
HAL Id: hal-04336385
https://hal.science/hal-04336385v1

Submitted on 12 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Subset sabotage games & attack graphs
Davide Catta, Jean Leneutre, Vadim Malvone

To cite this version:
Davide Catta, Jean Leneutre, Vadim Malvone. Subset sabotage games & attack graphs. WOA 2022
- 23rd Workshop From Objects to Agents, Sep 2022, Genova, Italy. �hal-04336385�

https://hal.science/hal-04336385v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Subset Sabotage Games & Attack Graphs

Davide Catta1,†, Jean Leneutre1 and Vadim Malvone1

1LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France

Abstract
We consider an extended version of sabotage games played over Attack Graphs. Such games are two-player
zero-sum reachability games between an Attacker and a Defender. This latter player can erase particular
subsets of edges of the Attack Graph. To reason about such games we introduce a variant of Sabotage
Modal Logic (that we call Subset Sabotage Modal Logic) in which one modality quantifies over non-empty
subset of edges. We show that we can characterize the existence of winning Attacker strategies by formulas
of Subset Sabotage Modal Logic.

Keywords
Attack Graphs, Sabotage Games, Logics in Games

1. Introduction

Modern systems are inherently complex and security plays a crucial role. The main challenge in
developing a secure system is to come up with tools able to detect vulnerability at a very early
stage of its life-cycle. These methodologies should be able to measure the grade of resilience to
external attacks. Crucially, the cost of repairing a system flaw during maintenance is at least two
order of magnitude higher, compared to a fixing at an early design stage [1].

In the past fifty years several solutions have been proposed and a story of success is the
use of formal methods techniques [1]. They allow checking whether a system is correct by
formally checking whether a mathematical model of it meets a formal representation of its desired
behavior. In system security checking, a malicious attack can be seen as an attempt of an Attacker
to gain an unauthorized resource access or compromise the system integrity. In this setting,
Attack Graph [2] is one of the most prominent attack model developed and receiving much
attention in recent years. This encompasses a graph where each state represents an Attacker at a
specified network location and edges represent attack actions by the Attacker. Then, it is a system
duty to prevent unauthorized accesses from the Attacker in each state of the graph. Said more
precisely, the Attacker goal is to reach a certain state of the Attack Graph by traveling thought its
edges, while the Defender goal is to prevent him from doing so. To do this, the Defender can
dynamically deploy countermeasures preventing the attack to succeed. If the Defender deploys
a countermeasure and such countermeasure is successful, the Attacker will no longer be able
to use an attack. We can formalize such scenario as a two-player turn based game between the
Defender and the Attacker, where in turn the latter moves along adjacent states (w.r.t. the Attack

WOA 2022: 23rd Workshop From Objects to Agents, September 1–2, Genova, Italy
†

These authors contributed equally.
$ davide.catta@telecom-paris.fr (D. Catta); jean.leneutre@telecom-paris.fr (J. Leneutre);
vadim.malvone@telecom-paris.fr (V. Malvone)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:davide.catta@telecom-paris.fr
mailto:jean.leneutre@telecom-paris.fr
mailto:vadim.malvone@telecom-paris.fr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Graph under exam) and the former inhibits some attacks by erasing some subset of edges of the
Attack Graph itself. The goal of the Defender is to block the Attacker to reach some designated
states, while not blocking the entire system functionality. The kind of scenario that we have just
sketched is an example of extended sabotage game [3]. Sabotage games were introduced by van
Benthem in 2005 with the aim of studying the computational complexity of a special class of
graph-reachability problems. Namely, graph reachability problems in which the set of edges of
the graph became thinner and thinner as long as a path of the graph is constructed. To reason
about sabotage games, van Benthem introduced Sabotage Modal Logic. Such Logic is obtained
by adding to the ◇-modality of classical modal logic another modality ♦. Let G be a directed
graph and s one of its vertex (or states); the intended meaning of a formula ♦φ is “ ♦φ is true at a
state s of G iff φ is true at s in the graph obtained by G by erasing an edge e".

Our sabotage games differs from the one introduced by van Benthem because one of the player
can erase an entire subset of edges of a given graph. To reason about such games, we introduce
a variant of Sabotage Modal Logic that we call, for lack of wit, Subset Sabotage Modal Logic
(SSML for short). The logic SSML is obtained by adding a modality ♦⊂ to the language of
classical modal logic. The intended meaning of a formula ♦⊂φ is “ ♦⊂φ is true at a state s of a
directed graph G iff φ is true at s in the graph G′ that is obtained from G by erasing a non-empty
subset of its edges". We show that the model checking problem for SSML is decidable and that
the existence of an Attacker winning strategy over an Attack Graph can be expressed by using an
SSML formula.

2. Sabotage Modal Logic

In this section, we briefly present Sabotage Modal Logic (SML for short). Such logic was
proposed in 2005 by Van Benthem [3] as a format for analyzing games that modify graphs they
are played on. First, let us fix some notation and terminology that will be used in the following.

Given a sequence ρ, we denote is length as |ρ|, and its j + 1-th element as ρ j. For j ≤ |ρ|, let
ρ≥ j be the suffix of ρ starting at ρ j and ρ≤ j the prefix ρ0 · · · ρ j of ρ. The empty sequence will be
denoted by ϵ. Given a set of sequences X, we say that X is prefix-closed whenever given ρ ∈ X
then ρ′ ∈ X for any prefix ρ′ of ρ. If X is a prefix-closed set of sequences, then ⟨X,⊑⟩ is a tree
where ⊑ denotes the prefix order. Accordingly, if X is finite, we will call leaves the ⊑-maximal
elements of X. If G = ⟨V, E⟩ is a directed graph, a path is a sequence of vertices v0 · · · vn such
that (vi, vi+1) ∈ E for all 0 ≤ i ≤ n − 1.

Given a non-empty set 𝒫 of atomic formulas, and a finite non-empty set Σ of labels, we define
SML formulas by the following grammar:

φ ::= p | ⊥ | ¬φ | φ ∨ φ | ◇a φ | ♦a φ

where p ∈ 𝒫 and a ∈ Σ. We define ⊤ ≐ ¬⊥. If φ and ψ are formulas, we define φ→ ψ ≐ ¬φ ∨ ψ,
ϕ ∧ ψ ≐ ¬(¬φ ∨ ¬ψ), □a ψ ≐ ¬◇a ¬φ and ■a ≐ ¬ ♦a ¬φ.

We now define the structures that will serve as interpretation of SML-formulas.

Definition 1. A rooted Kripke structure is a tuple M = ⟨S , s0,Σ, {Ra}a∈Σ,V⟩ where S is a non-
empty set of states, s0 ∈ S is the initial state, Σ is a finite set of labels, {Ra}a∈Σ is a family of

binary relations over the set of states such that there is one relation for each label in Σ; we
will sometimes call elements of a binary relation edges. Finally, V : M → 2𝒫 is the evaluation
function, assigning a set of atomic formulas to any state s ∈ S .

If M = ⟨S , s0,Σ, {Ra}a∈Σ,V⟩ is a Kripke structure and (s1, s2) ∈ Ra for some a ∈ Σ, we write
M ∖ (s1, s2) to denote the Kripke structure obtained by erasing the pair (s1, s2) from the binary
relation Ra.

The notion of satisfaction of a formula φ at a given state s of a Kripke structure M is inductively
defined as follows (clauses for Boolean connectives are immediate and thus omitted):

M, s |= ⊥ never

M, s |= p iff p ∈ V(s)

M, s |= ◇a φ iff there is a s′ ∈ S such that (s, s′) ∈ Ra and M, s′ |= φ.

M, s |= ♦a φ iff there is (s1, s2) ∈ Ra such that M ∖ (s1, s2), s |= φ

We say that a formula φ is true in a rooted Kripke structure M (written M |= φ) iff φ is true at the
initial state of M. As we can see from the above definition, the meaning of the ◇a -connective
is the standard meaning in modal logic: a formula ◇a φ is true at a given state s of a Kripke
structure whenever s is adjacent (with respect to an edge labeled by a) to a vertex s′ for which the
property expressed by φ is true. The meaning of the ♦a -connective can be spelled out as follows:
a formula ♦a φ is true at a given state s of a Kripke structure M whenever φ is true at s in the
Kripke structure M′ that is obtained by erasing a pair (s′, s′′) from the relation Ra of M.

We conclude the section with the following theorem (the proof can be found in [4]).

Theorem 1 (Model checking problem for SML). Given a finite rooted Kripke structure M and
an SML formula φ the problem of deciding wheter M |= φ is PSPACE-complete.

3. Attack Graphs

The term Attack Graph has been first introduced by Phillips and Swiler [5]. Attack Graphs
represent the possible sequence of attacks in a system as a graph. It may be generated by using
the following informations:

1. a description of the system architecture (topology, configurations of components, etc.);

2. the list of the known vulnerabilities of the system;

3. the Attacker’s profile (his capabilities, password knowledge, privileges etc.) and attack
templates (Attacker’s atomic action, including preconditions and postconditions).

An attack path in the graph corresponds to a sequence of atomic attacks. Several works have
developed this approach, see e.g. [6, 7, 8, 9, 10], and [11] for a survey. Each of the previously
cited works introduced its own Attack Graph model with its specificity, and thus there is no
standard definition of an Attack Graph. However, all introduced models can be mapped into a
canonical Attack Graph as introduced in [12]. It is a labelled oriented graph, where:

1. each node represents both the state of the system (including existing vulnerabilities) and
the state of the Attacker including constants (Attacker skills, financial resources, etc.) and
variables (knowledge on the network topology, privilege level, obtained credentials, etc.);

2. each edge represents an action of the Attacker (a scan of the network, the execution of an
exploit based on a given vulnerability, access to a device, etc.) that changes the state of
the network or the states of the Attacker; an edge is labelled with the name of the action
(several edges of the Attack Graph may have the same label).

An Attack Graph is said complete whenever the following condition holds: for every state q
and for every atomic attack att, if the preconditions of the atomic attack hold in q, then there is
an out coming edge from q labelled with att.

By abstracting all the data of the above discussion, one can see an Attack Graph as a directed
graph togheter with a labeling of its vertices and edges. The labeling of vertices is used to specify
which properties (the kind of properties mentionned in 1) are true at a certain vertex, while the
edge labeling specifies the name of the attack action. We define an Attack Graph as follows.

Definition 2. Suppose that the set 𝒫 contains an atomic proposition win. An Attack Graph is a
tuple AG = ⟨S , s0,Σ, {Ra}a∈Σ,V,T ⟩ where:

– ⟨S , s0,Σ, {Ra}a∈Σ,V⟩ is a rooted Kripke structure where the set S of states is finite and V(s)
is non empty for any s ∈ S ;

– T is a non-empty subset of S such that win ∈ V(s) for all s ∈ T .

The set T represents the set of target states of the Attacker.

Figure 1: An illustrating LAN architecture example.

Example 1. Consider the following scenario: an enterprise has a local area network (LAN) that
features a Server, a Workstation and two databes A and B. The LAN also provided a Web Server.
Internet’s access to the LAN are controlled by a firewall. Such scenario is decipted in Figure 1.
Suppose that we know some vulnerabilities and that we have established that a malevolent user
can make the attack listed in Table 1, e.g., by making att2 an Attacker can exploit a vulnerability
related to the Server: as a precondition the Attacker needs to have root access to the Web Server
and, as a postcondition, he will obtain root access to the Server. Then we can construct an

Attack Location Precondition Postcondition Counter
measure

att1 Web Server web_server : root _
att2 Server web_server : root server : root c2

att3 Workstation web_server : root password : 1234 _
att4 Database A server : root databaseA : root c4

att5 Database B server : root∧ databaseB : root c5

password : 1234

Table 1
Atomic attacks and countermeasures over the LAN depicted in Figure 1.

web_server:root

s1s0

web_server:root
server:root

s2

webserver:root
server:root

database_A:root
win

s4

webserver:root
password:123

s3

webserver:root
password:1234

server:root

s5

webserver:root
password:1234

server:root
database_B:root

s6

att1

att2

att3

att4

att2 att5

att4

Figure 2: Example of Attack Graph, the atomic proposition satisfied at a given state are listed below
the state itself.

Attack Graph built from this set of atomic attacks and collecting possible attack paths as depicted
in Figure 21. The Attacker’s initial state is a node in the Attack Graph. Let us suppose that
the Attacker is in state s1 and wants to reach state s4. To get to this target, he can perform the
sequences of atomic attacks att2, att4 or att3, att2, att4.

4. Games & Subset Sabotage Modal Logic

In the previous section, we saw that given a specific description of a system together with its
vulnerabilities, we can generate a graph representing the dynamics of attacks that are possible
over such system. Given a set of target states over such a graph, one can ask whether there is
a path from an initial state to one of these target states, i.e., by reasoning over Attack Graphs,
we can encode a security problem as a graph-reachability problem. Let us make one step more
by adding a dynamic to such reachability problem. An Attack Graph represents a sequence
of possible actions made by an Attacker to reach a specific goal. Let us add another character
to this story, the Defender, whose objective is to counter the attack. Suppose that she has the
power to dynamically deploy a predefined set of countermeasures: for instance by reconfiguring
the firewall filtering rules, or patching some vulnerabilities, that is by removing one or several
preconditions of an atomic attack. A given countermeasure c will prevent the Attacker from

1This Attack Graph is not complete w.r.t. our previous description, since some possible sequences of atomic attacks
are not listed: for instance att1, att2, att3, att5 are not taken into account.

longing a given attack att: deploying c is equivalent to removing all the edges in the Attack Graph
labelled with att. In real situations, due to budget limitation or technical constraints, the set of
available countermeasures may not cover all atomic attacks. Now that we have specified what is
the Defender’s power, we can consider a turn based game between an Attacker and a Defender.
Both players play on an Attack Graph ⟨S , s0,Σ, {Ra}a∈Σ,V,T ⟩. The Attacker’s goal is to reach one
of the states in T , while the Defender’s goal is to prevent him from doing so. The Defender starts
the game by selecting a certain countermeasure. By choosing such a countermeasure, she deletes
a subset of edges of the Attack Graph. The Attacker take his turn and move from s0 to one of
its successor along on the edges that have not being erased (if any). The game evolve following
this pattern. The Attacker won if he can reach one of the states in T in a finite number of moves,
otherwise the Defender wins.

Example 2. Consider again Figure 2. Suppose that the initial state is s1 and that the Defender
has at her disposal a countermeasure c2 for attack att2, c4 for attack att4, and c5 for attack att5,
but no one for the attacks att1 and att3 as reported in the last column of Table 1. The Defender
starts the game by deploying countermeasure c3. The only edge of the Attack Graph labeled
by att3 is the one going from s1 to s3; consequently, such edge is erased from the Attack Graph
and the Attacker can only move to s2. The Defender takes again her turn and now deploys
countermeasure c2. There are two edges that are labeled by att2 and both are erased from the
Attack Graph. The Attacker moves from v2 to v4 and, since v4 is a target state, he wins the game.

There is a natural way to look at the games described above: at each round the Attacker can
follow an edge from his current position in the given graph, but the Defender can choose a new
graph (which is a subgraph of the current graph) missing a subset of edges. More precisely, the
defender can choose to erase all edges that are labeled by the same atomic attack. Given a set of
labels Σ, and an attack graph AG whose edges are labeled by members of Σ, a game that is played
over AG in which the Defender can erase label that are in ∆ ⊆ Σ is called a ∆-game. A winning
strategy for a ∆ game is called a ∆-winning strategy.

4.1. What is the problem with SML?

The games that we described in the previous section are nothing more than an insidious version
of sabotage games. In a sabotage game, one of the two players can delete an edge of the graph
when it is her turn to move. In our games, one of the two players can delete a subset of edges of
the graph when it is her turn to move. In [13] the authors claims that, by using our terminology,
the existence of an Attacker winning strategy for a Sabotage Game over a finite rooted Kripke
structure M = ⟨S , s0,Σ, {Ra}a∈Σ,V⟩ can be expressed by using a particular SML-formula. Such
formula is defined by induction on n:

λn =

⎧⎪⎪⎨⎪⎪⎩win if n = 0
◇⊤ ∧ ■◇(λn−1 ∨ win) otherwise

(1)

where ■φ ≐
⋀︀

a∈Σ ■a φ and ◇φ ≐
⋁︀

a∈Σ ◇a φ for a given SML formula φ, and ◇⊤ is used to
check that the ■ is not satisfied because some relation is empty.

More precisely, if M = ⟨S , so,Σ, {Ra},V⟩ is a Kripke structure such that win ∈ V(s) for some
s ∈ S and |S | = n ≥ 1 then M, so |= win∨ λn−1 if and only if there is an Attacker winning strategy

for the sabotage game played over M. Such result is false in the case of the particular class of
sabotage games that we have defined in the previous section, precisely because the Defender can
erase at the same time all edges that are labeled by the same symbol at each step of the game. For
instance, consider the following Attack Graph:

s1

s0

s2

a

a

We can see that there is no {a}-winning strategy over M. If the Defender erases all the edges
labeled with a, the Attacker would not be able to move from so to one of the winning states s1 or
s2. On the contrary, the formula win ∨ λ2 = win ∨ (◇⊤ ∧ ■◇(λ1 ∨ win)) is true at so in M. This
is because if the top-most a-edge is removed, the Attacker can pass from the lowermost edge to
reach a winning state, and he can pass from the top-most one if the lower one is removed.

4.2. Subset Sabotage Modal Logic

To speak about our particular games we introduce a variant of Sabotage Modal Logic. We call
such variant of Sabotage Modal Logic, Subset Sabotage Modal Logic.

Definition 3. Given a non-empty set 𝒫 of atomic propositions and a finite non-empty set Σ of
labels, formulas of Subset Sabotage Modal Logic (SSML, for short) are defined by the following
grammar:

φ ::= p | ⊥ | ¬φ | φ ∨ φ | ◇a φ | ♦
⊂
a φ

where p ∈ 𝒫 and a ∈ Σ. Given a rooted Kripke structure M = ⟨S , s0,Σ, {Ra}a∈Σ,V⟩, the definition
of satisfaction of an SSML formula at a state s of a Kripke is defined inductively. Such definition is
the same as SML for atomic proposition, negated formulas, disjunction and the diamond modality.
It is defined as follows for the ♦⊂a -modality:

M, s |= ♦⊂a φ iff there is a non-empty subset E of Ra such that M ∖ E, s |= φ

where M ∖ E denotes the structure M from which we have erased the subset E of edges. If φ is
an SSML formula we define ■⊂a φ ≐ ¬ ♦

⊂
a ¬φ.

Remark 1. M, s |= ■⊂a φ if and only if for any non-empty subset E of Ra we have that M∖E, s |= φ,
Ra included. This implies that if M, s |= ■⊂a φ then M ∖ Ra, s |= φ.

We now define the model checking problem for SSML. To show that the model checking problem
for SSML is decidable, we reduce it to the model checking problem of SML. The idea of the
proof is the following. We are considering a finite Kripke structure. As a consequence, any
of its non-empty subset of edges is finite. We give a name ne to each edge e of M obtaining a
Kripke structure M′. We remark that M |= ♦⊂a φ iff there is a finite, non-empty subset of edges

{e1, . . . en} of Ra such that M ∖ {e1, . . . , en} |= φ. If φ is a SML formula then M′ |= ♦ne1
· · · ♦nen

φ,
that is M′ ∖ {ne1 , . . . nen} |= φ, where each nei is the name of edge ei. Thus, we need to give a
translation from SSML-formulas to SML formulas. Such translation will be parametrized by
Kripke structures, because we need to consider their subsets of edges.

Definition 4. Let M = ⟨S , so,Σ, {Ra}a∈Σ,V⟩ be a finite rooted Kripke structure. For all a ∈ Σ, let
f : Ra → N be an injective function associating to each member e of Ra a natural number ne. We
define the structure M⊂ = ⟨S ⊂, s⊂0 ,Σ

⊂, {Ra}a∈Σ⊂ ,V⊂⟩ as follows:

– the set of states of M⊂ and its initial state are the same of M;

– the set of labels Σ⊂ is
⋃︀

a∈Σ{ne | e ∈ Ra};

– a pair of states (s, s′) ∈ Rne iff f (s, s′) = ne
2;

– the evaluation function V⊂ is V.

If E = {e1, . . . , ek} is a subset of edges of M and φ a formula, we write ♦nE φ as a shortcut for the
formula ♦ne1 · · · ♦nek φ where each nei is the label corresponding to ei in M⊂.

We define a function that maps an SSML formula φ to an SML formula (φ)⋆M. Such function
takes as argument a Kripke Structure M and an SSML formula φ, and gives as result an SML
formula (φ)⋆M. The function is defined on the structure of φ.

(p)⋆M = p (⊥)⋆M = ⊥

(¬φ)⋆M = ¬(φ)⋆M (φ ∨ ψ)⋆M = (φ)⋆M ∨ (ψ)⋆M
(◇a φ)⋆M =

⋁︀
e∈Ra ◇ne (φ)⋆M (♦⊂a φ)⋆M =

⋁︀
E∈2Ra∖∅(♦nE (φ)⋆M)

One can prove the following lemma by induction on the structure of φ.

Lemma 1. For any M = ⟨S , so,Σ, {Ra}a∈Σ,V⟩, for any SSML formula φ, for any state s ∈ S :

M, s |= φ ⇐⇒ M⊂, s |= (φ)⋆M

From the above lemma and the fact the model checking problem is decidable for SML, we
immediately deduce the following result.

Theorem 2. The model checking problem for SSML is decidable: if M = ⟨S , s0, σ, {Ra}a∈σ,V⟩ is
a finite rooted Kripke Structure and φ an SSML formula, we can decide whether M |= φ or not.

It should be no surprise that we can express the existence of Attacker winning strategies for
our games by using SSML: we have designed such logic with precisely this goal in mind.

Let AG = ⟨S , s0, {Ra}a∈Σ,V,T ⟩ be an Attack Graph and ∆ a non-empty subset of Σ. If φ is an
SSML formula, we define the two SSML-formulas:

■⊂∆ φ ≐
⋀︁
a∈∆

■⊂a φ ◇φ ≐
⋁︁
a∈Σ

◇a φ

2This implies that each relation on M⊂ is either empty or a singleton.

A strategy is a plan of action. As it is logical, the plan is winning when it leads me to victory,
whatever my opponent’s plan of action. Thus, a winning strategy can be expressed as an alternation
of universally quantified sentences and existentially quantified sentences “for all actions of my
opponent, there is an action that I can make that leads me to victory". Let us put ourselves in the
villain’s shoes: suppose that we are the Attacker, and that, by playing, we have reached a certain
state s of an Attack Graph AG. It is now Defender’s turn. If a have a winning strategy, I must be
able to reach a successor state s′ of s in whatever subgraph AG′ of AG that is ∆-reachable from
AG. Said differently, we must have that AG, s |= ■⊂

∆
◇φ = (■⊂a ◇φ) ∧ · · · ∧ (■⊂b ◇φ) for some

formula φ that expresses the winning condition. Such formula is nothing but the SSML version
of the one we have defined in 1.

Definition 5 (Winning Formulas). The family {ψn
∆
}n∈N of Winning formulas is defined by induction

on n as follows:

ψn
∆ =

⎧⎪⎪⎨⎪⎪⎩win if n = 0
◇⊤ ∧ ■⊂

∆
◇(ψn−1

∆
∨ win) otherwise

(2)

We provide the main result of our paper. Namely, that the existence of a winning Attacker
∆-strategy over an Attack Graph AG is equivalent to the truth of a winning formula over AG. The
⇒-direction of the theorem can be proved by induction on the size n of the Attack Graph. The
⇐-direction can be proved by contraposition.

Theorem 3. For any Attack Graph AG = ⟨S , s0,Σ, {Ra}a∈Σ,V,T ⟩ for any non-empty subset ∆ of
Σ, if |S | = n, then AG, s0 |= win ∨ ψn−1

∆
iff there is a winning ∆-strategy over AG.

5. Conclusion and Future Work

We have presented a natural class of two-player games over Attack Graphs. Such games are
played by an Attacker and a Defender. The Attacker tries to reach some vertex of the Attack
Graph while the Defender tries to prevent him from doing so. To do this, the Defender can
eliminate subsets of graph arcs. Finally, we have introduced a variant of Sabotage Modal Logic,
showed the the model checking problem for such logic is decidable and that we can express the
existence of a winning strategies for our subset sabotage games by formulas of the logic.

The games we have described are perfect information games; both players know, at every point
in the game, the location of the other player. This assumption is unrealistic: during a cyber attack,
a possible Defender may not know what state an Attacker is in, and conversely, an Attacker
may not be aware of changes made by the Defender to counter his attack. We would therefore
like to extend our play model in order to include this type of imperfect information. From the
Defender’s point of view this could be implemented as an equivalence class between Attack
Graph states. From the Attacker’s point of view, on the other hand, we could think of a notion of
weak bisimulation between Attack Graphs: the Attacker considers as equal two models that are
bisimilar up to identification of some subset of arcs.

The model checking problem for SSML is decidable. However, we have not investigated
the complexity of such problem (which must, however, be at least P-Space). We leave this

investigation for future work. We suspect that a bisimulation notion for SSML logic can be
obtained by slightly modifying the one for SML and that, at the same, a complete proof system
for SSML can be obtained in terms of tableaux. In conclusion, we suspect that the satisfiability
problem for SSML logic is undecidable. Indeed, the same problem is undecidable for SML and
since our logic is SML in which we quantify over subset of arcs of a graph, our intuition tells us
that the satisfiability problem for SSML can only be more difficult than the one of SML.

References

[1] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, The MIT Press, Cambridge,
Massachusetts, 1999.

[2] R. P. Lippmann, K. W. Ingols, An annotated review of past papers on attack graphs (2005).
[3] J. van Benthem, An Essay on Sabotage and Obstruction, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2005, pp. 268–276. URL: https://doi.org/10.1007/978-3-540-32254-2_
16. doi:10.1007/978-3-540-32254-2_16.

[4] C. Löding, P. D. Rohde, Model checking and satisfiability for sabotage modal logic, in:
FSTTCS, 2003.

[5] C. Phillips, L. P. Swiler, A graph-based system for network-vulnerability analysis, in:
Proceedings of the 1998 workshop on New security paradigms, 1998, pp. 71–79.

[6] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. Wing, Automated generation and analysis of
attack graphs, 2002, pp. 273– 284. doi:10.1109/SECPRI.2002.1004377.

[7] P. Ammann, D. Wijesekera, S. Kaushik, Scalable, graph-based network vulnerability
analysis, CCS ’02, Association for Computing Machinery, New York, NY, USA, 2002, p.
217–224.

[8] S. Noel, S. Jajodia, B. O’Berry, M. Jacobs, Efficient minimum-cost network hardening
via exploit dependency graphs, in: Proceedings of the 19th Annual Computer Security
Applications Conference, ACSAC ’03, IEEE Computer Society, USA, 2003, p. 86.

[9] X. Ou, W. F. Boyer, M. A. McQueen, A scalable approach to attack graph generation, in:
Proceedings of the 13th ACM conference on Computer and communications security, 2006,
pp. 336–345.

[10] K. Ingols, R. Lippmann, K. Piwowarski, Practical attack graph generation for network
defense, in: 2006 22nd Annual Computer Security Applications Conference (ACSAC’06),
2006, pp. 121–130.

[11] K. Kaynar, A taxonomy for attack graph generation and usage in network security, J. Inf.
Secur. Appl. 29 (2016) 27–56.

[12] T. Heberlein, M. Bishop, E. Ceesay, M. Danforth, C. Senthilkumar, T. Stallard, A taxonomy
for comparing attack-graph approaches, [Online] http://netsq. com/Documents/Attack-
GraphPaper. pdf (2012).

[13] G. Aucher, J. V. Benthem, D. Grossi, Modal logics of sabotage revisited, Journal of Logic
and Computation 28 (2018) 269 – 303. URL: https://hal.inria.fr/hal-01827076. doi:10.
1093/logcom/exx034.

https://doi.org/10.1007/978-3-540-32254-2_16
https://doi.org/10.1007/978-3-540-32254-2_16
http://dx.doi.org/10.1007/978-3-540-32254-2_16
http://dx.doi.org/10.1109/SECPRI.2002.1004377
https://hal.inria.fr/hal-01827076
http://dx.doi.org/10.1093/logcom/exx034
http://dx.doi.org/10.1093/logcom/exx034

	1 Introduction
	2 Sabotage Modal Logic
	3 Attack Graphs
	4 Games & Subset Sabotage Modal Logic
	4.1 What is the problem with SML?
	4.2 Subset Sabotage Modal Logic

	5 Conclusion and Future Work

