
Memory simulations, security and
optimization in a verified compiler

David Monniaux

VERIMAG

December 9, 2024

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 1 / 27



CompCert

Contents

CompCert

Stack canaries

Tail recursion elimination

Conclusion

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 2 / 27



CompCert

CompCert

Formally verified C compiler, effort led by Xavier Leroy &
Sandrine Blazy

“If compilation succeeds, then the assembly program matches the C
program.”

Formally verified: compiler written in Coq
+ correctness theorem proved in Coq, a proof assistant
(mathematical proof, machine-checked)

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 3 / 27



CompCert

Rationale for CompCert

Certain industries (avionics, nuclear…) must demonstrate that the
object code is equivalent to the source.

Conventional approach
Disable optimizations
“Human” comparisons
“This compiler worked in other safety-critical projects”

CompCert
Use the mathematical proof

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 4 / 27



CompCert

Versions under discussion

“Official” releases
https://github.com/AbsInt/CompCert

“Chamois” branch

for our own agile development
https://gricad-gitlab.univ-grenoble-alpes.fr/
certicompil/Chamois-CompCert

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 5 / 27

https://github.com/AbsInt/CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert


CompCert

Correctness theorem

execution = trace of “externally visible events” (calls to external
functions, volatile variables accesses)

The trace at assembly matches the C trace.

Obtained by “forward simulation” (assembly simulates C) through
“match” relations

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 6 / 27



CompCert

Forward simulations

Lockstep “One step of the program before transformation maps
to one step after transformation.”
σ1 →e σ2 and m(σ1 ,σ′

1 ) then there exists σ′
2 such that

σ′
1 →e σ

′
2 and m(σ3 ,σ′

2 )
e = “observable events”
e.g. “replace x × y by a move from a register already
containing that expression”

Plus “One step maps to several steps.”
e.g. function call from one instruction to many (move
operands to registers / stack etc.)

Star “Several steps map to several steps.”

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 7 / 27



CompCert

Matching and definedness

m match relation between states:
▶ program counter
▶ abstract stack (list of blocks and return addresses on the call

stack)
▶ value in set of “pseudo registers”
▶ values in addressable memory

“Definedness”: special “undefined” value that can be refined during
program transformtions

Most matches: “s ′ most defined than s”

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 8 / 27



CompCert

Memory model

Memory divided in blocks (≃ memory objects in C standard)

Memory address = pair (b, o) block identifier + offset

Operations:
▶ allocate a block
▶ free a block
▶ read
▶ write
▶ decrease permissions

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 9 / 27



CompCert

Memory extension

m′ extends m = same block numbers, blocks in m′ extend the index
ranges of blocks in m, content is more defined

e.g. “add extra workspace to the end of the stackframe (spills)”

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 10 / 27



CompCert

Memory injection

m injects into m′: each block b in m maps to a sub-range of a block
b′ in m′

e.g. proof of function inlining: “Stackframes of inlined functions are
portions of the stackframes of the target program”

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 11 / 27



CompCert

External call axiomatization

External calls can do “anything” to memory
…but must respect memory injections and extensions!

Intuition for extensions: “If the external call succeeded with smaller
memory blocks it must still succeed with bigger blocks.”

Intuition for injections: “The behavior of external calls does not
depend on the actual memory addresses as long as those within the
same blocks respect the layout.”

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 12 / 27



CompCert

Bouquetin

Countermeasures against attacks

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 13 / 27



Stack canaries

Contents

CompCert

Stack canaries

Tail recursion elimination

Conclusion

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 14 / 27



Stack canaries

Buffer overflow attack

Stackframe
Local array Return address

Attack
Feed incorrect data into program.
Trigger a buffer overflow bug, overflow the array, choose return
address.
Possibly return into the array itself.

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 15 / 27



Stack canaries

(Other countermeasures)

Countermeasures
On processors with a MMU + an operating system

1. address space layout randomization (ASLR): the attacker cannot
guess the value to put in the return address

2. make the stack non-executable: the attacker cannot execute
arbitrary code overflowing the stack

3. make normal data non-executable: the attacker cannot execute
arbitrary code in the memory heap

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 16 / 27



Stack canaries

(Other countermeasures)

Counterattacks
▶ can guess even with ASLR
▶ 2,3: return-oriented programming (use code from application

and libc)

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 17 / 27



Stack canaries

A simple countermeasure: stack canaries

arrays (padding) return address

Overflowing a local buffer clobbers the canary.
If the canary contains an incorrect value, kill the program.

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 18 / 27



Stack canaries

Countermeasure

▶ extend allocation size
▶ function prologue (at function start): install the canary
▶ function epilogue (before return or tail call): check that the

canary is still there, branch to trap if not

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 19 / 27



Stack canaries

Proof

Proof of correctness by memory extension: does not perturb legal
executions.

Currently no proof of adequation: “the countermeasure blocks
certain attacks”, would need an attacker model (nonstandard
execution semantics? expressed by code transformation?)

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 20 / 27



Tail recursion elimination

Contents

CompCert

Stack canaries

Tail recursion elimination

Conclusion

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 21 / 27



Tail recursion elimination

Tail call elimination
(Already in CompCert, by Leroy)

unsigned g(unsigned);

unsigned f(unsigned x) {
if (x==1) return x;
else return g(x);

}

unsigned g(unsigned x) {
if (x % 2) return f(3*x+1);
else return f(x/2);

}
The tail calls are just “jumps” to the head of the other function.
During a tail call, the stack frame of the current function is
destroyed.

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 22 / 27



Tail recursion elimination

Tail call elimination

Tail call eliminated on recursive function: tail call sequence is
▶ deallocate stack frame (and restore callee-saved registers)
▶ jump to head of function
▶ allocate stack frame (and save callee-saved registers)

Why restore just to save again in the same place?

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 23 / 27



Tail recursion elimination

Tail recursion elimination

Just put the arguments in the correct pseudo registers and branch to
top of function.
Do not save and restore.

Turn tail call into a normal loop

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 24 / 27



Tail recursion elimination

Simulation proof

Original program
▶ “f executes with stackframe s1”
▶ deallocate, jump, allocate
▶ “f executes with stackframe s2”

Transformed program
▶ “f executes with stackframe s ′1”
▶ jump
▶ “f executes with stackframe s ′1”

s ′1 successively simulates s1 then s2

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 25 / 27



Conclusion

Contents

CompCert

Stack canaries

Tail recursion elimination

Conclusion

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 26 / 27



Conclusion

Conclusion

Illustrates how security and optimization features dealing with
memory can be proved through memory injections and extensions.

Caveat: current implementation of pointer authentication (not
discussed due to limited time) does not commute with injections, not
an issue since very late in compilation chain and no more injections

https://gricad-gitlab.univ-grenoble-alpes.fr/
certicompil/Chamois-CompCert

“PEPR” Cybersecurity “Arsene” project
https://www.
pepr-cyber-arsene.fr/
ASKMEABOUTOUROPENPROFES-
SORSHIP POSITIONS!

David Monniaux (VERIMAG) Memory simulations, security and optimization in a verified compilerDecember 9, 2024 27 / 27

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://www.pepr-cyber-arsene.fr/
https://www.pepr-cyber-arsene.fr/

	CompCert
	Stack canaries
	Tail recursion elimination
	Conclusion

