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Université Paris Saclay
F-92190 Meudon - France

Email: mikel.balmaseda@onera.fr

Duc-Minh Tran
DMAS, ONERA,
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This work concerns the numerical modeling of geomet-
ric nonlinear vibrations of slender structures in rota-
tion using an original reduced order model based on the
use of dual modes along with the implicit condensation
method. This approach is an improvement of the classi-
cal ICE method in the sense that the membrane stretch-
ing effect is taken into account in the dynamic resolu-
tion. The dynamics equations are firstly presented and the
construction of the reduced order model (ROM) is then
proposed. The second part of the paper deals with nu-
merical applications using the finite element method, first
for a 3D cantilever beam, then for an Ultra High Bypass
Ratio (UHBR) fan blade subject to aerodynamic loads.
In the applications considered, the proposed method pre-
dicts more accurately the geometrically nonlinear behav-
ior than the ICE method.

NOMENCLATURE
Acronyms

CFD Computational Fluid Dynamics
CSM Computational Structural Dynamics
FE Finite Elements
FOM Full Order model
IC Implicit Condensation
ICE Implicit Condensation and Expansion
ICDual Implicit Condensation with a reduction ba-

sis containing linear normal modes and dual
modes

ROM Reduced Order Model
SVD Singular Value Decomposition
UHBR Ultra High Bypass Ratio

Symbols
di ith mode resulting from the SVD
D Basis of the dual modes
Ei Linearized strain energy contribution of the SVD

mode i
fnl Internal geometrical nonlinear forces
fext External forces applied to the structure
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fk External static forces applied to the structure for the
construction of the ICE and ICDual models

gnl Internal geometrical nonlinear forces of the cen-
trifugally prestressed structure

g̃ k
nl Projection of gnl on the kth linear mode
K, M, C Elastic stiffness, mass and viscous damping

matrices
Kc Centrifugal softening stiffness matrix
Knl(us) Tangent stiffness matrix at the prestressed po-

sition
K(Ω) Total stiffness of the structure
K̃, M̃, C̃ Reduced stiffness, mass and damping matri-

ces
q Generalized coordinates
rk Residual of the kth static solution
u, u̇, ü Displacements, velocity, acceleration
uICE Rebuilt displacement obtained with the ICE

method
us Prestressed displacement of the structure under cen-

trifugal forces
ut Total displacement u + us

V Reduction basis
αHHT Coefficient of the HHT-α method
Ω Rotation speed around the fixed axis
ΦΩ Matrix of the linear normal modes of the centrifu-

gally prestressed structure
ϕΩ

i ith linear normal modes in the basis ΦΩ

ωi Pulsation of the ith linear normal mode
Ψ Reconstruction modes for the Expansion step of the

ICE method
η Generalized coordinates associated to Ψ
ξ Damping coefficient: C = 2ξω0M

INTRODUCTION
Performance optimization for the next generation of air-
craft engines leads to propellers and blades of large di-
mensions. Such structures are more flexible and may be
subjected to large amplitudes of vibrations, hence trigger-
ing geometric nonlinearities that alter the levels of vibra-
tion and have an impact on aeroelastic phenomena such as
flutter or forced response. To characterize the aeroelastic
phenomena, a usual method is to use a partitioned proce-
dure involving a dedicated CFD solver for the fluid and a
CSM solver for the structure. However, such a coupling
has two major limitations. First, the resulting computa-
tional time is prohibitive for industrial applications, and
second, the coupling between the two solvers is tedious in
terms of transfer of information. To overcome these lim-
itations, an efficient method is to perform the partitioned
coupling between a CFD solver to keep the high fidelity

for the fluid, and a reduced-order model (ROM) for the
structure. The latter is built in a way to be independent
of a CSM solver, giving the possibility to change the fluid
solver with another. In the literature, several methods are
available for building reduced-order models taking into
account structural geometric nonlinearities. An approach
is the projection on a reduction basis containing both the
first linear normal modes of the structure and additional
modes aimed at capturing the nonlinearity, such as modal
derivatives [1, 2] or dual modes [3, 4, 5]. This method is
non-intrusive and flexible but the difficulty relies on the
determination of the additional modes. Another approach
is the use of invariant manifolds [6, 7] adapted to peri-
odic vibrations in the vicinity of linear normal modes.
Nevertheless, this method is intrusive when high preci-
sion is desired, meaning that it is necessary to have ac-
cess to specific information inside a FE solver, which is
not the case for industrial CSM solvers. The same intru-
sive limitation is encountered for hyper-reduction meth-
ods such as the Discrete Empirical Interpolation Method
(DEIM) [8] for which the nonlinearity is computed only
at a few degrees of freedom. Other methods are based
on the results of previous high-fidelity computations such
as the Proper Orthogonal Decomposition (POD) method
[9, 10, 11]. However, the preliminary computations re-
quired to determine the projection basis are computation-
ally expensive and are case-dependent for the given set of
parameters.

In this paper, the ROM is built by projection on a
reduction basis including linear normal modes and ad-
ditional dual modes. The internal geometric nonlinear
forces are approximated as a third-order polynomial of
the generalized coordinates with coefficients identified
using the Implicit Condensation (IC) method [12]. In
the literature, the IC method involves only the bending
modes, and an Expansion step (ICE) [13] is commonly
introduced to post-process the in-plane dynamics. This
post-processing step may be viewed as a static compen-
sation. The limitation is that the in-plane dynamics is only
rebuilt and not taken into account in the resolution of the
reduced equation of the dynamics. The literature suggests
an inertial compensation [14] to take into account the in-
plane dynamics into the equations relative to the bending
modes. This modification changes the nature of the equa-
tion that becomes less convenient to integrate. Such a
method was recently enhanced by a Force Compensation
[15] in order to tackle following forces. In the present
paper we choose to add dual modes to the reduction ba-
sis in order to compute the in-plane dynamics directly in
the reduced equations of the motion. The Expansion step
of the ICE method is therefore no longer needed and the
nature of the reduced equation of the dynamics remains
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unchanged. This method has already been applied by the
authors on a 2D case in the frame of a fluid-structure inter-
action between the vortex shedding in the wake of a fixed
cylinder and a von Kármán beam [16]. In this paper the
method is used for 3D finite element structures subjected
to rotation around a fixed axis.

The first part of this paper deals with the structural
dynamics modeling and the construction of the nonlinear
reduced-order model (ROM). Then the interest of such a
ROM is shown on 3D structures in rotation with the ex-
ample of a cantilever beam-like 3D test case and a fan
blade subject to aerodynamic loads resulting from high
fidelity CFD computations. The selection of the dual
modes is detailed along with the determination of the non-
linear coefficients of the internal forces. The precision of
the ROM is checked and its robustness discussed. Finally,
preliminary applications to a fan blade are described.

STRUCTURAL DYNAMICS EQUATIONS
The finite element discretization of the structure is con-
sidered as the reference full-order model (FOM). The vi-
bration of the structure verifies the following matrix equa-
tion:

Mü+Cu̇+Ku+ fnl(u) = fext(t), (1)

with u the displacement degrees of freedom vector, M the
mass matrix, C the damping matrix and K the stiffness
matrix. The damping model is the widely used Rayleigh
viscous damping: C = αM + βK. Moreover, fnl is
the vector of the internal geometrical nonlinear forces and
fext(t) is the external force applied to the structure, which
may depend on the position and the velocity of the struc-
ture, like aerodynamic forces for instance.

When turbomachines or propellers are considered,
the structure is in rotation around a fixed axis and cen-
trifugal effects contribute to the dynamics. The rotation
speed around its axis is considered constant and the to-
tal displacement degrees of freedom of the structure, de-
fined as u in Eqn. (1), are now written ut. The total dis-
placement is the sum of a static nonlinear displacement
us due to the centrifugal external force, and of vibrations
u around this prestressed position: ut = us + u. The
prestressed position us is solution of:

(K−Kc)us + fnl(us) = fΩ. (2)

Centrifugal effects are included in the softening matrix
Kc and the constant centrifugal load fΩ. The geomet-

ric nonlinearities fnl are expanded around the prestressed
solution us:

fnl(us + u) = fnl(us) +Knl(us)u+ gnl(u), (3)

where Knl(us) is the tangent stiffness matrix, i.e. the Ja-
cobian of fnl(ut) evaluated at the prestressed position us,
and gnl(u) is the vector of the nonlinear forces with re-
spect to the prestressed position. In the rotating frame, the
equation governing the vibrations of the structure around
the centrifugally prestressed position is:

Mü+Cu̇+
[
K−Kc +Knl(us)

]︸ ︷︷ ︸
K(Ω)

u+gnl(u) = fext(t),

(4)
in which the gyroscopic effect was neglected. Due to the
centrifugal and geometrical nonlinear effects, a hardening
or softening behavior can be observed depending on the
speed of rotation and the considered mode [17].

External forces imposed to the structure in the test
cases considered in this paper are independent from the
position. Future work will involve external forces corre-
sponding to aerodynamic loads depending on the position
and velocity of the structure fext(us + u, u̇).

REDUCED-ORDER MODELS BY PROJECTION
Eqn. (4) involves a large number of degrees of freedom
when industrial models are considered. Projection-based
reduced order models rely on the assumption that the
degrees of freedom u can be approximated by a lim-
ited combination of vectors (later called modes). These
vectors form a basis of reduced dimension V such that
u ≈ Vq. The linear normal modes of the structure are
usually considered for this reduction basis; they are solu-
tions to the following eigenvalue problem:

K(Ω)ϕΩ
i = ω2

i (Ω)MϕΩ
i . (5)

Such modes are computed around the prestressed posi-
tion and thus depend on the rotation speed. Only the first
linear normal modes are kept in the reduction basis. For
linear problems, this method is very efficient. However,
the geometric nonlinearity leads to a coupling between
the modes. Thus, a reduction basis containing only the
first linear normal modes is not rich enough to capture the
nonlinear displacements, unless a large number of modes,
almost all, are used. Therefore other ”modes” have to be
added to the reduction basis in order to capture the non-
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linearity. This topic is addressed in section .
Once the reduction basis is built, the reduced equa-

tion of the dynamics is obtained by projecting Eqn. (4)
on the basis of reduced dimension V, leading to a system
with only few degrees of freedom called the generalized
coordinates q:

M̃q̈+ C̃q̇+ K̃q+VTgnl(Vq) = VT fext(t), (6)

with M̃ = VTMV, C̃ = VTCV and K̃ = VTK(Ω)V
respectively the reduced mass, damping and stiffness ma-
trices. However, when dealing with the internal nonlin-
ear forces VTgnl(Vq), the physical displacement field
u ≈ Vq should be recovered in order to evaluate the
forces in the physical space of all degrees of freedom with
a FE solver. This solution is intrusive and computation-
ally expensive. Therefore an explicit formulation of the
nonlinear forces depending only on the generalized coor-
dinates should be preferred, which is the topic of section
.

Enriching the Linear Basis with Dual Modes
When structures are undergoing large displacements and
are subjected to geometric nonlinearities, it is necessary
to include in the reduction basis modes that contain in-
formation on the nonlinear coupling between the modes
of the structure such as POD modes, modal derivatives
or dual modes. In this paper we focus on the dual mode
approach to enrich the projection basis. The determina-
tion of the dual modes was proposed in [3, 4, 5]. The
dual modes are deduced from static nonlinear computa-
tions with external loads resulting from linear combina-
tions of modes shapes:

fk = K(Ω)
(
± αk

1ϕ
Ω
1 ± αk

2ϕ
Ω
2 · · · ± αk

nϕ
Ω
n

)
, (7)

with the weighting coefficients αk
i and the number of

modes n in the reduction basis. Relevant modes are then
selected from a Singular Value Decomposition (SVD) and
a strain energy criteria. The definition of the forces fk is
based on the linear normal modes to span a large vari-
ety of loadings. The linear combination of linear normal
modes is multiplied by the stiffness matrix K(Ω) for ho-
mogeneity reasons, but also to control the range of the re-
sulting displacements. Indeed, the latter should be large
enough to be in the nonlinear range but not too large to
remain realistic regarding the yield stress of the material.
If geometric nonlinearities were neglected, the linear dis-
placement obtained with such loads would be the linear

combination of modes itself.
The process to determine the dual modes consists

first in computing the nonlinear static solutions uk result-
ing from the previously introduced load cases of Eqn. (7):
K(Ω)uk + gnl(uk) = fk. Then, the residual with re-
spect to the initial reduction basis of the first linear normal
modes is identified for each solution. This residual rk =
uk −ΦΩqk is defined as the difference between the non-
linear solution uk corresponding to the prescribed loading
fk and its approximation on the linear normal mode basis
ΦΩqk. The generalized coordinates qk are obtained with
a least squares approximation using the pseudo-inverse of
the basis ΦΩ: qk = (ΦΩT

ΦΩ)−1ΦΩT
uk. The residu-

als represent the nonlinear information that is missing in
the linear basis. All the residual vectors rk are gathered
in a matrix, from which a SVD is performed. The main
singular vectors associated with the largest singular val-
ues are extracted, as well as those satisfying the highest
linearized strain energy Ei defined by:

Ei =
NL∑
k=1

(
dT
i rk

dT
i di

)2

dT
i K(Ω)di, (8)

with NL the number of load cases defined in Eqn. (7) and
di the modes obtained by SVD.

The new reduction basis is therefore the concatena-
tion of the first linear normal modes and the dual modes
determined with the previous method: V = [ΦΩ,D]
with ΦΩ = (ϕΩ

i )i∈[1,n] and D = (di)i∈[1,m] such that
each di is one of the selected singular vector. Therefore,
the reduction basis contains only the first n linear normal
modes plus possibly the m dual modes. For the sake of
simplicity, n will denote in the following the length of
the reduction basis, whether it contains the dual modes or
not. The last step to build the ROM is to determine the
projected nonlinear forces as an explicit expression of the
generalized coordinates.

Determination of the Nonlinear Coefficients
The projection of the geometrical nonlinear forces in
Eqn. (4) VTgnl(Vq) does not provide a direct depen-
dency on the generalized coordinates. Instead, the phys-
ical displacements u ≈ Vq should be first rebuilt in the
physical space of all the degrees of freedom to evaluate
the nonlinear forces with the FE solver, which are finally
projected again in the reduced space. This induces a back-
and-forth process between the reduced and the full-order
model that is not efficient since many calls to the external
full-order FE solver are required. The frame of the study
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is finite deformations (small strain, large displacements,
large rotations) and Saint Venant-Kirchhoff constitutive
model. In this case, the nonlinear internal forces are cu-
bic with respect to the degrees of freedom. Consequently,
it is assumed that the projected nonlinear forces could be
approximated by a third-order polynomial of the general-
ized coordinates q, such that its kth component writes:

g̃ k
nl(q) ≈

n∑
i=1

n∑
j=i

βk
ijqiqj +

n∑
i=1

n∑
j=i

n∑
m=j

γk
ijmqiqjqm,

(9)
with βk

ij and γk
ijm the polynomial coefficients that should

be identified. For that purpose, two non-intrusive meth-
ods relying on nonlinear static computations are recurrent
in the literature. On one side the STEP (STiffness Evalu-
ation Procedure) [18] relies on a set of computations per-
formed with prescribed displacements, defined as well-
chosen linear combinations of the eigenmodes. Nonlinear
internal forces are extracted from these computations and
used to evaluate the nonlinear coefficients of the polyno-
mial. Although this method is efficient for 2D structures,
specific corrections are needed for 3D structures [19, 20]
since perturbations are introduced by possible conflicts
between the natural volumetric dilatation/compression of
the structure and the one imposed by the prescribed dis-
placement. The second method, which is not sensitive
to these artifacts, is the Implicit Condensation (IC) [12]
and its Expansion (ICE) [13]. In this method, nonlinear
static computations are performed with prescribed loads,
whose distributions are related to the linear normal modes
shapes. The nonlinear static solutions as well as the non-
linear internal forces are computed. The generalized co-
ordinates associated with the static solutions are extracted
with a pseudo-inverse from the equation u ≈ Vq and the
nonlinear internal forces are projected on the reduction
basis and identified with the expression Eqn. (9) using a
least-squares approximation. In the literature, the IC de-
termination of nonlinear coefficients is used with reduc-
tion bases containing only the first linear normal modes.
When dual modes are added to the structure, the STEP
method is usually preferred to determine the coefficients
for simplicity. However, for the reasons detailed previ-
ously, the STEP method for 3D cases is not adapted. The
originality in this paper is to apply the IC method with a
reduction basis containing both linear normal modes and
dual modes. In this case, the dual modes are not used in
the combinations in Eqn. (7) for the construction of the
imposed loads, but they have a contribution in the result-
ing nonlinear static solutions. Thus, both their associated
generalized coordinates and those associated to the linear
normal modes are extracted by least-squares approxima-

tion in the equation u ≈ Vq. Then the entire reduction
basis containing the linear normal modes and the dual
modes is used for the determination of the polynomial
coefficients of the nonlinear internal forces. Neverthe-
less, the condition number of the system to solve is high
since both quadratic and cubic monomials of the gener-
alized coordinates are involved. Besides, many of these
nonlinear coefficients (unknowns) are null for some cases
(due to symmetry reasons). Considering the previous re-
marks, the Lasso regression [21] is particularly adapted
and could be preferred to the usual least-squares approxi-
mation.

Originally reserved to linear normal modes, the IC
method is used in this paper for a reduction basis contain-
ing both linear normal modes and dual modes. Further-
more, the classical ICE method is considered to compare
both approaches. The next section provides more details
on the ICE method.

Implicit Condensation and Expansion for Linear Nor-
mal Modes Bases
The ICE method is an extension of the Implicit Condensa-
tion: the reduced dynamics of the structure is computed
for the first linear normal modes only and the total dis-
placement is expanded in post-processing to include in-
plane (membrane) effects. The expansion step is based
on a static reconstruction using additional modes Ψ and
generalized coordinates η. The displacement is finally
defined with the ICE method as:

uICE = ΦΩq+Ψη, (10)

The generalized coordinates q are computed as the so-
lution of the reduced equation of the dynamics Eqn. (6)
with V = ΦΩ including only the first linear modes. On
the contrary, the generalized coordinates η associated to
the modes Ψ are explicitly defined as quadratic combina-
tions of the generalized coordinates q:

η = [q21 q1q2 q1qn · · · q2q3 q2n]
T . (11)

The reconstruction modes Ψ are identified from Eqn. (10)
using the set of precomputed nonlinear static solutions
uk. Originally the ICE method was used for von Kármán
beams and plates for which the modes Ψ correspond to
the membrane displacements.

The previous section presented theoretical aspects of
the dynamics of the structure and the construction of the
reduced-order model. The next two sections are dedicated
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to numerical applications with 3D finite element models.
Two different applications are presented in this paper: the
first one analyses a cantilever beam-like structure in order
to present and validate the proposed method. Then, the
second one presents a preliminary study of an industrial
application of a UHBR new generation turbofan blade.

APPLICATION TO 3D CANTILEVER BEAM-LIKE
STRUCTURES
The first application is a beam-like structure discretized
with 3D HEX20 finite elements (360 elements, 2181
nodes). The length of the beam is equal to 4 m, its thick-
ness 7.10−2 m and its width 21.10−2 m. The Young’s
modulus is equal to 100 GPa, the density 4400 kg.m−3

and the Poisson’s ratio is equal to 0.3. Reference full-
order computations are performed using the FE solver
Code Aster.

Vibrations of the Beam Without Rotation
We first investigate the case of a cantilever beam without
rotation. The 3 first linear normal modes of the structure
are shown in Fig. 1. Their frequencies are respectively
3.38 Hz, 10.11 Hz and 21.17 Hz.

Fig. 1: Visualization of the first 3 linear normal modes of
the beam at 0 rpm. The mesh is the initial geometry.

The linear normal modes basis is enriched with dual
modes according to the process presented in section .
A set of loads are applied to the beam; the residuals of
the nonlinear static solutions are extracted and a SVD is
performed on the matrix gathering the residuals. Fig. 2
shows the first singular values of the SVD as well as the
linearized strain energies of the SVD modes. On this
graph, we notice that the first two SVD modes with the
largest linearized strain energies correspond also to those
with the highest singular values.

Those two modes lead to sufficient precision and are
therefore selected as dual modes to enhance the linear

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

k
max

Ek
Emax

Fig. 2: Normalized singular values (green) and linearized
strain energy (purple) of the modes obtained by the SVD
of the matrix of residuals.

normal modes basis. The shape of those dual modes is il-
lustrated in Fig. 3 showing that those modes are character-
ized by a purely axial deformation. Indeed, the first linear
normal modes correspond to bending movements, trigger-
ing membrane displacements due to geometric nonlinear-
ity.

Fig. 3: Dual modes added to the linear basis.

First, a static external load of amplitude 30000 N is
applied vertically at the tip of the beam. Fig. 4 presents a
comparison of the static deflections between the nonlinear
FOM and the ROMs. For such a case, the reduced-order
models ICE and IC with dual modes (later referred to as
ICDual) are superimposed with the nonlinear FOM solu-
tion. Both the static nonlinear solutions obtained with the
ICE method and the ICDual method capture the nonlin-
ear behavior of the structure. Nevertheless, the nonlinear
static solution of the ICE method matches with the FOM
solution after the expansion postprocessing step, while
with the ICDual approach, the nonlinear solution is cap-
tured directly from the resolution of the reduced system.

A dynamic sinusoidal load is then applied vertically
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Fig. 4: Comparison of the nonlinear static solution be-
tween the nonlinear FOM and the different ROMs.

at the tip of the beam, with an amplitude of 2500 N, and a
forcing frequency equal to the one of the first linear nor-
mal mode (3.38 Hz). The time integration is performed
using an HHT-α scheme with αHHT = 0.05 and a time step
of 2.10−3s. Besides, a Rayleigh viscous damping is con-
sidered: C = 2ξω0M with a damping ratio ξ = 0.05 and
ω0 the pulsation of the first linear normal mode. Fig. 5
depicts the nonlinear displacement of the FOM over one
period and Fig. 6 represents the axial and vertical tempo-
ral displacements of the node in the center of the tip of
the beam.

Fig. 5: Nonlinear FOM displacements over a period.

For such levels of deformation, the geometric nonlinearity
of the structure is significant. Fig. 7 compares the max-
imal displacements in periodic regime of the FOM solu-
tion, the linear ROM solution and the solutions obtained
with the reduced-order models ICE and ICDual.
The linear ROM solution does not capture at all the axial
shortening of the beam resulting from the nonlinearity.
Such axial shortening is captured by the Expansion step
of the ICE method but slightly differs from the FOM so-
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Fig. 6: Temporal axial and vertical displacements of the
tip of the beam.
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Fig. 7: Comparison of the maximal displacements in pe-
riodic regime between the FOM and the different ROM
solutions. The beam is subjected to a vertical sinu-
soidal load at the tip of amplitude 2500 N and frequency
3.38 Hz.
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lution, which was not the case for the previous test case
with a static load. This difference results from the Expan-
sion step of the ICE method which is based on a static
reconstruction of the solution from the bending dynam-
ics, but the membrane dynamics itself is not solved in
the reduced equation of the dynamics. On the contrary,
the addition of dual modes to the reduction basis leads
to the resolution of the dynamics in traction-compression
directly in the reduced equation of the dynamics Eqn. (6).
Therefore, no reconstruction is needed and the dynamics
is more accurately captured.

Rotation at Constant Rotating Velocity
In this section, the beam is shifted of 10 cm from the verti-
cal axis and rotates around the latter at a constant speed of
500 rpm. Centrifugal effects arise and the equilibrium po-
sition of the structure is the prestressed position due to the
centrifugal forces, around which the linear normal modes
are computed. The shape of the 3 linear normal modes are
very similar to those without rotation (see Fig. 1) but their
respective modal frequencies become 9.67 Hz, 10.86 Hz
and 30.22 Hz. Then the process of determining the dual
modes is applied. Fig. 8 represents the singular values
and the linearized strain energies of the SVD modes. The
dual modes selected are the first two SVD modes, which
have a similar shape as those of the case without rotation
illustrated in Fig. 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k
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10 6
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100
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Fig. 8: Normalized singular values (green) and linearized
strain energy (purple) of the SVD modes of the beam in
rotation at 500 rpm.

Similarly to the non-rotating analysis of the beam, a
static load is applied vertically at the tip. In order to reach
a comparable level of displacement, the applied load am-
plitude (210000 N) is seven times larger than in the case

without rotation. Fig. 9 compares the nonlinear FOM
static deflection with the ROM solutions. As in the non-
rotating case, the linear ROM solution does not capture
the bending/membrane displacements coupling due to ge-
ometric nonlinearity. Both the ICE and ICDual models
capture the nonlinear coupling leading to axial shorten-
ing. Nevertheless, due to the axial centrifugal forces and
the vertical loading at the tip, the curvature of the beam
is larger than the case without rotation. Such curvature
is not perfectly captured by the ROMs. Regarding the
position of the tip, the ICDual solution matches with the
FOM solution, while the ICE solution underestimates the
vertical displacement.
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Fig. 9: Comparison of the static deflections between the
FOM and the different ROMs. The beam is in rotation
at 500 rpm subject to a vertical static load at the tip of
210000 N.

To echo the test case of the beam without rotation,
this second study deals with a dynamic loading applied
vertically at the tip. The frequency of excitation is the one
of the first linear normal mode in rotation (9.67 Hz) and
its amplitude is 7350 N, about three times the load of the
non-rotating case in order to reach a similar magnitude of
displacements. The same integration scheme as for the
case without rotation is used but the time step is reduced
by half. The Rayleigh damping is kept unchanged.

The nonlinear solutions with the reduced-order mod-
els ICE and ICDual are also computed. Fig. 10 compares
the maximal amplitudes in periodic regime between the
FOM, the ICE, the ICDual and the linear ROM solutions,
under the above-mentioned dynamic load. While the so-
lution with dual modes has a negligible error with respect
to the nonlinear FOM solution, the ICE method slightly
underestimates the amplitude of displacement; more lin-

8



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
X Position [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Z 

Po
sit

io
n 

[m
]

Linear ROM Model
ICE ROM Model
ICDual ROM Model
FOM Model

Fig. 10: Comparison of the maximal displacement in peri-
odic regime between the FOM and the different ROM so-
lutions. The beam is subject to a vertical sinusoidal load
at the tip, of amplitude 7350 N and frequency 9.67 Hz.

ear normal modes would be needed in the reduction basis
for the ICE method.

APPLICATION TO A FAN BLADE
In this section, we consider a complex 3D structure of a
fan blade representative of a UHBR turbofan. The objec-
tive is to investigate the accuracy and robustness of the
structural reduced order model for such structures with
representative aerodynamic loads.

Fig. 11: Visualization of the full engine model and the fan
blades.

Fig. 11 illustrates the full engine configuration (on
the left) and the fan blade of interest (on the right). In the
present work, we consider a single fan blade (all blades
being the same). The original blade structural model has
been adapted to enable a dynamic analysis restricted to
a single fan blade: for that purpose, the blade root was
removed and replaced by a clamped boundary condition.
The Young’s modulus is equal to 110 GPa, the density

4500 kg.m−3 and the Poisson’s ratio is equal to 0.318.
The blade is discretized in 66640 HEX8 finite elements,
with 6 elements in the blade thickness. The structural
mesh of the blade is shown in Fig. 12 from two different
angles of view.

Fig. 12: Mesh of the blade.

The structure is in rotation around a fixed axis, cen-
trifugal effects are present and the dynamics of the struc-
ture is studied around the prestressed position. The linear
normal modes shapes of the structure and their associ-
ated modal frequencies are modified by the rotation speed
since they are computed relative to the prestressed posi-
tion. Fig. 13 is a Campbell diagram showing the evolution
of the frequencies of the first three linear normal modes
with respect to the rotation speed.
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Fig. 13: Campbell of the blade for the first 3 structural
modes.

The first linear normal modes are respectively the
first bending mode (named 1F), the second bending mode
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(2F) and the first torsion mode (1T). Fig. 14 presents the
modes 1F, 2F and 1T at the rotation speed of 2750 rpm.
It is noticed on the Campbell diagram, that at 2750 rpm,
the modes 2F and 1T are close to multiples of the rota-
tion speed. Resonance can therefore be observed at this
rotating speed for those modes, which should be avoided.

Fig. 14: First 3 linear normal modes (1F, 2F and 1T) of
the blade at 2750 rpm.

The reduction basis is enhanced with one additional dual
mode. Its shape is illustrated in Fig. 15.

Fig. 15: First dual mode of the blade, determined from
the three first linear normal modes around the prestressed
position at 2750 rpm.

In what follows, the rotating speed considered is
2750 rpm. The centrifugal effects lead to an untwisting
of the blade. First, a static load will be applied to the
structure, then a dynamic forcing.

Nonlinear Response under a Static Load
In this section, a static load is applied to the structure. The
load is based on the shape of the first linear normal mode

at 2750 rpm as follows:

fext = −15hK(Ω)
ϕ2750

1

max|ϕ2750
1 |

, (12)

with h the average thickness of the blade tip. For such a
load shape, the maximal amplitude of the linear solution
is 15 times the thickness of the blade tip. The linear and
ICE ROMs are both built using the first 3 linear normal
modes and the first dual mode is added for the ICDual
ROM. Fig. 16 represents the solution obtained under the
static load of Eqn. (12) and Fig. 17 under its opposite.

Fig. 16: Comparison between the FOM and the ROM so-
lutions under the static load (12).

Fig. 17: Comparison between the FOM and the ROM so-
lutions under the opposite of the static load (12).

The geometrical nonlinearity is significant for such
amplitudes. The nonlinear ICDual solution matches
perfectly with the FOM solution but the ICE solution
presents a slight deviation at the tip and the linear ROM
solution overestimates the static displacement.
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Nonlinear Response under Unsteady Aerodynamics
Loads
In this section, a CFD computation of the full 360◦ fan-
OGV-nacelle configuration illustrated in Fig. 11 is per-
formed. First a steady computation is carried out, then
an unsteady computation starting from the steady solu-
tion. The aerodynamic grid consists of roughly 16 million
cells. The CFD solver is the finite volume solver elsA
(ONERA-Safran property) [22]. The distributions of the
resulting aerodynamic forces on the fan blade considered
are represented in Fig. 18.

Fig. 18: Steady aerodynamic forces on the suction side
(top) and the pressure side (bottom) of the blade.

The nacelle inlet presents a dissymmetry. As a result,
the inlet flow is subject to a distortion pattern. During
each rotation, a fan blade travels through the distortion
pattern and is thus subject to a periodic forcing. An un-
steady CFD computation is conducted and the Fourier de-
composition of the unsteady aerodynamic forces is com-
puted to obtain the amplitudes and phases at each point
of the blade surface. The constant terms correspond to
the steady solution shown in Fig. 18. Regarding the har-
monics, only the first harmonics are kept since the ampli-
tudes along the other harmonics are negligible. The local
Fourier coefficients are then transferred from the aerody-
namic mesh to the neighbouring nodes of the structural
mesh with an energy method based on the conservation of

the virtual work. The load distribution of the fluctuating
components is applied to the structure at the frequency of
the forcing phenomenon (i.e. the rotation speed) and the
desired amplitude in addition to the steady aerodynamic
forces. A Rayleigh damping is also added to the system:
C = 2ξω2750

0 M with ξ = 0.05. Fig. 19 represents the
time evolution of the tip leading edge of the blade along
the Y direction.
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Fig. 19: Time response of the tip trailing edge along the
Y direction.

As expected, the levels of vibration of the nonlinear mod-
els are much lower than the linear ones. There is a non-
negligible difference between the ICE and ICDual ROMs,
the latter resulting in lower levels of vibrations that are
closer to those obtained with the FOM computation. The
computation of the FOM dynamic solution takes about 10
hours using parallel computing and a significant memory
while the resolution with the ROMs takes less than 10
seconds on a single processor. The ICDual ROM built on
the centrifugally prestressed position captures accurately
the geometrically nonlinear vibrations of the blade.

CONCLUSIONS
In this paper, a reduced-order model for 3D structures
subject to geometric nonlinearities is developed based on
dual modes and Implicit Condensation. This ROM is
compared to the usual ICE method in the cases of a can-
tilever beam in rotation and a fan blade, the latter subject
to aerodynamic loads. The results obtained show that the
proposed approach better captures the nonlinear geomet-
ric behavior.
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