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Abstract

This paper deals with the numerical computation, via a reduced order models
(ROM), of the vibrations of geometrically nonlinear structures triggered by
the aeroelastic coupling with a fluid flow. The formulation of the ROM
proposed in this paper is based on the projection on a basis of reduced
dimension enhanced with dual modes. An explicit expression of the projected
nonlinear forces is computed in a non-intrusive way based on the Implicit
Condensation method. The resulting ROM is an improvement of the classical
ICE method since the effects of membrane stretching are taken into account
in the resolution of the dynamic equation of motion. Such a ROM aims
to be adapted to follower aerodynamic unsteady loads. The construction
of the ROM is first detailed and validated under several load cases on a
Euler-Bernoulli beam with von Kármán hypothesis. Then a fluid-structure
partitioned coupling on a two-dimensional example involving vortex-induced
vibrations is considered to demonstrate the capability of such ROM to replace
a nonlinear FE solver. In this paper, the limitations of the ICE method are
highlighted in the examples treated, while the ROM proposed overcomes such
limitations and captures accurately the dynamics.
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modes, Euler-Bernoulli/von Kármán beam

Acronyms:
CFD Computational Fluid Dynamics
CSM Computational Structural Dynamics
FE Finite Element
FOM Full Order Model
IC Implicit Condensation
ICE Implicit Condensation and Expansion
ICDual Reduced-order model using dual modes along with the

Implicit Condensation
ROM Reduced Order Model
SVD Singular Value Decomposition

1. Introduction

The research of better performances for future aircraft engines leads to
larger fans and blades, therefore more flexible structures. The flexibility of
such structures results in higher amplitudes of deformation. Therefore, the
geometric nonlinearity of the structure cannot be neglected anymore and
significantly alters the level of vibrations, having an impact on aeroelastic
phenomena such as flutter and forced response. One way to perform an
aeroelastic computation is to couple together two solvers, one for the fluid
and one for the structure. Nevertheless, when dealing with industrial appli-
cations, the computational resources in time and memory of such coupling
are too significant to be acceptable. Besides, most fluid solvers and struc-
tural solvers are not designed for the purpose of communicating with one
another and the transfer of information from one solver to the other is often
laborious. To overcome those limitations, an efficient approach is to couple
the nonlinear fluid solver with a nonlinear reduced-order model (ROM) in-
stead of a FE structural solver. To be efficient, the ROM has to be designed
in a non-intrusive way so that it is independent of the FE model during the
computation. The fluid dynamics can also be represented by lower fidelity
models (e.g. Theodorsen or Lifting-line) or high-fidelity based reduced or-
der models (e.g. data-driven, hybrid formulations). In this work, the fluid
dynamics is not reduced and computed with an high-fidelity CFD solver.
The paper focuses on the development of a nonlinear structural ROM. The
literature suggests several methods to build reduced-order models tackling
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structural geometric nonlinearities. One idea is to enhance the classical pro-
jection on a reduction basis containing the first linear normal modes of the
structure by including additional modes aimed at capturing the nonlinearity,
such as modal derivatives [1, 2, 3, 4] or dual modes [5, 6, 7, 8, 9]. Although
it is a non-intrusive and flexible method, the difficulty lies in the selection
of the additional modes. Another approach relies on invariant manifolds
[10, 11, 12, 13] or spectral submanifolds [14, 15], both treating periodic vi-
brations at the resonance of linear normal modes. Such a method enables
to precisely reach high-order amplitudes of displacements and treat internal
resonances specifically. Nevertheless, aerodynamic forces are follower forces
leading to a dependency of the load to the position. Considering a reduction
method based on invariant manifolds, the load has to be either explicitly
known leading to time dependent invariant manifolds, or is not considered in
the construction of the model but is applied afterwards. Examples of such
methods for fluid-structure interaction problems are found in [16, 17, 18].
Besides, such a method suggests to consider polynomial orders higher than
3, but for such orders the construction of the model is intrusive and requires
specific accesses and operations inside the FE solver. Industrial CSM solvers
do not provide such access. The intrusiveness is a limitation also encoun-
tered in hyper-reduction methods such as the Discrete Empirical Interpola-
tion Method (DEIM) [19] which evaluates the nonlinearity only at a wisely
selected degrees of freedom. The literature also refers to methods, such as
the Proper Orthogonal Decomposition (POD) method [20, 21, 22, 23], based
on the results from high-fidelity simulations. The major drawback is that a
preliminary database of representative solutions is required to determine the
projection basis, the former being computationally expensive and directly
dependent on the set of parameters of the test case.

The ROM used in this paper is built by projection on a reduction ba-
sis containing both the linear normal modes of the structure and additional
dual modes identified from nonlinear static computations with external loads
defined by combinations of linear modes shapes. In the frame of finite de-
formations with large displacements and small strains, the nonlinear internal
geometric forces are approximated by a third-order polynomial of general-
ized coordinates. The coefficients of the polynomial may be identified with
the Implicit Condensation (IC) method [24]. The basic IC method described
in the article [24] is restricted to only the first bending modes of the struc-
ture. An Expansion step (ICE)[25], comparable to a static compensation, is
usually performed to rebuild the missing in-plane displacements a posteriori.
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It is a non-intrusive method that is classically performed to build reduced-
order models for large structures and was for instance applied to compute
the aeroelastic response of a wing in [26]. However, the in-plane dynamics is
simply rebuilt a posteriori with this approach and not included into the re-
duced equation of the dynamics during the resolution. For this reason, such
a method has limited efficiency to capture the dynamics of the membrane
stretching. An Inertial Compensation [27] has been suggested in the liter-
ature to consider the in-plane dynamics into the equations of the bending
modes, changing the nature of the reduced equations. A Force Compensa-
tion [28] was also recently proposed to take into account follower forces with
known shape.

In the present paper, a pertinent set of dual modes is added in the re-
duction basis. The aim is to compute the in-plane vibrations directly in the
reduced equations of the dynamics. Such modes contain information on the
nonlinear coupling between the bending and the membrane displacements.
Doing so, the approximated post-processing Expansion step is no longer use-
ful. The reduced-equations compute a richer dynamics and can be integrated
with classical time integration schemes. Besides, the reduction basis is deter-
mined in a non-intrusive way and follower forces do not need special treat-
ment apart from their projection into the reduction basis. The coefficients
of the projected nonlinear forces are determined with a force-based method.
Such a strategy has been used before but with condensed models containing
only the transverse linear modes [24] and not both transverse and in-plane
displacements like here. First, the ability of such a ROM to characterize the
nonlinear vibrations of an Euler-Bernoulli/von Kármán cantilever beam is
studied under different external forcing cases. Beam models are indeed com-
putationally cheap and enable to understand the phenomena at stake such
as the bending/membrane coupling and its impact on the performances of
the ROMs [29, 30]. Subsequently, the ROM is coupled with a nonlinear fluid
solver to compute the dynamical vibrations of the nonlinear beam, subjected
to the unsteady forcing of a von Kármán vortex street in the wake of a fixed
cylinder.

2. Classical projection-based reduced-order models

The behavior of the structure is studied thanks to a classical finite ele-
ment model, whose degrees of freedom in displacement, written u, verify the
equation of the dynamics :
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Mü+Cu̇+Ku+ fnl(u) = fa(u, u̇), (1)

where M,C, K, fnl and fa are respectively the mass matrix, the damping
matrix, the elastic stiffness matrix, the internal nonlinear forces vector and
the aerodynamic forces vector in the case of an aeroelastic problem.

One method to build a reduced order model is to project the equations
of the dynamics on a well-chosen basis of reduced dimension V. The dis-
placements degrees of freedom are approximated by u ≈ Vq where q are
called the generalized coordinates. The internal forces can be decomposed
as the sum of a linear component Ku and a geometric nonlinear compo-
nent fnl(u). After such decomposition and projection, the equation of the
dynamics becomes :

VTMV︸ ︷︷ ︸
M̃

q̈+VTCV︸ ︷︷ ︸
C̃

q̇+VTKV︸ ︷︷ ︸
K̃

q+VT fnl(Vq)︸ ︷︷ ︸
f̃nl(q)

= VT fa︸ ︷︷ ︸
f̃a

. (2)

The reduction matrix V contains only few vectors, therefore the pro-
jected matrices M̃, C̃ and K̃ have negligible dimensions compared to the
initial problem. The aerodynamic forces fa are obtained during the aeroe-
lastic coupling from the fluid solver used in the partitioned approach. In
section 5, local arbitrary loads are first considered for the structural tests.
Representative aerodynamic forces are then considered in section 6.

2.1. Determination of the reduction basis
Mechanical vibrations can be characterized by linear normal modes Φ =

{ϕϕϕ1, · · · ,ϕϕϕn}, solutions of the eigenvalue equation :

(
K− ω2

iM
)
ϕϕϕi = 0. (3)

where ωi are the eigen-angular frequencies.

When the amplitudes of displacement are small and the geometric nonlin-
earity can be neglected, the problem is linear. In such a case, a satisfactory
choice to represent the dynamical behavior is a reduction basis containing
only the first linear normal modes, whose frequencies belong to the excita-
tion band. On the contrary, when the geometric nonlinearity is significant, a
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coupling may appear between some low- and high-frequency modes. Conse-
quently, the first linear modes are no longer sufficient to capture the whole
dynamics and the reduction basis has to be enriched by other modes in order
to account for the coupling between the modes.

The data added to the reduction basis should contain information on the
coupling between several linear normal modes and should not depend on
specific loading cases. One idea is to capture the nonlinearity in the vicin-
ity of the linear normal modes, using modal derivatives. Modal derivatives
are second-order Taylor expansions around the equilibrium position of the
structure and can be computed in several ways, taking or not the inertia into
account [1, 2, 3, 31]. A drawback of modal derivatives is their plurality. The
number of modal derivatives drastically increases with the number of lin-
ear normal modes considered. In a basis containing n linear normal modes,
n(n+1)/2 modal derivatives exist. Although a criterion to reduce their num-
ber is proposed in [4], the size of the resulting reduction basis may not be
as small as expected for an efficient ROM. Another possibility to enrich the
reduction basis is the use of dual modes [5, 6, 7, 8, 9, 32, 33]. The latter
are computed from nonlinear static solutions obtained by imposing external
loads to the structure, whose distribution involves the first linear normal
modes so that the loads are not case-dependent. Those nonlinear static solu-
tions contain information on the geometric nonlinearity that is missing from
the linear normal modes. Such information is extracted and a SVD is per-
formed. Eventually, the SVD modes with the highest singular values as well
as the modes associated with a significant linearized strain energy are the
dual modes selected to enrich the reduction basis. An interesting compari-
son of basis sizes between the modal derivatives and the dual modes for beam
and shell examples is found in [34].

2.2. Approximation of the projected nonlinear forces
When a partitioned fluid-structure coupling is considered, the fluid solver

interacts with an external FE solver to compute the displacement of the
structure at every sub-iteration of coupling. The transfer of data between the
fluid and the structure solvers is not an easy task and a significant advantage
is to use a non-intrusive ROM, independent from any FE solver during the
online stage. However, since the evaluation of the projected nonlinear forces
VT fnl(Vq) requires back-and-forth exchanges between the ROM and the
FEM variables, the ROM resulting from Eq.(2) is therefore intrusive. More
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precisely, the physical displacements u ≈ Vq have first to be assembled
before the evaluation of the nonlinear forces fnl(Vq) by the FE solver, which
are finally projected again in the reduced space. It would be of great interest
to know the explicit expression of the projected nonlinear forces f̃nl(q) as a
function of the generalized coordinates. Thus the structural problem could
be solved directly in the reduced space:

M̃q̈+ C̃q̇+ K̃q+ f̃nl(q) = f̃a. (4)

Considering geometric nonlinearities in the frame of finite displacements
(small strains, large displacements and large rotations) and the Saint Venant-
Kirchhoff model, the nonlinear forces resulting from geometric nonlinearities
is a third-order polynomial function of the generalized coordinates [35, 36].
Writing f̃k

nl(q) the kth coordinate of the projected nonlinear force, its expres-
sion can be written explicitly from the generalized coordinates:

f̃k
nl(q) =

n∑

i=1

n∑

j=i

βk
ijqiqj +

n∑

i=1

n∑

j=i

n∑

m=j

γ k
ijmqiqjqm, (5)

with n the number of modes in the reduction basis, while βk
ij and γk

ijm are
respectively the quadratic and cubic coefficients of the polynomial approx-
imation of the nonlinear forces. Appendix B provides a formulation of the
Jacobian of the projected nonlinear forces that will be exploited for the res-
olution of the nonlinear systems. Nevertheless, the coefficients βk

ij and γ k
ijm

have yet to be determined. Two methods are found in the literature. The
first one involves the determination of the coefficients with imposed displace-
ments, called STEP [35] and including in some cases precautions for use with
3D cases [37, 29, 38]. In this method, the coefficients of the polynomial are
determined specifically by imposing to the structure various displacements
with the shape of well-chosen linear combinations of the linear normal modes
[39, 40, 41]. The second method relies on prescribed loads to the structure
to determine the coefficients. Such a method is called Implicit Condensation
[24], and an Expansion [25] step has been proposed. Prescribed loads in-
stead of displacements are imposed to the structure, with load distributions
derived from the linear normal modes. Both the nonlinear static solutions
and the nonlinear forces are computed. The generalized coordinates on the
reduction basis are extracted from the nonlinear static solutions by means
of a least-squares method. The coefficients βk

ij and γk
ijm are finally obtained
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by identification between the formula (5) and the nonlinear forces computed
with the FE solver. A short description of the IC and ICE methods is pro-
posed in the following subsections. Such methods are at the foundation of the
ROM proposed in this paper and the performance of these different methods
in terms of accuracy will be compared on selected test cases in section 5 and
6.

2.3. Implicit Condensation and Expansion (ICE) method
The idea of the Implicit Condensation method [24] is to select in the

reduction basis the first nb linear normal modes: Φ = [ϕϕϕ1, · · · ,ϕϕϕnb
] corre-

sponding usually to bending modes for slender structures. Then the nonlinear
forces coefficients of Eq.(5) are identified thanks to static nonlinear displace-
ments obtained under load cases. A set of nL loading cases f

(1)
ext, f

(2)
ext, · · · ,

f
(nL)
ext are introduced. The distribution of each load case ℓ ∈ [1, nL] is defined

as a linear combination of the linear normal modes:

f
(ℓ)
ext = α

(ℓ)
1 ϕϕϕ1 + α

(ℓ)
2 ϕϕϕ2 + · · ·+ α(ℓ)

nb
ϕϕϕnb

. (6)

The determination of the quadratic and cubic coefficients of the reduced
nonlinear forces is carried out by identification between Eq.(5) and the pro-
jection of the internal nonlinear forces obtained with the nonlinear static
computations under the loads (6): Ku(ℓ) + fnl(u

(ℓ)) = f
(ℓ)
ext. More details

about the identification of the polynomial coefficients are given later in sec-
tion 3.2.

In the original IC method, the reduction basis comprises exclusively bend-
ing modes. Therefore, the contribution of the other modes, for instance the
membrane modes of beam or shells, is omitted in the result. The specificity
of the ICE method is to improve the solution obtained with the IC method
by adding a post-processing step whose aim is to enrich the displacement
solution with information on the membrane displacement that is not con-
tained in the few linear normal modes selected. The assumption is that the
total displacement u is the sum of the approximated solution obtained with
the first linear normal modes selected ub and a set of Expansion modes Ψ
multiplied by generalized coordinates η. Such generalized coordinates are
defined as quadratic functions of the generalized coordinates associated to
the selected modes Φ:
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u = ub + um =

nb∑

k=1

ϕϕϕkqk +
nm∑

k=1

ψkηk = Φq+Ψη. (7)

The total displacement can thus be interpreted as a quadratic mapping. The
first linear bending modes (ϕϕϕk)k∈[1,nb] are known as well as the corresponding
generalized coordinates qk. On the contrary, the modal amplitudes of the
Expansion modes Ψ are obtained as quadratic combinations of the modal
amplitudes relative to the first linear normal modes qk:

η =
[
q21 q1q2 · · · q1qnb

q22 q2q3 · · · q2
nb

]T
. (8)

Nevertheless, the Expansion modes (ψq)q∈[1,nm] are not known and have to
be determined during the construction of the reduced-order model. To this
end, a matrix (Qm)(nm×nL)

(respectively (Qb)(nb×nL)
) is built, whose rows

are the generalized amplitudes (ηq)q∈[1,nm] (respectively (qk)k∈[1,nb]) and the
columns their values for each static solutions associated to a loading f

(ℓ)
ext.

Introducing the matrix (Ut)(nb×nL)
whose columns are the nonlinear static

solutions u(ℓ) = u
(ℓ)
b + u

(ℓ)
m leads to the matrix system:

Ut = ΦQb +ΨQm. (9)

The Expansion modes used for the ICE reconstruction of the displacement
are then obtained by:

Ψ =
[
Ut −ΦQb

]
Q+

m, (10)

where Q+
m is the pseudo-inverse of Qm. In [25], the authors suggest to use the

first bending modes in the reduction basis, therefore the Expansion modes are
mostly modes with a predominant membrane contribution. During the tem-
poral resolution of the dynamics equations of motion, the structural response
in terms of modal bending amplitudes ub is determined. The corresponding
membrane displacements ηk are then computed with Eq.(8) and finally the
total displacement is rebuilt as u = ub + um. Equation (8) is a quadratic
mapping or quadratic modal condensation [42]. Since the internal forces are
cubic in the degrees of freedom and the displacement is a quadratic mapping
of the generalized coordinates, truncating the polynomial development of the
projected nonlinear forces at the third-order is an approximation and higher-
orders are sometimes necessary [43]. Besides, for cantilever structures, the
IC method with bending modes and its expansion ICE becomes inaccurate
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in the dynamic case with large axial displacement, which will be highlighted
in the examples of the present paper. Indeed, since only bending modes are
included in the reduced basis, there is no equation relative to the membrane
dynamics in the reduced system. In order to address this problem, the ap-
proach considered in this paper rely on the definition of a projection basis
including the first linear modes and additional dual modes. The polynomial
coefficients for the approximation of the nonlinear forces are then identified
for this expanded basis and the membrane effects are taken into account dur-
ing the resolution of the equation of motion instead of being post-processed
like in the ICE method.

3. Implicit Condensation with dual modes (ICDual)

In this section, a reduction method using the dual modes determining the
nonlinear coefficients with imposed loads is detailed. Such method will be
referred to as ICDual in the rest of the paper. First, the determination of the
dual modes to improve the reduction basis is detailed. Then, two methods to
determine the coefficients of the projected nonlinear forces using prescribed
loads are proposed. The first method is similar to the Implicit Condensation
method exploited the FE nonlinear forces and the second is based on the
tangent stiffness matrices. The methods proposed in this paper enable to
reuse the nonlinear static solutions computed during the process of selection
of the dual modes, to determine the coefficients of the projected nonlinear
forces.

3.1. Enhancing the projection basis with dual modes
This section details the determination of dual modes which are added to

the projection basis in order to capture the geometric nonlinearity without
resorting to a post-processing step.

A set of external forces are first applied to the structure as a combination
of the first linear normal modes (ϕϕϕ)i∈[1,nb] of the structure:

∀ℓ ∈ [1, nL] f
(ℓ)
ext = K

( nb∑

i=1

α
(ℓ)
i ϕϕϕi

)
, (11)

where α
(ℓ)
i are weighting coefficients. The associated nonlinear static solu-

tions u
(ℓ)
s are computed from the equation:

Ku(ℓ)
s + fnl(u

(ℓ)
s ) = f

(ℓ)
ext. (12)
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From those nonlinear static solutions, generalized coordinates q(ℓ) on the
modes of the reduction basis are extracted by least-squares approximations
since u

(ℓ)
s ≈ Φq(ℓ). The remainder of the approximation is written r(ℓ). For

each nonlinear static solution, we have

u(ℓ)
s = Φq(ℓ) + r(ℓ), (13)

and all the remainders r(ℓ) are gathered in a matrix, from which a singular
value decomposition (SVD) is computed:

[
r(1), · · · , r(nL)

]
=
[
d1, · · · , dnp

]
diag(σ1, σ2, · · · , σnp)W

T , (14)

where (σi)i∈[1,np] are the non-null singular values ordered from the largest to
the smallest, (di)i∈[1,np] the left singular vectors of the decomposition and
WT containing the right singular vectors, of shape (np×nL). The projection
of the remainder vectors r(ℓ) on the SVD basis vectors is the following:

r(ℓ) =

np∑

k=1

βℓ
kdk, (15)

with βℓ
k = σkWℓk. Considering Er the sum of the linearized strain energy of

all the nonlinear remainder displacements r(ℓ) we can write:

Er =
nL∑

ℓ=1

r(ℓ)
T

Kr(ℓ) =

np∑

k=1

( nL∑

ℓ=1

βℓ
k

2
dT
kKdk

)

︸ ︷︷ ︸
Ek

, (16)

since ∀(k, j) ∈ [1, np]
2,dT

kdj = δkj.

As explained in [5], the dual modes selected for inclusion in the reduction
basis are the vectors

(
di

)
i∈[1,np]

with the largest singular values σi and those
contributing the most to the linearized strain energy, i.e. those leading to the
largest values of Ei. The vectors

(
di

)
i∈[1,np]

ranked by decreasing singular
values are selected until the desired precision is obtained. To do so, the
reduction basis Φ is supplemented by the vectors

(
d1,d2, ...,dk

)
to form

the matrix V(k) = [Φ,d1, · · · ,dk]. Then the matrix Us collecting all static
displacements u

(ℓ)
s is approximated as V(k)Q(k) by a least squares method.
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The dual modes are first selected with respect to the following criterion to
ensure that the static solutions are properly approximated when adequate
linear and dual modes are included in the basis:

max(|Us −V(k)Q(k)|)
max(|Us|)

< εσ (17)

The second step is to satisfy a sufficient contribution to the linearized
strain energy. The remaining dual modes candidates are ordered by decreas-
ing linearized strain energy contributions and are added to the reduction
basis until the following error is below the threshold εE:

1

Er

(
Er −

k∑

i=1

Ei

)
< εE (18)

with Ei the contribution to the total linearized strain energy defined in (16).
The new reduction basis is finally the concatenation V = [Φ,Φdual] of the

first linear normal modes Φ and the selection of dual modes Φdual satisfying
both criteria. The second and last step in the construction of the ROM is
the determination of the explicit expression of the projected nonlinear forces
using the Implicit Condensation method presented in section 2.3.

3.2. Computation of the nonlinear forces coefficients
The coefficients of the nonlinear forces approximation are computed sim-

ilarly to the IC method in the sense that prescribed loads are applied to the
structure. However, the reduction basis considered in the present work does
not only contain linear normal modes, but also dual modes. Here, the loads
are not imposed on the entire basis containing both linear normal modes and
dual modes as suggested in [24, 8], but only on the linear normal modes.
Indeed, applying loads to the dual modes produces internal forces whose am-
plitudes differ by several orders of magnitude from those associated to linear
modes. The choice of the weighting coefficients becomes tricky and alters
strongly the results.

In this paper, external loads are therefore prescribed only from a combi-
nation of linear modes, but displacements associated to dual modes are also
included in the static solutions because of the nonlinear coupling. The same
loads as those used for the determination of the dual modes Eq.(11) can
thus be reused and possibly supplemented by additional load cases. With
such distribution of loads based on the linear modes, the ROM can be used
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for different load cases, such as aerodynamic forces for instance since the
prescribed loads in Eq.(11) are rather generic. Besides, the product with
the stiffness matrix in provides an estimation of the amplitude of the real
physical displacement. Indeed, if the geometric nonlinearity was neglected,
the displacement obtained by such a load case would exactly be the dis-
tribution imposed by the linear combination of modes

∑nb

i=1 α
(ℓ)
i ϕϕϕi. Since

geometrical nonlinearities affect the static displacement and generally result
in smaller displacements or with similar order of magnitude than linear ones,
the previous remark gives an upper limit to the order of magnitude of the
displacement. This observation provides a strategy to select the coefficients
α
(ℓ)
i so that the loads imposed are large enough to trigger geometric nonlin-

earities, and not too large to remain within the scope of acceptable yields
stresses for the material. From this set of nL external loadings, the nL non-
linear static displacements are obtained by solving with a Newton-Raphson
algorithm the nonlinear static equations:

Ku(ℓ)
s + fnl(u

(ℓ)
s ) = f

(ℓ)
ext, (19)

Then the associated generalized coordinates q(ℓ) are computed by a least
squares approximation using the pseudo-inverse of V from the equation:

q(ℓ) = (VTV)−1VTu(ℓ)
s . (20)

At this point nL couples
(
q(ℓ), fnl(u

(ℓ)
s )
)

are determined and satisfy the fol-
lowing system for the unknowns βk

ij and γk
ijm:

f̃k
nl(q

(ℓ)) = VT
k fnl(Vq(ℓ)) =

n∑

i=1

n∑

j=i

βk
ijq

(ℓ)
i q

(ℓ)
j +

n∑

i=1

n∑

j=i

n∑

m=j

γk
ijmq

(ℓ)
i q

(ℓ)
j q(ℓ)m .

(21)
The previous system of equations for each k ∈ [1, n] can be written in the

matrix form as follows:




qT
quad(q

(1))

qT
quad(q

(2))
...

qT
quad(q

(nL))







βk
11

βk
12
...

βk
nn


+




qT
cub(q

(1))
qT
cub(q

(2))
...

qT
cub(q

(nL))







γk
111

γk
112
...

γk
nnn


 ≈




fTnl(u
(1)
s )

fTnl(u
(2)
s )

...
fTnl(u

(nL)
s )


Vk

(22)
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with:
{

qquad(q) =
[
(q1)

2 q1q2 q2q2 q2q3 q3q3 · · · (qn)
2
]T

qcub(q) =
[
(q1)

3 q1q1q2 q1q2q2 q1q2q3 q1q3q3 · · · (qn)
3
]T

.

(23)

With commercial FE softwares, the access to the source code is not granted
and the coefficients have to be identified simultaneously by solving the system
(22) that can be written as follows:

[
Qquad Qcub

] [βk

γk

]
≈




fTnl(u
(1)
s )

...
fTnl(u

(nL)
s )


Vk (24)

For each k and n ≥ 3, the system includes n(n + 1)/2 unknowns for the
coefficients βk

ij and (n3 + 3n2 + 2n)/6 for the coefficients γk
ijm. The system

is thus well determined when the number of loads nL is equal to the number
of coefficients; otherwise the system is over- or under-determined and a least
square approximation is necessary. Note that when the problem presents
symmetries, a significant number of coefficients are null and less load cases
are required. When the quadratic and cubic coefficients cannot be computed
separately, penalized regression methods such as Ridge, Lasso [44] or Elastic
Net [45] can be preferred to the usual least-squares due to the possibly large
condition number of the system.

The common approach is to identify the coefficients of the projected non-
linear forces via imposed displacements [41, 40, 37]. In the approach proposed
in this paper, the loads and the associated solutions, computed to determine
the dual modes, are reused here in the determination of the forces coefficients.
Thus, no additional static computations are necessary.

3.3. Variant using the tangent stiffness matrix
When available as an output of the FE code, the use of the tangent stiff-

ness matrix is suggested in [8] to compute the coefficients. Indeed, considering
the Jacobian of the projected nonlinear forces, the system writes:
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δQquad(q
(1))

δQquad(q
(2))

...
δQquad(q

(nL))







βk
11

βk
12
...

βk
nn


+




δQcub(q
(1))

δQcub(q
(2))

...
δQcub(q

(nL))







γk
111

γk
112
...

γk
nnn


 ≈




K̃
(1)

nl,k

K̃
(2)

nl,k
...

K̃
(nL)

nl,k



, (25)

where

δQquad(q) =




∂qquad(q)

∂q1
...

∂qquad(q)

∂qn



, δQcub(q) =




∂qcub(q)

∂q1
...

∂qcub(q)

∂qn



, (26)

and where the notation K̃
(ℓ)

nl,k corresponds to the transpose of the kth row of
the matrix K

(ℓ)
nl = VTKnl(u

(ℓ)
s )V.

As in the case with the nonlinear forces fnl, when the quadratic and
cubic components of Knl can be treated separately, the nonlinear coefficients
βk and γk can be identified individually by solving two different systems,
otherwise the full system can be solved.

In [8], the tangent stiffness matrix is evaluated with imposed displace-
ments. Here, the tangent stiffness matrix Knl(u

(ℓ)
s ) is evaluated for the non-

linear static solutions u(ℓ) (ℓ ∈ [1, nL]) computed under the loads f
(ℓ)
ext. Each

nonlinear static solution u(ℓ) gives a set of n equations, compared to only
one equation with the nonlinear force fnl(u

(ℓ)). Thus, the number of static
solutions necessary to compute the coefficients is much lower than with the
method based on nonlinear forces in section 3.2.

Once the reduction basis and the coefficients of the nonlinear internal
forces have been calculated, the coupling between this ROM and a fluid
solver can be performed. The fluid-structure coupling procedure used in this
work is discussed in the next section.
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4. Partitioned fluid-structure coupling procedure between the fluid
solver and the structural ROM

One application considered at the end of this paper is the simulation
of the aeroelastic coupling between a structure undergoing large displace-
ments induced by an aerodynamic loading. This coupling is addressed with
a partitioned approach where the structural dynamics and the fluid dynam-
ics equations are solved separately. Aerodynamics loads induced by the flow
and structural displacements resulting from the deformable structure are ex-
changed at each physical iteration during the time integration. The loads
corresponding to the structural displacements are balanced for each physical
iteration with a fixed-point algorithm involving several sub-iterations. The
flowchart Fig. 1 illustrates the time marching partitioned algorithm with
the physical time loop and the fixed point loop introduced to converge the
coupled aeroelastic state.

In this procedure, the structure that is usually represented by a set of
linear modes in aeroelastic problems is replaced in the present case by the
nonlinear ROM formulation introduced in the previous section 3 to take into
account large displacements effects.

The flow is modeled here by the Navier-Stokes equations formulated in the
Arbitrary Lagrangian-Eulerian framework [46] which is adapted to account
for arbitrary grid motions, including both rigid body motions and deforma-
tions. The fluid equations are solved with the CFD Finite Volume solver
elsA (ONERA-Safran property, [47]) under the following form for the con-
servative variables w on the entrained and deformable computation domain
Ω(t) delimited by the boundary ∂Ω with unit external normal n(t) :

d

dt

∫

Ω(t)

wdΩ +

∫

∂Ω(t)

Fc[w, s]ndΣ +

∫

∂Ω(t)

Fd[w,gradw]ndΣ = 0 (27)

with Fc (resp. Fd) the convective (resp. diffusive) fluxes operators. The ALE
formulation introduces the grid velocity term s(t) in the convective fluxes,
which arises from the structural deformations at the fluid-structure interface.
For viscous flow, the no-slip boundary condition imposes the continuity of
the velocity at the fluid-structure interface Γ such that v = sΓ with v the
flow velocity and sΓ the velocity of the deformable fluid-structure interface.

This grid velocity at the interface sΓ = uΓ = VΓq̇ is the time derivative
of the structural deformation which is decomposed here on the restriction of
the reduced basis VΓ on the fluid-structure interface.
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Start

Time increment
t ← t+ ∆t

i = 0

Coupling iterations, F/S equilibrium
i ← i+ 1
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Fluid solver
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(t)

a

Reduced structure solver

iq(t), iq̇(t)

Fluid/structure equilibrium satisfied? no
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t > tmax ?no
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q(t) = iq(t)

q̇(t) = iq̇(t)

f̃
(t)

a = if̃
(t)

a

End

Figure 1: Partitioned coupling procedure between the fluid solver and the nonlinear re-
duced structural solver. The projection of the aerodynamics forces in the reduced basis is
denoted here by f̃a = VT fa.

The structural deformation at the interface uΓ has to be propagated inside
the fluid computational domain to accommodate with the deformed position
of the interface. The fluid mesh coordinates are denoted ξ = [ξi, ξΓ] with
ξi the internal grid coordinates and ξΓ the fluid mesh coordinates on Γ.
These latter satisfy ξΓ = uΓ and a mesh deformation algorithm based on
a structural analogy is exploited to propagate the deformation in the whole
fluid domain [48]. The fluid domain is assimilated to a linear elastic material
where prescribed displacements are imposed on the interface Γ. The problem
is formulated with a classical FE formulation as Kmeshξ = 0 in Ω with Kmesh
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a stiffness matrix resulting from the assembly of all the local stiffness matrices
per element and the constraint ξΓ = uΓ. The Young’s modulus considered
to build the stiffness matrix is however not uniform in the fluid domain but
depends on the mesh metrics. The finite element problem is decomposed as:

[
Kii

mesh KiΓ
mesh

KΓi
mesh KΓΓ

mesh

][
ξi

ξΓ

]
=

[
0

RΓ

]
(28)

with RΓ the reaction on the fluid-structure interface Γ. Therefore, in-
ternal displacements of the fluid mesh ξi are obtained as the solution of the
linear problem:

Kii
meshξi = −KiΓ

meshξΓ (29)

Since a modal approach is considered in the present work, a collection of
fluid mesh deformation fields can be computed during a pre-processing step
by prescribing at the fluid structure interface the modal deformation ξΓ = vΓ

for each basis vector v of the reduction basis V. The grid velocity s involved
in the convective fluxes is finally evaluated from the time derivative of the
fluid mesh grid position updated at each iteration by the mesh deformation
procedure. In the general case, the fluid and structural mesh discretization
are non-coincident and an additional step is necessary to transfer on one hand
the structural displacements from the structural mesh to the aerodynamic
one, and on the other hand the aerodynamic loads computed on the fluid
cells interfaces to the structural nodes.

When the fluid and structure meshes are non-coincident, a step of transfer
of the structural displacements to the fluid boundary is necessary. Likewise,
the fluid aerodynamic forces have to be transferred to the structure. This
transfer is performed here by a reconstruction of the displacement field on
the beam’s external cross section from the degrees of freedom known on the
beam’s neutral axis.

In what follows, the reduced-order models presented previously are ap-
plied to the 2D case of a von Kármán beam in section 5. Firstly, the behavior
of the structure under different load types is investigated. Then, the ability
of the ROM to capture an aeroelastic coupling is investigated in section 6.
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5. Application to a nonlinear beam

5.1. FE Euler-Bernoulli beam with von Kármán hypothesis
In this section, a Euler-Bernoulli beam model is considered, the shear de-

formation of the sections is thus neglected. In each element of the discretized
beam, the von Kármán hypothesis of moderate rotations is assumed. With
such a model, the curvature κ and the engineering strain e are given by

κ =
∂θ

∂X
=

∂2v

∂X2
, (30)

e =
∂u

∂X
+

1

2

(
∂v

∂X

)2

, (31)

where u, v, θ are respectively the axial, vertical displacements and the rota-
tion of the section, represented in Figure 2.

Figure 2: Definition of the engineering strain

The FE discretization of Euler-Bernoulli beams is based on linear shape
functions for the axial degrees of freedom and cubic Hermitian shape func-
tions for the vertical and rotation degrees of freedom. More details are pro-
vided in appendix A. With the von Kármán hypothesis, membrane-locking
issues may appear, especially for a free boundary condition [49]. Indeed, at
a free end (here at x = L for a cantilever beam), the membrane strain is null
for any position X in the last element:

e = 0 =
∂u

∂X
+

1

2

(
∂v

∂X

)2

. (32)
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It means that the degree of the polynomial of ∂u/∂X and (∂v/∂X)2 has
to be the same. However, the shape functions for u are linear and those for
v are cubic. Therefore, the above-mentioned constraint is not satisfied and
leads to excessively stiff elements. This membrane-locking phenomenon is
significantly accentuated when the lengths of the discretization elements are
large. In order to circumvent membrane-locking, a reduced integration of the
nonlinear terms with only one Gauss point is used, as suggested in [49].

A clamped-free beam of rectangular cross-section is considered for the
application. The beam is discretized with 50 elements in which the von
Kármán hypothesis is considered. The dimensions and properties of the
beam are presented in Table 1.

Beam dimensions
L (length) 4 m
h (thickness) 7.10−2 m
b (width) 3h

Material properties
E 100 GPa
ρ 4400 kg.m−3

Table 1: Dimensions and material properties of the beam

It is well known that the Euler-Bernoulli beam model with von Kármán
hypothesis has a limited range of validity, as shown for example in [30]. In-
deed, for cantilever beam under external loads with no axial contribution,
the geometric nonlinearity cancels out in the vertical and rotational compo-
nents, leading to purely axial nonlinearity. However, we have chosen to use
this model because geometric nonlinearities in such a case are cubic in the
degrees of freedom. The proposed ROM is therefore directly transposable to
3D finite element applications with Saint Venant-Kirchhoff model where the
geometric nonlinearity is known to be cubic in the degrees of freedom.

5.2. Reduced-order beam model with dual modes
The first three linear normal modes are initially considered in order to

build the reduction basis. Those modes are bending modes that do not
capture the membrane dynamics. As explained in the previous section, the
basis is completed with dual modes determined by imposing loads to the
structure, with the distribution defined in Eq.(6) as the combination of the
first three linear modes:

f
(ℓ)
ext = K

(
± α

(ℓ)
1 ϕϕϕ1 ± α

(ℓ)
2 ϕϕϕ2 ± α

(ℓ)
3 ϕϕϕ3

)
, (33)
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with the modes ϕϕϕ1,ϕϕϕ2,ϕϕϕ3 normalized by their maximal vertical value and
α
(ℓ)
1 ∈ {10h, 0}, α(ℓ)

2 ∈ {1h, 0}, α(ℓ)
3 ∈ {1h, 0}. With this choice of amplitudes

α
(ℓ)
i , the first linear mode is considered as a dominant mode undergoing

large deformations and slightly perturbed in the direction of the other linear
normal modes. The loads are imposed positively and negatively so that no
side is favored in the construction of the database of nonlinear static solutions
for the nL = 26 different load cases. A singular value decomposition of the
static resolution remainders is then performed according to the process of
selection of the dual modes detailed in section 3.1. The singular values and
the linearized strain energies of the dual modes candidates are plotted in
Figure 3.

1 3 5 7 9 11 13 15 17 19 21 23 25
k

100

10 4

10 8

10 12

10 16

10 20

10 24

k
max

Ek
Emax

Figure 3: Singular values and linearized strain energies of the static solution remainders.

In the present case, the SVD modes with the highest singular values are
also those with the highest linearized strain energy contribution. The dual
modes appended to the initial basis of linear modes are thus the vectors
d{1,2,3,4,5}. In cases such as the present configuration, it could be argued
that only the criterion of the singular values can be retained. However, the
criterion based on the energy highlights, among the dual modes candidates
with large singular value, those with a significant membrane contribution.
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When there is no clear drop in the singular values, it was observed on other
configurations that some dual modes candidates with a small contribution to
the linearized energy may contribute less to the dynamics and are not neces-
sary in the reduction basis. The new reduction basis considered is therefore
the concatenation of the first 3 linear normal modes and the 5 dual modes:
V = [Φ,d{1,2,3,4,5}]. It is worth mentioning that for beam applications, the
dual modes leading to a high linearized strain energy have a negligible bend-
ing contribution compared to their axial contribution. Indeed, the axial
stiffness of a beam is larger than the bending stiffness. Thus, the linearized
strain energy associated to vectors with dominant membrane contribution is
usually larger than the one of modes with dominant bending contribution.
With this selection of dual modes, the relative error in precision defined in
Eq.(17) is εσ = O(10−6) and the relative error in linearized strain energy
contribution defined in Eq.(18) is εE = O(10−8).

The reduction basis V obtained, the next step in the construction of
the model is the determination of the projected nonlinear forces from the
expression (21). The coefficients of the polynomial are identified with the
Implicit Condensation method by imposing load cases defined as in Eq.(11).
The loads and associated nonlinear static solutions defined previously for
the dual modes selection are reused here. Besides, due to symmetry con-
siderations on the geometry and the linear normal modes, many nonlinear
coefficients are null. Some coefficients are also null because the dual modes
have only axial contributions, leading to null coefficients in the expression of
the internal forces for the von Kármán beam (detailed in Appendix A). Since
the expression of the nonlinear forces fnl is explicitly known for our beam
problem, the internal nonlinear forces can be decomposed in their quadratic
fquadnl and their cubic f cubnl contributions (cf. Appendix A). The quadratic and
cubic coefficients introduced in Eq.(22) can therefore be split in two different
matrices. The nonlinear force coefficients are then identified from two inde-
pendent systems which are better conditioned when considered separately.
It has been verified on this test case, that the nonlinear coefficients obtained
using the nonlinear forces as well as those using the tangent stiffness matrices
(method detailed in section 3.3) match exactly with a symbolic computation
of the coefficients. A method based on imposed displacements [35, 8] also
resulted in the same coefficients.

In the rest of the paper, the Implicit Condensation method with dual
modes will be called ICDual, to differentiate the method from the classical
IC method with only bending modes and from the ICE method.
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5.3. Structural response under different load cases
In this section, the efficiency of the ROM will be evaluated on two different

load cases illustrated in Figure 4: a vertically distributed load along the beam
and a following load at the tip. The ICDual ROM will be compared to the
ICE solution and the solution obtained with the nonlinear full-order model
(FOM), firstly on a static load case, then under a dynamic load case at the
resonance of the first linear normal mode.

(a) (b)

Figure 4: Load cases considered: (a) Distributed vertical load; (b) Follower load at tip

5.3.1. Load case 1: Vertical distributed load along the beam
The first loading case consists of a vertical uniformly distributed load on

the beam. The total load applied to the beam is 80, 000 N, meaning a uni-
formly distributed load density of 20, 000 N/m. The geometric nonlinearity
alters the vertical amplitude of the displacement and produces a significant
axial shortening due to the coupling between the axial and vertical displace-
ments. On the contrary, the linear computation does not lead to any axial
shortening since bending and traction-compression are not coupled.

The classical Implicit Condensation method (IC) and its Expansion (ICE)
are compared to the ICDual ROM and the linear and nonlinear reference
solutions in Figure 5. Regarding the IC/ICE ROMs, the first 3 linear normal
modes are used in the reduction basis. The vertical displacement of the
beam is well captured by the IC method. However, the axial displacement
is not captured at all. The reason is that the reduction basis contains only
bending modes, thus no equation solves the axial displacement in the reduced
system. Nonetheless, the Expansion step (ICE) enables to rebuild the axial
displacement in post-processing and matches with the FOM solution. With
the ICE method, the nonlinear static solution was obtained with only 3 linear
normal modes. The solution is first computed with the IC method and then
post-processed with the Expansion step. The ICE method is very accurate
on this static case since the reconstruction step of the Expansion phase is
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based on a static correction which is adapted here to capture the missing
membrane effect.
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(a) Beam deformation
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(b) Axial displacement

Figure 5: Nonlinear static displacement of the clamped-free von Kármán beam, loaded
with a vertical uniformly distributed load along the beam of 20, 000 N/m. Comparison
between the linear FOM, nonlinear FOM, the IC/ICE and ICDual solutions.

The ICDual ROM contains the same linear bending modes as the ICE
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method, completed with the five dual modes determined previously. Such a
ROM perfectly captures the nonlinear FE solution as a result of the compu-
tation, while the same result was obtained with the ICE method only after
the Expansion step.
Table 2 represents the relative cumulative error according to the axial ui and
vertical vi degrees of freedom:

εcumul =

ndof∑

i=1

√
(ui − uFOM

i )
2
+ (vi − vFOM

i )
2

ndof∑

i=1

√
(uFOM

i )
2
+ (vFOM

i )
2

(34)

Table 2: Error regarding the nonlinear FOM solution of the beam displacement for several
amplitudes of static distributed load.

Relative cumulative error εcumul (%)
Total load integrated (N) 40, 000 60, 000 80, 000

Linear FOM 6.67 9.98 13.25

ICE ROM 2.276× 10−2 2.321× 10−2 2.377× 10−2

ICDual ROM 2.285× 10−2 2.338× 10−2 2.406× 10−2

The error is computed on the norm of the displacement. Since the ICE
and ICDual ROMs are very close, the error component by component gives
the same conclusions. This validates the approach followed here with a re-
duction basis enriched with dual modes in pre-processing. Nevertheless, the
ICDual method solves the coupled dynamics of the system in bending and
traction-compression, instead of restricting the dynamics to the bending and
rebuilding the coupling with the ICE afterwards. This will be of paramount
importance for the following dynamic application.

The ICDual method is now evaluated on a dynamic case and compared to
the result of the ICE method. The load distribution is the same as the static
case, but its amplitude is reduced to 1400 N/m to obtain displacements with
the same order of magnitude as the fluid-structure interaction case of section
6.3. A sinusoidal time dependence is applied to the loading with a frequency
f0 = 3.37 Hz (frequency of the first mode). A Rayleigh damping C = 2ξω0M
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is considered, with ξ = 5×10−2 and ω0 = 2πf0 the pulsation of the first linear
normal mode. Figure 6 displays the vertical and axial displacements at the
tip of the beam once the periodic regime is established. The time integration
is carried out using a classical nonlinear Newmark algorithm with Newton-
Raphson iterations.

The vertical displacement plotted in Figure 6(a) is very close in terms of
amplitude for both the ICE and the ICDual methods. There is however a
slight phase shift of 9.70◦ between the reference nonlinear solution and the
ICE and linear solutions.

Table 3: Relative error of the maximal displacement of the beam tip in periodic regime
between the reference nonlinear FOM model and the linear FOM, ICE ROM and ICDual
ROM models.

Relative error of the tip displacement (%)
Y component X component

Linear FOM 2.630 100

ICE ROM 2.630 5.176

ICDual ROM 2.023× 10−4 6.266× 10−4

Table 3 contains the relative axial (|xmax − xFOM
max |/|xFOM

max |) and vertical
(|ymax − yFOM

max |/|yFOM
max |) errors of the maximal displacements of the beam

tip in periodic regime between the reference nonlinear FOM model and the
different models. The ICDual ROM captures perfectly the axial dynamics,
both in terms of amplitude and phase (Figure 6(b)), whereas the ICE method
is inaccurate. This results highlights the drawback of the ICE method where
the dynamics of the system in traction-compression is not computed by the
projected equation of the dynamics but rebuilt with limited information.
Besides, the Expansion step of the ICE method is a static reconstruction
which depends only on the generalized coordinates of the bending modes,
not on the velocity or the acceleration. With the ICE method, the axial
displacement is therefore governed only by the projection of the beam on
the bending modes, whatever the dynamics of it, whether it is static, quasi-
static or strongly dynamic. Moreover, increasing the number of modes in the
reduction basis to 8 or 10 modes does not improve the axial ICE solution since
the dynamics in traction-compression is missing in the reduced equation of
the dynamics Eq.(2). On the contrary, with only 5 dual modes added to the
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Figure 6: Nonlinear dynamic displacement of the clamped-free Euler-Bernoulli/von Kár-
mán beam, loaded vertically with a uniformly distributed load of 1400 N/m and of fre-
quency f0 = 3.37Hz. The time step is 2× 10−3s and the structural damping C = 2ξω0M
with ξ = 5× 10−2. Comparison of the vertical (a) and axial (b) displacements at the tip
of the beam between the nonlinear FE solution, the ICE and the ICDual computations.
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reduction basis, the dynamics, both in traction-compression and in bending
is perfectly captured.

5.3.2. Load case 2: Follower force at the tip
The second load case considered is a concentrated follower load applied

at the tip of the beam. In this case, the solution is inherently nonlinear since
the external loads depends on the beam’s position which undergoes large
nonlinear displacements. The amplitude of the load equal to 30, 000 N. Figure
7 represents the classical IC and ICE solutions compared to the ICDual
solution. Contrary to the previous static load case, the ICE solution no
longer matches the nonlinear reference solution. Indeed, the projection of the
follower force on the reduction basis filters out the axial components since
the basis includes only bending modes with vertical contributions. Finally,
the ICE method behaves as if the external load case was a purely vertical
load since the Expansion step is not able to retrieve a correction adapted
to the follower load. Increasing the number of linear normal modes in the
reduction basis for the ICE method to 8 and even 10 did not improve the
solution since the additional modes are still bending modes. The solution
may be improved by introducing membrane modes, or, as suggested in the
literature, to treat follower forces as an extension of the ICE method [28].

Unlike the ICE solution, the ICDual ROM perfectly captures the nonlin-
ear FOM solution as shown in Figure 7 and its precision is quantified in Table
4. Indeed, with the dual modes in the reduction basis, the external forces
are well represented in the reduction basis and the solution of the reduced
system gives the correct nonlinear static solution.

Table 4: Error regarding the nonlinear FOM solution of the beam displacement for several
amplitudes of static follower load at tip.

Relative cumulative error εcumul (%)
Load (N) 10, 000 20, 000 30, 000

ICE ROM 1.25 4.91 10.60

ICDual ROM 1.039× 10−1 1.288× 10−1 2.814× 10−1
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Figure 7: Nonlinear static displacement of the clamped-free Bernoullli/von Kármán beam,
loaded at the tip with a follower load 30, 000 N. Comparison between the nonlinear, the
IC, ICE and ICDual solutions.

The dynamics of the structure is then studied with a sinusoidal follower
load, with the same frequency as the previous load case and an amplitude of
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2500 N. The Rayleigh damping and time step are also unchanged from the
previous test case. Figure 8 shows the evolution in the periodic regime of
the axial displacement at the tip of the beam and Table 5 summarizes the
relative errors of the models compared to the nonlinear FOM solution.
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Figure 8: Nonlinear dynamic displacement of the clamped-free Euler-Bernoulli/von Kár-
mán beam loaded at the tip with a dynamic follower load of amplitude 2500 N and of fre-
quency f0 = 3.37 Hz. The time step is 2× 10−3s and the structural damping C = 2ξω0M
with ξ = 5× 10−2. Comparison of the axial displacement at the tip of the beam between
the nonlinear FE solution, the ICE and the ICDual computations.

The ICDual solution matches the FOM solution like for the other test
case, while the ICE solution presents a phase shift of 12◦ and does not render
the axial displacement accurately. Other test cases were also tested such as
a purely vertical load at the tip and a follower distributed load. The results
under such load cases are not presented here for the sake of brevity but
the same conclusions were obtained. Both the ICE and ICDual ROMs were
accurate for the static vertical load at the tip but only the ICDual ROM was
accurate in the dynamic case. Regarding the distributed follower load, only
the ICDual ROM was accurate for both the static and dynamic cases.

In this section, the ICDual ROM was built for a Euler-Bernoulli/von
Kármán beam and compared on different load configurations to solutions
obtained with the IC and ICE methods. In all cases, both the static and
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Table 5: Relative error of the maximal displacement of the beam tip in periodic regime
between the reference nonlinear FOM model and the ICE and ICDual ROM models.

Relative error of the tip displacement (%)
Y component X component

ICE ROM 2.472 4.919

ICDual ROM 3.643× 10−3 8.175× 10−3

dynamic nonlinear responses were precisely captured. The limitations of
the classical ICE method have been highlighted, especially when dealing
with follower forces or dynamic loads. Since the dual modes added in the
reduction basis have only membrane contribution, it could be argued that
linear membrane modes could be used instead. However, to obtain similar
results with pure membrane modes it is necessary to include all the membrane
modes. This would lead to a tremendous number of coefficients (O(105)) to
identify for the additional 49 membrane modes, whereas similar results are
obtained with only 5 dual modes. It is worth mentioning that the ICDual
ROM has also been tested by the authors on the clamped-clamped beam
configuration subjected to static and dynamic loads. The results are not
presented in this paper for the sake of brevity but it was observed that the
ICDual ROM also matches perfectly with the full order solutions.
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6. Application to a fluid-structure interaction test case

In this part, the efficiency of the reduced-order model is investigated on
a fluid-structure interaction problem where the flexible beam is placed in
the wake of a circular cylinder. The external forces are aerodynamic forces,
distributed on the beam and resulting from the vortices shed in the wake of
a fixed cylinder. The interaction between the flexible beam and the vortices
will lead to the vibration of the beam.

6.1. Numerical setup
The boundary conditions of the test case are depicted in Figure 9. A

no-slip adiabatic wall condition is imposed to the fluid on the surface of the
fixed cylinder and of the flexible beam. Non-reflecting boundary conditions
with a constant axial velocity are imposed at the inlet and outlet borders.
This condition is based on the characteristic relations and prevents unsteady
waves to be reflected in a non-physical fashion. The upper and lower bound-
ary conditions are chosen far enough from the structure in order to avoid
confinement effects that would impact the vortex shedding behind the cylin-
der. Slip boundary conditions are imposed at those walls unlike in [50] where
no slip boundary conditions are applied. With upper and lower slip bound-
ary conditions, the case without the beam placed behind the cylinder which
is first considered in section 6.2, produces the classical Von Karman vor-
tex street. The Strouhal number associated to this vortex shedding will be
compared to validate the test case.

Wall

2R

Lbeam = 4R

h

Non-reflecting Non-reflecting

Slip

Slip

Linlet Loutlet

H

Figure 9: Computational domain and boundary condition of the fluid-structure interaction
test case.
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Figure 10: Mesh and dimensions of the fluid domain around the cylinder and the beam.

The structured fluid mesh is refined around the structure and in the near
wake (Figures 10, 11), and is then progressively coarsened from the structure
to the external domain boundaries.

Figure 11: Focus of the mesh in the close vicinity of the cylinder and the beam. The beam
thickness is discretized with 3 Finite Volumes cells.

The fluid is solved with the Finite Volume CFD software elsA [47] (ONERA-
Safran property). The fluid is a diatomic gas, following the perfect gas equa-
tions whose properties are detailed in Table 6.
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Physical quantity Value

T∞ 300 K
p∞ 101,325 Pa
γ 1.4

Rspecific 287.053 J.kg−1.K−1

cv =
5
2
Rspecific 717 J.kg−1.K−1

Table 6: Fluid properties for the flow around the cylinder.

The fluid density is deduced from the perfect gas equation:

ρ∞ =
p∞

Rspecific T∞
= 1.17 kg.m−3. (35)

The viscosity µ∞ is set to 0.4 Pa.s to have the targeted Reynolds number
with a reasonable inlet velocity (equivalent to Mach number 0.1) and a given
diameter D:

Re =
ρ∞U∞D

µ∞
= 200. (36)

The convective fluxes are approximated by the AUSM+ (P) MiLES scheme
[51], [52] to benefit from its low dissipation property and its ability to model
low-Mach boundary layer flows. The time step for unsteady simulations is
dt = 4.11× 10−3 s.

6.2. Von Kármán vortices in the wake of the cylinder without beam
In this part, we consider only the fixed cylinder, without the beam. As

illustrated by Figure 12, a typical von Kármán vortex street develops in the
wake of the cylinder.

The dimensionless Strouhal number defined below characterizes the flow pe-
riodicity based on the vortex shedding frequency Fs, the characteristic length
(diameter cylinder D) and the inflow velocity U∞ as :

St =
FsD

U∞
. (37)

For the flow around the cylinder, the Strouhal number can be evaluated by
the relation St = 0.212 − 2.7/Re proposed by Roshko [53] based on experi-
mental data in the range 200 ≤ Re ≤ 2, 000.
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Figure 12: Von Kármán vortices in the wake of the fixed cylinder. Visualization of the
vorticity magnitude.

Figures 13a and 13b represent respectively the drag and lift forces that
the cylinder undergoes. The periodic oscillations of the vortex emissions
can be observed in those figures. For each oscillation of the lift force Fy,
two counter-rotating vortices are shed. Thus the oscillation frequency of the
drag force Fx is twice the oscillation frequency of Fy. With the shedding
frequency Fs = 3.42 Hz evaluated from the lift force, the Strouhal number
obtained with the present simulation is St = 0.197 which is very close to the
value St = 0.212 − 2.7/Re = 0.198 provided by Roshko’s relation for Re =
200. This validates the numerical fluid model which is then extended in the
next section to a fluid-structure interaction case.
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(a) Drag force Fx (b) Lift force Fy

Figure 13: Aerodynamic drag (a) and lift (b) forces on the cylinder resulting from the
vortex shedding in the wake.

6.3. Fluid-structure interaction between the a flexible beam and the wake of
the cylinder

The flexible beam studied in section 5 is now placed in the wake of the
fixed cylinder. The movement of a flexible beam triggered by the vortices has
already been studied in [50, 54] on a similar type of test case. The displace-
ments on the beam’s wet surface are interpolated from the displacements
and rotations of the middle line. The axial discretization of the beam is the
same as in section 5.3 and coincides with the axial local fluid mesh at the
skin of the beam. As a result, no specific load transfer method is needed
to propagate the aerodynamic forces from the fluid mesh to the structural
one. The first linear mode eigenfrequency is equal to 3.37 Hz which is very
close to the frequency of the vortex shedding (3.42Hz). No structural damp-
ing was introduced in order to reach high amplitudes of deformation. The
partitioned coupling procedure between the fluid solver and the structural
nonlinear ROM is summarized in the flowchart Figure 1.

The time integration of the structural solver is performed with the HHT-
α method (αHHT = 0.01), including Newton-Raphson iterations during each
time step. The HHT-α method which belongs to the one-step Newmark’s
family of time integration methods is more robust to tackle this coupled
problem. Indeed, the approximation of the acceleration in the basic New-
mark method may induce perturbations that can destabilize the coupling.
This problem has been encountered here (as in [55]) and can be avoided with
the HHT-α method. The precision of such methods remains of second-order
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accuracy but a light numerical damping [56] is introduced, which stabilizes
the coupling.

Compared to the previous case without the beam (Fig. 12), the shed
vortices strongly interact with the flexible beam and the wake is significantly
changed. This interaction produces a complex unsteady aerodynamic forcing
that generates beam’s vibration with a significant level of amplitude. The
maximum level of amplitude is indeed about of the order of magnitude of the
cylinder radius. Figure 14 illustrates the coupling during one period in the
periodic regime.

t

t+ T/2

t+ T/4

t+ 3T/4

Figure 14: Vorticity magnitude field over one period in the periodic regime of the fluid-
structure interaction between the vortices in the wake of the cylinder and the flexible
beam.
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After a quite long transient, the axial and vertical forces on the beam’s
wet surface reach a periodic regime whose envelope is visible on Figure 15.
Figure 16 illustrates the evolution with time of the vertical and axial dis-
placements at the tip of the beam. The same behavior as for the forces is
observed, the displacements converge to a periodic state after a long tran-
sient. The maximal vertical displacement reached is about ten times the
beam’s thickness, i.e. almost the value of the cylinder radius. The maximal
axial shortening of the beam is about 1.2 times the beam’s thickness: the
nonlinearity is therefore significant in this case and has to be properly taken
into account in the resolution of the structural dynamics.
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(b) Vertical force Fy

Figure 15: Time evolution of the aerodynamic forces integrated on the surface of the beam.
The axial force Fx (a) and vertical force Fy (b).
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(a) Vertical displacement of the beam tip
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Figure 16: Evolution of the vertical (a) and axial (b) temporal displacements of the tip of
the beam.

To satisfy the fluid-structure equilibrium at a given time step before mov-
ing to the next one, fixed-point iterations are carried out between the fluid
solver and the structural solver. Figures 17a and 17b represent respectively
the evolution of the generalized coordinate of the first mode (resp. the aero-
dynamic forces projected on the first mode) during the periodic regime. Five
fixed-point iterations are performed before moving to the next time step.

The reference solution obtained with the FOM and presented in Figure
16 is now compared in Figure 18 to the linear solution, and to the solution
evaluated with the ICDual model for the structure. The ICDual model is the
one investigated in section 5, and includes the first three linear normal modes
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Figure 17: Convergence of the generalized coordinate (a) and the aerodynamic force (b)
associated to the first mode, during the fixed-point equilibrium loop.

and the five dual modes determined previously to enrich the projection basis.
As already reported in section 5 with the purely structural test cases, the
linear solution introduces a spurious phase shift and the axial shortening is

40



not captured at all. For the time interval shown on Figure 18a, the linear
response is in advance of two periods with respect to the nonlinear solution:
this is illustrated by the horizontal arrow joining the peak values of the
linear solution and the corresponding nonlinear solution. The reduced-order
model captures precisely (though not exactly) both the vertical and axial
displacements during the transient and the periodic regimes.

Finally, the coupled behavior of the beam is investigated over a range of
Reynolds number around Re = 200. Indeed, when both the vortex shedding
frequency Fs (corresponding to a given Re with Roshko’s relation) and the
first eigenmode frequency f0 of the beam are close, a lock-in phenomenon
arises and both frequencies match : Fs = f0 for a certain range of Reynolds
number. However, when the Reynold number is sufficiently changed, the
vortex shedding frequency deviates progressively from the first eigenmode
frequency of the beam and the frequencies are no longer locked.

Figures 19 and 20 represent respectively the frequency of vibration of
the beam and its vertical amplitude of vibration at the tip as a function of
the Reynolds number, evaluated from the coupled aeroelastic solutions com-
puted with linear or non-linear beam formulations. When the frequency of
the vortex shedding is far from the eigenmode frequency f0, the amplitudes of
vibration are so small that their frequency is imposed by the fluid flow. How-
ever, when the frequency of the vortex shedding is close to f0, the vibration
of the structure and the vortex shedding both respond at a unique frequency
for a range of Reynolds numbers. Besides, the range of Reynolds numbers
of the plateau slightly differs between the linear and nonlinear cases. The
aeroelastic phenomena of lock-in is accurately captured by the ROM solution.
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Figure 18: Vertical (a) and axial (b) displacements of the tip of the beam during the
aeroelastic coupling in the periodic regime. Comparison between the linear and nonlinear
FE solutions and the one obtained with the ICDual ROM.
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Figure 19: Evolution of the frequency of response of the beam with the Reynolds number
of the fluid.

Below and after the range of frequencies characterized by the lock-in phe-
nomenon, the beam responds both at the frequency imposed by the fluid flow
and to a lesser extent at the eigenmode frequency f0. It leads to a beating
interference pattern visible in Figures 21a and representing the evolution of
the beam tip vertical displacement at Reynolds numbers 180 and 220 respec-
tively. The Fast Fourier Transforms (FFT) of the previous displacements are
also illustrated in Figures 21a and 21c, where both frequencies are distinctly
noticeable. On the contrary, in the lock-in region, the unsteady response
locks on a single frequency, as shown in Figures 21b.
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Figure 20: Evolution of the amplitude of vertical displacement at the tip of the beam with
the Reynolds number of the fluid.

This last test case demonstrates the potential of coupling a structural
ROM based on an original formulation with dual modes for aeroelastic prob-
lems. The ICDual ROM matches very accurately the FOM solutions and is
easily coupled in the framework of a partitioned approach since the reduced
order model is independent from any FE solver. The influence of the struc-
tural nonlinearity has finally been highlighted in terms of lock-in frequency
and the ROM is able to capture this effect very precisely.
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(a) Beam tip vertical displacement in the fluid flow at Reynolds numbers 180: time response (left)
and FFT (right)
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(b) Beam tip vertical displacement in the fluid flow at Reynolds numbers 200: time response (left)
and FFT (right)
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(c) Beam tip vertical displacement in the fluid flow at Reynolds numbers 220: time response (left)
and FFT (right)

Figure 21: Temporal evolution and Fast Fourier Transforms of the beam tip vertical
displacements in the fluid flow at Reynolds numbers 180, 200 and 220.
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7. Conclusion

To compute fluid-structure interaction problems with a partitioned ap-
proach, two solvers are used: one for the fluid and one for the solid. The
purpose of this paper is to propose a reduced order model only for the struc-
ture, while accounting for geometrical nonlinearities. When structures are
subject to geometric nonlinearities, the nonlinear interaction between vibra-
tion modes of the structure is challenging for projection-based reduced-order
models. The choice of the modes in the reduction basis is not trivial compared
to linear cases. In this study, dual modes were introduced in the reduction
basis, in addition to linear normal modes, in order to capture the geometric
nonlinearity of the structure. Besides, this particular ROM has been coupled
in the framework of a partitioned approach to a fluid solver. Since the re-
sulting structural ROM is independent from the FE solver, the coupling with
the flow solver is made easier. To satisfy this non-intrusiveness condition, an
explicit expression of the projected nonlinear forces has to be determined.
The projected nonlinear forces were determined explicitly as a polynomial
function of the generalized coordinates and the polynomial coefficients were
identified by imposing load cases to the structure following the Implicit Con-
densation method. Applied to a Euler-Bernoulli/von Kármán beam, both
under local and distributed loads, as well as during a fluid-structure coupling,
such a ROM captured very precisely the static and the dynamic responses of
the structure. Future work will deal with application of such coupling pro-
cedures for more complex three-dimensional flexible structures coupled with
high-speed flows. In such 3D cases, the computational time of the structural
part predominates when simplified fluid theories (Theodorsen, Lifting-line or
Doublet Lattice Method) are used. Even though a high-fidelity fluid formula-
tion is considered in this paper, reduced order models for CFD computations
also exist in the literature such as POD, data-driven or hybrid methods. The
long term objective is to couple two distinct reduced order models: the one
presented in this paper for the structure and another one for the fluid.
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Appendix A Finite element discretization of the beam

Figure 22: Degrees of freedom in one element of the beam

This appendix provides details on the FE formulation of the Euler-Bernoulli
beam with von Kármán hypothesis. Considering one element, the associated
nodal values written u1, v1, θ1, u2, v2, θ2 are represented in Figure 22.

Let x ∈ [0, Le] with Le the length of the element e; the horizontal and
vertical displacement in the element write:

ue(x) = N1(x)u1 +N2(x)u2 (A.1)
ve(x) = H1(x)v1 +H2(x)θ1 +H3(x)v2 +H4(x)θ2, (A.2)

or under matrix form for the vector of unknowns u =
[
u1 v1 θ1 u2 v2 θ2

]T
:

[
ue(x)

ve(x)

]
= Nu with N =

(
Nu

Nv

)
=

(
N1 0 0 N2 0 0

0 H1 H2 0 H3 H4

)
.

(A.3)
The shape functions N1 = 1 − x/Le and N2 = x/Le are linear while the
shape functions H1 = (1 + 2x/Le)(1 − x/Le)

2, H2 = x(1 − x/Le)
2, H3 =

x2(3−2x/Le)/Le and H4 = x2(x/Le−1)/Le are 3rd order Hermite functions.
Besides, the rotation of the section is given by:

θe(x) =
dve(x)

dx
=

dNv(x)

dx
u ≡ N

′

vu, (A.4)
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with
N

′

v =

[
0

dH1(x)

dx

dH2(x)

dx
0

dH3(x)

dx

dH4(x)

dx

]
. (A.5)

The mass matrix of one element is computed under the assumption that the
local rotational inertia of the section is neglected:

Me =
ρA

2

∫ Le

0

NTN dx (A.6)

= ρA
Le

420




140 0 0 70 0 0

0 156 22Le 0 54 −13Le

0 22Le 4L2
e 0 13Le −3L2

e

70 0 0 140 0 0

0 54 13Le 0 156 −22Le

0 −13Le −3L2
e 0 −22Le 4L2

e




. (A.7)

The linear elastic stiffness matrix of the beam is computed as follows:

Ke =

∫ Le

0

EA

(
N

′

u

T
N

′

u

)
+ EI

(
N

′′

v

T
N

′′

v

)
dx (A.8)

=
EA

Le




1 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0




+
EI

L3
e




0 0 0 0 0 0

0 12 6Le 0 −12 6Le

0 6Le 4L2
e 0 −6Le 2L2

e

0 0 0 0 0 0

0 −12 −6Le 0 12 −6Le

0 6Le 2L2
e 0 −6Le 4L2

e




.

(A.9)

The nonlinear internal forces are computed with a single Gauss point inte-
gration to prevent membrane locking, see [49] for the detailed expressions.
Their symbolic computation leads to the following expressions:

fquadnl =
EA

32L2
e

[
−f a

nl − 6f b
nl − Lef

b
nl f a

nl 6f b
nl − Lef

b
nl

]T

(A.10)

f cubnl =
EA

512L3
e

[
0 6f c

nl Lef
c
nl 0 − 6f c

nl Lef
c
nl

]T
(A.11)

48



with




f a
nl = L2

e(θ1 + θ2)
2 + 12Le(θ1 + θ2)(v1 − v2) + 36(v1 − v2)

2

f b
nl = 2(u1 − u2)[Le(θ1 + θ2) + 6(v1 − v2)]

f c
nl = L2

e(θ1 + θ2)
2
[
Le(θ1 + θ2) + 18(v1 − v2)

]

+ 108(v1 − v2)
2
[
Le(θ1 + θ2) + 2(v1 − v2)

]
(A.12)

Appendix B Jacobian of the reduced nonlinear forces

The expression of the projected nonlinear forces in the reduced space is
a third-order polynomial of the generalized coordinates. Let k ∈ [1, n] and
n ≥ 3, the projected non-linear forces in the IC method are:

f̃k
nl(q) =

n∑

i=1

n∑

j=i

βk
ijqiqj +

n∑

i=1

n∑

j=i

n∑

m=j

γk
ijmqiqjqm (B.1)

For the resolution of the nonlinear problems, an explicit expression of the
jacobian matrix of those internal nonlinear forces is required for the iterative
Newton procedure. The coefficient at the line k and the column ℓ of the
jacobian matrix of the non-linear forces is equal to:

(
∂f̃k

nl(q)

∂qℓ

)
=

∂

∂qℓ

(
n∑

i=1

n∑

j=i

βk
ijqiqj

)
+

∂

∂qℓ

(
n∑

i=1

n∑

j=i

n∑

m=j

γk
ijmqiqjqm

)

=
n∑

i=1

Bk,ℓ
i qi +

n∑

i=1

n∑

j=i

Gk,ℓ
ij qiqj

(B.2)

with

Bk,ℓ
i =





βk
iℓ if i < ℓ

2βk
ℓℓ if i = ℓ

βk
ℓi if i > ℓ

(B.3)

and
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Gk,ℓ
ij =





if j < ℓ γk
ijℓ

if j = ℓ





2γk
iℓℓ if i < ℓ

3γk
ℓℓℓ if i = ℓ

if j > ℓ





γk
iℓj if i < ℓ

2γk
ℓℓj if i = ℓ

γk
ℓij if i > ℓ

(B.4)
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