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ABSTRACT

Recent experimental results showed that an electron gas in an asymmetrical double barrier heterostructure can be effectively cooled down
under resonant tunneling condition, thus leading to the realization of an electronic cooler. The cooling process is a multi-parameters phe-
nomenon and it is desirable to handle this problem through a reasonably simple approach, in order to understand the role of each parame-
ter. To this end, we present a rate equation modeling of the electron cooling. We model the resonant tunnel injection of the electrons in the
well and their thermionic emission assisted by Longitudinal Optical (LO) phonons absorption and emission. The influence of several
parameters on the electronic temperature is discussed. This simple model compares rather well to the predictions of non-equilibrium Green
function approach and to the experiments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0155720

I. INTRODUCTION

Increasing down-scaling of semiconductor devices leads to
overwhelming power dissipation and heat production in devices
(see, e.g., Refs. 1–3). Considerable efforts are being made to design
heterostructures where the power consumption could be
reduced.4–9 Recently, heterostructures where the electronic temper-
ature can be decoupled from and made lower than the lattice one
were realized.10–13 They are based on evaporative cooling which is a
prerequisite process to subsequently refresh the lattice bath. As a
matter of fact, NEGF simulations14 have shown that the lattice
cooling is possible but it is still quite low (few mK refrigeration) in
those devices. Nevertheless, this result represents a proof of concept
to validate the thermionic approach. The electron temperature is,
therefore, a relevant, relatively easy to measure, physical parameter to
assess the “cooling character” of the device. In this respect, the asym-
metrical double barrier heterostructures under an applied external
bias have proven very effective15 since at room temperature the

electronic temperature in the well could be made lower than the
lattice one by several tens of degrees. In a previous study,11 we
modeled the current–voltage characteristics of a such a device. The
tunneling and the thermionic currents were calculated and, request-
ing the current continuity in the heterostructure, allowed to compute
the I(V) characteristics. We note that in such heterostructures’ cold
electrons are injected by resonant tunneling while hot electrons are
removed by thermionic emission. Thus, it is conceivable and in fact
measured15 that this kind of evaporative cooling of the electron gas16

leads to a lowering of its internal temperature.
A Non-Equilibrium Green Function (NEGF) analysis of the

current–voltage characteristics provided a quantitative description
of the cooling of the electron gas.17 With this formalism, it is,
however, very much time demanding to systematically study the
cooling vs the different parameters of the system (barrier thick-
nesses, QW width, and barrier heights) and the physical mecha-
nisms controlling the cooling are not so explicit.
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Here, we shall present an intuitive and analytical analysis of
the electron density and temperature using rate equations for the
population and energy of the 2D electron gas in an asymmetric
QW under an applied bias. The rate equations’ approach is an
already existing model which is here applied to asymmetrical
double barrier heterostructures for the first time to our knowledge.
Electrons constantly enter (by tunneling from the emitter or back
flow from the collector near zero bias) and leave the QW (by
thermionic emission or by tunnel back flowing to the emitter). Our
model assumes the 2D electron gas is in a stationary state at tem-
perature TQW while the phonon bath is at equilibrium at tempera-
ture T0 (the two temperatures model, see, e.g., Refs. 18 and 19).
The stationary state is realized when the carrier concentration nQW
remains constant and the net power density emitted or absorbed
PQW by the electron gas vanishes (or the electron gas internal
energy EQW remains constant). These two conditions read

dnQW
dt

¼
X
i

dnQW
dt

� �
i

¼ 0, (1)

PQW ¼ 1
S
dEQW
dt

¼
X
i

(PQW)i ¼ 0, (2)

where the summation runs over the various mechanisms that
change the population and/or the energy of the electron gas. The
solution of the system of the two rate equations suffices to deter-
mine both the electron temperature TQW and concentration nQW in
the quantum well.

Within this work, we shall show that the electronic cooling
does take place in biased asymmetrical double barrier structures at
sufficiently high lattice temperatures to allow a strong enough evap-
oration of thermally excited electrons. Moreover, we shall study the
dependencies of TQW and nQW upon various parameters (layer
thicknesses, bias, etc.). Finally, we shall show how the predictions
of the rate equations model compare to the more complete NEGF
model and to the experiments.

II. STRUCTURE AND MEASUREMENTS

We apply our model to a double barrier GaAs/AlGaAs hetero-
structure whose conduction band profile is schematically repre-
sented in Fig. 1. Oz is the growth axis. The left-hand side (we will
refer to this region as the “emitter”) is made of Si doped GaAs of
doping density nD and of an undoped thin GaAs spacer, not
shown in the figure and neglected in the calculation. The emitter is
followed by a thin barrier of AlyGa(1−y)As of thickness Llb. There is
then an undoped thin GaAs QW of thickness L and a thick right-
hand side (rhs) barrier of AlxGa(1−x)As of thickness Lrb. The latter
is followed by a doped GaAs region (that we will refer to as the
“collector”) having the same doping density as the emitter. The
quantum well is thin enough to support only one bound state with
confinement energy η1. V0

lb and V0
rb are the potential barrier

heights at zero applied bias. In the following, we discuss the mea-
surements and the calculations made for two samples which differ
mainly for the left-hand side (lhs) barrier thickness and height.
In the following, we will refer to the two samples as sample A

(lhs barrier thinner and higher) and sample B (lhs barrier thicker
and lower).

The samples used in the present work were grown by molecu-
lar beam epitaxy. Sample A was prepared by growing successively
on an n-type GaAs substrate, a 300 nm-thick n+-GaAs emitter layer
(Si: 1 × 1018 cm−3), a 5 nm-thick undoped GaAs layer, an undoped
6 nm-thick Al0.5Ga0.5As barrier (we call this barrier “the emitter
barrier” hereafter), an undoped 6 nm-thick GaAs QW, an undoped
100 nm-thick Al0.25GaAs0.75As barrier (we call this barrier “the col-
lector barrier” hereafter), and a 200 nm-thick n+-GaAs collector
layer (Si: 1 × 1018 cm−3). Similarly, sample B was prepared by
growing successively on an n-type GaAs substrate, a 300 nm-thick
n+-GaAs emitter layer (Si: 1 × 1017 cm−3), a 5 nm-thick undoped
GaAs layer, an undoped 15 nm-thick Al0.4Ga0.6As emitter barrier,
an undoped 4 nm-thick GaAs QW, an undoped 100 nm-thick
Al0.25GaAs0.75As collector barrier, and a 200 nm-thick n+-GaAs
collector layer (Si: 1 × 1018 cm−3). The structural parameters are
summarized in Table I. The wafers were then photolithographically
patterned into mesa structures with various areas, ranging from
80 × 80 to 800 × 800 μm2. AuGeNi/Au contacts were deposited on
the front and back sides of the mesas, with the top-side including
an open window to allow for optical characterization of the
samples. The samples were annealed at 450 °C under an Ar atmo-
sphere for 1 s. As a final step of the process, a 10-nm NiCr layer
was deposited across the top-side window, to ensure the homogene-
ity of the electric field across the optical window.

We use a conduction band discontinuity between GaAs and
Ga1−xAlxAs equal to V0

b (x) ¼ 748:3xmeV and a Ga1−xAlxAs effec-
tive mass of mb(x) = (0.07 + 0.083x)m0 where m0 is the free electron
mass. For the electron–phonon interaction calculations, the relative

TABLE I. Structural parameters of two double barrier heterostructures referred to as
sample A and sample B.

Sample nD (cm−3) Llb (nm) y L (nm) Lrb (nm) x

A 1018 6 0.5 6 100 0.25
B 1017 15 0.4 4 100 0.25

FIG. 1. Schematic representation of the conduction band profile of the double
barrier heterostructure without external electric field. η1 is the only one bound
state of the QW.
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dielectric permittivities at zero εr(0) and infinite frequencies εr(1)

are taken equal to those of GaAs: 1
εr(1) � 1

εr(0)

� �
¼ 1:42� 10�2. In

the calculations, the zero of electrostatic potential energy and
energy zero are taken at the conduction band edge of the emitter.

The electron temperature TQW in the QW was extracted from
photoluminescence (PL) measurements20–22 made at different
biases between the collector and the emitter. The PL measurements
were carried out at 300 K. The measurements were performed by
using a laser illumination at 488 nm, which corresponds to an
energy of 2.54 eV. The typical laser power density we used for the
measurements was 500W cm−2. The PL intensity from a QW can

be expressed as IQW / exp � hν�E0
kBTQW

� �
, where IQW is the intensity of

the PL from the QW, E0 the energy separation of electrons and
holes in the ground level, and TQW the temperature of the electron
system. Following this equation, TQW can be extracted from a
linear fit of the high-energy tail of the log(IQW) spectrum. This
so-called linear fit method can introduce errors when the absorp-
tivity of a material is not constant. To correct for this effect, a dif-
ferent method was recently developed, consisting of analyzing the
ratio of a non-equilibrium spectrum over an equilibrium reference
spectrum, for which the temperature is known (ratio method). In
our experiment, we used the spectrum at bias V = 0 as the reference
spectrum. Clear evidences of the electron cooling were obtained
when the bias increases.15

III. MODELING

In order to determine the temperature of the electrons in the
quantum well, we established and solved numerically the system of
two coupled equations (1) and (2) which express the conservation
of electron density [Eq. (1)] and of the internal energy of the 2D
electron gas [Eq. (2)] in the QW in the presence of an applied elec-
tric field when the system is in a stationary state. The index i
appearing in the summation in Eq. (1) [Eq. (2)] refers to all the
physical mechanisms contributing to the change in electron popu-
lation (energy) of the QW. The variation of the electron population
can be due to (i1) resonant tunnel injection from the emitter, (i2)
resonant tunnel back flow to the emitter, (i3) scattering-assisted
thermionic emission from QW to continuum (3D above-barrier
states), and (i4) scattering-assisted back flow from the collector. All
the mechanisms contributing to the injection and extraction of
electrons are schematically represented in Fig. 2 with the band
structure in the presence of an external field F. In the figure, E1 is
the QW bound state in the presence of the external field and Vrb is
the rhs barrier potential lowered by the field.

Assuming a parabolic dispersion for the subbands, each elec-
tron of the well contributes an energy E1,~k ¼ E1 þ �h2k2

2m* , with �h the
reduced Planck constant, m* the GaAs effective mass, and ~k the
QW electron wavevector, to the internal energy of the electron gas.
Thus, to account for the variation of the internal energy, on top of
mechanisms (i1)–(i4), we need to include the energy exchanged by
the electrons with the lattice while remaining inside the well: (i5)
via longitudinal optical phonon emission and (i6) via longitudinal
optical phonon absorption.

A. Resonant tunnel injection to QW and back flow
to emitter

The resonant tunnel transfer of electrons or energy through
the thin lhs barrier is modeled using Datta formalism23,24 for the cal-
culation of the resonant tunneling current. At the stationary state, we
assume Boltzmann distribution function for the electrons in each
region of the structure (emitter, QW, and collector) because the
device works at room temperature. This approximation is particularly
justified for the QW region, even in the presence of an applied bias,
because of the very low calculated electron density (nQW∼ 1014 m−2)
and the elevated TQW (near room temperature). The chemical poten-
tial in each region is fixed by the electron population.

In the emitter and collector, we assume that all the donors are
ionized and, thus, the electron density in those regions equals the
doping density nD. Following Ref. 11, the resonant tunneling
current density is, thus, given by

J ¼ � em*

π�h2
Γ(E1)
�h

kBTemite
�βemit (E1�μemit ) � kBTQWe�βQW (E1�μQW )

� �
¼ Jinj þ Jbf , (3)

where e is the elementary charge, �h the reduced Planck constant, kB
the Boltzmann constant, and m* the GaAs effective mass (the same

FIG. 2. Schematic representation of the double barrier heterostructure in the
presence of an external electric field. All the mechanisms contributing to the
injection and extraction of electrons are shown.
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for emitter and QW region). E1 is the QW bound state in the pres-
ence of an electric field, and μemit and μQW are, respectively, the
chemical potentials in the emitter and in the QW. Temit and TQW
are the electron temperatures in the emitter and in the QW and
βemit ¼ 1/kBTemit and βQW ¼ 1/kBTQW . The emitter electronic tem-
perature is taken equal to the phonon temperature T0. Γ(E1)/�h is
the tunneling rate at which an electron in the QW tunnel through
the emitter barrier and in the following, we rename it as
Γ(E1)/�h ¼ 1/τtunnel . We calculate this rate by using the semi-
classical model of the thermionic emission frequency of an elec-
tron, bound in the E1 QW state, to the emitter continuum,
as follows:

1
τtunnel

¼ νQW(E1)T(E1), (4)

where νQW(E1) is the electron oscillation frequency in the well and
T(E1) is the transmission tunneling probability through the emitter
barrier. In the presence of a bias and neglecting the intra-well Stark
effect on account of the small QW width (4–6 nm), the energy E1
of the electron bound to the QW should be understood as

E1 ¼ η1 � efQW � η1 � eF Lbl þ L
2

� �
, (5)

where η1 . 0 is the zero-field electron confinement energy, fQW is
the electrostatic potential at the center of the QW given that it is
zero at the junction between the emitter and the lhs barrier, and F
is the applied electric field. An electron with energy E1 for the z
motion hits the lhs wall with a frequency,

νQW(E1) ¼ eF

2
ffiffiffiffiffiffiffiffi
2m*

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η1 þ

eFL
2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η1 �

eFL
2

r !�1

: (6)

The electron probability to tunnel through the lhs barrier T
(E1) is different from zero only if the field F is such that E1 � 0. In
this condition, expression (6) is always defined since in our
samples η1 � eFL

2 . Notice that relation (4) holds irrespective of the
electron in plane wavevector. The first (Jinj) and second term (Jbf )
of Eq. (3) refer, respectively, to the injected current density from
the emitter to the well and to the current density back flow from
the well to the emitter. The rate of change of the QW electron con-
centration due to the injection from the emitter is calculated from
the first term of Eq. (3) leading to the following expression:

dnQW
dt

� �
inj

¼ Jinj
�e

¼ þnD
2e�βemitE1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*kBTemit

π�h2

r 1
τtunnel

, (7)

where the emitter 3D electron density is related to the chemical

potential via nD ¼ eβemitμemit 1
4

2m*

π�h2
kBTemit

� �3
2
. Similarly, the rate of

change of the QW population density due to the back flow from
the QW to the emitter can be calculated from the second term of

Eq. (3), leading to the following expression:

dnQW
dt

� �
emitter back flow

¼ Jbf
�e

¼ �nQW
1

τtunnel
, (8)

where the unknown nQW electron density is related to the chemical
potential via nQW ¼ e�βQW (E1�μQW ) m*

π�h2
kBTQW .

The power density P exchanged via tunneling through the left
barrier is

P ¼ 2
Ω

X
~k3D

E ~k3D
� �

vz( femit � fQW)A(Ez)Γ(Ez), (9)

where ~k3D ¼ ~k, kz
� �

, E ~k3D
� �

¼ E ~k
� �

þ Ez is the energy of the
electron in the emitter, vz is the electron speed along the growth
axis, Ω is the emitter volume, femit and fQW are the Boltzmann
distribution functions, and A(Ez) is the Lorenzian spectral
function that we suppose sharp enough to be described by a delta
function A(Ez) ¼ 2πδ(Ez � E1). As in Eq. (3), we rename
Γ(E1)/�h ¼ 1/τtunnel and, after integration, the power density
injected in the QW is given by

(PQW)inj ¼ þnD
2e�βemitE1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*kBTemit

π�h2

r (E1 þ kBTemit)
τtunnel

: (10)

Similarly, the energy loss rate associated with the electron
tunnel back flow is given by

(PQW)emitter back flow ¼ �nQW
(E1 þ kBTQW)

τtunnel
: (11)

B. Scattering-assisted thermionic emission to the
continuum and backflow to QW

The QW population and the associated energy also decay
because of thermionic emission to the continuum assisted by the
absorption or emission of LO phonons. The other scattering mech-
anisms (elastic scatterers and acoustical phonons) will be neglected
as they were proven less efficient.11 The lhs barrier being much
taller than the rhs one, the electrons will be thermionically emitted
predominantly to the continuum above the rhs low barrier. The
height of the rhs potential barrier of the structure can be taylored
by the external applied field as Vrb ¼ V0

rb(x)� eF(Llb þ L), where
V0
rb(x) is the zero-field rhs barrier height fixed by the Al content x.

We used the Fermi golden rule to calculate the scattering time for

an electron to go from an initial QW 2D state j1,~k to a continuum

3D state j~k0, k0z via LO phonon absorption with scattering time τabs
1,~k

or via phonon emission scattering time τemi
1,~k

. Like in Ref. 11, the

electron states are calculated using the envelope function approxi-
mation.25 The phonon states are taken bulk-like and the electron–
phonon interaction is the Fröhlich coupling. The expression of the
scattering times and their determination are given in the Appendix.
The QW population density decrease due to thermionic emission
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can be calculated as

dnQW
dt

� �
thermionic emi:

¼ �2
X
~k

1

τabs
1,~k

þ 1
τemiss
1,~k

 !
fQW(E1,~k), (12)

where the factor 2 takes into account the spin degeneracy and
fQW(E1,~k) is the occupation function of the QW state. For a ther-
malized population, Eq. (12) readily becomes

dnQW
dt

� �
thermionic emi:

¼ � nQW
τthermionic emi:

, (13)

with

1
τthermionic emi:

¼ ΩC2
Fm

*
rb

8π2�h3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTQW

p
(nLOe

�βQW (Vrb�E1��hωLO)Fabs
1 (TQW)

þ (nLO þ 1)e�βQW (Vrb�E1þ�hωLO)Femiss
1 (TQW)), ð14Þ

where

Fabs/emiss
1 ¼

ð1
0

dwe�w
ðffiffiffiwp

0

dv
ð2π
0

dθ
Nabs/emiss(w, v, θ)
Dabs/emiss(w, v, θ)

,

where w and v are dimensionless variables and the functions

N
abs
emiss (w, v, θ) and D

abs
emiss (w, v, θ) are expressed in the Appendix

[Eqs. (A13)–(A14)].
We define in Eq. (14) a characteristic rate for the thermionic

emission where ΩC2
F ¼ e2�hωLO

2ε0
1

εr(1) � 1
εr(0)

� �
, with εr(0) and εr(1)

being the relative dielectric permittivities at zero and infinite
frequencies, �hωLO the optical phonon energy, nLO the Bose–
Einstein occupation function at T0, m*

rb the effective mass in the
rhs barrier, and Vrb the rhs potential barrier. Note that

1/τthermionic emi: contains factors exp � (Vrb�E1��hωLO)
kBTQW

h i
that corre-

spond to LO phonon absorption and exp � (Vrb�E1þ�hωLO)
kBTQW

h i
to LO

phonon emission. These exponential activation factors make that
the device will work better at elevated temperature because the
extraction of the hot carriers will be the more efficient. The
increase in the QW population density due to the backflow from
the collector is empirically taken into account by writing

dnQW
dt

� �
coll: back flow

¼ nQW
τthermionic emi:

e�βcoll eFLrb , (15)

where βcoll ¼ 1/kBTcoll and we will assume the electron temperature
in the collector equal to the lattice temperature (Tcoll = T0).
Equation (15) ensures that the thermionic emission from the QW
is exactly balanced by the thermionic emission from the collector at
F = 0, while the backflow from the collector becomes negligible for
F > 5–10 kV/cm.

As for the energy exchanges, there are the energy loss rates
associated with the thermionic emission. They can be calculated

using an approach similar to that leading to Eqs. (13)–(15) giving

(PQW)thermionic emi: þ (PQW)coll: back flow

¼ (nLOe
�βQW (Vrb�E1��hωLO)Fabs

2 (TQW)

þ (nLO þ 1)e�βQW (Vrb�E1þ�hωLO)Femiss
2 (TQW)), (16)

with

F
abs
emiss

2 ¼
ð1
0

dw(Vrb + �hωLO þ wkBTQW)e�w
ðffiffiffiwp

0

dv
ð2π
0

dθ
N

abs
emiss (w, v, θ)

D
abs
emiss (w, v, θ)

where w and v are dimensionless variables and the functions

N
abs
emiss (w, v, θ) and D

abs
emiss (w, v, θ) are the ones introduced for the

thermionic emission rate [see Eqs. (A13)–(A14)].

C. Intra-well energy exchange

In addition, one needs to take into account the energy loss
rates associated with the intra QW emission/absorption of LO
phonons due to the difference between the electrons and phonons
temperatures. This energy (density) loss rate can be calculated as

(PQW )intra QW ¼ 2
S
�hωLO

X
~k

1

τabs,intra
1,~k

� 1

τemiss,intra
1,~k

0B@
1CAfQW (E

1,~k
)

¼ nQW
ΩC2

F�hωLO

4π�h2

ffiffiffiffiffiffi
m*

2

s
{nLO � (nLO þ 1)e�βQW�hωLO }F3(TQW ),

(17)

where τabs,intra
1,~k

τemi,intra
1,~k

� �
is the scattering time for a QW electron

to go from an initial QW state j1,~k to all finals QW states j1,~k0 via
phonon absorption (emission) as expressed by the Fermi golden
rule with the Fröhlich coupling. The full expression is given in
Eqs. (A20)–(A23).

Notice that at zero bias, the system being at thermal equilibrium
TQW =T0, the terms in the summation of Eq. (1) compensate each
other two by two (injection and tunneling back flow on one side, and
thermionic emission and thermionic back flow from collector on the
other side) leading to the constant equilibrium value of nQW fixed
only by the doping density (via the chemical potential). Similarly, the
energy loss or gain rate due to the exchanges between the well
and emitter/collector is null at zero bias. Moreover, in Eq. (17),
there is {nLO � (1þ nLO)exp(�βQW�hωLO)} ¼ nLO{1� exp[(�hωLO)
(β0 � βQW)]}, meaning that, if the electron and the phonon tempera-
ture coincide, then on average at thermal equilibrium, there is no
energy gain or loss for electrons from the phonon bath as
(PQW)intra QW ¼ 0. Our rate equation model reproduces correctly the
asymptotic thermal equilibrium condition (TQW =T0).

IV. RESULTS

We have found that the population rates of change associated
with the tunnel back flow to the emitter and the LO-assisted
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thermionic emission are proportional to nQW. From Eq. (1), this
means that nQW becomes proportional to the dopant concentration
in the emitter,

nQW ¼ nD
γ

1þ τtunnel
τthermionic emi:

(1� e�βcoll eFLrb )
, (18)

where γ ¼ 2e�βemitE1 /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*kBTemit

π�h2

q
. The energy loss rates are all pro-

portional to nQW but this is not the case for (PQW)inj, which is pro-
portional directly to nD. It follows that the conservation
requirement of the energy of the 2D gas is expressed by an implicit
equation that no longer contains nD. Thus, the solution TQW (T0)
of Eq. (2) will also be nD independent. This means that decreasing
(increasing) the doping of the emitter would lead to inject less
(more) electrons in the QW but would not change their tempera-
ture TQW as long as the Boltzmann approximation is valid. This
behavior may not be observed if the electron statistics in the QW
or the emitter become degenerate.

As seen from Eq. (18), a good indicator of the electron cooling
capability of a given asymmetric double barrier structure is given
by the ratio τtunnel

τ thermionic emi:
. If this ratio is bigger than one, the escape of

the QW electrons mainly proceeds by thermionic emission in the
rhs continuum. This means that energetic carriers are more effi-
ciently removed from the well than cold ones. Thus, the QW elec-
tron gas cools down. Note, however, that an efficient electron
cooling will be accompanied by a low nQW. We illustrate this trend
in Fig. 3 where τtunnel

τ thermionic emi:
, TQW and nQW are calculated vs the exter-

nal electric field for sample A, at various lattice temperatures T0.
Figure 3(a) shows that in this structure the thermionic emission is
always a more efficient process than tunneling and that the ratio
becomes larger when the external electric field increases. In fact,
the electric field lowers the rhs barrier rendering the thermionic
emission a faster process, thus warm electrons leave the QW faster
and faster compared to cold ones. This leads to the linear and slow
decrease in TQW with increasing F, shown in Fig. 3(b), for three
values of the lattice temperature. Thus, cooling is only possible if
the electron density is low, as it can be seen from Fig. 3(c) where
nQW = 0.5–2 × 1014 m−2. The steep decrease in the electron density
at low field reflects the thermoactivated behavior of the electron
back flow from the collector. This collector back flow becomes neg-
ligible when F > 10 kV/cm. In Fig. 3(b), we see the strikingly
improved electron cooling upon increasing the lattice temperature
T0, which is a clear signature of the thermionic emission to the
(predominantly rhs) continuum. Figure 4(a) shows the F depen-
dence of the electron temperature TQW for three QW thicknesses
(all the other parameters being those of sample A and T0 = 300 K).
One finds the same small decrease in TQW with increasing F as
shown in Fig. 3(b). Increasing L decreases the zero-field confine-
ment energy. This has two consequences. First, increasing L
renders the thermionic emission to the rhs continuum less effec-
tive, which leads to a decreased cooling efficiency and, thus, to an
increase in TQW. Second, the critical field where E1 passes below
the emitter conduction band edge decreases with increasing L. At
this field, injection stops and the thermionic emission empty the
well [see Fig. 4(b)]. This explains the lack of solution TQW < T0 for

FIG. 3. (a) Ratio of characteristics times for tunneling and thermionic emission,
(b) QW electronic temperature, and (c) QW electron density vs applied electric
field. Calculations are done for sample A at three different lattice temperatures:
T0 = 250 K (blue dots), 300 K (red line), and 400 K (black broken line).
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thick wells and large F. Figure 5 shows the TQW and nQW depen-
dence on the Al percentage of the rhs barrier for structures that
otherwise have the same design parameters as sample A at
T0 = 300 K and F = 10 kV/cm. Increasing the Al content increases
the barrier height, which limits the electron thermionic emission
(nQW increases) and limits the cooling (TQW rises).

Finally, we show in Fig. 6 at T0 = 300 K the bias dependence
of the measured TQW and the calculated TQW either by NEGF15 or
by rate equations for sample A [Fig. 6(a)] and sample B [Fig. 6(b)].
The electric field to be introduced in the calculation is deduced
from the applied bias V via the ideal capacitor model F = V/Ltot,
where Ltot = Llb + L + Lrb is the total length of the undoped layers

between the contacts. For sample A, PL measurements show that a
remarkable cooling of 27 K of the electron temperature can be
achieved by applying a bias of 0.4 V. Experimentally, we observe a
steep decrease in the electron temperature between 0 and 2 V and
then a saturation above 2 V. The rate equation model predicts the
electron cooling, even if lower (ΔTQW ¼ 16K when a bias of 0.6 V
is applied) than the one found experimentally, and reproduces
qualitatively the cooling effect of the double barrier structure in the
presence of an applied bias. Figure 6 shows also that NEGF model-
ing15,17 gives an almost perfect agreement with experiments. In
Fig. 6(b), we compare the results of the rate equation calculations,
with the measurements and the NEGF calculations shown in
Ref. 17 for sample B. Here, the predictions of the rate equations
stop at the bias where E1 passes below the emitter conduction band
edge (about 0.6 V for sample B) while experimental data keep
being measured far beyond that voltage. This shows that beyond
0.6 V, electrons are still supplied to the QW from the emitter. The
sample B structure should indeed be very inefficient on account of
the 15 nm-thick lhs barrier and it is likely that the QW feeding
takes place by thermal activation above the lhs barrier rather than
by direct tunneling. As shown above, the rate equation model does
predict electron cooling, albeit not reaching a quantitative descrip-
tion of the phenomenon. The reason for such a discrepancy
between the rate equation model and experiments may arise from a
neglect of thermionic emission above the emitter barrier. Another
aspect that deserves further investigation is the neglect of any LO
phonon assisted feeding of the QW from the emitter (and its
reverse process, the back flow from the QW to the emitter). Finally,
the low bias behavior could also be improved by a more quantita-
tive account of the back flow from the collector. Note, however,
that significant cooling takes place only at biases such that the
backflow from the collector is negligible.

FIG. 4. (a) QW electronic temperature and (b) QW electron density vs applied
electric field for various values of the QW thickness. Calculations are done at a
lattice temperature T0 = 300 K. The red curve corresponds to sample A
(quantum well thickness L = 6 nm). For the other two curves, all the structural
parameters are the one of sample A, but the QW thickness, L = 7.5 nm for the
blue dotted curve and L = 9 nm for the black broken line.

FIG. 5. QW electronic temperature and population as a function of the xAl con-
centration. All the other parameters are those of sample A, T0 = 300 K and
F = 10 kV/cm.
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V. CONCLUSION

We have reported a rate equation analysis of the electron pop-
ulation and temperature in an asymmetric double barrier cooling
structure. We have found that an efficient electron cooling com-
pared to the lattice temperature is always accompanied by a small
(<1014 m−2) equilibrium electron concentration in the QW. Our
findings are in good qualitative agreement with experiment.
Despite being less precise than the NEGF technique, the rate equa-
tion approaches are much less demanding to implement than the
NEGF and provide an easier grasp to the complex physical pro-
cesses that control the electron cooling in semiconductor
heterostructures.
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APPENDIX: LO PHONON SCATTERING-ASSISTED
PROCESSES

1. Thermionic emission scattering time

The electron–phonon interaction is cast in the general form

Hel�ph ¼
X
~Q3D

h
Vα(~Q3D)a

y
α,~Q3D

exp(�i~Q3D �~r)

þ V*
α(~Q3D)aα,~Q3D

exp(i~Q3D �~r)
i
, (A1)

where a given phonon mode α is taken into account. Vα(~Q3D) is

the coupling strength. ay
α,~Q3D

and aα,~Q3D
are the creation and annihi-

lation operators of a phonon in mode α and with a wavevector
~Q3D ¼ (~Q, Qz). For the phonons, we take a bulk-like approach for
simplicity. Here, we consider the Fröhlich coupling between the
electrons and the phonons in the LO mode (supposed dispersion-
less) in polar materials, which is expressed by the potential,

VFr€ohlich(~Q, Qz) ¼ �i
CFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ Q2
z

p , (A2)

FIG. 6. QW electronic temperature vs the applied bias in sample A (a) and sample B (b). Rate equations (red) and NEGF (blue open circles) calculations are compared
to experimental results (black filled circles). T0 = 300 K.
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where CF is the Fröhlich constant,

ΩC2
F ¼

e2�hωLO

2ε0

1
εr(1)

� 1
εr(0)

� �
, (A3)

where Ω ¼ SL is the volume of the crystal, S the surface of the
sample orthogonal to the growth direction, with εr(0) and εr(1)
being the relative dielectric permittivities at zero and infinite fre-
quencies, and �hωLO the optical phonon energy. We assume that

phonons are at thermal equilibrium described by the Bose–Einstein
distribution function nLO ¼ 1/(exp(β0�hωLO)� 1).

A QW electron may be scattered from an initial state j1,~ki to

the above-barrier 3D continuum states jk0!, k0zi, kz . 0, via the
absorption or the emission of a LO phonon. We assume a structure-
less continuum, i.e., ψk0z (z) ¼ 1ffiffiffiffi

Lrb
p exp(ik0zz), k0z . 0 and an

asymmetric QW with χ1(z) denoting the wavefunction associated to
the bound state E1. The scattering time due to phonon absorption or
emission can be calculated using Fermi Golden rule as follows:

1

τabs
1,~k

¼ 2π
�h
nLO

X
k0
!

,k
0
z,Q,
!

Qz

C2
F

Q2 þ Q2
z
h1,~k
			 			ei~Q�~ρeiQzz ~k

0
, k0zi

			 			2δ Ecoll

k0,
!

k0z

� E1,~k � �hωLO

 !
(A4)

1
τemiss
1,~k

¼ 2π
�h
(nLO þ 1)

X
k0
!

,k
0
z ,Q,
!

Qz

C2
F

Q2 þ Q2
z
h1,~k
			 			e�i~Q�~ρe�iQzz ~k, k0zi

			 			2δ Ecoll

k0,
!

k0z

� E1,~k þ �hωLO

 !
, (A5)

where E1,~k ¼ E1 þ �h2k2
2m* is the energy of a QW state and Ecoll

k,
!

kz
¼ Vrb þ �h2k2

2m*
rb
þ �h2k2z

2m*
rb
the energy of a continuum state above the

collector (rhs) barrier. In these expressions, the summations

over the phonon states lead to

X
Q,
!

Qz

C2
F h1,~k
			 			ei~Q�~ρeiQzz ~k

0
, k0zi

			 			2
Q2 þ Q2

z

¼ C2
F

Q
L
2

ðð1
�1

dzdz0χ*1(z)ψk0z (z)χ1(z
0)ψ*

k0z (z
0)e�Qjz�z0 j, (A6)

with Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k02 � 2kk0cos(θ)

q
and

d
k
!
; k0
! ¼ θ, which, inserted

in Eqs. (A4) or (A5) and after integration on kz0, gives for
phonon absorption,

1

τabs
1,~k

¼ nLO
ΩC2

F

ffiffiffiffiffiffiffiffiffiffi
2m*

rb

q
16π2�h2

ð1
0

dk02

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔEabs(k, k0)

p ð2π
0

dθ
Iabs(Q)

Q
Θ(ΔEabs),

(A7)

with ΔEabs(k, k0) ¼ �h2k2
2m* � �h2k002

2m*
rb
� Vrb þ E1 þ �hωLO, and for

phonon emission,

1

τemiss
1,~k

¼ (nLO þ 1)
ΩC2

F

ffiffiffiffiffiffiffiffiffiffi
2m*

rb

q
16π2�h2

ð1
0

dk02

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eemiss(k, k0)

p ð2π
0

dθ
Iemiss(Q)

Q
Θ(ΔEemiss),

(A8)

with ΔEemiss(k, k0) ¼ �h2k2
2m* � �h2k02

2m*
rb
� Vrb þ E1 � �hωLO. In (A7)

and (A8), there is the integral,

Iabs/emiss(Q) ¼
ðð1
�1

dzdz0χ*1(z)χ1(z
0)e�Q jz�z0 j

� cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*

rbΔE
abs/emiss(k, k0)
�h2

s
(z � z0)

0@ 1A (A9)

and Θ(ΔEabs/emiss), which is the Heaviside function stating that
E1,~k � Vrb � �hωLO in the case of phonon absorption and that
E1,~k � Vrb þ �hωLO in the case of phonon emission. These two
conditions on the energy of the QW state clearly mean that the
electron emission from the QW to the continuum is a thermoac-
tivated process because only high-energy electron can make a
phonon assisted transition.

The thermal average of the scattering time associated with
absorption or emission of phonons is

1
τabs/emiss


 �
¼ 2

nQW

X
~k

1

τabs/emiss
1,~k

fQW(E1,~k): (A10)

Hence, the characteristic rate for the thermionic emission can
be expressed as

1
τthermionic emi:

¼ 1
τabs


 �
þ 1

τemiss


 �
¼ ΩC2

Fm
*
rb

8π2�h3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTQW

p
� �nLOe�βQW (Vrb�E1��hωLO)Fabs

1 (TQW)

� (nLO þ 1)e�βQW (Vrb�E1þ�hωLO)Femiss
1 (TQW)

�
, (A11)

with

Fabs/emiss
1 ¼

ð1
0

dwe�w
ðffiffiffiwp

0

dv
ð2π
0

dθ
Nabs/emiss(w, v, θ)
Dabs/emiss(w, v, θ)

, (A12)
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Nabs/emiss(w, v, θ) ¼
ðð1
�1

dzdz0χ*1(z)χ1(z
0)e

� Dabs/emiss(w,v,θ)

ffiffiffiffiffiffi
2m*

rb
�h2

q
jz�z0 j

� �
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*

rb

�h2βQW

s
v(z � z0)

 !
, (A13)

Dabs/emiss(w, v, θ) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE

abs
emiss þ w

βQW

� �
m*

m*
rb

þ (w� v2)
βQW

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE

abs
emiss þ w

βQW

� �
m*

m*
rb

(w� v2)
βQW

s
cos(θ)

vuut , (A14)

where w and v are dimensionless variables and ΔE
abs
emiss ¼ Vrb � E1 + �hωLO.

2. Intra QW energy loss rate

In case of intrasubband transitions due to the absorption or emission of LO phonons, the scattering times for a QW electron in state
j1,~ki read

1

τabs,intra
1,~k

¼ 2π
�h
nLO

X
k0
!

,Q,
!

Qz

C2
F

Q2 þ Q2
z
h1,~k
			 			ei~Q�~ρeiQzz 1,~k

0i
			 			2δ�E

1,k0
! � E1,~k � �hωLO

�
, (A15)

1

τemiss,intra
1,~k

¼ 2π
�h
(nLO þ 1)

X
k0
!

,Q,
!

Qz

C2
F

Q2 þ Q2
z
h1,~k
			 			e�i~Q~ρe�iQzz 1,~k

0i
			 			2δ�E

1,k0
! � E1,~k þ �hωLO

�
: (A16)

The summations over the phonon states lead to

X
Q,
!

Qz

C2
F h1,~k
			 			ei~Q�~ρeiQzzj1,~k0ij2

Q2 þ Q2
z

¼ C2
F

Q
L
2

ðð1
�1

dzdz0χ21(z)χ
2
1(z

0)e�Qjz�z0 j ¼ LC2
F

2
I(Q)
Q

, (A17)

with Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k02 � 2kk0cos(θ)

q
and

d
~k, k0

! ¼ θ, which, inserted
in (A15) or (A16) and after integration on k0, gives for phonon
absorption,

1

τabs,intra
1,~k

¼ nLO
ΩC2

F

4π
m*

�h3

ð2π
0

dθ
I(Q)
Q

, (A18)

with k02 ¼ k2 þ 2m*ωLO/�h, and for phonon emission,

1

τemiss,intra
1,~k

¼ (nLO þ 1)
ΩC2

F

4π
m*

�h3

ð2π
0

dθ
I(Q)
Q

Θ(�h2k2/2m*��hωLO),

(A19)

with k02 ¼ k2 � 2m*ωLO/�h, where the Heaviside function express
the minimum electron energy required for phonon emission.

The density of energy loss rate due to phonon absorption and
emission is then calculated as

(PQW)intra QW ¼ 2
S

X
~k

�hωLO

τabs,intra
1,~k

þ ��hωLO

τemiss,intra
1,~k

0@ 1AfQW(E1,~k)

¼ nQW
ΩC2

F�hωLO

4π�h2

ffiffiffiffiffiffi
m*

2

r
nLO � (nLO þ 1)e�βQW�hωLO
� 

F3(TQW),

(A20)

with

F3 ¼
ð1
0

dwe�w
ð2π
0

dθ
N(w, θ)
D(w, θ)

, (A21)

N(w, θ) ¼
ðð1
�1

dzdz0χ21(z)χ
2
1(z

0)e� D(w,θ)
ffiffiffiffiffi
2m*

�h2

p
jz�z0 j

� �
, (A22)

D(w, θ)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wkBTQW þ�hωLO�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wkBTQW(�hωLOþwkBTQW)

p
cos(θ)

q
:

(A23)
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