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Abstract
In this paper, we propose a finite volume scheme for the linear transport equation in two space

dimensions. This scheme is based on an upwind scheme where the velocity is modified so as to recover
the correct diffusion limit. The resulting scheme is asymptotic preserving, positive under a classical
CF L condition and conservative. We propose a reconstruction procedure so as to make it second order
consistent on unstructured polygonal meshes.
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1 Introduction
In this work, we propose a finite volume scheme that discretises the radiative transfer equation (see [MM84]):

1
c

∂tI + div (Iω) + σtI = σs 1
4π

∫
S2

Idω′ + q. (1)

It is a linear Boltzmann type equation. The unknown I = I(t, x, ω) is the radiative intensity and gives
the distribution of photons. It depends on the time variable t ≥ 0, on the space variable x ∈ Ω ⊂ R3 (Ω
being the computational domain) and direction ω ∈ S, where S is the unit sphere in R3. The source term
q = q(t, x, ω) ≥ 0 is nonnegative. The scattering cross section is σs ≥ 0 and the total cross section is σt ≥ σs.
The difference σt−σs = σa is the absorption cross section. We assume here that the speed of light c is equal
to 1.

Equation (1) is of great importance in the numerical simulation of inertial confinement fusion (ICF). In
these experiments, a small ball of hydrogen (the target) is submitted to intense radiation by laser beams.
These laser beams are either pointed directly to the target (direct drive approach), or pointed to gold walls
of a hohlraum in which the target is located (indirect drive approach, see Figure 1). These gold walls heat
up, emitting X-rays toward the target. The outer layers of the target are heated up, hence ablated. By mo-
mentum conservation, the inner part of the target implodes (this is usually called the rocket effect). Hence,
the pressure and temperature of the hydrogen inside the target increase, hopefully reaching the thermody-
namical conditions for nuclear fusion. This process is summarized in Figure 2. Other possible applications
of (1) are radiation hydrodynamics in stellar atmospheres. Of course, the model (1) is over-simplified for
these applications as it should, among other things, include a dependence on the frequency. But (1) should
be seen as an elementary building block for more realistic models.

Figure 1: Schematic view of the Hohlraum and the target

Figure 2: The concept of ICF (inertial confinement fusion) taken from http://www.lanl.gov/projects/dense-
plasma-theory/background/dense-laboratory-plasmas.php
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It has been shown in [CZ67] that if q > 0 and σt > 0 and σa > 0 then the solution I is positive. Moreover,
in [RJLM+88] the author proved that if q = 0 and σt = σs then the solution satisfies a maximum principle
property.
Eventually, Equation (1) admits a diffusion limit. Let ε > 0 be given. If we replace σs ← σs/ε, σa ← σaε,
q ← qε and if we perform the following scaling t← εt , then (1) reads as:

∂tI + 1
ε

div (Iω) + σt

ε2 I = σs

ε2
1

4π

∫
S2

Idω′ + q, (2)

with σt = σs + ε2σa. Moreover, when ε vanishes, the solution I of (2) converges toward the solution of a
diffusion equation I −−−→

ε→0
E0 where:

∂tE
0 − div

(
1

3σs
∇E0

)
+ σaE0 = 1

4π

∫
S2

qdω′. (3)

See [BGPS88] [Cas04]. Therefore it is important for a numerical scheme that discretises (2) to be consistent
with the limit model (3). In this case, we say that the scheme is asymptotic-preserving. More precisely,
the parameter ε ∈ [0, 1] characterizes the proportion between the streaming and diffusion phenomena. The
configuration ε = 1 corresponds to the free streaming regime and ε = 0 to the pure diffusion regime. We
use the notations of Figure 3 and we denote by h the discretisation parameter. The general model (2) is
denoted by P ε and it is discretised with the scheme P ε

h . The model P ε tends towards the diffusion limit
model P 0 (Equation (3)) when ε → 0. We want the limit scheme P 0

h (obtained by setting ε → 0 in P ε
h) to

be consistent with P 0. If this property is fulfilled, then we say that the scheme P ε
h is asymptotic preserving

or AP. We emphasize that ε is present in the equations through ε−1, hence the corresponding terms are stiff
in the diffusion limit (ε→ 0). The diffusion limit is thus a singular limit. This explains both why the limit
equation is of different nature and why designing AP schemes is not trivial.

P ε

P ε
h P 0

h

P 0

h→ 0

ε→ 0

h→ 0

ε→ 0

Figure 3: Definition of an AP scheme.

The very first works in this direction were [LMM87] and [JL96]. These papers were dedicated to 1D cal-
culations. One dimensional finite difference methods that solved (2) were proposed in [Kla98, JPT00] for
instance. The work [KFJ16] proposes an extension of these methods to the two dimensional case. The space
and angular variable are both discretised on uniform grids and a time splitting discretisation method (IMEX
method, see for instance [BFR16, BR09, EG23]) is performed.
The discontinuous finite elements method was also used to solve (2) on two and three dimensional unstruc-
tured meshes. See [Ada01] [BCWA] [CS16] for instance. These methods are consistent but not positive. A
recent work [GPR20] proposes a positive, AP and first order scheme to solve the stationary version of (2).
Micro-macro decompositions were also used to solve (2) on uniform grids. See for instance [LFH19, LM08,
LM10, JS10, EHW21]. Recently, [ACE+22] proposed an AP finite volume scheme that is based on a micro-
macro decomposition. The scheme is first order consistent on 2D unstructured meshes but it is not positive.

In this paper we propose a method that:
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• is asymptotic preserving: the scheme we obtain when ε→ 0 is consistent with (3),

• is second order consistent on unstructured 2D meshes for any ε,

• preserves the positivity of the numerical solution under a classical CFL condition, that is to say
∆t = O(h) in the streaming regime and ∆t = O(h2) in the diffusion regime,

• has a compact stencil,

• is conservative,

• has the same computational cost as an explicit scheme: there is no linear system to invert nor fixed-
point iteration to compute.

We perform an angular discretisation of (2). We choose K directions (ωk)1≤k≤K and we define Ik =
I(t, x, ωk) for 1 ≤ k ≤ K. The integral over the unit sphere in (2) is discretised as:

1
4π

∫
S2

Idω′ ≈
K∑

k′=1
pk′Ik′ .

The quadrature weights (pk)1≤k≤K and the directions (ωk)1≤k≤K are required to satisfy:

pk ≥ 0,

K∑
k′=1

pk′ = 1,

K∑
k′=1

pk′ωk′ = 0. (4)

The equation we solve therefore reads as:

∂tIk + 1
ε

div (Ikωk) + σt

ε2 Ik = σs

ε2

K∑
k′=1

pk′Ik′ + qk. (5)

Moreover, owing to (4), when ε vanishes, Equation (5) admits a diffusion limit: Ik −−−→
ε→0

E0 where E0 is
solution to (3).
In this work, we focus on the two dimensional case. We briefly explain in the conclusion that our method-
ology can be easily extended to the three dimensional case.

The main idea of our method is to use an upwind scheme to discretise Equation (5) and to modify the
streaming velocity in order to obtain a scheme that is consistent with (3) when ε → 0. The fluxes are
computed at the edges of the cells.
The article is organized as follows. In Section 2, we define the notations that we use in the rest of the paper.
Section 3 is dedicated to the numerical scheme and its properties. Numerical examples are shown in Section
4.

2 Notations
We present here some notations that will be used in the rest of the paper. We consider a mesh T paving the
domain Ω. The mesh is made of general polygonal cells. Let Ωj ∈ T be a cell of the mesh. We define:

• Vj is the volume of the cell Ωj ;

• xj is the barycenter of the cell Ωj ;

• e is an edge of Ωj and ne
j is the outgoing unit normal vector to e and |e| is its length;

• re
1 and re

2 are the indexes of the nodes of e, and xre
1

and xre
2

are their coordinates;

• xe is the middle of the edge, it is given by xe = (xre
1

+ xre
2
)/2;

•
∑

e∈Ωj
the sum over all edges of the cell j;
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• Nj =
∑

e∈Ωj
1 the number of edges in the cell Ωj ;

•
∑

i|r∈Ωi
the sum, for a node with index r, over all the cells that contains this node;

• Nr =
∑

i|r∈Ωi
1 the number of cells that contains the given node r;

•
∑

j∈T the sum over all the cells of the mesh;

• J =
∑

j∈T 1 is the number of cells of the mesh;

• h the maximum length of edges of the mesh;

• In
k,j is the value of the unknown in direction k, in cell j, at iteration n;

• Ik = (Ik,i)i∈T is the vector of the values of the unknown in direction k;

• Ej =
∑K

k′=1 pk′Ik′,j is the average, in cell j, over the directions;

• E = (Ei)i∈T is the vector of the averages;

• ⟨·, ·⟩ the inner product in R2.

We assume that there exists a constant C1 ≥ 1 such that, for any cell j and for any node r:

1
C1

h2 ≤ Vj ≤ C1h2, Nj ≤ C1, Nr ≤ C1. (6)

3 Numerical scheme
In this Section we present our numerical scheme. The space discretisation is given in Sections 3.1 and 3.2.
The time discretisation is described in 3.3. The properties and the diffusion limit of the scheme are given in
Section 3.4 and Section 3.5.

3.1 Upwind scheme and modified streaming velocity
Equation (5) is integrated over the cell Ωj . Denoting by Ik,j the average value of Ik in cell j, we get:

d

dt
Ik,j + 1

Vj

∫
∂Ωj

Ik⟨ωk, n⟩dx +
σt

j

ε2 Ik,j =
σs

j

ε2

K∑
k′=1

pk′Ik′,j + qk,j .

The flux is approximated as a sum over the edges of Ωj :∫
∂Ωj

Ik⟨ωk, n⟩dx ≈
∑

e∈Ωj

|e|Ik,e⟨ω̄k,e, ne
j ⟩,

where the streaming velocity ω̄k,e is a consistent approximation of ωk/ε that is given below. The edge values
Ik,e are computed with an upwind scheme:

Ik,e =
{

Ik,j if ⟨ω̄k,e, ne
j ⟩ > 0,

Ik,i else,
(7)

where i is the neighboring cell, that is to say, the other cell that contains the edge e, see Figure 4.
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Ωj

Ωie

xe
r2

xe
r1

xe

|e|ne
j

Figure 4: The cells Ωj and Ωk share the edge e

The streaming velocity ω̄k,e is a consistent approximation of ωk/ε, meaning that:

ω̄k,e = 1
ε

ωk + O(h2). (8)

We want ω̄k,e to be second order consistent with ωk/ε because we aim at designing a scheme that is second
order consistent with (5). Moreover, in order to be consistent with (3) in the diffusion regime, we also impose
the following condition:

lim
ε→0

ω̄k,e is consistent with − ∇E

3σsE
, (9)

where E is the average over the directions (see Section 2): E =
∑K

k′=1 Ik′/K. The condition (9) is justified
in Section 3.5. Therefore we propose:

ω̄k,e = ε2ωk + (σt
e)2

h3ue

ε3 + (σt
eh)3 . (10)

The quantity ue is an approximation of −∇E/(3E) at point xe. It is given by:

ue =
ure

1
+ ure

2

2 ,

where ure
1

and ure
2

are approximations of −∇E/(3E) at the vertices xre
1

and xre
2
. We choose the formula

from [BHL24]. For a given vertex of index r, we set:

ur = 1
3Er

β−1
r

∑
i|r∈Ωi

EiCr
i , Er = 1

Nr

∑
i|r∈Ωi

Ei + h2, βr =
∑

i|r∈Ωi

Cr
i ⊗ (xr − xi), (11)

where the node vector Cr
j is defined as:

Cr
j = 1

2
(
|ej,r,1|n

ej,r,1
j + |ej,r,2|n

ej,r,2
j

)
, (12)

where ej,r,1, ej,r,2 are the edges of the cell Ωj that contain the node r. See Figure 5. This definition was
first introduced in [CDDL09].
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edge ej,r,2

xr

edge ej,r,1

|ej,r,2|n
ej,r,2
j

|ej,r,1|n
ej,r,1
j

Cr
j

Ωj

Figure 5: Definition of the node-located vector Cr
j

The quantity Er is an approximation of E at point xr. We add a h2 term in order to make ur well defined
in the case where all the (Ei)i vanish. It has been proven in [BHL24] that the quantity β−1

r

∑
i|r∈Ωi

EiCr
i is

indeed a consistent approximation of −∇E. The following estimate has also been proven:

Lemma 3.1. If the matrix βr satisfies the following property:

∀ξ ∈ R2, ⟨βrξ, ξ⟩ ≥ 1
C13

h2∥ξ∥2. (13)

for some constant C13 > 0, and if the (Ik,j)k≤K,j∈T are nonnegative, then we have, for any edge e:

∥ue∥ ≤
C1C13

3h
.

Assumption (13) depends on the mesh and it is studied in [Fra12].

Owing to Lemma 3.1, we see that Definition (10) clearly does satisfy (8) and (9). Thus the resulting
scheme is nonlinear and second order consistent with (5). Moreover, in the streaming regime, that is to say
when σt = σs = 0, we have exactly ω̄k,e = ωk/ε. We also emphasize that ω̄k,e in (10) may be written as a
convex combination between the advection velocity ωk/ε and the "diffusion" velocity u/σs:

ω̄k,e = η
ωk

ε
+ (1− η)ue

σs
e

, η = ε3

ε3 + (σt
eh)3 .

Remark 1 (Discontinuity of the cross sections). In the case when σt is discontinuous, then we choose the
mesh such that the discontinuity is located at an interface e∗. At this interface, σt is no longer defined. To
overcome this difficulty, we set, at this interface:

ω̄k,e∗ = ωk

ε
.

3.2 Second order fluxes
So far the approximation of the flux is only first order consistent. We use here the procedure from [BHL24]
so as to make it second order consistent. Instead of computing the upwind values with (7), we set:
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Ik,e =
{

Īe
k,j if ⟨ω̄k,e, ne

j ⟩ > 0,

Īe
k,i else,

(14)

where i is the neighboring cell (see Figure 4). The quantity Īe
k,j is a second order approximation of Ik at

point xe in cell j that is given by:

Īe
k,j =

{
Ik,j − ⟨gk,e, xj − xe⟩ if |⟨gk,e, xj − xe⟩| < Ik,j ,

Ik,j else.
(15)

The vector gk,e is an approximation of −∇Ik at point xe. It is computed as:

gk,e = gk,r1 + gk,r2

2 , gk,r = β−1
r

∑
i|r∈Ωi

Ik,iCr
i . (16)

Defining:

Fk,j = 1
Vj

∑
e∈Ωj

|e|Ik,e⟨ω̄k,e, ne
j ⟩,

the scheme reads as:

d

dt
Ik,j + Fk,j +

σt
j

ε2 Ik,j =
σs

j

ε2

K∑
k′=1

pk′Ik′,j + qk,j .

3.3 Partially implicit time discretisation
We use a partially implicit time discretisation. The streaming term is chosen completely explicit whilst the
source and absorption terms are still implicit:

In+1
k,j − In

k,j

∆t
+ Fn

k,j +
σt

j

ε2 In+1
k,j −

σs
j

ε2

K∑
k′=1

pk′In+1
k′,j = qk,j (17)

Owing to Sherman-Morrison Lemma 3.2, we can write an explicit formula for In+1
k,j . This result is given in

Proposition 3.3. Besides, it shows that System (17) can be written as a system without any stiff term. Thus,
this system admits a finite and nonzero limit when ε→ 0. This limit is described in Section 3.5.

Lemma 3.2. Let A ∈ RK×K be nonsingular, and let u ∈ RK , v ∈ RK . The matrix A + u⊗ v is nonsingular
if and only if 1 + ⟨v, A−1u⟩ ≠ 0. Besides, in such a case, its inverse is given by:

(A + u⊗ v)−1 = A−1 − 1
1 + ⟨v, A−1u⟩

A−1u⊗ vA−1. (18)

Proof. The proof can be found in [Ser02].

Proposition 3.3. Equation (17) is equivalent to:

In+1
k,j = µ

(1)
j

(
In

k −∆tFn
k,j + ∆tqk,j

)
+ µ

(2)
j

K∑
k′=1

pk′
(
In

k′,j −∆tFn
k′,j + ∆tqk′,j

)
, (19)

where:

µ
(1)
j = ε2

ε2 + ∆tσt
j

, µ
(2)
j =

∆tσs
j

ε2 + ∆tσt
j

× 1
1 + ∆tσa

j

. (20)
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Proof. Using (20), Equation (17) reads as:

In+1
k,j −

∆tσs
j

ε2 + ∆tσt
j

K∑
k′=1

pk′In+1
k′,j = µ

(1)
j

(
In

k −∆tFn
k,j + ∆tqk,j

)
. (21)

Equation (21) can be set under the following form:

(iK − λjv ⊗ p) In+1
j = bj , In+1

j =

In+1
1,j
...

In+1
K,j

 ∈ RK , p =

 p1
...

pK

 ∈ RK , v =

1
...
1

 ∈ RK ,

(22)
where iK is the identity matrix of size K and:

λj =
∆tσs

j

ε2 + ∆tσt
j

, bk,j = µ
(1)
j

(
In

k −∆tFn
k,j + ∆tqk,j

)
.

Moreover, owing to (4), we have:

1− λj⟨v, p⟩ = 1−
∆tσs

j

ε2 + ∆tσt
j

> 0.

Therefore, according to Lemma 3.2, the matrix of System (22) is nonsingular and its inverse is given by:

(iK − λjv ⊗ p)−1 = iK + λj

1− ∆tσs
j

ε2+∆tσt
j

v ⊗ p = iK +
∆tσs

j

ε2 + ∆tε2σa
j

v ⊗ p.

Thus Equation (21) becomes:

In+1
k,j = µ

(1)
j

(
In

k −∆tFn
k,j + ∆tqk,j

)
+ µ

(1)
j

∆tσs
j

ε2 + ∆tε2σa
j︸ ︷︷ ︸

=µ
(2)
j

K∑
k′=1

pk′
(
In

k′,j −∆tFn
k′,j + ∆tqk′,j

)
.

The result is proved.

Therefore In+1
k,j writes explicitly as a function of the quantities at iteration n. Besides, if q = σa = 0

then µ
(1)
j + µ

(2)
j = 1 and In+1

k,j simply reads as a convex combination between the anisotropic and isotropic
dynamics. We observe in Section 4 that the scheme (19) is indeed second order convergent. Moreover, the
positivity of the solution is preserved under a classical CFL condition (see Proposition 3.6 below).

Remark 2. The scheme (19) has the same computational cost as an explicit scheme. There is no stiff term.
No fixed point iteration is required, no linear system needs to be solved. Thus each time iteration is very fast
to compute and there is no need for an acceleration procedure in the diffusion limit.

3.4 Properties
In this section, we present the properties of the scheme (17). We first detail the conservation property
(Proposition 3.4), then we give an intermediary result (Lemma 3.5) that is used in the proof of the CFL
condition (Proposition 3.6). The proofs can be found in Appendix 6.

Proposition 3.4. We assume periodic boundary conditions are imposed. If σa = 0, then the scheme (17)
is conservative:

∑
j∈T

VjEn+1
j =

∑
j∈T

VjEn
j + ∆t

∑
j∈T

Vj

K∑
k′=1

pk′qk′,j .

10



Lemma 3.5. Under the assumptions of Lemma 3.1, there exists a constant C3.5 such that, for any edge e
and any direction k:

∥ω̄k,e∥ ≤
C3.5

σt
eh + ε

.

Proposition 3.6. Under the assumptions of Lemma 3.1 and if (6) is fulfilled, there exists a constant
C3.6 > 0 such that, if

(
In

k,j

)
k,j

and q are nonnegative, and if:

∆t ≤ C3.6

(
εh + h2 min

e∈T
σt

e

)
, (23)

then In+1
k,j is nonnegative for all k, j.

3.5 AP property and limit scheme
In this Section, we explain why the scheme (19) is AP . More precisely, we study the limit of the scheme
(19) as ε goes to 0. First, one can easily see that:

µ
(1)
j −−−→

ε→0
0. (24)

Besides, using σt = σs + ε2σa leads to:

µ
(2)
j −−−→

ε→0

1
1 + ∆tσa

. (25)

Therefore, combining (19) and (24) (25) gives the following limit as ε vanishes:

In+1
k,j = 1

1 + ∆tσa

K∑
k′=1

pk′
(
In

k′,j −∆tFn
k,j + ∆tqk′,j

)
.

Thus I is isotropic:

In+1
k,j =

K∑
k′=1

pk′In+1
k′,j = En+1

j .

In addition, when ε vanishes, the velocity field does not depend on ωk anymore ans so is the flux:

ω̄k,e = ue

σs
e

, Fk,j = 1
Vj

∑
e∈Ωj

|e|Ee

〈
ue

σs
e

, ne
j

〉
=: Fj .

Therefore, as ε goes to 0, Equation (19) becomes:

(1 + ∆tσa)En+1
j = En

j −∆tFn
j + ∆t

K∑
k′=1

pk′qk′,j ,

which may be written as:

En+1
j − En

j

∆t
+ Fn

j + σa
j En+1

j =
K∑

k′=1
pk′qk′,j . (26)

As u is consistent with −∇E/3E, the flux Fj is consistent with −div (E ×∇E/3σsE) = −div (∇E/(3σs).
Therefore (26) is consistent with (3). It is the second order scheme from [BHL24].
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3.6 Dirichlet boundary conditions
We denote by γ ∈ C0(∂Ω× S2) the Dirichlet boundary condition:

I(t, x, ω) = γ(x, ω), if x ∈ ∂Ω, and ⟨ω, n⟩ < 0,

where n is normal vector to the boundary of the domain. In the cells on the boundary and for the edges on
the boundary, the upwind value (14) is replaced by:

Ik,e =
{

Īe
k,j if ⟨ω̄k,e, ne

j ⟩ > 0,

γ(x, ωk) else,
(27)

Note that the gradients ur given by (11) is not well-defined in the corner nodes. Indeed there is only one
support cell and thus the matrix βr has rank 1 and is singular. To overcome this difficulty we compute the
gradient ur at the corner as the average of the gradients at the other nodes of the support cell.

3.7 Periodic boundary conditions
In the case of periodic boundary conditions, we add some ghost cells on the outside of the mesh so as to
make it periodic. We then define I on these new cells and we use these values and this new geometric data
to compute the Cr

j on the boundary of the domain.

4 Numerical results
In this Section we present some numerical examples to illustrate the good properties of our method. We
use a quadrature of Equal Weights from [Car]. The weights (pk)1≤k≤K are equal to 1/K and the number of
directions has to be of the following form K = 4N2 with N ∈ N.
In the first three test cases, we compute analytical solutions of (2) and we perform a convergence analysis
(Sections 4.1, 4.2, 4.3) on cartesian meshes (uniform grids) and random meshes (see Figure 6). Denoting by
Ĩ the exact solution and tf the final time, the error is computed the following way:

error = max
1≤k≤K

(∑
j∈T Vj

∣∣Ik,j − Ĩ(tf , xj , ωk)
∣∣∑

j∈T Vj Ĩ(tf , xj , ωk)

)
.

We also compute the solution of a Lattice problem defined in [BH05] in Section 4.5. Eventually we present
our results for a test case from [KFJ16].

Figure 6: Random mesh.

4.1 Free streaming regime
In this test case, we choose σs = σa = 0, q = 0 and ε = 1. The exact solution is given by:

I(t, x, ω) = exp
(
−100 ∥x− tω − x0∥2

)
, x0 = (1, 1).
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Dirichlet boundary conditions are imposed (see Section 3.6). We choose K = 4 directions. The computational
domain is Ω = [0, 2]2. Figure 7 shows the error curve at final time tf = 0.03 and ∆t = h2. Indeed, as the
scheme (19) is first order consistent in time, we need to set ∆t = O(h2) in order to make the consistency
error decrease as h2. We see that our method gives the expected rate of convergence.

Figure 7: Error on cartesian (left) and random (right) meshes.

4.2 Diffusion regime
In this test case, we choose σs = 1, σa = q = 0 and ε = 0. The exact solution is the fundamental solution
of the diffusion equation:

∂tE −
1
3∆E = 0, E(t, x) = 3

4π(t + t0) exp
(
−3∥x− x0∥2

4(t + t0)

)
,

with t0 = 0.01 and x0 = (1, 1). The computational domain is Ω = [0, 2]2. Periodic boundary conditions are
imposed. We choose K = 4 directions. The timestep is given by ∆t = h2 and the final time is tf = 0.03.
Figure 8 shows the error curves. The right convergence rate is recovered.

Figure 8: Error on cartesian (left) and random (right) meshes.

4.3 Manufactured test case
We choose ε = 1. The analytical solution of this test case is given by:

I(t, x, y, ω) = et (10 + sin(2πx) + sin(2πy) + ⟨ω, f⟩) , f = (1,−1),

and the absorption coefficients are given by:

σt(x, y) = 2 + (sin(2πx) + sin(2πy))2, σs = 0.1.
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We compute the source term q(t, x, y, ω) so as to satisfy Equation (2). Periodic boundary conditions are
imposed. We set K = 4. Figure 9 displays the error curves with the second order scheme at time tf = 0.01
and ∆t = h2.

Figure 9: Error on cartesian meshes (left) and random meshes (right).

4.4 Stationary boundary layer
This 1D test case is borrowed from [ACE+22]. We set ε = 1 and:

q = 1|x|≤0.1, σa = 1|x|≤0.8 + 10× 11≤|x|≤1.2, σs = 100× 10.8≤|x|≤1.

The computational domain is [−1.2, 1.2]. The initial and boundary conditions are zero. We solve this test
case with a 1D version of the scheme. The idea is to compute the long time stationary solution of (2).
Besides, due to the strong discontinuity of σs at x = 0.8, the solution develops a boundary layer : the energy
is transported until x = 0.8, then it accumulates in a neighborhood of the boundary before decreasing ex-
ponentially due to the strong opacity. See [lM89] for instance.

Figure 10 shows the solution at time tf = 108 with 48 cells, ∆t = h and K = 8 directions. We ob-
serve the development of boundary layers when the solution enters the opaque zones at |x| = 0.8, as depicted
in [ACE+22].

Figure 10: Numerical solution at time tf = 108.

4.5 Lattice problem
This test case is borrowed from [BH05]. The computational domain is Ω = [0, 7]2. The initial condition is
0 and ε = 1. The source term is q = 1[3,4]×[3,4]. Homogeneous Dirichlet boundary conditions are imposed.
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The final time is tf = 3.2 and the time step is ∆t = 0.01. The absorption coefficients are:

σt = 10× 1ΩA
, σs = 1− 1ΩA

.

The domain ΩA is pictured in red color in Figure 11.

Figure 11: The domain ΩA in red color.

Some numerical solutions are plotted in the following Figures. The log scale map is limited to seven orders of
magnitude: we display with the same blue color all the regions where the solution is smaller or equal to 10−7.

Figures 12, 13 and 14 display the numerical solution with K = 4, K = 144 and K = 484 respectively.
We see that we recover the results of [BH05].

Figure 12: Numerical solution (in log scale) at time tf = 3.2 on a cartesian mesh of size 140× 140 and with
K = 4.
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Figure 13: Numerical solution (in log scale) at time tf = 3.2 on a cartesian mesh of size 140× 140 and with
K = 144.

Figure 14: Numerical solution (in log scale) at time tf = 3.2 on a cartesian mesh of size 140× 140 and with
K = 484.

4.6 Variable scattering test case
Here we compute the solution of the variable scattering test case from [KFJ16]. The domain is [−1, 1]2, the
final time is tf = 0.005 and we set ε = 0.01 and σa = q = 0. The initial condition and the cross section are
given by:

I(t = 0, x, y, ωx, ωy) = 1
0.04π

exp
(
−x2 + y2

0.04

)
, σs(x, y) =

{
c4(c2 − 2)2 if c =

√
x2 + y2 < 1,

1 else.

The solution is almost 0 near the boundary, so we impose periodic boundary conditions. Figure 15 shows
the solution E on a uniform grid of size Nx = Ny = 200 with ∆t = 10−3. We do recover the solution from
[KFJ16].
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Figure 15: Numerical solution E at time tf = 0.005 on a cartesian mesh of size 200× 200 and with K = 64.

5 Conclusion and future work
In this paper we have presented a scheme that is asymptotic preserving, positive under a classical CFL
condition that depend on the regime, conservative and second order consistent in space. Besides its compu-
tational cost is quite low as there is no linear system to solve nor fixed point iteration to compute.

Several extensions to this work are possible. First, the method can be easily adapted to 3D unstructured
meshes. Indeed, the 3D formulas for the node vectors

(
Cr

j

)
j,r

are given in [CDDL09]. In addition, we have
seen in Proposition 3.3 that the intensity at iteration n + 1 can be explicitely computed as a function of the
quantities at iteration n. This property will allow us to design a scheme to solve efficiently the transport
equation coupled with matter. This is an ongoing work.

6 Appendix
6.1 Proof of Proposition 3.4
We multiply Equation (17) by pk and we sum over the directions, this gives:

1
∆t

[
K∑

k′=1
pk′In+1

k′,j −
K∑

k′=1
pk′In

k′,j −∆t

K∑
k′=1

pk′qk′,j

]
+

K∑
k′=1

pk′Fj(In
k′ , ω̄n

k′) = 0. (28)

We multiply (28) by Vj and we sum over the cells, which leads to:

1
∆t

∑
j∈T

Vj

[
K∑

k′=1
pk′In+1

k′,j −
K∑

k′=1
pk′In

k′,j −∆t

K∑
k′=1

pk′qk′,j

]
+

K∑
k′=1

pk′

∑
j∈T

VjFn
k′,j = 0.

Now we prove: ∑
j∈T

VjFn
k,j = 0.

We remove the upper-scripts n in order to clarify the algebra. By definition, we have:∑
j∈T

VjFk,j =
∑
j∈T

∑
e∈Ωj

|e|
〈
ne

j , ω̄k,e
〉

Ik,e.

and:
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∑
j∈T

∑
e∈Ωj

|e|
〈
ne

j , ω̄k,e
〉

Ik,e =
∑
e∈T

∑
i|e∈i

|e| ⟨ne
i , ω̄k,e⟩ Ik,e,

where
∑

i|e∈i denotes the sum, for a given edge e, over the two cells that share this edge. Besides, we have:

∑
i|e∈i

|e| ⟨ne
i , ω̄k,e⟩ Ik,e = |e|Ik,e

〈
ω̄k,e,

∑
i|e∈i

ne
i︸ ︷︷ ︸

=0

〉
.

The result is proved.

6.2 Proof of Proposition 3.5
We use Lemma 3.1 and ∥ωk∥ ≤ 1 in (10). This gives:

∥ω̄k,e∥ ≤ max
(

1,
C1C13

3

)
ε2 + (σt

eh)2

ε3 + (σt
eh)3 ≤ 4 max

(
1,

C1C13

3

)
1

σt
eh + ε

. (29)

The result is proved.

6.3 Proof of Proposition 3.6
Let 1 ≤ k ≤ K. First, we define:

R+
j = {e ∈ Ωj , ⟨ne

j , ω̄k,e⟩ > 0}, R−
j = {e ∈ Ωj , ⟨ne

j , ω̄k,e ≤ 0}.

Using these definitions, we easily have:

Ik,j −∆tFk,j ≥ Ik,j −
∆t

Vj

∑
e∈R̃+

j

|e|
〈
ne

j , ω̄k,e
〉

Ik,e.

According to (15), we have Ik,e ≤ 2Ik,j . This leads to:

Ik,j −∆tFk,j ≥ gj

1− 2∆t

Vj

∑
e∈R̃+

j

|e|
〈
ne

j , ω̄k,e
〉 . (30)

Besides, using Assumption (6) and Lemma 3.5, we have:

∆t

Vj

∑
e∈R̃+

j

|e|
〈
ne

j , ω̄k,e
〉
≤ C2

1
∆t

h

C3.5

mine∈T σt
eh + ε

. (31)

Collecting (30) and (31), we deduce that if:

∆t ≤ h

C2
1

mine∈T σt
eh + ε

C3.5
,

then Ik,j −∆tFk,j ≥ 0 for all (k, j). As q, µ(1) and µ(2) are nonnegative, we deduce that In+1
k,j given by (19)

is nonnegative.
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