definition files

Here, we demonstrate how the suggested annotations can be added to rule-based models.

Again we follow the methodology originally presented in Ref. (16).

#ˆ@prefix : <\protect\vrule width0pt\protect\href{http://.../tcs.kappa#}{http://.../tcs.

kappa#}>.

#ˆ@prefix rbmo: <\protect\vrule width0pt\protect\href{http://purl.org/rbm/rbmo#}{http://

purl.org/rbm/rbmo#}>.

... other prefixes elided ...

#ˆ@prefix dct: <\protect\vrule width0pt\protect\href{http://purl.org/dc/terms/}{http://

purl.org/dc/terms/}>.

#ˆ@prefix foaf: <\protect\vrule width0pt\protect\href{http://xmlns.com/foaf/0.1/}{http://

xmlns.com/foaf/0.1/}>.

#ˆ :kappa a rbmo:Kappa ;

#ˆ dct:title "TCS_PA Kappa model" ;

#ˆ dct:description

#ˆ "Two component systems and promoter architectures" ;

#ˆ dct:creator "Goksel Misirli", "Matteo Cavaliere";

#ˆ foaf:isPrimaryTopicOf <https://.../tcs.kappa> .

Figure 2: An example model annotation (as in (16)), with details about its name,

description, creators and online repository location. The prefix definitions re-

quired to annotate the model are defined first, and the empty prefix is defined for

the model namespace itself.

Annotations are added by simply adding a list of prefix definitions representing an-

notation resources providing relevant terms for the annotation of all model entities (such

as agents and rules). These definitions are followed by statements about the title and

description of the model, using the title and description terms from Dublin Core.

Annotations can be expanded to include model type, creator, creation time, and its link to

an entry in a model database (Figure 2).

Table 4 shows how distinct entities in a model can be annotated using terms from

rbmo and from other vocabularies. Figure 3 shows examples of Agent annotations. In

Figure 3A the ATP token is annotated as a small molecule with the identifier 15422 from

ChEBI. Agents without sites can also be annotated in a similar way. In Figure 3B, the

agent is specified to be a protein using the biopax:Protein value for the biopax:physicalEntity

23

A:

#ˆ:ATP a rbmo:Agent ;

#ˆ bqbiol:isVersionOf chebi:CHEBI:15422 ;

#ˆ biopax:physicalEntity biopax:SmallMolecule .

%token: ATP()

B:

#ˆ:Kinase a rbmo:Agent ;

#ˆ rbmo:hasSite :Kinase:psite ;

#ˆ bqbiol:is uniprot:P16497 ;

#ˆ biopax:physicalEntity biopax:Protein ;

#ˆ ro:hasFunction go:GO:0000155 .

#ˆ:Kinase:psite a rbmo:Site ;

#ˆ rbmo:hasState :Kinase:psite:u, :Kinase:psite:p .

#ˆ:Kinase:psite:u a rbmo:State ;

#ˆ bqiol:is pr:PR:000026291 .

#ˆ:Kinase:psite:p a rbmo:State ;

#ˆ bqiol:is psimod:MOD:00696 .

%agent: Kinase(psite˜p˜u)

C:

#ˆ:pSpo0A a rbmo:Agent ;

#ˆ rbmo:hasSite :pSpo0A:tfbs ;

#ˆ bqbiol:isVersionOf so:SO:0000167 ;

#ˆ biopax:physicalEntity biopax:DnaRegion ;

#ˆ sbol:nucleotides "ATTTTTTTAGAGGGTATATAGCGGTTTTGTCGAATGTAAACATGTAG" ;

#ˆ sbol:annotation :pSpo0A_annotation_28_34 .

#ˆ:pSpo0A:tfbs a rbmo:Site ;

#ˆ bqbiol:isVersionOf so:SO:0000057 ;

#ˆ biopax:physicalEntity biopax:DnaRegion ;

#ˆ sbol:nucleotides "TGTCGAA" .

#ˆ:pSpo0A_annotation_28_34 a sbol:SequenceAnnotation ;

#ˆ sbol:bioStart 28;

#ˆ sbol:bioEnd 34 ;

#ˆ sbol:subComponent :pSpo0A:tfbs .

%agent: pSpo0A(tfbs)

D:

#ˆ:Spo0A a rbmo:Agent .

%agent: Spo0A(psite˜p˜u)

#ˆ:Spo0A_p a rbmo:Observable ;

#ˆ ro:has_function go:GO:0045893 .

%obs: 'Spo0A_p' Spo0A(psite˜p)

Figure 3: Examples of agent annotations for A. An ATP token agent. B. A kinase

agent with phosphorylated and unphosphorylated site. C. A promoter agent with a

TF binding site. D. An agent and an associated observable for the phosphorylated

Spo0A protein, which can act as a TF.

24

term. This protein agent is annotated as P16497 from UniProt, which is a protein kinase

(i.e., an enzyme that phosphorylates proteins) involved in the process of sporulation. It

has a site with the phosphorylated and unmodified states, which are annotated with corre-

sponding terms from the Protein Modification Ontology (46).

The ro:hasFunction term associates the agent with the GO’s histidine kinase molec-

ular function term GO:0000155. In Figure 3C, a promoter agent with a TF binding site

is represented. Both the promoter and the operator agents are of “DnaRegion” type,

and are identified with the SO:0000167 and SO:0000057 terms. Although the nu-

cleotide information can be linked to existing repositories using the bqbiol:is term,

for synthetic sequences agents can directly be annotated using SBOL terms. The term

sbol:nucleotides is used to store the nucleotide sequences for these agents. A parent-

child relationship between the promoter and the operator agents can be represented using

an sbol:SequenceAnnotation RDF resource, which allows the location of an opera-

tor subpart to be specified.

This approach can be used to annotate a pattern with a specific entry from a database

(patterns can also be stated as observables of the model). For instance, Figure 3D shows an

example of such an observable. Spo0A p represents the phosphorylated protein, which

acts as a TF and is defined as an observable.

Figure 4 demonstrates annotation of rules. The first rule (Figure 4A) describes the

binding of the LacI TF to a promoter. This biological activity is described using the

GO:0008134 (transcription factor binding) term. In the second example (Figure 4B),

a phosphorylation rule is annotated. The rule contains a subrule representing ATP to

ADP conversion. This subrule is linked to the parent rule with the hasSubrule qualifier.

Moreover, the annotation of the rate for this rule is presented in Figure 4C. The anno-

25

tated Kappa and BNGL models for a two-component system (TCS), controlling a simple

promoter architecture can be found online (see Note 3).

Finally, in Figure 5 we present the fragment of a specific rule (taken from the TCS

Kappa model) materialised using the krdf tool. The tool generates a version of the rules

themselves in RDF together with the annotations (in this way the entire model is presented

in a more uniform way).

A:

#ˆ:LacI.pLac a rbmo:Rule ;

#ˆ bqbiol:isVersionOf go:GO:0008134 ;

#ˆ dct:title "Dna binding" ;

#ˆ dct:description "TF1 binds to the promoter" .

'LacI.pLac' Target(x˜p), Promoter(tfbs1,tfbs2) <-> Target(x˜p!1), Promoter(tfbs1!1,tfbs2)

@kf,kr

B:

#ˆ:S_phosphorylation a rbmo:Rule ;

#ˆ bqbiol:isVersionOf sbo:SBO:0000216 ;

#ˆ dct:title "S Phosphorylation" ;

#ˆ dct:description "S is phosphorylated" ;

#ˆ rbmo:hasSubrule :S_phosphorylation:1 .

#ˆ:S_phosphorylation:1 a rbmo:Rule ;

#ˆ bqbiol:isVersionOf sbo:SBO:0000216 ;

#ˆ dct:title "ATP -> ADP" ;

#ˆ dct:description "ATP to ADP conversion" .

'S_phosphorylation' S(x˜u!1), K(y!1) | 0.1:ATP -> S(x˜p), K(y) | 0.1:ADP @kp

C:

#ˆ:kp a sbo:SBO:0000002 ;

#ˆ bqbiol:isVersionOf sbo:SBO:0000067 ;

#ˆ dct:title "Phosphorylation rate" .

Figure 4: Annotating rules and variables. A. TF DNA binding rule. B. Phospho-

rylation rule with a subrule for the ATP to ADP conversion. C. Annotation of a

phosphorylation rate variable.

2.4 How to use annotations

The framework we have described can be coupled to the development of tools that al-

low one to extract and analyze the annotations embedded in a model. Several tools are

currently under development. We demonstrate here the krdf tool that can be used for

checking duplication of rules and inconsistencies between different parts of a model, basic

26

:As1As2Spo0A_to_As2Spo0A a rbmo:Rule ;

dct:title "Cooperative unbinding" ;

rbmo:lhs [

a rbmo:Pattern ;

rbmo:agent :Spo0A ;

rbmo:status [

rbmo:isBoundBy :As1As2Spo0A_to_As2Spo0A:left:1 ;

rbmo:isStatusOf :Spo0A:DNAb ;

a rbmo:BoundState ;

], [

rbmo:internalState :Spo0A:RR:p ;

rbmo:isStatusOf :Spo0A:RR ;

a rbmo:UnboundState ;

] ;

].

Figure 5: Fragment of the RDF representation of a materialised rule obtained by

merging the metadata supplied by the model author with an RDF representation of

the rule. The left hand side of the rule contains a pattern involving :Spo0A and that

there are two pieces of state information: The first one refers to the :Spo0A:DNAb

site, and it is bound to something (that can only be recovered using the rest of

the model, not presented here). The second refers to the :Spo0A:RR site, it has a

particular internal state, and it is unbound.

problems encountered when composing and creating biological models (47, 48). Another

application is to draw an annotated contact map visualising the entities involved, the inter-

actions and the biological information stored in the annotations – this merges the classical

notion of contact map used to illustrate Kappa and BNGL models (9, 49) with biological

semantics.

The krdf tool operates on Kappa models and has several modes of operation that

can provide increasingly more information about a model. The first, selected with the

-a option, extracts the modeller’s annotations. The second mode, selected with the -m

option, materialises the information in the rules themselves into the RDF representation

(as illustrated in Figure 5). Finally the -n option normalises the patterns present in the

rules according to their declarations.

Once a complete uniform representation of the model in RDF has been generated, one

27

can query it using SPARQL with a tool such as roqet (50). For example, a SPARQL

query can deduce a contact map – pairings of sites in agents that undergo binding and

unbinding according to the rules in a model. These pairings form a graph that can be

visualised using tools such as GraphViz (51). With an appropriate query (see Note 4),

roqet can output the result in a GraphViz-compatible format. A more sophisticated

manipulation (see Note 5) can extract annotations from the RDF representation of the

TCS example model and easily create a richly annotated contact map diagram (Figure

6). In this way, biological information extracted from the annotations can be added to the

agents, sites and interactions (using GraphViz for rendering) (see Note 6).

b0: Spo0A binding to Operator 1
b1: Spo0A binding to Operator 2

b2: Spo0A-KinA binding
u0: Cooperative unbinding: Spo0A unbinds from Operator 1
u1: Cooperative unbinding: Spo0A unbinds from Operator 2

u2: Spo0A unbinding from Operator 1
u3: Spo0A unbinding from Operator 2

u4: Spo0A(phosp)-KinA unbinding
u5: Spo0A(unphos)-KinA unbinding

Promoter (DnaRegion)

Spo0A (Protein)

KinA (Protein)

TTCGACA

DNAb

b0 u0 u2

AGTCGAA

b1 u1 u3

RR

H405

b2 u4 u5

Figure 6: Contact map generated by a SPARQL query on the RDF materi-

alisation of the TCS example in Kappa. Biological information concerning

the agents, rules and sites, types of the molecules, DNA sequences and ty-

pology of the interaction, are extracted automatically from the model anno-

tations. This figure is a reproduction of Fig. 6 in Ref. (16); no changes

have been made. The figure is used under the terms of the CC-BY license

(https://opendefinition.org/licenses/cc-by/).

Moreover, one can easily create a query that implements a join operation on the prop-

28

erty of bqbiol:is, enforcing a stronger form of identity semantics than this predicate

is usually given. A filter clause is necessary to prevent a comparison of a rule with itself

(see the SPARQL query in Figure 7). In this way, the discussed annotations could also

be used to detect duplication of rules (e.g., obtained when combining different biological

models).

SELECT DISTINCT ?modelA ?ruleA ?modelB ?ruleB

WHERE {

?ruleA a rbmo:Rule;

dct:isPartOf ?modelA;

bqbiol:is ?ident.

?ruleB a rbmo:Rule;

dct:isPartOf ?modelB;

bqbiol:is ?ident.

FILTER (?ruleA != ?ruleB)

}

Figure 7: Detection of duplicate rules.

Another possible application of the presented annotation schema is the checking of

inconsistencies in a rule-based model. This can be done in several different ways. A

simple way is to use the replacement semantics of owl:sameAs. A statement of the form

a owl:sameAs b means that every statement about a is also true if a is replaced by

b. In particular if we have statements about the types of a and b, and these types are

disjoint, the collection of statements is unsatisfiable (hence, the model has been found to

be inconsistent). Then, an OWL reasoner such as HermiT (52) or Pellet (53) can derive

that a and b have type owl:Nothing.

This can be implemented with the following work-flow (here only sketched): (i)

generate the fully materialised RDF version of a model using krdf. For each use of

bqbiol:is, add a new statement using owl:sameAs; (ii) retrieve all ontologies that are

used from the Web. For each external vocabulary term with bqbiol:is or bqbiol:isVersionOf

retrieve a description and any ontology that it uses (recursively). Merge all of these into

29

a single graph. This graph contains the complete model and annotations, with entities

linked using a strong form of equality to external vocabulary terms, and descriptions of

the meaning of these vocabulary terms; (iii) the reasoner can be used to derive terms that

are equivalent to owl:Nothing and if any of these terms is found then an inconsistency

has been identified. Using the proof generation facilities of OWL reasoners, the sequence

of statements required to arrive at foo rdf:type owl:Nothing can be reproduced (in

this way, the initial source of the inconsistency can be also identified).

2.5 Closing remarks

In this chapter we have reviewed the recent proposal to incorporate annotations into rule-

based models, following the approach recently presented in Ref. (16). We have also

discussed in a more general way the role of annotations and how they are strongly related

to the notion of abstraction. In general, for consistency, we have followed the terms

originally defined in Ref. (16). However, the suggested standardized terms can be used in

a complementary manner with existing metadata resources such as MIRIAM annotations

and URIs, and existing controlled vocabularies and ontologies. Although, the approach

has only described the annotations of Kappa- and BNGL-formatted model-definition files,

it can be easily applied to other formats for rule-based models.

In particular, PySB (15) already includes a list of MIRIAM annotations at the model

level, and can be extended to include the type of annotations described here. SBML’s

multi package (see Note 7) (54) is intended to standardise the exchange of rule-based

models. The entities in this format inherit the annotation property from the standard

SBML and can therefore include RDF annotations. These SBML models could thus be

imported or exported by tools such as KaSim or BioNetGen/RuleBender, avoiding the

30

loss of any biological information.

It is important to remark that annotations are also useful for automated conversions

between different formats. Conversion between rules and reaction networks is already an

ongoing research subject (47), and the availability of annotations can play an important

role for reliable conversion and fine-tuning of models (55, 56). It is straightforward to

use the framework presented and automatically map agents and rules to glyphs (13) or to

convert models into other visual formats such as SBGN or genetic circuit diagrams (57).

More generally, annotations are designed for machine readability and can be produced

computationally (e.g., by model repositories). This can be done by developing APIs and

tools to access a set of biological parts (4, 58) that will incorporate rule-based descriptions

and will be annotated with the proposed schema. This will open the possibility of compos-

ing (stitching together) rule-based models extracted from distinct repositories. Tools such

as Saint (48) and SyBIL (7) could be extended to automate the annotation of rule-based

models. In this way, the extensive information available in biological databases and the

literature can be integrated and made available via rule-based models, taking advantage

of the syntax and the framework presented here and elsewhere.

One of the ultimate goals is to use annotations as a facilitator of automatic com-

position of rule-based models. As recently suggested by Misirli et al. (59) the proposed

schema can be used to automate the design of biological systems using a rule-based model

with a workflow that combines the definition of modular templates to instantiate rules for

basic biological parts. The templates, defining rule-based models for basic biological parts

(see Note 8), can be associated with quantitative parameters to create particular parts mod-

els, which can then be merged into executable models. Such models may be annotated

using the reviewed schema leading to a feasible protocol to automate their composition

31

for the scalable modelling of synthetic systems (59).

The described annotation ontology for rule-based models can be found at http://

purl.org/rbm/rbmo while the tool and all the presented examples can be found at

http://purl.org/rbm/rbmo/krdf.

3 Notes

1. A dereferenceable URI using the MIRIAM Web service is http://www.ebi.

ac.uk/miriamws/main/rest/resolve/urn:miriam:uniprot:P69905

2. For example, on a UNIX system, the following pipeline could be used:

grep 'ˆ#\ˆ'| sed 's/ˆ#\ˆ//'

3. The files tcs.kappa and tcs.bngl are available in the http://purl.org/

rbm/rbmo/examples directory.

4. See the binding.sparql file in the krdf directory.

5. See the contact.py script in the krdf directory.

6. The tool assumes that only single instances of an agent are involved in a rule. It

can be generalized.

7. See http://sbml.org/Documents/Specifications/SBML_Level_

3/Packages/multi for details.

8. These are available at http://github.com/rbm/composition.

32

http://purl.org/rbm/rbmo
http://purl.org/rbm/rbmo
http://purl.org/rbm/rbmo/krdf
http://www.ebi.ac.uk/miriamws/main/rest/resolve/urn:miriam:uniprot:P69905
http://www.ebi.ac.uk/miriamws/main/rest/resolve/urn:miriam:uniprot:P69905
http://purl.org/rbm/rbmo/examples
http://purl.org/rbm/rbmo/examples
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/multi
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/multi
http://github.com/rbm/composition

Acknowledgement

The Engineering and Physical Sciences Research Council grant EP/J02175X/1 (to V.D.

and M.C.), the European Union’s Seventh Framework Programme for research, techno-

logical development and demonstration grant 320823 RULE (to W.W., R.H-Z, V.D.).

References

(1) Li C, Donizelli M, Rodriguez N, et al (2010) BioModels Database: an enhanced,

curated and annotated resource for published quantitative kinetic models. BMC Syst

Biol 4:92

(2) Yu T, Lloyd CM, Nickerson DP, et al (2011) The Physiome Model Repository 2.

Bioinformatics 27:743–744

(3) Snoep JL, Olivier BG (2003) JWS online cellular systems modelling and microbiol-

ogy. Microbiology 149:3045–3047

(4) Misirli G, Hallinan JS, Wipat A (2014) Composable modular models for synthetic

biology. ACM J Emerging Technol Comput Syst 11:22

(5) Moraru II, Schaff JC, Slepchenko BM, et al (2008) Virtual Cell modelling and sim-

ulation software environment. IET Syst Biol 2:352–362

(6) Endler L, Rodriguez N, Juty N, et al (2009) Designing and encoding models for

synthetic biology. J R Soc Interface 6:S405–S417

(7) Blinov ML, Ruebenacker O, Schaff JC, Moraru II (2010) Modeling without bor-

33

ders: creating and annotating VCell models using the Web. Lect Notes Comput Sci

6053:3–17

(8) Funahashi A, Jouraku A, Matsuoka Y, Kitano H (2007) Integration of CellDesigner

and SABIO-RK. In Silico Biol 7:81–90

(9) Danos V, Laneve C (2004) Formal molecular biology. Theor Comput Sci 325:69–

110

(10) Danos V, Feret J, Fontana W, Krivine J (2007) Scalable simulation of cellular sig-

naling networks. Lect Notes Comput Sci 4807:139–157

(11) Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical

systems with BioNetGen. Methods Mol Biol 500:113–167

(12) Köhler A, Krivine J, Vidmar J (2014) A rule-based model of base excision repair.

Lect Notes Comput Sci 8859:173–195

(13) Chylek LA, Hu B, Blinov ML, et al (2011) Guidelines for visualizing and annotating

rule-based models. Mol BioSyst 7:2779–2795

(14) Klement M, Děd T, Šafránek D, et al (2014) Biochemical Space: a framework

for systemic annotation of biological models. Electron Notes Theor Comput Sci

306:31–44

(15) Lopez CF, Muhlich JL, Bachman JA, Sorger PK (2013) Programming biological

models in Python using PySB. Mol Syst Biol 9:646

(16) Misirli G, Cavaliere M, Waites W, et al (2016) Annotation of rule-based models with

34

formal semantics to enable creation, analysis, reuse and visualisation. Bioinformat-

ics 32:908–917

(17) Buneman P, Kostylev EV, Vansummeren S (2013) Annotations are relative. In: Pro-

ceedings of the 16th International Conference on Database Theory, ACM, New

York, pp 177–188

(18) Le Novère N, Finney A, Hucka M, et al (2005) Minimum information requested in

the annotation of biochemical models (MIRIAM). Nat Biotechnol 23:1509–1515

(19) Cyganiak R, Wood D, Lanthaler M (2014) RDF 1.1 concepts and abstract syn-

tax. URL https://www.w3.org/TR/2014/REC-rdf11-concepts, Ac-

cessed 17 Aug 2016

(20) Gandon F, Schreiber G (2014) RDF 1.1 XML syntax. URL http://www.w3.

org/TR/rdf-syntax-grammar, Accessed 17 Aug 2016

(21) McGuinness DL, van Harmelen F (2004) OWL Web Ontology Language. URL

http://www.w3.org/TR/owl-features, Accessed 17 Aug 2016

(22) DCMI Usage Board (2012) DCMI metadata terms. URL http://www.

dublincore.org/documents/dcmi-terms, Accessed 17 Aug 2016

(23) Le Novère N, Finney A (2005) A simple scheme for annotating SBML with refer-

ences to controlled vocabularies and database entries. URL http://www.ebi.

ac.uk/compneur-srv/sbml/proposals/AnnotationURI.pdf, Ac-

cessed 17 Aug 2016

35

https://www.w3.org/TR/2014/REC-rdf11-concepts
http://www.w3.org/TR/rdf-syntax-grammar
http://www.w3.org/TR/rdf-syntax-grammar
http://www.w3.org/TR/owl-features
http://www.dublincore.org/documents/dcmi-terms
http://www.dublincore.org/documents/dcmi-terms
http://www.ebi.ac.uk/compneur-srv/sbml/proposals/AnnotationURI.pdf
http://www.ebi.ac.uk/compneur-srv/sbml/proposals/AnnotationURI.pdf

(24) Smith B, Ceusters W, Klagges B, et al (2005) Relations in biomedical ontologies.

Genome Biol 6:R46

(25) Swainston N, Mendes P (2009) libAnnotationSBML: a library for exploiting SBML

annotations. Bioinformatics 25:2292–2293

(26) Courtot M, Juty N, Knüpfer C, et al (2011) Controlled vocabularies and semantics

in systems biology. Mol Syst Biol 7:543

(27) The Gene Ontology Consortium (2001) Creating the Gene Ontology Resource: de-

sign and implementation. Genome Res 11:1425–1433

(28) Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305

(29) Eilbeck K, Lewis S, Mungall C, et al (2005) The Sequence Ontology: a tool for the

unification of genome annotations. Genome Biol 6:R44

(30) Demir E, Cary MP, Paley S, et al (2010) The BioPAX community standard for path-

way data sharing. Nat Biotechnol 28:935–942

(31) Degtyarenko K, de Matos P, Ennis M, et al (2008) ChEBI: a database and ontology

for chemical entities of biological interest. Nucleic Acids Res 36:D344–D350

(32) Magrane M, UniProt Consortium (2011) UniProt Knowledgebase: a hub of inte-

grated protein data. Database (Oxford) 2011:bar009

(33) Kanehisa M, Araki M, Goto S, et al (2008) KEGG for linking genomes to life and

the environment. Nucleic Acids Res 36:D480–D484

(34) Juty N, Le Novre N, Laibe C (2012) Identifiers.org and MIRIAM Registry: commu-

nity resources to provide persistent identification. Nucleic Acids Res 40:D580–D586

36

(35) EPrud’hommeaux E, Carothers G (2014) RDF 1.1 Turtle. URL http://www.w3.

org/TR/turtle, Accessed on 17 Aug 2016

(36) Hucka M, Finney A, Sauro HM, et al (2003) The Systems Biology Markup Lan-

guage (SBML): a medium for representation and exchange of biochemical network

models. Bioinformatics 19:524–531

(37) Cuellar AA, Lloyd CM, Nielsen PF, et al (2003) An overview of CellML 1.1, a

biological model description language. SIMULATION 79:740–747

(38) Hedley WJ, Nelson MR, Bellivant DP, Nielsen PF (2001) A short introduction to

CellML. Philos Trans A Math Phys Eng Sci 359:1073–1089

(39) Galdzicki M, Wilson ML, Rodriguez CA, et al (2012) Synthetic Biology Open

Language (SBOL) version 1.1.0. URL http://hdl.handle.net/1721.1/

73909, Accessed 17 Aug 2016

(40) Galdzicki M, Clancy KP, Oberortner E, et al (2014) The Synthetic Biology Open

Language (SBOL) provides a community standard for communicating designs in

synthetic biology. Nat Biotechnol 32:545–550

(41) Acuff R (1988) KSL Lisp environment requirements. URL https://

profiles.nlm.nih.gov/BB/G/H/S/D/_/bbghsd.pdf, Accessed

14 Aug 2018

(42) Stallman R, other GNU Project volunteers (1992) GNU coding standards. URL

https://www.gnu.org/prep/standards/, Accessed 17 Aug 2016

37

http://www.w3.org/TR/turtle
http://www.w3.org/TR/turtle
http://hdl.handle.net/1721.1/73909
http://hdl.handle.net/1721.1/73909
https://profiles.nlm.nih.gov/BB/G/H/S/D/_/bbghsd.pdf
https://profiles.nlm.nih.gov/BB/G/H/S/D/_/bbghsd.pdf
https://www.gnu.org/prep/standards/

(43) Krivine J (2014) KaSim. URL https://github.com/Kappa-Dev/KaSim,

Accessed 17 Aug 2016

(44) Xu W, Smith AM, Faeder JR, Marai GE (2011) RuleBender: a visual interface for

rule-based modeling. Bioinformatics 27:1721–1722

(45) Prud’hommeaux E, Seaborne A (2013) SPARQL query language for RDF. URL

http://www.w3.org/TR/rdf-sparql-query, Accessed 17 Aug 2016

(46) Montecchi-Palazzi L, Beavis R, Binz PA, et al (2008) The PSI-MOD community

standard for representation of protein modification data. Nat Biotechnol 26:864–866

(47) Blinov ML, Ruebenacker O, Moraru II (2008) Complexity and modularity of intra-

cellular networks: a systematic approach for modelling and simulation. IET Syst

Biol 2:363–368

(48) Lister AL, Pocock M, Taschuk M, Wipat A (2009) Saint: a lightweight integration

environment for model annotation. Bioinformatics 25:3026–3027

(49) Danos V, Feret J, Fontana W, Harmer R, Krivine J (2009) Rule-based modelling and

model perturbation. Lect Notes Comput Sci 5750:116–137

(50) Beckett D (2015) Redland RDF libraries. URL http://librdf.org, Accessed

17 Aug 2016

(51) Ellson J, Gansner E, Koutsofios L, North SC, Woodhull G (2001) Graphviz–open

source graph drawing tools. Lect Notes Comput Sci 2265:483–484

(52) Shearer R, Motik B, Horrocks I (2008) HermiT: a highly-efficient OWL reasoner. In:

38

https://github.com/Kappa-Dev/KaSim
http://www.w3.org/TR/rdf-sparql-query
http://librdf.org

Proceedings of the 5th International Workshop on OWL: Experiences and Directions

(OWLED)

(53) Sirin E, Parsia B, Cuenca Grau B, Kalyanpur A, Katz Y (2007) Pellet: A practical

OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World

Wide Web 5:51–53

(54) Zhang F, Meier-Schellersheim M (2018) SBML Level 3 package: multistate, multi-

component and multicompartment species, version 1, release 1. J Integr Bioinform

15:20170077

(55) Tapia JJ, Faeder JR (2013) The Atomizer: extracting implicit molecular structure

from reaction network models. In: Proceedings of the International Conference on

Bioinformatics, Computational Biology and Biomedical Informatics, ACM, New

York

(56) Harris LA, Hogg JS, Tapia JJ, et al (2016) BioNetGen 2.2: advances in rule-based

modeling. Bioinformatics 32:3366–3368

(57) Misirli G, Hallinan JS, Yu T, et al (2011) Model annotation for synthetic biology:

automating model to nucleotide sequence conversion. Bioinformatics 27:973–979

(58) Cooling MT, Rouilly V, Misirli G, et al (2010) Standard virtual biological parts: a

repository of modular modeling components for synthetic biology. Bioinformatics

26:925–931

(59) Misirli G, Waites W, Cavaliere M, et al (2016) Modular composition of synthetic bi-

ology designs using rule-based models. In: Proceedings of 8th International Work-

shop on Bio-Design Automation (IWBDA 2016)

39

(60) Natale DA, Arighi CN, Barker WC, et al (2011) The Protein Ontology: a structured

representation of protein forms and complexes. Nucleic Acids Res 39:D539–D545

(61) Mulder NJ, Apweiler R (2008) The InterPro database and tools for protein domain

analysis. Curr Protoc Bioinformatics 21:2.7.1–2.7.18

40

Tables

Table 1

Term Description

Kappa, BioNetGen Model types.

Agent Type for declarations of biological entities.

Site Type for sites of Agents.

State Type for internal states of Sites.

hasSite, hasState,

siteOf, stateOf

Predicates for linking Agents, Sites and

States.

Rule Type for interactions between agents.

hasSubrule, subruleOf Specifies that a rule has a subrule (i.e., KaSim

subrules).

Observable Type for agent patterns counted by a simula-

tion.

41

Table 2

Term Description

Pattern Type of a pattern as it appears in a Rule or Observable.

lhs, rhs Predicates for linking a Rule to its left and right hand side

Patterns.

pattern Predicate for linking an Observable to the patterns that it

matches.

agent Predicate for linking a Pattern and a site within it to the

corresponding Agent.

status Specifies a status of a particular Site (and State) in a

Pattern.

isStatusOf,

internalState

Predicates for linking a status in a Pattern to correspond-

ing Site and State declarations.

isBoundBy Specifies the bond that a Site is bound to in a particular

Pattern. Bonds are identified via URIs.

BoundState,

UnboundState

Terms denoting that a Site in a Pattern is bound or un-

bound.

42

Table 3

Prefix Description

rbmo Rule-based modelling ontology (presented in this paper)

dct Dublin Core Metadata Initiative Terms (http://www.

dublincore.org/documents/dcmi-terms)

bqiol BioModels.net Biology Qualifiers (1)

go Gene Ontology (27)

psimod Protein Modification Ontology (46)

so Sequence Ontology (29)

sbo Systems Biology Ontology (26)

chebi Chemical Entities of Biological Interest Ontology (31)

uniprot UniProt Protein Database (32)

pr Protein Ontology (60)

ro OBO Relation Ontology (24)

owl Web Ontology Language (http://www.w3.org/TR/

owl-features)

sbol The Synthetic Biology Open Language (39, 40)

foaf Friend of a Friend Vocabulary (http://xmlns.com/

foaf/spec)

ipr InterPro (61)

biopax Biological Pathway Exchange Ontology Ontology (30)

43

Table 4

44

Term Annotation Values

Agent declarations:

rdf:type Agent

dct:isPartOf Identifier for the Model.

hasSite Identifier of a Site.

biopax:physicalEntity A biopax:PhysicalEntity term, e.g. DnaRegion or

SmallMolecule.

bqbiol:is A term representing an individual type of an Agent entity, e.g. a protein

entry from UniProt.

bqbiol:isVersionOf A term representing the class type of an Agent entity, e.g. a SO term for

a DNA-based agent.

Site declarations:

rdf:type Site

hasState Identifier for an internal state.

bqbiol:isVersionOf A term representing the type of the site, e.g. A SO term for a nucleic

acid-based site or an InterPro term for an amino acid-based site.

Internal state declarations:

rdf:type State

bqbiol:is A term representing the state assignment, e.g. a term from the PSIMOD

or the PO.

Rules:

rdf:type Rule

dct:isPartOf Identifier for the Model.

bqbiol:is A term representing an individual type of a rule, e.g. a KEGG entry.

bqbiol:isVersionOf A term representing a class type of a rule, e.g. an EC number, a SO

term or a GO term.

subrule Identifier for a Rule entity.

lhs† rhs† References to the patterns forming the left and right hand side of the

rule.

Observables:

rdf:type Observable

dct:isPartOf Identifier for the Model.

pattern† References the constituent patterns.

Patterns:

rdf:type Pattern

ro:hasFunction A GO term specifying a biological function.

agent† Reference to the corresponding Agent declaration

internalState† Reference to a representation of a site’s state

isStatusOf† Reference from a site’s state to the corresponding site

Variables:

rdf:type sbo:SBO:0000002 (quantitative systems description parameter)

dct:isPartOf Identifier for the Model.

bqbiol:isVersionOf A term representing a variable type. If exists, the term should a subterm

of SBO:0000002.

45

	1 Introduction
	1.1 The need for model annotation
	1.2 Reactions, rules, annotations and abstractions
	1.2.1 Reactions and rules
	1.2.2 Annotations
	1.2.3 Abstractions and annotations

	2 Annotation of Rule-Based Models
	2.1 Rationale for recommended annotation conventions
	2.2 Conventions for annotating Kappa- and BNGL-formatted models
	2.3 Adding annotations to model-definition files
	2.4 How to use annotations
	2.5 Closing remarks

	3 Notes

