
HAL Id: hal-04336392
https://hal.science/hal-04336392

Submitted on 12 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards a Formal Verification of Attack Graphs
Davide Catta, Jean Leneutre, Vadim Malvone

To cite this version:
Davide Catta, Jean Leneutre, Vadim Malvone. Towards a Formal Verification of Attack Graphs.
SPIRIT 2022 - Workshop on Strategies, Prediction, Interaction, and Reasoning in Italy, Nov 2022,
Udine, Italy. �hal-04336392�

https://hal.science/hal-04336392
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Towards a Formal Verification of Attack Graphs
Davide Catta1,†, Jean Leneutre1 and Vadim Malvone1

1LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France

Abstract
In this perspective paper, we propose different formalizations of games that are played over Attack
Graphs between an Attacker and a Defender. In all such games we propose a formal approach (such as
logics and automata theory) to check whether the Attacker has a strategy to win the game.

Keywords
Attack Graphs, Sabotage Games, Logics in Games

1. Introduction

Modern systems are inherently complex and security plays a crucial role. The main challenge in
developing a secure system is to come up with tools able to detect vulnerability and unexpected
behaviors at a very early stage of its life-cycles. These methodologies should be able to measure
the grade of resilience to external attacks. Crucially, the cost of repairing a system flaw during
maintenance is at least two order of magnitude higher, compared to a fixing at an early design
stage [1]. In the past fifty years several solutions have been proposed and a story of success
is the use of formal methods techniques [1]. They allow checking whether a system is correct
by formally checking whether a mathematical model of it meets a formal representation of its
desired behavior. Recently, classic approaches such as model checking and automata-theoretic
techniques, originally developed for monolithic systems [2, 3], have been meaningfully extended
to handle multi-agent systems [4, 5, 6, 7, 8]. These are systems that encapsulate the behavior
of two or more rational agents interacting among them in a cooperative or adversarial way,
aiming at a designed goal [9].

In system security checking, a malicious attack can be seen as an attempt of an Attacker
to gain an unauthorized resource access or compromise the system integrity. In this setting,
Attack Graph [10] is one of the most prominent attack model developed and receiving much
attention in recent years. This encompasses a graph where each state represents an Attacker at
a specified network location and edges represent state transitions, i.e., attack actions by the
Attacker. In this paper, we sketch three different methodologies to reason about Attack Graphs
by introducing game models in which a player (called Attacker) travels through adjacent edges
of an Attack Graph and tries to reach a certain target state, and another player (called Defender)

IPS-RiCeRcA-SPIRIT 2022: 10th Italian Workshop on Planning and Scheduling, RiCeRcA Italian Workshop, and SPIRIT
Workshop on Strategies, Prediction, Interaction, and Reasoning in Italy.
†
These authors contributed equally.
 davide.catta@telecom-paris.fr (D. Catta); jean.leneutre@telecom-paris.fr (J. Leneutre);
vadim.malvone@telecom-paris.fr (V. Malvone)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:davide.catta@telecom-paris.fr
mailto:jean.leneutre@telecom-paris.fr
mailto:vadim.malvone@telecom-paris.fr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

tries to prevent to Attacker to reach his goal by dynamically deploying countermeasures. All
the game models that we will introduce can be handled by means of formal methods, i.e., to
reason about such games we will use logical methods or automata-theoretic approaches.

2. Attack Graphs

The term Attack Graph has been first introduced by Phillips and Swiler [11]. Attack Graphs
represent the possible sequence of attacks in a system as a graph. An Attack Graph may be
generated by using the following information: a description of the system architecture (topology,
configurations of components, etc.), the list of the known vulnerabilities of the system and the
Attacker’s profile (his capabilities, password knowledge, privileges etc.) and attack templates
(Attacker’s atomic action, including preconditions and postconditions). An attack path in the
graph corresponds to a sequence of atomic attacks. Several works have developed this approach
and each work introduces its own Attack Graph model with its specificity, and thus there is no
standard definition of an Attack Graph, see [12] for a survey. However, all introduced models
can be mapped into a canonical Attack Graph as introduced in [13]. It is a labelled oriented
graph, where:

1. each node represents both the state of the system (including existing vulnerabilities) and
the state of the Attacker including constants (Attacker skills, financial resources, etc.) and
variables (knowledge on the network topology, privilege level, obtained credentials, etc.);

2. each edge represents an action of the Attacker (a scan of the network, the execution of an
exploit based on a given vulnerability, access to a device, etc.) that changes the state of
the network or the states of the Attacker; an edge is labelled with the name of the action
(several edges of the Attack Graph may have the same label).

We recall that a rooted Kripke structure𝑀 is given by a non-empty set𝑆 of states, a designated
initial state 𝑠0, a finite-non empty set Σ of labels, a ternary relation 𝑅 ⊆ 𝑆 × Σ × 𝑆 and a
labeling function 𝑉 that maps any element of 𝑆 to a set of atomic proposition. By abstracting
all the data in the above discussion, one can define an Attack Graph as follows.

Definition 1. Let Σ be a finite set of labels, and 𝒫 a finite set of atomic propositions, such that
win ∈ 𝒫 . An Attack Graph is a tuple 𝐴𝐺 = ⟨𝑆, 𝑠0,Σ, 𝑅, 𝑉,𝑊 ⟩ where:

– ⟨𝑆, 𝑠0,Σ, 𝑅, 𝑉 ⟩ is a rooted Kripke structure where the set 𝑆 of states is finite and 𝑉 (𝑠) ⊆ 𝒫
for any 𝑠 ∈ 𝑆;

– 𝑊 is a non-empty subset of 𝑆 such that win ∈ 𝑉 (𝑠) for all 𝑠 ∈𝑊 .

The set 𝑊 represents the set of target states of the Attacker.

Let us make things more concrete. Consider the following scenario: an enterprise has a local
area network (LAN) that features a Server, a Workstation and two databases A and B. The LAN
also provides a Web Server. Internet’s access to the LAN are controlled by a firewall. Such
scenario is depicted in Figure 1. Suppose that we know some vulnerabilities and that we have

established that a malevolent user can make the attacks listed in the Table of Figure 1, e.g., by
making 𝑎𝑡𝑡2, an Attacker can exploit a vulnerability related to the Server : as a precondition the
Attacker needs to have root access to the Web Server and, as a postcondition, he will obtain
root access to the Server. Then we can construct an Attack Graph built from this set of atomic
attacks and collecting possible attack paths as depicted in Figure 11. The Attacker’s initial state
is a node in the Attack Graph. Let us suppose that the Attacker is in state 𝑠1 and wants to
reach state 𝑠4. To get to this target, he can perform the sequences of atomic attacks 𝑎𝑡𝑡2, 𝑎𝑡𝑡4
or 𝑎𝑡𝑡3, 𝑎𝑡𝑡2, 𝑎𝑡𝑡4.

Attack Location Precondition Postcondition Counter
measure

𝑎𝑡𝑡1 Web Server 𝑤𝑒𝑏_𝑠𝑒𝑟𝑣𝑒𝑟 : 𝑟𝑜𝑜𝑡 _
𝑎𝑡𝑡2 Server 𝑤𝑒𝑏_𝑠𝑒𝑟𝑣𝑒𝑟 : 𝑟𝑜𝑜𝑡 𝑠𝑒𝑟𝑣𝑒𝑟 : 𝑟𝑜𝑜𝑡 𝑐2
𝑎𝑡𝑡3 Workstation 𝑤𝑒𝑏_𝑠𝑒𝑟𝑣𝑒𝑟 : 𝑟𝑜𝑜𝑡 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 : 1234 _
𝑎𝑡𝑡4 Database A 𝑠𝑒𝑟𝑣𝑒𝑟 : 𝑟𝑜𝑜𝑡 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝐴 : 𝑟𝑜𝑜𝑡 𝑐4
𝑎𝑡𝑡5 Database B 𝑠𝑒𝑟𝑣𝑒𝑟 : 𝑟𝑜𝑜𝑡∧ 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝐵 : 𝑟𝑜𝑜𝑡 𝑐5

𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 : 1234

Figure 1: An illustrating LAN architecture example, a list of Atomic attacks and countermeasures over
the LAN, and an Attack Graphs generated by such Atomic attacks.

1This Attack Graph is not complete w.r.t. our previous description, since some possible sequences of atomic attacks
are not listed: for instance 𝑎𝑡𝑡1, 𝑎𝑡𝑡2, 𝑎𝑡𝑡3, 𝑎𝑡𝑡5 are not taken into account.

3. Attack Graph Games

In the previous section, we saw that an Attack Graph represents a sequence of possible actions
made by an Attacker to reach a specific goal. Let us add another character to this story,
the Defender, whose objective is to counter the attack. Suppose that she has the power to
dynamically deploy a predefined set of countermeasures: for instance by reconfiguring the
firewall filtering rules, or patching some vulnerabilities, that is by removing one or several
preconditions of an atomic attack. A given countermeasure 𝑐 will prevent the Attacker from
longing a given attack 𝑎𝑡𝑡. One can imagine a game played over the Attack Graph in which the
Attacker tries to reach one of its goal states, and the Defender tries to prevent the Attacker from
reaching a goal state by deploying countermeasures. Given such a game, one natural question
to ask is the following: is there a winning Attacker Strategy? We will now define three possible
settings in which such games can be formalized.

3.1. Attack Graph Games & (Subset) Sabotage Modal Logic

Above, we introduced a Defender, whose power is to deploy certain countermeasures, and we
introduced the concept of game over an Attack Graph. To make things less abstract, consider
a two player turn-based game over Attack Graph in which: the Defender starts the game by
selecting a certain countermeasure 𝑐. By choosing such a countermeasure, she deletes a subset
of edges of the Attack Graph: all the edges that are labeled by 𝑐. The Attacker takes his turn
and moves from 𝑠0 to one of its successor along the edges that have not being erased (if any).
The game evolves following this pattern. The Attacker wins if he can reach one of the states
in W in a finite number of moves, the Defender wins otherwise. A run in such a game is
nothing more than a run in a insidious sabotage game. Sabotage games were introduced by
van Benthem in 2005 [14], with the aim of studying the computational complexity of a special
class of graph-reachability problems. Namely, graph reachability problems in which the set of
edges of the graph became thinner and thinner as long as a path of the graph is constructed. To
reason about sabotage games, van Benthem introduced Sabotage Modal Logic. Such Logic is
obtained by adding to the ♢-modality of classical modal logic another modality ♦.

Let𝐺 be a directed graph and 𝑠 one of its vertex (or states); the intended meaning of a formula
♦𝜙 is “ ♦𝜙 is true at a state 𝑠 of 𝐺 iff 𝜙 is true at 𝑠 in the graph obtained by 𝐺 by erasing an
edge 𝑒". Our sabotage games differs from the one introduced by van Benthem because one of
the players can erase an entire subset of edges of a given graph. To reason about such games,
in [15] we introduce a variant of Sabotage Modal Logic that we call, for lack of wit, Subset
Sabotage Modal Logic (SSML, for short). The logic SSML is obtained by adding a modality
♦⊂
𝑎 to the language of classical modal logic. Being more precise, let 𝒫 be a non-empty set of

atomic propositions and Σ a finite, non empty set of labels. Formulas of SSML are defined by
the following grammar

𝜙 ::= 𝑝 | ⊤ | ¬𝜙 | 𝜙 ∧ 𝜙 | ♢𝑎𝜙 | ♦⊂
𝑎 𝜙

where 𝑝 is any atomic proposition and 𝑎 any label. One can define the boolean connectives
∨ and → in the usual way, □𝑎𝜙 as ¬♢𝑎¬𝜙, and ■⊂

𝑎 𝜙 as ¬♦⊂
𝑎 ¬𝜙.

The intended meaning of a formula ♦⊂𝜙 is “ ♦⊂
𝑎 𝜙 is true at a state 𝑠 of a directed graph 𝐺

iff 𝜙 is true at 𝑠 in the graph 𝐺′ that is obtained from 𝐺 by erasing a non-empty set of edges
that are labeled by 𝑎". We now precisely define the semantics of SSML. If 𝑀 = ⟨𝑆, 𝑠0,Σ, 𝑅, 𝑉 ⟩
is a Kripke structure and 𝐸 ⊆ 𝑅, we write 𝑀 ∖ 𝐸 to denote the Kripke structure obtained by
erasing the subset 𝐸 from the relation 𝑅. If 𝑒 = (𝑠, 𝑎, 𝑠′) ∈ 𝑅 we say that 𝑒 is a labeled edge or
simply an edge, and that 𝑎 is the label of 𝑒. We denote by 𝑅𝑎 the subset of labeled edges of 𝑅
whose label is 𝑎, that is 𝑅𝑎 = {𝑒 ∈ 𝑅 | 𝑒 ∈ 𝑆 × {𝑎} × 𝑆}.

The notion of satisfaction of a formula 𝜙 at a given state 𝑠 of a Kripke structure 𝑀 (written
𝑀, 𝑠 |= 𝜙) is inductively defined as follows:

𝑀, 𝑠 |= ⊤ for all 𝑠 ∈ 𝑆;

𝑀, 𝑠 |= 𝑝 iff 𝑝 ∈ 𝑉 (𝑠);

𝑀, 𝑠 |= ¬𝜙 iff not 𝑀, 𝑠 |= 𝜙 (notation 𝑀, 𝑠 ̸|= 𝜙);

𝑀, 𝑠 |= 𝜙1 ∧ 𝜙1 iff 𝑀, 𝑠 |= 𝜙1 and 𝑀, 𝑠 |= 𝜙2;

𝑀, 𝑠 |= ♢𝑎 𝜙 iff there is a 𝑠′ ∈ 𝑆 such that (𝑠, 𝑎, 𝑠′) ∈ 𝑅 and 𝑀, 𝑠′ |= 𝜙;

𝑀, 𝑠 |= ♦⊂
𝑎 𝜙 iff there is a non-empty 𝐸 ⊆ 𝑅𝑎 such that 𝑀 ∖ 𝐸, 𝑠 |= 𝜙.

We say that a formula 𝜙 is true in a rooted Kripke structure 𝑀 (written 𝑀 |= 𝜙) iff 𝜙 is true
at the initial state of 𝑀 . Remark that 𝑀, 𝑠 |= ■⊂

𝑎 𝜙 if and only if for any non-empty subset
𝐸 of 𝑅𝑎 we have that 𝑀 ∖ 𝐸, 𝑠 |= 𝜙, 𝑅𝑎 included. This implies that if 𝑀, 𝑠 |= ■⊂

𝑎 𝜙 then
𝑀 ∖𝑅𝑎, 𝑠 |= 𝜙.
A strategy is a plan of action. As it is logical, the plan is winning when it leads me to victory,
whatever my opponent’s plan of action. Thus, a winning strategy can be expressed as an
alternance of universally quantified sentences and existentially quantified sentences “for all
actions of my Opponent, there is an action that I can make that leads me to victory". Let us put
ourselves in the villain’s shoes: suppose that we are the Attacker, and that, by playing, we have
reached a certain state 𝑠 of an Attack Graph 𝐴𝐺. It is now Defender’s turn. If I have a winning
strategy, I must be able to reach a successor state 𝑠′ of 𝑠 and this for any subset that is removed by
the Defender. Said differently, we must have that𝐴𝐺, 𝑠 |= ■⊂ ♢𝜙 = (■⊂

𝑎 ♢𝜙)∧· · ·∧(■⊂
𝑏 ♢𝜙)

for some formula 𝜙 that expresses the winning condition. First, we define:

■⊂ 𝜙
.
=

⋀︁
𝑎∈Σ

■⊂
𝑎 𝜙 ♢𝜙

.
=

⋁︁
𝑎∈Σ

♢𝑎 𝜙

We can now define a family of formulas expressing the fact the the Attacker as a winning
strategy to win a Subset Sabotage Game played over an Attack Graph.

Definition 2 (Winning Formulas). The family {𝜓𝑛}𝑛∈N of Winning formulas is defined by
induction on 𝑛 as follows:

𝜓𝑛 =

{︃
win if 𝑛 = 0

♢⊤ ∧ ■⊂ ♢(𝜓𝑛−1 ∨ win) otherwise
(1)

The following thereom can be proved by induction on the size of the Attack Graph.

Theorem 1. For any attack Graph 𝐴𝐺 = ⟨𝑆, 𝑠0,Σ, 𝑅, 𝑉,𝑊 ⟩ such that |𝑆| = 𝑛 we have that
𝑀 |= win ∨ 𝜓𝑛−1 if and only if there is a Winning Attacker Strategy for the Subset Sabotage
Game played over 𝐴𝐺.

The model-checking problem for SSML, consist in deciding if 𝑀 |= 𝜙 given a finite rooted
Kripke Structure 𝑀 and a SSML formula 𝜙. The proof of the following theorem is obtained by
defining a translation (parametrized by a given Kripke structure) from SSML formulas to SML
formulas.

Theorem 2. The model checking problem for SSML is decidable: if 𝑀 is a finite rooted Kripke
Structure and 𝜙 an SSML formula, we can decide whether 𝑀 |= 𝜙 or not.

As a consequence of the two above theorems, we can decide if there is a winning Attacker
Strategy for the Subset Sabotage Game played over 𝐴𝐺, by checking if 𝐴𝐺 is a formal model of
the formula 𝜓𝑛−1 where 𝑛 is the size of 𝐴𝐺.

3.2. Attack Graph Games & Automata

In the SSML setting that we sketched in the previous section, we can decide if there is a winning
Attacker Strategy over the subset sabotage game played over 𝐴𝐺, by checking if 𝐴𝐺 is a formal
model of a certain SSML formula 𝜓𝑛. Such a solution is quite ad-hoc: we have designed the
logic SSML exactly to solve our problem. To reason about the kind of games that we described
in the previous section, we can use another technique. We have presented such a technique
in [16] by working together with other colleagues.

We define a game 𝒢 as a structure ⟨𝑉, 𝑣𝐼 , 𝑇,𝐺⟩ where 𝑉 = 𝑉1 ∪ 𝑉2 is a set of vertex such
that 𝑉1 ∩ 𝑉2 = ∅, 𝑣0 ∈ 𝑉1 is the initial vertex, 𝑇 = 𝑇1 ∪ 𝑇2 is a transition relation such that
𝑇1 ⊆ 𝑉1 × 𝑉2 and 𝑇2 ⊆ 𝑉2 × 𝑉1 and 𝐺 ⊆ 𝑆2 is a non-empty subset representing the set of
Attacker’s goal states. Given an Attack Graph 𝐴𝐺 = ⟨𝑆, 𝑠0,Σ, 𝑅, 𝑉,𝑊 ⟩ together with a set of
countermeasures 𝒞 (as showed in Figure 1), we can easily convert the Attack Graph in a game 𝒢
by using an algorithm. We briefly describe the idea of this algorithm with the following points:

1. Each vertex 𝑣 of the game produced will be a pair ⟨𝑠, 𝐿⟩, where 𝑠 is an 𝐴𝐺-state and 𝐿 is
a list of edge labels.

2. We start by setting as initial state of the game the pair ⟨𝑠0, 𝜖⟩ and for each 𝑠′, such that
(𝑠0, 𝑎, 𝑠

′) ∈ 𝑅 for some 𝑎 ∈ Σ we create an edge (⟨𝑠0, 𝜖⟩, ⟨𝑠′, 𝜖⟩) ∈ 𝑇1.

3. If one of the 𝑠′ is in𝑊 we create a sink and we add ⟨𝑠′, 𝜖⟩ ∈ 𝐺. Otherwise, for each counter-
measure 𝑐 ∈ 𝒞 we create a vertex ⟨𝑠′, 𝑐⟩ ∈ 𝑉2 and we add a transition (⟨𝑠′, 𝜖⟩, ⟨𝑠′, 𝑐⟩) ∈ 𝑇2.

4. If in the Attack Graph 𝐴𝐺 there is an edge labeled with 𝑑 ̸= 𝑐 such that (𝑠′, 𝑑, 𝑠′′) ∈ 𝑅
we add a vertex ⟨𝑠′′, 𝑑⟩ ∈ 𝑉1 and an edge (⟨𝑠′, 𝑐⟩, ⟨𝑠′′, 𝑑⟩) ∈ 𝑇1, otherwise we create a
sink (⟨𝑠′, 𝑐⟩, ⟨𝑠′, 𝑐⟩) ∈ 𝑇1.

We repeat this procedure until there are states in 𝐴𝐺. It is clear that if the Attack graph 𝐴𝐺
does not contain cycles, then the game 𝒢 given by the procedure is a finite, labeled tree whose
root is labeled by 𝑣𝐼 = ⟨𝑠0, 𝜖⟩. We can thus define a winning strategy for the Attacker as a
pruning of 𝒢 in which each state in 𝑉1 has at most one child and whose leaves are all in 𝐺, i.e.,
we can define winning strategies as follows.

Definition 3. An attacker strategy for a game ⟨𝑉, 𝑣𝐼 , 𝑇,𝐺⟩ is a finite tree whose root is 𝑣𝐼 , whose
branches are plays over 𝒢 and that satisfy the following properties:

1. For each node 𝑠 of the strategy: if 𝑠 ∈ 𝑉1 then 𝑠 has at most one child.

2. For each node 𝑠 of the strategy: if 𝑠 ∈ 𝑉2 and 𝑠 /∈ 𝐺 then 𝑠 has as many child as there are
nodes 𝑠′ such that (𝑠, 𝑠′) ∈ 𝑇2.

An attacker strategy is winning whenever each leaf of the strategy belongs to 𝐺.

Finite trees can be recognized by finite tree automaton.

Definition 4. A nondeterministic tree automaton (𝑁𝑇𝐴, for short) is a tuple 𝒜 =
⟨𝑄,Σ, 𝑞0, 𝛿, 𝐹 ⟩, where: 𝑄 is a set of states, 𝑞0 ∈ 𝑄 is an initial state, 𝛿 : 𝑄 × Σ → 2𝑄 is a
transition function mapping pairs of states and symbols to a set of states, and 𝐹 ⊆ 𝑄 is a set of
the accepting states.

A 𝑁𝑇𝐴 𝒜 recognizes trees and works as follows. For a node tree labelled by 𝑎 and 𝒜 being
in a state 𝑞, it sends different copies of itself to successors in accordance with 𝛿. Given a
non-deterministic tree automaton 𝒜 (NTA, for short), we can check in linear time if the set
of trees accepted by the automaton is empty. If such set is empty, there will be no winning
strategies for the Attacker. Since the size (i.e. number of vertices) of a tree constructed by the
NTA does not exceed the size of the game, we obtain the following result.

Theorem 3. Given a game 𝒢 it is possible to decide in linear time whether the Attacker has a
strategy to win the game.

3.3. Attack Graph Games & Interpreted System

The games we described in the two previous subsections are two-player turn-based games with
perfect information. The two players move in turns and they have perfect information about
each other’s actions. These two assumptions are quite unrealistic. In particular, it is unrealistic
to think that a Defender always have perfect information about Attacker’s actions. Moreover,
while in both models we have a clear view of what an Attacker is — we can identify him with
the Attack Graph itself— the Defender is relegated to a subordinate role. Such a character does
not have a clear ontological status has it is identified with a set of countermeasures that are
given independently of the graph structure. If we want to think in terms of multi-agent system,
we should try to give a clear agent’s status to the Defender as well. To tackle all these problems
we propose to think about Attacker and Defender(s) in a game played over an Attack Graph as
Agents of an Interpreted System [17]. An Interpreted Systems (IS) is constructed starting from
a finite set of Agents 𝐴𝑔 = {1, . . . , 𝑛}, each agent 𝑖 is specified by giving:

• a set 𝐿𝑖 of local states;

• a set 𝑎𝑐𝑡𝑖 of agent’s action;

• a function 𝑃𝑖 associating to each local state a non-empty set of agent’s 𝑖 actions;

• a transition function 𝑡𝑖 that takes an agent 𝑖 state 𝑙𝑖 and an action 𝑎𝑘 for each agent in
𝐴𝑔 as argument and outputs an agent 𝑖 state. The function 𝑡𝑖(𝑙𝑖, 𝑎1, . . . , 𝑎𝑘) is defined if
and only if we have that 𝑎𝑖 ∈ 𝑃𝑖(𝑙𝑖).

If 𝐴𝑔 is a set of 𝑘 agents, a global state 𝑠 is a tuple 𝑠 = ⟨𝑙1, . . . , 𝑙𝑘⟩ where each 𝑙𝑖 is an
agent 𝑖 state. The set of global states is denoted by 𝐺𝐼 . Finally an Interpreted System is
a tuple 𝐼 = ⟨𝐴𝑔, 𝑠0, 𝑇,Π⟩ where 𝐴𝑔 is a set of agents, 𝑠0 ∈ 𝐺𝐼 is the global initial state,
𝑇 : 𝐺𝐼 × 𝑎𝑐𝑡𝐴𝑔 → 𝐺𝐼 is the global transition function such that 𝑇 (𝑠, 𝑎1, . . . , 𝑎𝑘) = 𝑠′ iff for
every 𝑖 ∈ 𝐴𝑔, 𝑡𝑖(𝑠, 𝑎𝑖) = 𝑠′, and Π is a labeling function, associating to any global states a
subset of atomic propositions. Interpreted systems can be used together with logics for the
strategic reasoning such as Alternating-time temporal logic (ATL)[5] and Strategy Logic (SL)[7].
Moreover, interpreted systems came with a natural concept of imperfect information: if 𝑠 is a
global state, we denote by 𝑠[𝑖] its 𝑖-component. Two global states 𝑠 and 𝑠′, are equivalent for
the agent 𝑖 whenever 𝑠[𝑖] = 𝑠′[𝑖]. We denote such notion by 𝑠 ∼𝑖 𝑠

′. Two histories, i.e. finite
sequences of global states, ℎ and ℎ′, are equivalent for the agent 𝑖 whenever they have the same
length 𝑚 and ℎ𝑗 ∼𝑖 ℎ

′
𝑗 for any 0 ≤ 𝑗 ≤ 𝑚.

Given an Attack Graph 𝐴𝐺 we can define an Attacker Agent whose states are the states of
the attack graph, whose actions are the labels of the Attack Graph’s edges (and eventually the idle
action), and in which given two states 𝑠 and 𝑠′ of the𝐴𝐺 if (𝑠, 𝑏, 𝑠′) ∈ 𝑅 then 𝑡(𝑠, (𝑏, �⃗�)) = 𝑠′ for
some tuple of other’s agent actions �⃗�. The natural question is: how can we define the Defender?
As we can see from the table in Figure 1, each attack in the Attack Graph, is identified with a
set of preconditions and postconditions. The latter is nothing more than atomic propositions
labeling states. If the Attacker is in a state 𝑠 that is labeled with some preconditions, he can
make an attack and move to a state 𝑠′ labeled by the postconditions of the attack. We can
suppose that the Defender’s set 𝒞 of countermeasures is defined symmetrically: each Defender
countermeasure is identified with a pair of sets ⟨𝐶𝑝𝑟𝑒, 𝐶𝑝𝑜𝑠𝑡⟩ of atomic propositions that labels
some states in the Attack Graph. Now, let 𝐴𝐺 = ⟨𝑆, 𝑠0,Σ, 𝑅, 𝑉,𝑊 ⟩ be an attack graph. By
definition, 𝑉 (𝑠) is a set of atomic propositions, for any 𝑠 ∈ 𝑆. In Section 2, we saw that
the atomic propositions labeling a state represent two heterogeneous types of information:
information about the system (vulnerabilities, state of the system, etc.), and information about
the Attacker (his skills, knowledge of the network, access to device, etc.). We can imagine
that a Defender has partial knowledge, e.g., she does not know exactly what are the skills of
the Attacker, or she does not know to which devices the Attacker can access, or she has only
information about the system or, even, of some subset of states of the system. We can thus
imagine that the pairs ⟨𝐶𝑝𝑟𝑒, 𝐶𝑝𝑜𝑠𝑡⟩ in the set of countermeasures vary over the knowledge
of the defender, i.e. 𝒫𝐷 ⊆ 𝒫 . Consider the directed graph 𝐴𝐺𝐷 = ⟨𝑆𝐷, 𝑅𝐷⟩ where the set
of states 𝑆𝐷 is the set of equivalence classes of states of the Attack Graph modulo 𝒫𝐷 (the
knowledge of the defender). That is, 𝑠 ∈ 𝑆𝐷 iff 𝑠 is an equivalence class of states modulo the
relation 𝑠𝑖 ≡ 𝑠𝑗 ⇐⇒ 𝑉 (𝑠𝑖) ∩ 𝒫𝐷 = 𝑉 (𝑠𝑗) ∩ 𝒫𝐷, where 𝑠𝑖, 𝑠𝑗 ∈ 𝑆. The set of edges 𝑅𝐷 is
given by:

1. (𝑠, 𝑠′) ∈ 𝑅𝐷 if (𝑠𝑖, 𝑏, 𝑠𝑗) ∈ 𝑅 for some states of the 𝐴𝐺, 𝑠𝑖 belonging to the equivalence
class 𝑠 and 𝑠𝑗 belonging to the equivalence class 𝑠′ or,

2. (𝑠, 𝑠′) ∈ 𝑅𝐷 if 𝑉 (𝑠𝑖) = 𝐶𝑝𝑟𝑒 and 𝑉 (𝑠𝑗) = 𝐶𝑝𝑜𝑠𝑡 for some state of the 𝐴𝐺, 𝑠𝑖 belonging
to the equivalence class 𝑠 and 𝑠𝑗 belonging to the equivalence class 𝑠′.

Over such a structure, we can construct a Defender Agent, whose set of states is 𝑆𝐷,
having an action for each edge in 𝑅𝐷 and in which the local transition functions mimics the
relation 𝑅𝐷 . We can impose that whenever the defender is in a state that is a precondition of a
countermeasure, if she plays a certain action then the local transition functions will output the
associated postconditions no matter what are the actions of the other agents.

Remark that by using such a construction, we can easily consider 𝑛-different defenders: we
can imagine that each defender knows a different subset of 𝒫 and as a consequence generates
different defender’s agent. This approach paves the way to the introduction of the strategic
reasoning typical of the ATL logics into the Attack Graphs frame. In the two previous subsections,
we only asked whether, given an 𝐴𝐺 one can find a winning Attacker strategy, i.e., we were
obliged to consider only reachability goals for the Attacker. Thanks to the fact that Interpreted
Systems are a model of the logic ATL, we can specify the strategic properties that we are
interested to check via such a logic, and e.g., verify properties about the strategy ability of a
coalition of Defenders.

4. Conclusion

We have sketched three possible formalization of Attacker-Defender(s) games that are played
over an Attack Graph. All the approaches make use of formal methods techniques to estimate
whether one of the players can win the proposed games. Two of the formalization consider
two-players turn-based reachability games with perfect information, and are obtained by the
means of, respectively, modal logic and automata theory. The third conceptualization, which in
our opinion is the more promising, paves the way to a formalization of such games in terms
of concurrent 𝑛-agents games with imperfect information and the use of formal verification
techniques, e.g., model checking for the various strategic logics, to reason about such games.

The amount of work that still needs to be done to make such formalization attractive is
enormous. However, we take the liberty of pointing out a research direction that we feel is a
priority. It is known that under the hypothesis of uniformity, the model checking problem for
ATL⋆ with memoryfull strategies and imperfect information is undecidable [18]. Thus, if we want
to use effectively the Interpreted System framework we sketched, we should restrict ourselves to
use partial solutions to the problem, such as abstractions either on the information [19, 20, 21, 22]
or on the strategies [23, 24, 25, 26, 27]. In the last decade, ATL has been extended to deal with
the concept of strategies to obtain an objective under a limited bound of resources [28]. Such a
concept is attractive for the security scenario that we are trying to take into account: an Attacker
could have a limited amount of resources to make an attack and, equally, a Defender could
have a limited amount of resources to make a countermeasure. To the best of our knowledge,
quantitative extensions of ATL with imperfect information have not been studied in the literature.
Furthermore, in this context, we can also study if an Attacker has some backup strategies to

achieve his objectives by following the line on graded modalities as done in [29, 30, 31]. We
believe that it would be interesting and useful for our goals to study such variants.

References

[1] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, The MIT Press, Cambridge,
Massachusetts, 1999.

[2] E. Clarke, E. Emerson, Design and Synthesis of Synchronization Skeletons Using Branching-
Time Temporal Logic., in: LP 1981 ,1981, pp. 52–71.

[3] O. Kupferman, M. Vardi, P. Wolper, An Automata Theoretic Approach to Branching-Time
ModelChecking., Journal of the ACM 47 (2000) 312–360.

[4] O. Kupferman, M. Vardi, P. Wolper, Module Checking., Information and Computation 164
(2001) 322–344.

[5] R. Alur, T. Henzinger, O. Kupferman, Alternating-Time Temporal Logic., Journal of the
ACM 49 (2002) 672–713.

[6] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: A model checker for the verification of
multi-agent systems, in: (CAV09), 2009, pp. 682–688.

[7] F. Mogavero, A. Murano, G. Perelli, M. Y. Vardi, Reasoning about strategies: On the
model-checking problem, ACM Trans. Comput. Log. 15 (2014) 34:1–34:47. URL: https:
//doi.org/10.1145/2631917. doi:10.1145/2631917.

[8] W. Jamroga, A. Murano, Module checking of strategic ability, in: AAMAS 2015, 2015, pp.
227–235.

[9] N. R. Jennings, M. Wooldridge, Application of intelligent agents, in: Agent Technology:
Foundations, Applications, and Markets, Springer-Verlag, 1998.

[10] R. P. Lippmann, K. W. Ingols, An annotated review of past papers on attack graphs (2005).
[11] C. Phillips, L. P. Swiler, A graph-based system for network-vulnerability analysis, in:

NSPW98, 1998, pp. 71–79.
[12] K. Kaynar, A taxonomy for attack graph generation and usage in network security, J. Inf.

Secur. Appl. 29 (2016) 27–56.
[13] T. Heberlein, M. Bishop, E. Ceesay, M. Danforth, C. Senthilkumar, T. Stal-

lard, A taxonomy for comparing attack-graph approaches, [Online] http://netsq.
com/Documents/AttackGraphPaper. pdf (2012).

[14] J. van Benthem, An Essay on Sabotage and Obstruction, Springer Berlin Heidelberg,
2005, pp. 268–276. URL: https://doi.org/10.1007/978-3-540-32254-2_16. doi:10.1007/
978-3-540-32254-2_16.

[15] D. Catta, J. Leneutre, V. Malvone, Subset sabotage games & attack graphs, in: WOA 2022,
2022, pp. 209–218. URL: http://ceur-ws.org/Vol-3261/paper16.pdf.

[16] D. Catta, A. Di Stasio, A. Murano, J. Leneutre, V. Malvone, A Game Theoretic Approach to
Attack Graphs, 2023. To appear in ICAART 2023.

[17] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge., MIT, 1995.
[18] C. Dima, F. Tiplea, Model-checking ATL under imperfect information and perfect recall

semantics is undecidable, CoRR abs/1102.4225 (2011). URL: http://arxiv.org/abs/1102.4225.
[19] F. Belardinelli, A. Lomuscio, V. Malvone, An abstraction-based method for verifying

https://doi.org/10.1145/2631917
https://doi.org/10.1145/2631917
http://dx.doi.org/10.1145/2631917
https://doi.org/10.1007/978-3-540-32254-2_16
http://dx.doi.org/10.1007/978-3-540-32254-2_16
http://dx.doi.org/10.1007/978-3-540-32254-2_16
http://ceur-ws.org/Vol-3261/paper16.pdf
http://arxiv.org/abs/1102.4225

strategic properties in multi-agent systems with imperfect information, in: IAAI 2019,
2019, pp. 6030–6037. URL: https://doi.org/10.1609/aaai.v33i01.33016030. doi:10.1609/
aaai.v33i01.33016030.

[20] F. Belardinelli, V. Malvone, A three-valued approach to strategic abilities under imperfect
information, in: KR 2020, 2020, pp. 89–98. URL: https://doi.org/10.24963/kr.2020/10. doi:10.
24963/kr.2020/10.

[21] A. Ferrando, V. Malvone, Towards the combination of model checking and runtime
verification on multi-agent systems, in: PAAMS 2022, 2022, pp. 140–152. URL: https:
//doi.org/10.1007/978-3-031-18192-4_12. doi:10.1007/978-3-031-18192-4_12.

[22] A. Ferrando, V. Malvone, Towards the verification of strategic properties in multi-agent
systems with imperfect information, AAMAS (2023) (to appear).

[23] W. Jamroga, V. Malvone, A. Murano, Natural strategic ability, Artif. Intell. 277 (2019). URL:
https://doi.org/10.1016/j.artint.2019.103170. doi:10.1016/j.artint.2019.103170.

[24] W. Jamroga, V. Malvone, A. Murano, Natural strategic ability under imperfect information,
in: AAMAS 2019 , 2019, pp. 962–970. URL: http://dl.acm.org/citation.cfm?id=3331791.

[25] F. Belardinelli, A. Lomuscio, A. Murano, S. Rubin, Verification of multi-agent systems
with public actions against strategy logic, Artif. Intell. 285 (2020) 103302. URL: https:
//doi.org/10.1016/j.artint.2020.103302. doi:10.1016/j.artint.2020.103302.

[26] R. Berthon, B. Maubert, A. Murano, S. Rubin, M. Y. Vardi, Strategy logic with imperfect
information, ACM Trans. Comput. Log. 22 (2021) 5:1–5:51. URL: https://doi.org/10.1145/
3427955. doi:10.1145/3427955.

[27] F. Belardinelli, A. Lomuscio, V. Malvone, E. Yu, Approximating perfect recall when model
checking strategic abilities: Theory and applications, J. Artif. Intell. Res. 73 (2022) 897–932.
URL: https://doi.org/10.1613/jair.1.12539. doi:10.1613/jair.1.12539.

[28] N. Alechina, B. Logan, H. N. Nguyen, F. Raimondi, L. Mostarda, Symbolic model-checking
for resource-bounded ATL, in: AAMAS 2015, 2015, pp. 1809–1810.

[29] M. Faella, M. Napoli, M. Parente, Graded alternating-time temporal logic, Fundam.
Informaticae 105 (2010) 189–210. URL: https://doi.org/10.3233/FI-2010-363. doi:10.3233/
FI-2010-363.

[30] B. Aminof, V. Malvone, A. Murano, S. Rubin, Graded modalities in strategy logic, Inf.
Comput. 261 (2018) 634–649. URL: https://doi.org/10.1016/j.ic.2018.02.022. doi:10.1016/
j.ic.2018.02.022.

[31] V. Malvone, F. Mogavero, A. Murano, L. Sorrentino, Reasoning about graded strategy
quantifiers, Information and Computation 259 (2018) 390 – 411.

https://doi.org/10.1609/aaai.v33i01.33016030
http://dx.doi.org/10.1609/aaai.v33i01.33016030
http://dx.doi.org/10.1609/aaai.v33i01.33016030
https://doi.org/10.24963/kr.2020/10
http://dx.doi.org/10.24963/kr.2020/10
http://dx.doi.org/10.24963/kr.2020/10
https://doi.org/10.1007/978-3-031-18192-4_12
https://doi.org/10.1007/978-3-031-18192-4_12
http://dx.doi.org/10.1007/978-3-031-18192-4_12
https://doi.org/10.1016/j.artint.2019.103170
http://dx.doi.org/10.1016/j.artint.2019.103170
http://dl.acm.org/citation.cfm?id=3331791
https://doi.org/10.1016/j.artint.2020.103302
https://doi.org/10.1016/j.artint.2020.103302
http://dx.doi.org/10.1016/j.artint.2020.103302
https://doi.org/10.1145/3427955
https://doi.org/10.1145/3427955
http://dx.doi.org/10.1145/3427955
https://doi.org/10.1613/jair.1.12539
http://dx.doi.org/10.1613/jair.1.12539
https://doi.org/10.3233/FI-2010-363
http://dx.doi.org/10.3233/FI-2010-363
http://dx.doi.org/10.3233/FI-2010-363
https://doi.org/10.1016/j.ic.2018.02.022
http://dx.doi.org/10.1016/j.ic.2018.02.022
http://dx.doi.org/10.1016/j.ic.2018.02.022

	1 Introduction
	2 Attack Graphs
	3 Attack Graph Games
	3.1 Attack Graph Games & (Subset) Sabotage Modal Logic
	3.2 Attack Graph Games & Automata
	3.3 Attack Graph Games & Interpreted System

	4 Conclusion

