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The fundamental basis of T cell memory remains elusive. It is established that

antigen stimulation drives clonal proliferation and differentiation, but the

relationship between cellular phenotype, replicative history, and longevity,

which is likely essential for durable memory, has proven difficult to elucidate.

To address these issues, we used conventional markers of differentiation to

identify and isolate various subsets of CD8+ memory T cells and measured

telomere lengths in these phenotypically defined populations using the most

sensitive technique developed to date, namely single telomere length analysis

(STELA). Naive cells were excluded on the basis of dual expression of CCR7 and

CD45RA. Memory subsets were sorted as CD27+CD45RA+, CD27intCD45RA+,

CD27−CD45RA+, CD27+CD45RAint, CD27−CD45RAint, CD27+CD45RA−, and

CD27−CD45RA− at >98% purity. The shortest median telomere lengths were

detected among subsets that lacked expression of CD45RA, and the longest

median telomere lengths were detected among subsets that expressed CD45RA.

Longer median telomere lengths were also a feature of subsets that expressed

CD27 in compartments defined by the absence or presence of CD45RA.

Collectively, these data suggested a disconnect between replicative history

and CD8+ memory T cell differentiation, which is classically thought to be a

linear process that culminates with revertant expression of CD45RA.

KEYWORDS

replicative history, T cell differentiation, T cell memory, T cell senescence, telomere
length (TL)
Introduction

The ability to remember previous antigen encounters is a hallmark of adaptive immunity

(1). Our basic understanding of immunological memory nonetheless remains incomplete,

especially for helper T cells, which classically express CD4, and effector T cells, which

classically express CD8. In each of these lineages, naive cells undergo clonal proliferation and

differentiation in response to antigen stimulation, generating a spectrum of daughter cells that

populate a functionally and phenotypically heterogeneous memory landscape (2–4).
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However, the relationship between cellular phenotype, replicative

history, and longevity, which is likely essential for durable memory,

has proven difficult to elucidate.

Adoptive transfer studies have shown that stem cell-like memory

T (TSCM) and central memory T (TCM) cells persist in vivo and

establish durable protection more readily than effector memory T

(TEM) cells (5–7). These observations have been linked with the

ability of TSCM and TCM cells to self-renew and proliferate to a greater

extent than TEM cells in response to antigen stimulation (6, 8, 9). In

turn, such proliferative reserve is thought to reflect fewer antecedent

cell divisions, consistent with a less differentiated phenotype

characterized by the expression of various costimulatory molecules,

such as CD27 and CD28, and chemokine/cytokine receptors, such as

CCR7 and CD127 (10, 11).

Replicative history as a metric of cellular age can be assessed by

measuring telomere lengths. Telomeres are nucleoprotein complexes

that cap the ends of linear chromosomes and undergo division-linked

erosion due to incomplete synthesis of the lagging strand during

semiconservative DNA replication (12), coupled with the functional

requirement for a terminal 3′ single-stranded G-rich overhang

generated by nucleolytic activity. Consequently, telomeres in

human cells shorten progressively with ongoing cell division in the

absence of telomerase, which compensates to some extent for

deficiencies in the DNA replication machinery. This process

ultimately limits the replicative lifespan of any cell when telomeres

shorten to a critical length, triggering a state of retinoblastoma tumor

suppressor protein (RB)-dependent and tumor protein p53 (TP53)-

dependent cell cycle arrest known as replicative senescence (13).

Telomere lengths have been assessed previously among

immune cell subsets using hybridization-based techniques, such

as terminal restriction fragment (TRF) analysis and fluorescence in

situ hybridization via flow cytometry (flowFISH), and polymerase

chain reaction (PCR)-based techniques, such as the telomere

shortest length assay (TeSLA) (14–24). However, these

approaches have various limitations that render them potentially

unsuitable for the detection of subtle differences in telomere length

distributions across related cell populations, which we considered a

likely scenario in the case of lineage-defined memory T cell

immunity. Accordingly, we used a different approach in this

study to characterize the telomere length profiles of CD8+

memory T cell subsets identified and isolated via polychromatic

flow cytometry, namely single telomere length analysis (STELA).

Our data revealed highly significant differences in terms of median

telomere length that segregated with expression patterns of CD27

and CD45RA.
Methods

Donors

Healthy adult volunteers aged 28–48 years (n = 5) were recruited

for this study. Peripheral blood mononuclear cells (PBMCs) were

isolated from 50 mL of venous blood via standard density gradient

centrifugation using Histopaque 1077 (Sigma-Aldrich). Approval was

granted by the Cardiff University School of Medicine Research Ethics
Frontiers in Immunology 02
Committee (12/09). Informed consent was obtained from all donors

in accordance with the principles of the Declaration of Helsinki.
Flow cytometry

T cell subsets of interest were flow-sorted from freshly isolated

PBMCs at >98% purity using a modified FACSAria II (BD

Biosciences). Cells were stained with the following reagents:

(i) anti-CD3–APC-H7 (clone SK7), anti-CD14–V500 (clone

M5E2), anti-CD19–V500 (clone HIB19), anti-CD28–APC (clone

CD28.2), anti-CD45RA–PE (clone HI100), anti-CD57–FITC

(clone NK-1), and anti-CCR7–PE-Cy7 (clone 3D12) from BD

Biosciences; (ii) anti-CD4–PE-Cy5.5 (clone S3.5), anti-CD27–

QD605 (clone CLB-27/1), and LIVE/DEAD Fixable Aqua from

Thermo Fisher Scientific; (iii) anti-CD8–BV711 (clone RPA-T8),

anti-CD95–PE-Cy5 (clone DX2), and anti-CD127–BV421 (clone

A019D5) from BioLegend; and (iv) anti-CD45RO–ECD (clone

UCHL1) from Beckman Coulter. Viable memory T cells were

identified in the CD8+ lineage after gating out naive events on the

basis of dual expression of CCR7 and CD45RA. Data were analyzed

using FACSDiva software version 8.0 (BD Biosciences) and FlowJo

software version 9.9.6 (FlowJo LLC).
Single telomere length analysis

DNA was extracted from 3,000 flow-sorted T cells per subset

using a QIAmp DNAMicro Kit (Qiagen). STELA was carried out at

the XpYp and 17p telomeres as described previously (25). For each

sample, 1 µM of the Telorette-2 linker was added to purified

genomic DNA in a final volume of 40 µL. Multiple PCRs were

performed for each test DNA in volumes of 10 µL incorporating 1

µL of the DNA/Telorette-2 mix and 0.5 µM of the telomere-

adjacent and Teltail primers in 75 mM Tris-HCl pH 8.8, 20 mM

(NH4)2SO4, 0.01% Tween-20, and 1.5 mM MgCl2, with 0.5 U of a

10:1 mixture of Taq (ABGene) and Pwo polymerase (Roche

Molecular Biochemicals). The reactions were processed in a

Tetrad2 Thermal Cycler (Bio-Rad). DNA fragments were resolved

using 0.5% Tris-acetate-EDTA agarose gel electrophoresis and

identified via Southern hybridization using a random-primed

a-33P-labeled (PerkinElmer) TTAGGG repeat probe, together

with probes specific for the 1 kb (Stratagene) and 2.5 kb

molecular weight markers (Bio-Rad). Hybridized fragments were

detected using a Typhoon FLA 9500 Phosphorimager (GE

Healthcare). The molecular weights of the DNA fragments were

calculated using a Phoretix 1D Quantifier (Nonlinear Dynamics).
Statistics

Telomere lengths were compared across memory T cell

populations using the Kruskal-Wallis test with Dunn’s post-hoc test

for multiple comparisons in Prism software version 7 (GraphPad).

Pooled data were analyzed similarly in R. Significance was assigned at p

< 0.05.
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Results

To explore the relationship between differentiation and replicative

history in the peripheral CD8+ T cell lineage, we processed freshly

drawn venous blood samples from healthy volunteers (n = 5) and

isolated phenotypically defined memory subsets (n = 7) characterized

using polychromatic flow cytometry (Figure 1A). Naive cells were

excluded on the basis of dual expression of CCR7 and CD45RA.

Memory subsets were sorted as CD27+CD45RA+, CD27intCD45RA+,

CD27−CD45RA+, CD27+CD45RAint , CD27−CD45RAint ,

CD27+CD45RA−, and CD27−CD45RA− at >98% purity. Telomere

length distributions were then characterized for each subset using

STELA (Figure 1B). Importantly, similar length distributions were

observed for the XpYp and 17p telomeres across all CD8+ memory T

cell subsets, highlighting the reproducibility of data obtained using this

approach (Supplementary Figures 1A, B).

In line with the known heterogeneity of memory T cells in the

vascular circulation, we observed considerable overlap across the

telomere length distributions acquired from subsets with distinct

expression levels of CD27 and CD45RA. Intersubset differences

were nonetheless apparent in terms of spread and median telomere

length (Figures 1C, D). Counterintuitively, the shortest median
Frontiers in Immunology 03
telomere lengths were displayed by memory subsets lacking

expression of CD45RA, especially in the absence of CD27

(Figures 1B–D).

Of note, donor 2 was known to be seronegative for cytomegalovirus

(CMV), and donors 4 and 5 were known to be seropositive for CMV. In

donors 4 and 5, high frequencies of CD8+ memory T cells expressed

CD45RA (Figure 1E), as expected in the presence of CMV. Telomere

lengths in this compartment also paralleled the expression of CD27

more closely in donors 4 and 5 compared with donors 1, 2, and 3

(Figures 1C, 2A–D).

Closer inspection of the data further revealed interindividual

variations in telomere length (Figures 1C, 2A–D and Table 1). For

example, the shortest median telomere length in donor 3 was 5.16

kb for the CD27−CD45RA− subset (population P) (Figure 2B), and

the shortest median telomere length in donor 4 was 3.4 kb for the

CD27−CD45RA− subset (population P) (Figure 2C). In contrast, the

longest median telomere length in donor 3 was 7.13 kb for

the CD27intCD45RA+ subset (population M) (Figure 2B), whereas

the longest median telomere length in donor 4 was 5.67 kb for the

CD27+CD45RA+ subset (population L) (Figure 2C).

Analysis of the pooled data confirmed that the shortest

telomeres were present among CD8+ memory T cells lacking
# = includes TSCM cells; J = TCM-like cells; P = TEM cells; K & M & O = intermediate memory; N = TEMRA cells
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FIGURE 1

Telomere length distributions among CD8+ memory T cell subsets revealed using STELA. (A) Flow cytometric gating strategy. Populations labeled J–
P were flow-sorted at >98% purity for telomere length assessment via STELA. Data from donor 1. (B) Southern blot showing XpYp telomere length
data for the subsets in (A). #DNA ladder; §

fibroblasts (control). (C) Scatter plot depicting 17p telomere length distributions for the subsets in (A).
Horizontal red lines indicate median values. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (Kruskal-Wallis test with Dunn’s post-hoc test for
multiple comparisons). (D) Boxplot depicting pooled telomere length distributions (n = 5 donors). Significance was assessed using the Kruskal-Wallis
test. Individual comparisons and corrected values are shown in Table 1. (E) Flow cytometry plots showing the distribution of CD8+ memory T cells
according to expression levels of CD27 and CD45RA in the presence of CMV. Data from donor 4.
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expression of CD27 and CD45RA (Table 2). It was also notable that

the CD27+CD45RA+ and CD27intCD45RA+ subsets (populations L

and M, respectively) in donors 2, 3, 4, and 5 harbored telomeres

with median lengths approximating or even exceeding those

observed among the corresponding naive subsets, defined on the

basis of dual expression of CCR7 and CD45RA (Table 1). This

observation suggested a close relationship in terms of biological age

and replicative history between naive cells and memory subsets

expressing CD27 and CD45RA.

It nonetheless remained conceivable that some naive cells had

stained poorly for CCR7 and were consequently included in the sort

gates for populations L and M, defined by the expression of CD27

and CD45RA. In line with this possibility, a detailed phenotypic

analysis revealed that small fractions of cells in these populations

lacked expression of the memory marker CD95 (Supplementary
Frontiers in Immunology 04
Figures 2A, B). To determine the impact of these potential

contaminants on the telomere length profiles of populations L

and M, we sorted additional memory subsets from the parent

gates as CD57−CD95+, CD57+CD95+, and, where present,

CD57−CD95− at >98% purity. Telomere length distributions were

then characterized for each subset as above using STELA

(Supplementary Figures 3A–D). No significant differences in

median telomere length were detected between the parental

populations (L and M) and subsets defined according to the

expression of CD95 (Supplementary Table 1).

Collectively, these data revealed a clear association between

differentiation phenotype and telomere length across the spectrum

of classically defined CD8+memory T cells in the vascular circulation,

which unlike current linear models, suggested that replicative history

was not directly linked with revertant expression of CD45RA.
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FIGURE 2

Individual telomere length distribution patterns among CD8+ memory T cell subsets revealed using STELA. (A–D) Scatter plots depicting 17p telomere
length distributions from donors 2 (A), 3 (B), 4 (C), and 5 (D). Horizontal red lines indicate median values. *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001 (Kruskal-Wallis test with Dunn’s post-hoc test for multiple comparisons). Donors 4 and 5 were known to be seropositive for CMV.
TABLE 1 Median telomere lengths for naive and memory cells in the CD8+ T cell lineage.

Donor J K L M N O P CCR7+CD45RA+

1 4.29 5.71 6.07 5.89 5.37 5.51 4.22 6.57

2 5.12 5.56 6.43 7.19 6.58 4.52 4.57 6.81

3 5.62 5.65 6.99 7.13 5.99 5.19 5.16 7.00

4 3.88 4.81 5.67 4.43 3.70 3.59 3.40 5.35

5 5.40 5.05 7.92 7.39 5.66 5.65 5.09 7.59
Bold font denotes values above those observed for naive cells (CCR7+CD45RA+).
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Discussion

In this study, we used polychromatic flow cytometry and

STELA to profile telomere length distributions among CD8+

memory T cell subsets defined according to standard phenotypic

markers of differentiation, namely CD27 and CD45RA. We

detected the shortest median telomere lengths among subsets that

lacked expression of CD45RA and the longest median telomere

lengths among subsets that expressed CD45RA. Longer median

telomere lengths were also a feature of subsets that expressed CD27

in compartments defined by the absence or presence of CD45RA.

These observations held after further stratification based on the

expression of CD95. Collectively, our data validated a new approach

to the study of immune senescence, which in turn could help

illuminate the cellular processes that underlie the induction and

maintenance of T cell memory.

STELA has several advantages over other techniques used to

measure telomere length (14–24). First, conventional approaches

measure telomere lengths across all chromosomes simultaneously,

which is problematic in light of the fact that each telomere varies

independently (26). Second, the hybridization-based techniques
Frontiers in Immunology 05
TRF and flowFISH have a lower length limit of detection, which

precludes the capture of very short telomeres that characterize the

extinction point of replicative capacity. TeSLA circumvents this

problem by focusing on short telomeres but lacks sensitivity in

terms of representing the entire length distribution (16). Third, a

heating step is required for hybridization in the context of

flowFISH, which alters the expression of phenotypic markers on

the cell surface (18). In contrast, real-time PCR assays enable large-

scale analyses without disruption to the cell surface phenotype but

suffer from high measurement errors and a lack of linearity with

other methods in the short telomere length range (27, 28). STELA

overcomes these limitations by revealing the entire distribution of

telomere lengths as well as mean/median information, thereby

reducing data heterogeneity. As a single-molecule technique,

STELA is also compatible with analyses of rare cell populations,

including those involved in adaptive immunity (29–31).

Classical linear models propose that terminally differentiated or

“end-stage” TEM cells express CD45RA (32, 33). In line with this

notion, previous studies using less sensitive techniques have

detected shorter telomeres among these so-called TEMRA cells

versus TEM cells that do not express CD45RA (19, 20), albeit not

universally (19, 34, 35). However, other studies have shed a more

positive light on CD8+ memory T cells that express CD45RA. For

example, vaccinia virus vaccination was found to elicit long-lived

memory cells that expressed intermediate levels of CD27 and lacked

CD45RO (36), and yellow fever vaccination was found to elicit

long-lived memory cells that expressed CCR7 and CD45RA (37).

Similarly, dengue virus was found to elicit long-lived populations of

CD57+CD127− and CD57−CD127+ memory cells, both of which

expressed CD45RA (38). Equivalent phenotypes have also been

reported after infection with SARS-CoV-2 (39).

Another key finding of our study was that longer telomeres

associated with the expression of CD27 among CD8+ memory T cell

subsets that either expressed or did not express CD45RA. This

observation is consistent with the atypical stem-like phenotypes

reported after vaccination with vaccinia virus or yellow fever virus

and natural infection with dengue virus or SARS-CoV-2 (36–39).

Stem-like properties have also been attributed to tissue-

recirculating TEM cells that express CD27 (40). In line with this

notion, our data suggested that replicative capacity could be

assessed indirectly using the surrogate marker CD27, at least

among subsets initially stratified according to the expression

of CD45RA.

It should be noted that our study was limited in terms of donor

numbers and further limited potentially by the fact that we did not

assess telomerase activity. However, the collective data clearly

showed that progressive telomere shortening was not inevitably

linked with revertant expression of CD45RA, thereby challenging

simple linear models of CD8+ memory T cell differentiation.

Although further work is required to reconcile these

counterintuitive observations with current paradigms in the quest

for a more comprehensive understanding of immunological

memory, it would seem prudent on the basis of the findings

reported here to reconsider the notion that replicative senescence

can be aligned with revertant expression of CD45RA.
TABLE 2 Pooled telomere length data analyzed using Dunn’s post-hoc
test for multiple comparisons.

T cell subsets Mean rank difference Adjusted p value

J vs. K −127.8 0.0922

J vs. L −392 <0.0001

J vs. M −342.5 <0.0001

J vs. N −67.73 >0.9999

J vs. O −4.448 >0.9999

J vs. P 169 0.0057

K vs. L −264.3 <0.0001

K vs. M −214.7 0.0001

K vs. N 60.05 >0.9999

K vs. O 123.3 0.2009

K vs. P 296.8 <0.0001

L vs. M 49.55 >0.9999

L vs. N 324.3 <0.0001

L vs. O 387.6 <0.0001

L vs. P 561.1 <0.0001

M vs. N 274.8 <0.0001

M vs. O 338 <0.0001

M vs. P 511.5 <0.0001

N vs. O 63.28 >0.9999

N vs. P 236.8 <0.0001

O vs. P 173.5 0.0085
Alpha = 0.05.
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