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Abstract
In this paper, we propose a finite volume scheme for the linear transport equation in two space

dimensions. This scheme is based on an upwind scheme where the velocity is modified so as to recover
the correct diffusion limit. The resulting scheme is asymptotic preserving, positive under a classical
CF L condition and conservative. We propose a reconstruction procedure so as to make it second order
consistent on unstructured polygonal meshes.
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1 Introduction
In this work, we propose a finite volume scheme that discretises the radiative transfer equation (see [MM84]):

1
c
∂tI + div (Iω) + σtI = σs

1
4π

∫
S2
Idω′ + q. (1)

It is a linear Boltzmann type equation. The unknown I = I(t,x,ω) is the radiative intensity and gives
the distribution of photons. It depends on the time variable t ≥ 0, on the space variable x ∈ Ω ⊂ R3 (Ω
being the computational domain) and direction ω ∈ S, where S is the unit sphere in R3. The source term
q = q(t,x,ω) ≥ 0 is nonnegative. The scattering cross section is σs ≥ 0 and the total cross section is σt ≥ σs.
The difference σt−σs = σa is the absorption cross section. We assume here that the speed of light c is equal
to 1.

Equation (1) is of great importance in the numerical simulation of inertial confinement fusion (ICF). In
these experiments, a small ball of hydrogen (the target) is submitted to intense radiation by laser beams.
These laser beams are either pointed directly to the target (direct drive approach), or pointed to gold walls
of a hohlraum in which the target is located (indirect drive approach, see Figure 1). These gold walls heat
up, emitting X-rays toward the target. The outer layers of the target are heated up, hence ablated. By mo-
mentum conservation, the inner part of the target implodes (this is usually called the rocket effect). Hence,
the pressure and temperature of the hydrogen inside the target increase, hopefully reaching the thermody-
namical conditions for nuclear fusion. This process is summarized in Figure 2. Other possible applications
of (1) are radiation hydrodynamics in stellar atmospheres. Of course, the model (1) is over-simplified for
these applications as it should, among other things, include a dependence on the frequency. But (1) should
be seen as an elementary building block for more realistic models.

Figure 1: Schematic view of the Hohlraum and the target

Figure 2: The concept of ICF (inertial confinement fusion) taken from http://www.lanl.gov/projects/dense-
plasma-theory/background/dense-laboratory-plasmas.php
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It has been shown in [CZ67] that if q > 0 and σt > 0 and σa > 0 then the solution I is positive. Moreover,
in [RJLM+88] the author proved that if q = 0 and σt = σs then the solution satisfies a maximum principle
property.
Eventually, Equation (1) admits a diffusion limit. Let ε > 0 be given. If we replace σs ← σs/ε, σa ← σaε,
q ← qε and if we perform the following scaling t← εt , then (1) reads as:

∂tI + 1
ε
div (Iω) + σt

ε2 I = σs

ε2
1

4π

∫
S2
Idω′ + q, (2)

with σt = σs + ε2σa. Moreover, when ε vanishes, the solution I of (2) converges toward the solution of a
diffusion equation I −−−→

ε→0
E0 where:

∂tE
0 − div

(
1

3σs∇E
0
)

+ σaE0 = 1
4π

∫
S2
qdω′. (3)

See [BGPS88] [Cas04]. Therefore it is important for a numerical scheme that discretises (2) to be consistent
with the limit model (3). In this case, we say that the scheme is asymptotic-preserving. More precisely,
the parameter ε ∈ [0, 1] characterizes the proportion between the streaming and diffusion phenomena. The
configuration ε = 1 corresponds to the free streaming regime and ε = 0 to the pure diffusion regime. We
use the notations of Figure 3 and we denote by h the discretisation parameter. The general model (2) is
denoted by P ε and it is discretised with the scheme P εh . The model P ε tends towards the diffusion limit
model P 0 (Equation (3)) when ε → 0. We want the limit scheme P 0

h (obtained by setting ε → 0 in P εh) to
be consistent with P 0. If this property is fulfilled, then we say that the scheme P εh is asymptotic preserving
or AP. We emphasize that ε is present in the equations through ε−1, hence the corresponding terms are stiff
in the diffusion limit (ε→ 0). The diffusion limit is thus a singular limit. This explains both why the limit
equation is of different nature and why designing AP schemes is not trivial.

P ε

P εh P 0
h

P 0

h→ 0

ε→ 0

h→ 0

ε→ 0

Figure 3: Definition of an AP scheme.

The very first works in this direction were [lM89] and [JL96]. These papers were dedicated to 1D calculations.
One dimensional finite difference methods that solved (2) were proposed in [Kla98, JPT00] for instance. The
work [KFJ16] proposes an extension of these methods to the two dimensional case. The space and angular
variable are both discretised on uniform grids and a time splitting discretisation method (IMEX method,
see for instance [BFR16, BR09, EG23]) is performed.
The discontinuous finite elements method was also used to solve (2) on two and three dimensional unstruc-
tured meshes. See [Ada01] [BCWA] [CS16] for instance. These methods are consistent but not positive. A
recent work [GPR20] proposes a positive, AP and first order scheme to solve the stationary version of (2).
Micro-macro decompositions were also used to solve (2) on uniform grids. See for instance [LFH19, LM08,
LM10, JS10, EHW21]. Recently, [ACE+22] proposed an AP finite volume scheme that is based on a micro-
macro decomposition. The scheme is first order consistent on 2D unstructured meshes but it is not positive.

In this paper we propose a method that:
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• is asymptotic preserving: the scheme we obtain when ε→ 0 is consistent with (3),

• is second order consistent on unstructured 2D meshes for any ε,

• preserves the positivity of the numerical solution under a classical CFL condition,

• has a compact stencil,

• is conservative,

• has the same computational cost as an explicit scheme: there is no linear system to invert nor fixed-
point iteration to compute.

We perform an angular discretisation of (2). We choose K directions (ωk)1≤k≤K and we define Ik =
I(t,x,ωk) for 1 ≤ k ≤ K. The integral over the unit sphere in (2) is discretised as:

1
4π

∫
S2
Idω′ ≈

K∑
k′=1

pk′Ik′ .

The quadrature weights (pk)1≤k≤K and the directions (ωk)1≤k≤K are required to satisfy:

pk ≥ 0,
K∑
k′=1

pk′ = 1,
K∑
k′=1

pk′ωk′ = 0,
K∑
k′=1

pk′ωk′ ⊗ ωk′ = 1
3

1 0 0
0 1 0
0 0 1

 . (4)

The equation we solve therefore reads as:

∂tIk + 1
ε
div (Ikωk) + σt

ε2 Ik = σs

ε2

K∑
k′=1

pk′Ik′ + qk. (5)

Moreover, owing to (4), when ε vanishes, Equation (5) admits a diffusion limit: Ik −−−→
ε→0

E0 where E0 is
solution to (3).
In this work, we focus on the two dimensional case. We briefly explain in the conclusion that our method-
ology can be easily extended to the three dimensional case.

The main idea of our method is to use an upwind scheme to discretise Equation (5) and to modify the
streaming velocity in order to obtain a scheme that is consistent with (3) when ε → 0. The scheme is said
to be composite as the fluxes are computed at the nodes and at the edges of the cells (this idea was first
introduced in [BCHS20, Hoc22]).
The article is organized as follows. In Section 2, we define the notations that we use in the rest of the paper
and we explain the geometrical assumptions we need to develop our method. In Section 3, we present our
method to compute a second order consistent flux using an upwind scheme. Section 4 is dedicated to the
numerical scheme. Numerical examples are shown in Section 5.

2 Notations assumptions on the mesh
We present here some notations that will be used in the rest of the paper. Let Ωj be a cell of the mesh T
paving the domain Ω, we define:

• Vj is the volume of the cell Ωj ,

• (xr)r∈Ωj the coordinates of the vertices of the cell j;

•
∑
r∈Ωj

the sum over all the vertices of the cell j;

• r + 1/2 is the index of the edge between the nodes xr and xr+1, its middle is denoted by xr+1/2 =
(xr + xr+1)/2,
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•
∑
r+1/2∈Ωj

the sum over all edges of the cell j;

• a degree of freedom (denoted as dof) is either a node or a mid-edge point;

• Nj =
∑

dof∈Ωj
1 the number of degrees of freedom in the cell Ωj ;

•
∑
i|dof∈Ωi

the sum, for a given degree of freedom, over all the cells that contains this degree of freedom;

• Nr =
∑
i|r∈Ωi

1 the number of cells that contains the given node r;

•
∑
j∈T the sum over all the cells of the mesh;

• J =
∑
j∈T 1 is the number of cells of the mesh;

• h the maximum length of edges of the mesh;

• Ink,j is the value of the unknown in direction k, in cell j, at iteration n;

• Ik = (Ik,i)i∈T is the vector of the values of the unknown in direction k;

• Ej =
∑K
k′=1 pk′Ik′,j is the average, in cell j, over the directions;

• E = (Ei)i∈T is the vector of the averages;

• 〈·, ·〉 the inner product in R2.

xr+1

xr+1/2

xr

xr−1/2

xr−1

Cr+1/2
j

Cr−1/2
j

Cr
j

Ωj

Figure 4: Normal vectors at the nodes and the edges of the cell Ωj

Let xr−1, xr and xr+1 be 3 consecutive nodes of Ωj (see Figure 4 for instance). The normal vector to the
edge [xr,xr+1] is denoted by Cr+1/2

j = (xr+1 − xr)⊥, where for any vector ξ ∈ R2:

ξ =
(
ξ1
ξ2

)
, ξ⊥ =

(
−ξ2
ξ1

)
.

Similarly, we define the normal vector to the node r as:
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Cr
j = 1

2(xr+1 − xr−1)⊥ = 1
2

(
Cr+1/2
j + Cr−1/2

j

)
. (6)

Definition (6) was first introduced in [CDDL09]. We also define the matrix:

βr =
∑
i|r∈Ωi

Cr
i ⊗ (xr − xi), (7)

We assume that there exists a constant C1 ≥ 1 such that, for any dof and any cell j:

1
C1
h2 ≤ Vj ≤ C1h

2, Ndof ≤ C1, Nj ≤ C1, (8)

Note that by definition we have
∥∥Cdof

j

∥∥ ≤ h. Moreover, we assume that for any node r ∈ T the matrix βr
defined in (7) is positive definite:

∀ξ ∈ R2, 〈βrξ, ξ〉 ≥
1
C1
h2‖ξ‖2. (9)

Thus it is non-singular and we have:

‖β−1
r ‖ ≤ C1

1
h2 . (10)

Assumption (9) is studied in [Fra12]. We have the following result:

Proposition 2.1. Let r be an inner node, we have:∑
i|r∈Ωi

Cr
i = 0.

We also have the following quadrature formula.

Theorem 2.2. Let g ∈ C2(R2;R). We assume Assumptions (8) are fulfilled. Then, for all θ ∈ [0, 1]:

1
Vj

∫
∂Ωj

gn = 1
Vj

(1− θ)
∑
r∈Ωj

g(xr)Cr
j + θ

∑
r+1/2∈Ωj

g(xr+1/2)Cr+1/2
j

+O(h). (11)

Moreover, the remainder in (11) vanishes if g is an affine function.

Remark 1. We propose here some explanations on the choice of the parameter θ:

• θ = 0 : node based scheme, consistent but may suffer from cross stencil phenomena (see [BHL21,
BDH21]),

• θ = 1 : edge-based scheme, useful to implement Dirichlet boundary conditions (see Section 3.2),

• θ = 2/3 : better precision. Formula (11) is exact for quadratic functions and the remainder is O(h2).
This choice may allow to have third order convergence (see [BHL24] for instance).

3 Upwind scheme
In this Section, we present a second order consistent approximation of the flux

∫
∂Ωj

g〈a,n〉, where n is the
outward unit vector to ∂Ωj , g is a given function and a is a given velocity field. First we use Theorem 2.2
and we approximate:∫

∂Ωj

g〈a,n〉 ≈ θ
∑
r∈Ωj

〈
ar,Cr

j

〉
grj + (1− θ)

∑
r+1/2∈Ωj

〈
ar+1/2,C

r+1/2
j

〉
g
r+1/2
j , (12)
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where adof = a(xdof) and gdof
j is an approximation to (xdof) in cell j. It is given by an upwind scheme:

gdof
j =


ḡdof
j if 〈adof,Cdof

j 〉 > 0,
1∑

i∈A+
dof
〈adof,Cdof

i 〉
∑
i∈A+

dof

〈adof,Cdof
i 〉ḡdof

i else, (13)

where: A+
dof = {i, 〈adof,Cdof

i 〉 > 0}. The quantity ḡdof
j is a second order approximation of g at point xdof in

cell j that is given by:

ḡdof
j =

{
gj − 〈pdof,xj − xdof〉 if |〈pdof,xj − xdof〉| < gj ,

gj else.
(14)

The vector pdof is an approximation of −∇g at point xdof computed as:

pr = β−1
r

∑
i|r∈Ωi

giCr
i , pr+1/2 = pr + pr+1

2 . (15)

Under the assumptions of Section 2, the quantity pdof defined in (15) is first order consistent
with (−∇g)dof. Indeed, using a Taylor expansion, we have:

g(xi) = g(xr) + 〈xi − xr,∇g(xr)〉+O(h2). (16)

Multiplying (16) by Cr
i , summing the result over the cells around any inner node r and using Lemma 2.1

leads to: ∑
i|r∈Ωi

g(xi)Cr
i = g(xr)

∑
i|r∈Ωi

Cr
i︸ ︷︷ ︸

=0

−βr∇g(xr) +O(h3), (17)

where βr is defined by (7). Using (10), we have:

β−1
r

 ∑
i|r∈Ωi

g(xi)Cr
i

 = −(∇g)(xr) +O(h).

Moreover, xi being the barycenter of the cell i, we have:

g(xi) = 1
Vi

∫
Ωi

g +O(h2). (18)

Using (15) (18), we deduce that pr is first order consistent with −(∇g)r. We easily deduce that pr+1/2 is
first order consistent with −(∇g)r+1/2.

Eventually, we define the second order flux by:

Fj(g,a) = θ

Vj

∑
r∈Ωj

〈
ar,Cr

j

〉
gj,r + 1− θ

Vj

∑
r+1/2∈Ωj

〈
ar+1/2,C

r+1/2
j

〉
gj,r+1/2, (19)

and where gj,dof is given by (13) (14) (15).

3.1 Properties
We present here the main properties of the flux (12)-(13). The proofs are given in Appendix 7. It is
conservative:
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Proposition 3.1. We assume that periodic boundary conditions are imposed on g, then the flux (12)-(13)
is conservative: ∑

j∈T
VjFj(g,a) = 0.

Beside, we have the following stability result:

Lemma 3.2. Under Assumption (8), if g ≥ 0, and if

∆t ≤ 1
2C2

1

h

‖a‖L∞(Ω)
, (20)

then gj −∆tFj(g,a) ≥ 0.

3.2 Dirichlet boundary conditions
We denote by γ ∈ C0(∂Ω) the Dirichlet boundary condition:

g(t,x) = γ, if x ∈ ∂Ω, and 〈a(x),n〉 < 0. (21)

On the boundary of the domain, the vectors
(

Cr+1/2
j

)
j,r+1/2

are aligned with the normal vector to the

boundary of the domain n. This is not the case for the vectors
(
Cr
j

)
j,r

. Thus we need to set θ = 1 to
correctly discretise (21).
Besides, in the cells on the boundary and for the edges on the boundary, we set:

g
r+1/2
j =

{
ḡ
r+1/2
j , if 〈ar+1/2,C

r+1/2
j 〉 > 0,

γ(xr+1/2) else,
(22)

where ḡr+1/2
j is given by 14.

Note that the gradients ur given by (26) is not well-defined in the corner nodes. Indeed there is only
one support cell and thus the matrix βr (7) has rank 1 and is singular. To overcome this difficulty we
compute the gradient ur at the corner as the average of the gradients at the other nodes of the support cell.

Remark 2. In the diffusion regime, the Dirichlet boundary condition is imposed on the whole boundary,
thus it is no longer necessary to set θ = 1.

3.3 Periodic boundary conditions
In the case of periodic boundary conditions, we add some ghost cells on the outside of the mesh so as to
make it periodic. We then define I on these new cells and we use these values and this new geometric data
to compute the Cdof

j on the boundary of the domain.

4 Numerical scheme
In this Section we present our numerical scheme. The space discretisation is given in Section 4.1. The time
discretisation is described in 4.2. The properties and the diffusion limit of the scheme are given in Section
4.3 and Section 4.4.
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4.1 Upwind scheme and modified streaming velocity
Equation (5) is integrated over the cell Ωj . We use the second order upwind flux (19) to approximate the
flux:

d

dt
Ik,j + Fj(Ik, ω̄k) +

σtj
ε2 Ik,j =

σsj
ε2

K∑
k′=1

pk′Ik′,j + qk,j

The streaming velocity ω̄k,dof is a consistent approximation of ωk/ε, meaning that:

ω̄k,dof = 1
ε
ωk +O(h2). (23)

We want ω̄k,dof to be second order consistent with ωk/ε because we aim at designing a scheme that is second
order consistent with (5). Moreover, in order to be consistent with (3) in the diffusion regime, we also impose
the following condition:

lim
ε→0

ω̄k,dof is consistent with −
(
∇E

3σsE

)
dof

, (24)

where E is the average over the directions (see Section 2): E =
∑K
k′=1 Ik′/K. The condition (24) is justified

in Section 4.4. Therefore we propose:

ω̄k,dof = ε2ωk + (σtdof)
2
h3udof

ε3 + (σtdofh)3 . (25)

The quantity udof is an approximation of −∇E/(3E) at point xdof. It is given by:

ur = 1
3Er

β−1
r

∑
i|r∈Ωi

EiCr
i , Er = 1

Nr

∑
i|r∈Ωi

Ei + h2, ur+1/2 = ur + ur+1

2 , (26)

where we recall that βr is defined in (7). The quantity Er is an approximation of E at point xr. We add a
h2 term in order to make ur well defined in the case where all the (Ei)i vanish.

Lemma 4.1. Under Assumptions (8) (9) (10), and assuming that the (Ik,j)k≤K,j∈T are nonnegative, we
have, for any dof :

‖udof‖ ≤
C2

1
3h .

Therefore Definition (25) does satisfy (23) and (24). Thus the resulting scheme is nonlinear and second order
consistent with (5). Moreover, in the streaming regime, that is to say when σt = σs = 0, we have exactly
ω̄k,dof = ωk/ε. We also emphasize that ω̄k,dof in (25) may be written as a convex combination between the
advection velocity ωk/ε and the "diffusion" velocity u/σs:

ω̄k,dof = η
ωk
ε

+ (1− η)udof

σsdof
, η = ε3

ε3 + (σtdofh)3 .

Remark 3 (Discontinuity of the cross sections). In the case when σt is discontinuous, then we choose the
mesh such that the discontinuity is located at an interface dof∗. At this interface, σt is no longer defined.
To overcome this difficulty, we set, at this interface:

ω̄k,dof∗ = ωk
ε
.
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4.2 Partially implicit time discretisation
We use a partially implicit time discretisation. The streaming term is chosen completely explicit whilst the
source and absorption terms are still implicit:

In+1
k,j − Ink,j

∆t + Fj(Ink , ω̄nk ) +
σtj
ε2 I

n+1
k,j −

σsj
ε2

K∑
k′=1

pk′I
n+1
k′,j = qk,j (27)

Owing to Sherman-Morrison Lemma 4.2, we can write an explicit formula for In+1
k,j . This result is given in

Proposition 4.3. Besides, it shows that System (27) can be written as a system without any stiff term. Thus,
this system admits a finite and nonzero limit when ε→ 0. This limit is described in Section 4.4.

Lemma 4.2. Let A ∈ RK×K be nonsingular, and let u ∈ RK , v ∈ RK . The matrix A+u⊗ v is nonsingular
if and only if 1 + 〈v,A−1u〉 6= 0. Besides, in such a case, its inverse is given by:

(A+ u⊗ v)−1 = A−1 − 1
1 + 〈v,A−1u〉

A−1u⊗ vA−1. (28)

Proof. The proof can be found in [Ser02].

Proposition 4.3. Equation (27) is equivalent to:

In+1
k,j = µ

(1)
j (Ink −∆tFj(Ink , ω̄nk ) + ∆tqk,j) + µ

(2)
j

K∑
k′=1

pk′
(
Ink′,j −∆tFj(Ink′ , ω̄nk′) + ∆tqk′,j

)
, (29)

where:

µ
(1)
j = ε2

ε2 + ∆tσtj
, µ

(2)
j =

∆tσsj
ε2 + ∆tσtj

× 1
1 + ∆tσaj

. (30)

Proof. Using (30), Equation (27) reads as:

In+1
k,j −

∆tσsj
ε2 + ∆tσtj

K∑
k′=1

pk′I
n+1
k′,j = µ

(1)
j (Ink −∆tFj(Ink , ω̄nk ) + ∆tqk,j) . (31)

Equation (31) can be set under the following form:

(iK − λjv ⊗ p) In+1
j = bj , In+1

j =

I
n+1
1,j
...

In+1
K,j

 ∈ RK , p =

 p1
...
pK

 ∈ RK , v =

1
...
1

 ∈ RK ,

(32)
where iK is the identity matrix of size K and:

λj =
∆tσsj

ε2 + ∆tσtj
, bk,j = µ

(1)
j (Ink −∆tFj(Ink , ω̄nk ) + ∆tqk,j) .

Moreover, owing to (4), we have:

1− λj〈v, p〉 = 1−
∆tσsj

ε2 + ∆tσtj
> 0.

Therefore, according to Lemma 4.2, the matrix of System (32) is nonsingular and its inverse is given by:

(iK − λjv ⊗ p)−1 = iK + λj

1− ∆tσs
j

ε2+∆tσt
j

v ⊗ p = iK +
∆tσsj

ε2 + ∆tε2σaj
v ⊗ p.

Thus Equation (31) becomes:
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In+1
k,j = µ

(1)
j (Ink −∆tFj(Ink , ω̄nk ) + ∆tqk,j) + µ

(1)
j

∆tσsj
ε2 + ∆tε2σaj︸ ︷︷ ︸

=µ(2)
j

K∑
k′=1

pk′
(
Ink′,j −∆tFj(Ink′ , ω̄nk′) + ∆tqk′,j

)
.

The result is proved.

Therefore In+1
k,j writes explicitly as a function of the quantities at iteration n. Besides, if q = σa = 0

then µ(1)
j + µ

(2)
j = 1 and In+1

k,j simply reads as a convex combination between the anisotropic and isotropic
dynamics. We observe in Section 5 that the scheme (29) is indeed second order convergent. Moreover, the
positivity of the solution is preserved under a classical CFL condition (see Proposition 4.6 below).

Remark 4. The scheme (29) has the same computational cost as an explicit scheme. There is no stiff term.
No fixed point iteration is required, no linear system needs to be solved. Thus each time iteration is very fast
to compute and there is no need for an acceleration procedure in the diffusion limit.

4.3 Properties
In this section, we present the properties of the scheme (27). We first detail the conservation property
(Proposition 4.4), then we give an intermediary result (Lemma 4.5) that is used in the proof of the CFL
condition (Proposition 4.6).

Proposition 4.4. We assume periodic boundary conditions are imposed. If σa = 0, then the scheme (27)
is conservative:

∑
j∈T

VjE
n+1
j =

∑
j∈T

VjE
n
j + ∆t

∑
j∈T

Vj

K∑
k′=1

pk′qk′,j .

Proof. This result is a direct consequence of Lemma 3.1. We multiply Equation (27) by pk and we sum over
the directions, this gives:

1
∆t

[
K∑
k′=1

pk′I
n+1
k′,j −

K∑
k′=1

pk′I
n
k′,j −∆t

K∑
k′=1

pk′qk′,j

]
+

K∑
k′=1

pk′Fj(Ink′ , ω̄nk′) = 0. (33)

We multiply (33) by Vj and we sum over the cells, which leads to:

1
∆t
∑
j∈T

Vj

[
K∑
k′=1

pk′I
n+1
k′,j −

K∑
k′=1

pk′I
n
k′,j −∆t

K∑
k′=1

pk′qk′,j

]
+

K∑
k′=1

pk′
∑
j∈T

VjFj(Ink′ , ω̄nk′) = 0.

Lemma 3.1 states that: ∑
j∈T

VjFj(Ink′ , ω̄nk′) = 0.

The result is proved.

Lemma 4.5. Under the assumptions of Lemma 4.1, we have, for any dof and any direction k:

‖ω̄k,dof‖ ≤ 4 max
(

1, C
2
1

3

)
1

σtdofh+ ε
.

12



Proof. We use Lemma 4.1 and ‖ωk‖ ≤ 1 in (25). This gives:

‖ω̄k,dof‖ ≤ max
(

1, C
2
1

3

)
ε2 + (σtdofh)2

ε3 + (σtdofh)3 ≤ 4 max
(

1, C
2
1

3

)
1

σtdofh+ ε
. (34)

The result is proved.

Proposition 4.6. Under Assumptions (8) (9) (10), if
(
Ink,j

)
k,j

and q are nonnegative, and if:

∆t ≤ C4.6

(
εh+ h2 min

dof∈T
σtdof

)
, (35)

with C4.6 =
[
8C2

1 max
(

1, C
2
1

3

)]−1
, then In+1

k,j is nonnegative for all k, j.

Proof. Recalling that q, µ(1) and µ(2) are nonnegative and using Lemma 3.2 and Lemma 4.5 gives the desired
result.

4.4 AP property and limit scheme
In this Section, we explain why the scheme (29) is AP . More precisely, we study the limit of the scheme
(29) as ε goes to 0. First, one can easily see that:

µ
(1)
j −−−→ε→0

0. (36)

Besides, using σt = σs + ε2σa leads to:

µ
(2)
j −−−→ε→0

1
1 + ∆tσa . (37)

Therefore, combining (29) and (36) (37) gives the following limit as ε vanishes:

In+1
k,j = 1

1 + ∆tσa
K∑
k′=1

pk′
(
Ink′,j −∆tFj(Ink′ , ω̄nk′) + ∆tqk′,j

)
.

Thus I is isotropic:

In+1
k,j =

K∑
k′=1

pk′I
n+1
k′,j = En+1

j .

In addition, when ε vanishes, the velocity field does not depend on ωk anymore ans so is the flux:

ω̄k,dof = udof

σsdof
, Fj(Ink , ω̄nk ) = Fj

(
En,

un

σs

)
.

Therefore, as ε goes to 0, Equation (29) becomes:

(1 + ∆tσa)En+1
j = Enj −∆tFj

(
En,

un

σs

)
+ ∆t

K∑
k′=1

pk′qk′,j ,

which may be written as:

En+1
j − Enj

∆t + Fj
(
En,

un

σs

)
+ σajE

n+1
j =

K∑
k′=1

pk′qk′,j . (38)

As u is consistent with −∇E/(3E), the flux is consistent with −div [E ×∇E/(3σsE)] = −div [∇E/(3σs)].
Therefore (38) is consistent with (3). It is the second order scheme from [BHL24].

13



5 Numerical results
In this Section we present some numerical examples to illustrate the good properties of our method. We
use a quadrature of Equal Weights from [Car]. The weights (pk)1≤k≤K are equal to 1/K and the number of
directions has to be of the following form K = 4N2 with N ∈ N.
In the first three test cases, we compute analytical solutions of (2) and we perform a convergence analysis
(Sections 5.1, 5.2, 5.3) on cartesian meshes (uniform grids) and random meshes (see Figure 5). Denoting by
Ĩ the exact solution and tf the final time, the error is computed the following way:

error = max
1≤k≤K

(∑
j∈T Vj

∣∣Ik,j − Ĩ(tf ,xj ,ωk)
∣∣∑

j∈T Vj Ĩ(tf ,xj ,ωk)

)
.

We also compute the solution of a Lattice problem defined in [BH05] in Section 5.4. Eventually we present
our results for a test case from [KFJ16].

Figure 5: Random mesh.

5.1 Free streaming regime
In this test case, we choose σs = σa = 0, q = 0 and ε = 1. The exact solution is given by:

I(t,x,ω) = exp
(
−100 ‖x− tω − x0‖2

)
, x0 = (1, 1).

Dirichlet boundary conditions are imposed (see Section 3.2). We chooseK = 4 directions. The computational
domain is Ω = [0, 2]2. We set θ = 1. Figure 6 shows the error curve at final time tf = 0.03 and ∆t = h2.
Indeed, as the scheme (29) is first order consistent in time, we need to set ∆t = O(h2) in order to make the
consistency error decrease as h2. We see that our method gives the expected rate of convergence.

Figure 6: Error on cartesian (left) and random (right) meshes.
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5.2 Diffusion regime
In this test case, we choose σs = 1, σa = q = 0 and ε = 0. The exact solution is the fundamental solution
of the diffusion equation:

∂tE −
1
3∆E = 0, E(t,x) = 3

4π(t+ t0) exp
(
−3‖x− x0‖2

4(t+ t0)

)
,

with t0 = 0.01 and x0 = (1, 1). The computational domain is Ω = [0, 2]2. Dirichlet boundary conditions are
imposed. We choose K = 4 directions and θ = 1/2. The timestep is given by ∆t = h2 and the final time is
tf = 0.03. Figure 7 shows the error curves. The right convergence rate is recovered.

Figure 7: Error on cartesian (left) and random (right) meshes.

5.3 Manufactured test case
We choose ε = 1. The analytical solution of this test case is given by:

I(t, x, y,ω) = et (10 + sin(2πx) + sin(2πy) + 〈ω, f〉) , f = (1,−1),

and the absorption coefficients are given by:

σt(x, y) = 2 + (sin(2πx) + sin(2πy))2, σs = 0.1.

We compute the source term q(t, x, y,ω) so as to satisfy Equation (2). Periodic boundary conditions are
imposed. We set K = 4. Figure 8 displays the error curves with the second order scheme at time tf = 0.01
and ∆t = h2 and θ = 1/2.

Figure 8: Error on cartesian meshes (left) and random meshes (right).
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5.4 Lattice problem
This test case is borrowed from [BH05]. The computational domain is Ω = [0, 7]2. The initial condition is 0
and ε = 1. The source term is q = 1[3,4]×[3,4]. Homogeneous Dirichlet boundary conditions are imposed. We
set θ = 1. The final time is tf = 3.2 and the time step is ∆t = 0.01. The absorption coefficients are:

σt = 10× 1ΩA
, σs = 1− 1ΩA

.

The domain ΩA is pictured in red color in Figure 9.

Figure 9: The domain ΩA in red color.

Some numerical solutions are plotted in the following Figures. The log scale map is limited to seven orders of
magnitude: we display with the same blue color all the regions where the solution is smaller or equal to 10−7.

Figures 10, 11 and 12 display the numerical solution with K = 4, K = 144 and K = 484 respectively.
We see that we recover the results of [BH05].

Figure 10: Numerical solution (in log scale) at time tf = 3.2 on a cartesian mesh of size 140× 140 and with
K = 4.
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Figure 11: Numerical solution (in log scale) at time tf = 3.2 on a cartesian mesh of size 140× 140 and with
K = 144.

Figure 12: Numerical solution (in log scale) at time tf = 3.2 on a cartesian mesh of size 140× 140 and with
K = 484.

5.5 Variable scattering test case
Here we compute the solution of the variable scattering test case from [KFJ16]. The domain is [−1, 1]2, the
final time is tf = 0.005 and we set ε = 0.01 and σa = q = 0. The initial condition and the cross section are
given by:

I(t = 0, x, y, ωx, ωy) = 1
0.04π exp

(
−x

2 + y2

0.04

)
, σs(x, y) =

{
c4(c2 − 2)2 if c =

√
x2 + y2 < 1,

1 else.

The solution is almost 0 near the boundary, so we impose periodic boundary conditions. We set θ = 1/2.
Figure 13 shows the solution E on a uniform grid of size Nx = Ny = 200 with ∆t = 10−3. We do recover
the solution from [KFJ16].
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Figure 13: Numerical solution E at time tf = 0.005 on a cartesian mesh of size 200× 200 and with K = 64.

6 Conclusion and future work
In this paper we have presented a scheme that is asymptotic preserving, positive under a classical CFL
condition that depend on the regime, conservative and second order consistent in space. Besides its compu-
tational cost is quite low as there is no linear system to solve nor fixed point iteration to compute.

Several extensions to this work are possible. First, the method can be easily adapted to 3D unstructured
meshes. Indeed, the 3D formulas for the node vectors

(
Cr
j

)
j,r

are given in [CDDL09]. The 3D equivalent

of the vectors
(

Cr+1/2
j

)
j,r+1/2

are nothing but normal vectors to the faces. In addition, we have seen in
Proposition 4.3 that the intensity at iteration n+ 1 can be explicitely computed as a function of the quanti-
ties at iteration n. This property will allow us to design a scheme to solve efficiently the transport equation
coupled with matter. This is an ongoing work.

7 Appendix
7.1 Proof of Lemma 3.1
First, we have:∑

j∈T
VjFj(g,a) = (1− θ)

∑
j∈T

∑
r∈Ωj

〈
Cr
j ,ar

〉
grj + θ

∑
j∈T

∑
r+1/2∈Ωj

〈
Cr+1/2
j ,ar+1/2

〉
g
r+1/2
j . (39)

Now we prove: ∑
j∈T

∑
r∈Ωj

〈
Cr
j ,ar

〉
grj = 0. (40)

Indeed, exchanging the sums over the cells and over the nodes leads to:∑
j∈T

∑
r∈Ωj

〈
Cr
j ,ar

〉
grj =

∑
r∈T

∑
i|r∈Ωi

〈Cr
i ,ar〉 gri . (41)

Besides, using (13), the last sum in (41) can be written as:
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∑
i|r∈Ωi

gri 〈Cr
i ,ar〉 =

∑
i∈I+

r

ḡri 〈Cr
i ,ar〉+

∑
i∈I−r


1∑

`∈I+
r
〈ar,Cr

`〉
∑
`∈I+

r

〈ar,Cr
`〉 ḡr`︸ ︷︷ ︸

independent from i

 〈Cr
i ,ar〉 . (42)

The quantity:

1∑
`∈I+

r
〈ar,Cr

`〉
∑
`∈I+

r

〈ar,Cr
`〉 ḡr`

being independent from i, we can remove it from the sum
∑
i∈I−r in (42) and (42) reads as:

∑
i|r∈Ωi

gri 〈Cr
i ,ar〉 =

∑
i∈I+

r

ḡri 〈Cr
i ,ar〉+

∑
i∈I+

r

〈ar,Cr
i 〉 ḡri

 1∑
i∈I+

r
〈ar,Cr

i 〉
∑
i∈I−r

〈ar,Cr
i 〉 . (43)

Besides, owing to Lemma 2.1, we have: ∑
i∈I−r

Cr
i = −

∑
i∈I+

r

Cr
i . (44)

Computing the inner product of (44) with ar gives:∑
i∈I−r

〈ar,Cr
i 〉 = −

∑
i∈I−r

〈ar,Cr
i 〉 , and thus: 1∑

i∈I+
r
〈ar,Cr

i 〉
∑
i∈I−r

〈ar,Cr
i 〉 = −1. (45)

Inserting (45) in (43) leads to: ∑
i|r∈Ωi

gri 〈Cr
i ,ar〉 = 0. (46)

Collecting (41) and (46) proves (40).

Using similar arguments, we can easily show:∑
j∈T

∑
r+1/2∈Ωj

〈
Cr+1/2
j ,ar+1/2

〉
g
r+1/2
j = 0. (47)

Inserting (40) and (47) in (39) gives the desired result.

7.2 Proof of Lemma 3.2
First, we define:

R+
j = {r, 〈Cr

j ,ar〉 > 0}, R−j = {r, 〈Cr
j ,ar〉 ≤ 0},

and:

R̃+
j = {r + 1/2, 〈Cr+1/2

j ,ar+1/2〉 > 0}, R̃−j = {r + 1/2, 〈Cr+1/2
j ,ar+1/2〉 ≤ 0}.

Using these definitions, we easily have:

gj −∆tFj(g,a) ≥ gj −
∆t
Vj

(1− θ)
∑
r∈R+

j

〈
ar,Cr

j

〉
ḡrj + θ

∑
r+1/2∈R̃+

j

〈
ar+1/2,C

r+1/2
j

〉
ḡ
r+1/2
j

 .
According to (14), we have ḡdof

j ≤ 2gj . This leads to:
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gj −∆tFj(g,a) ≥ gj

1− 2∆t
Vj

(1− θ)
∑
r∈R+

j

〈
ar,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
ar+1/2,C

r+1/2
j

〉
 . (48)

Besides, using Assumption (8), we have:

∆t
Vj

(1− θ)
∑
r∈R+

j

〈
ar,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
ar+1/2,C

r+1/2
j

〉 ≤ C2
1∆t
‖a‖L∞(Ω)

h
. (49)

Collecting (48) and (49) gives the result.

7.3 Proof of Lemma 4.1
As the (Ik,j)k≤K,j∈T are nonnegative, the (Ej)j∈T are also nonnegative and we have:∑

i|r∈Ωi
Ei

Er
≤ Nr ≤ C1.

Therefore, using Assumption (8) we have:∥∥∥∥∥∥ 1
Er

∑
i|r∈Ωi

EiCr
i

∥∥∥∥∥∥ ≤ C1h.

Using (10) gives the result.
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