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Abstract
In this paper, we propose a finite volume scheme for the linear transport equation in two space

dimensions. This scheme is based on an upwind scheme where the velocity is modified so as to recover
the correct diffusion limit. The resulting scheme is asymptotic preserving, positive under a classical CF L
condition and conservative. Besides, we propose two versions of this scheme that are first and second
order consistent on unstructured polygonal meshes.
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1 Introduction
In this work, we propose a finite volume scheme that discretises the radiative transfer equation (see [1]):

1
c
∂tI + div (Iω) + σtI = σs

1
4π

∫
S2
Idω′ + q. (1)

It is a linear Boltzmann type equation. The unknown I = I(t,x,ω) is the radiative intensity and gives
the distribution of photons. It depends on the time variable t ≥ 0, on the space variable x ∈ Ω ⊂ R3 (Ω
being the computational domain) and direction ω ∈ S, where S is the unit sphere in R3. The source term
q = q(t,x,ω) ≥ 0 is nonnegative. The scattering cross section is σs ≥ 0 and the total cross section is σt ≥ σs.
The difference σt−σs gives the absorption cross section. We assume here that the speed of light c is equal to 1.

Equation (1) is of great importance in the numerical simulation of inertial confinement fusion (ICF). In
these experiments, a small ball of hydrogen (the target) is submitted to intense radiation by laser beams.
These laser beams are either pointed directly to the target (direct drive approach), or pointed to gold walls
of a hohlraum in which the target is located (indirect drive approach, see Figure 1). These gold walls heat
up, emitting X-rays toward the target. The outer layers of the target are heated up, hence ablated. By mo-
mentum conservation, the inner part of the target implodes (this is usually called the rocket effect). Hence,
the pressure and temperature of the hydrogen inside the target increase, hopefully reaching the thermody-
namical conditions for nuclear fusion. This process is summarized in Figure 2. Other possible applications
of (1) are radiation hydrodynamics in stellar atmospheres. Of course, the model (1) is over-simplified for
these applications as it should, among other things, include a dependence on the frequency. But (1) should
be seen as an elementary building block for more realistic models.

Figure 1: Schematic view of the Hohlraum and the target

Figure 2: The concept of ICF (inertial confinement fusion) taken from http://www.lanl.gov/projects/dense-
plasma-theory/background/dense-laboratory-plasmas.php

It has been shown in [2] that if q > 0 and σt > 0 and σt − σs > 0 then the solution I is positive. Moreover,
in [3] the author proved that if q = 0 and σt = σs then the solution satisfies a maximum principle property.
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Eventually, Equation (1) admits a diffusion limit. Let ε > 0 be given. If we replace σt ← σt/ε, σs ← σs/ε
and if we perform the following scaling t← εt , then (1) reads as:

∂tI + 1
ε
div (Iω) + σt

ε2 I = σs

ε2
1

4π

∫
S2
Idω′ + q

ε
. (2)

Moreover, if q = 0 and σt−σs = o(ε2) then the solution I of (2) converges toward the solution of a diffusion
equation I −−−→

ε→0
E0 where:

∂tE
0 − div

(
1

3σs∇E
0
)

= 0. (3)

See [4] [5] [1] for instance. Therefore it is important for a numerical scheme that discretises (2) to be consis-
tent with the limit model (3). In this case, we say that the scheme is asymptotic-preserving. The very first
works in this direction were [6] and [7]. These papers were dedicated to 1D calculations. Some extensions in
two or three dimensions on unstructured meshes were proposed and were based on the discontinuous finite
element methods (see [8] [9] [10]). More recent works are based on finite volume methods ([11] and [12] which
are based on [13] [14]). Lastly [15] proposes an AP finite volume scheme that is based on a micro-macro
decomposition.

In this paper, we perform an angular discretisation of (2). We choose K directions (ωk)1≤k≤K and we
define Ik = I(t,x,ωk) for 1 ≤ k ≤ K. The integral over the unit sphere in (2) is discretised using a
quadrature of Equal Weights (see [16]):

1
4π

∫
S2
Idω′ ≈ 1

K

K∑
k′=1

Ik′ .

The quadrature weights are constant and equal to 1/K and the directions (ωk)1≤k≤K satisfy:

1
K

K∑
k′=1

ωk′ = 0, 1
K

K∑
k′=1

ωk′ ⊗ ωk′ = 1
3 i3. (4)

The matrix i3 is the identity matrix of size 3. As explained in [16], the number of directions K has to be of
the following form K = 4N2 with N ∈ N. The equation we solve therefore reads as:

∂tIk + 1
ε
div (Ikωk) + σt

ε2 Ik = σs

ε2
1
K

K∑
k′=1

Ik′ + qk
ε
. (5)

Moreover, owing to (4), if q = 0 and σt−σs = o(ε2), then Equation (5) admits a diffusion limit: Ik −−−→
ε→0

E0

where E0 is solution to (3). Besides, owing to [17], Equation (3) satisfies a positivity principle and we can
write it as:

∂tE
0 − div

(
E0 ∇E0

3σsE0

)
= 0. (6)

In this work, we focus on the two dimensional case. Beside, the method we present uses the reformulation
(6) and has the following properties:

• asymptotic preserving: the scheme we obtain when ε→ 0 is consistent with (3),

• consistent on unstructured 2D meshes in any regime. We propose a scheme that is first order consistent
and another one that is second order consistent,

• positivity preserving: if at iteration n the numerical solution is positive (resp nonnegative), then the
solution at iteration n+ 1 is also positive (resp nonnegative) possibly under a CFL condition,

• conservative.
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The main idea of our method is to use an upwind scheme to discretise Equation (5) and to modify the
streaming velocity in order to obtain a scheme that is consistent with (6) when ε → 0. The scheme is said
to be composite as the fluxes are computed at the nodes and at the edges of the cells (this idea was first
introduced in [18, 14]).
The article is organized as follows. In Section 2, we define the notations that we use in the rest of the paper
and we explain the geometrical assumptions we need to develop our method. In Section 3 we present a first
order consistent scheme. Section 4 is dedicated to the second order scheme. Numerical examples are shown
in Section 5. Eventually, our method being based on an upwind scheme, we present it and we detail its
properties in Appendix 6.

2 Notations assumptions on the mesh
We present here some notations that will be used in the rest of the paper. Let Ωj be a cell of the mesh T
paving the domain Ω, we define:

• Vj is the volume of the cell Ωj ,

• (xr)r the coordinates of the vertices of the cell j;

•
∑
r∈Ωj

the sum over all the vertices of the cell j;

• r + 1/2 is the index of the edge between the nodes xr and xr+1, its middle is denoted by xr+1/2 =
(xr + xr+1)/2,

•
∑
r+1/2∈Ωj

the sum over all edges of the cell j;

• a degree of freedom (denoted as dof) is either a node or a mid-edge point;

• Nj =
∑

dof∈Ωj
1 the number of degrees of freedom in the cell Ωj ;

•
∑
i|dof∈Ωi

the sum, for a given degree of freedom, over all the cells that contains this degree of freedom;

• Nr =
∑
i|r∈Ωi

1 the number of cells that contains the given node r;

•
∑
j∈T the sum over all the cells of the mesh;

• J =
∑
j∈T 1 is the number of cells of the mesh;

• h the maximum length of edges of the mesh;

• Ink,j is the value of the unknown in direction k, in cell j, at iteration n;

• Ik = (Ik,i)i∈T is the vector of the values of the unknown in direction k;

• Ej =
∑K
k′=1 Ik′,j/K is the average, in cell j, over the directions;

• E = (Ei)i∈T is the vector of the averages;

• for p ∈ N∗, the identity matrix of size p is denoted by ip;

• 〈·, ·〉 the inner product in R2;

• ‖ · ‖ is the L∞ norm for vectors, that is to say, for p ∈ N∗:

∀ U ∈ Rp, ‖U‖ = max
1≤l≤p

|Ui|, ∀ A ∈ Rp×p, ‖A‖ = max
U 6=0

‖AU‖
‖U‖

.
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Figure 3: Normal vectors at the nodes and the edges of the cell Ωj

Let xr−1, xr and xr+1 be 3 consecutive nodes of Ωj (see Figure 3 for instance). The normal vector to the
edge [xr,xr+1] is denoted by Cr+1/2

j = (xr+1 − xr)⊥, where for any vector ξ ∈ R2:

ξ =
(
ξ1
ξ2

)
, ξ⊥ =

(
−ξ2
ξ1

)
.

Similarly, we define the normal vector to the node r as:

Cr
j = 1

2(xr+1 − xr−1)⊥ = 1
2

(
Cr+1/2
j + Cr−1/2

j

)
. (7)

Definition (7) was first introduced in [13]. We also define the matrix:

βr =
∑
i|r∈Ωi

Cr
i ⊗ (xr − xi), (8)

We assume that there exists a constant C1 such that, for any dof and any cell j:

1
C1
h2 ≤ Vj ≤ C1h

2, Ndof ≤ C1, Nj ≤ C1, (9)

Note that by definition we have
∥∥Cdof

j

∥∥ ≤ h. Moreover, we assume that for any node r ∈ T the matrix βr
defined in (8) is positive definite:

∀ξ ∈ R2, 〈βrξ, ξ〉 ≥
1
C1
h2‖ξ‖2. (10)

Thus it is non-singular and we have:

‖β−1
r ‖ ≤ C1

1
h2 . (11)

Assumption (10) is studied in [19]. We have the following result:
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Proposition 2.1. Let r be an inner node, we have:∑
i|r∈Ωi

Cr
i = 0.

We also have the following quadrature formula.

Theorem 2.2. Let g ∈ C2(R2;R). We assume Assumptions (9) are fulfilled. Then, for all θ ∈ [0, 1]:

1
Vj

∫
∂Ωj

gn = 1
Vj

(1− θ)
∑
r∈Ωj

g(xr)Cr
j + θ

∑
r+1/2∈Ωj

g(xr+1/2)Cr+1/2
j

+O(h). (12)

Moreover, the remainder in (12) vanishes if g is an affine function.

Remark 1. We propose here some explanations on the choice of the parameter θ:

• θ = 0 : node based scheme, consistent but may suffer from cross stencil phenomena (see [12]),

• θ = 1 : edge-based scheme, useful to implement boundary conditions (see Section 6.3),

• θ = 2/3 : better precision. Formula (12) is exact for quadratic functions and the remainder is O(h2).
This choice may allow to have third order convergence (see [20] for instance).

3 First order scheme
In this Section, we present the construction of our first order scheme.

3.1 Upwind scheme and new streaming velocity
Equation (5) is integrated over the cell Ωj . We use Theorem 2.2 to approximate the flux:

Vj
d

dt
Ik,j + θ

∑
r∈j

〈
ω̄k,r,Cr

j

〉
Îrk,j + (1− θ)

∑
r+1/2∈j

〈
ω̄k,r+1/2,C

r+1/2
j

〉
Î
r+1/2
k,j + Vj

σtj
ε2 Ik,j (13)

= Vj
σsj
ε2

1
K

K∑
k′=1

Ik′,j + Vjqk,j . (14)

The quantity Îdof
k,j is an approximation of I at point xdof in cell Ωj . It is computed using an upwind scheme:

Îdof
k,j =


Ik,j if 〈ω̄k,dof,Cdof

j 〉 > 0,
1∑

i∈A+
dof
〈ω̄k,dof,Cdof

i 〉
∑
i∈A+

dof

〈ω̄k,dof,Cdof
i 〉Ik,i else, (15)

and: A+
dof = {i, 〈ω̄k,dof,Cdof

i 〉 > 0}. The upwind scheme and its properties are introduced in detail in Section
6. The streaming velocity ω̄k,dof is a consistent approximation of ωk/ε, meaning that:

ω̄k,dof −−−→
h→0

1
ε
ωk. (16)

Moreover, in order to be consistent with (6), we also impose:

ω̄k,dof −−−→
ε→0

− ∇E
3σsdofE

, (17)

where E is the average over the directions (see Section 2): E =
∑K
k′=1 Ik′/K. The condition (17) is justified

in the next sections. Therefore we propose:
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ω̄k,dof = εωk + σsdofh
2udof

3(σsdofh)2 + ε2 . (18)

The quantity udof is an approximation of −∇E/E at point xdof that is given below. Therefore Definition
(18) does satisfy (16) and (17). Moreover, in the streaming regime, that is to say when σt = σs = 0 then we
have exactly ω̄k,dof = ωk/ε. Eventually, ur and ur+1/2 are given by:

ur = β−1
r

1
Er

∑
i|r∈Ωi

EiCr
i , Er = 1

Nr

∑
i|r∈Ωi

Ei + h2, ur+1/2 = ur + ur+1

2 , (19)

where βr is defined in (8). The coefficient Er is an approximation of E at point xr. We add a h2 term in order
to make ur well defined in the case where all the (Ei)i vanish. Moreover, the quantity β−1

r

∑
i|r∈Ωi

EiCr
i is

an approximation of −∇E at point xr. Indeed, using a Taylor expansion, we easily have:

E(xr)− E(xi) = 〈∇E(xr),xr − xi〉+O(h2). (20)

Multiplying (20) by Cr
i and summing around all the neighbouring cells {i|r ∈ Ωi} leads to:

E(xr)
∑
i|r∈Ωi

Cr
i −

∑
i|r∈Ωi

E(xi)Cr
i = βr∇E(xr) +O(h3).

Using Proposition 2.1 and (11), we show that β−1
r

∑
i|r∈Ωi

EiCr
i is indeed first order consistent with−∇E(xr):

∇E(xr) = −β−1
r

∑
i|r∈Ωi

E(xi)Cr
i +O(h).

Eventually, the resulting scheme is nonlinear and first order consistent with (5). We write it more compactly
as:

Vj
d

dt
Ik,j + [Mk,εIk]j + Vj

σtj
ε2 Ik,j = Vj

σsj
ε2

1
K

K∑
k′=1

Ik′,j + Vjqk,j , (21)

whereMk,ε = M
(
(ω̄k,dof)dof∈T

)
is the streaming matrix with velocity field (ω̄k,dof)dof∈T andM(·) is defined

in (57). We remind that Mk,ε depends on the unknown Ik and on ε.

3.2 Partially implicit time discretisation
We use a partially implicit time discretisation. The streaming velocity is chosen at time tn while the sources
are chosen at time tn+1:

Vj
In+1
k,j − Ink,j

∆t +
[
Mn
k,εI

n+1
k

]
j

+ Vj
σtj
ε2 I

n+1
k,j = Vj

σsj
ε2

1
K

K∑
k′=1

In+1
k′,j + Vjqk,j . (22)

Even though the scheme (13) is nonlinear, the time discretisation we choose only requires to solve a linear
system at each iteration. Moreover, it is is conservative:

Proposition 3.1. We assume periodic boundary conditions are imposed. If σtj = σsj and q = 0, then the
scheme (13) is conservative: ∑

j∈T
VjE

n+1
j =

∑
j∈T

VjEj .

Proof. This result is a direct consequence of Proposition 6.1.

Besides, we can easily prove that the solution of System (22) is positive (Proposition 3.5) as the matrix
involved is a strict M -matrix, as defined in Definition 3.2. As stated in Proposition 3.3, the inverses of these
matrices have nonnegative entries.
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Definition 3.2 (M -matrix). Let p ∈ N∗ and A a p× p matrix. A is an M -matrix if it can be written under
the form A = cI −B where B has nonnegative coefficients and its spectral radius ρ(B) satisfies:

ρ(B) ≤ c. (23)

If (23) is a strict inequality, then we say that A is a strict M -matrix.

Proposition 3.3. Let p ∈ N and A ∈ Rp×p be a strict M -matrix. Then A is nonsingular and its inverse
has nonnegative coefficients.

Proof. The proof can be found in [21].

The following proposition is useful in the proof of Proposition 3.5.

Proposition 3.4. Let p ∈ N∗ and A ∈ Rp×p be such that Al,l′ ≤ 0 if l 6= l′ and:

∀l ≤ p,
p∑

l′=1,l′ 6=l
|Al,l′ | ≤ Al,l. (24)

Then A is an M -matrix. Besides, if the inequality (24) is strict then A is a strict M -matrix.

Proof. The proof can be found in Appendix 7.

Proposition 3.5. If the
(
Ink,j

)
k,j

are nonnegative (resp positive), then the solution of (22)
(
In+1
k,j

)
k,j

is
also nonnegative (resp positive).

Proof. We write (22) as:

In+1
k,j Vj

(
1 + ∆t

ε2 (σtj − σsj ) +
σsj∆t
ε2

(
1− 1

K

))
+∆t

[
Mn
k,εI

n+1
k

]
j
−Vj

σsj∆t
ε2

1
K

K∑
k′=1,k′ 6=k

In+1
k′,j = VjI

n
k,j+∆tVjqk,j .

(25)
The matrices Mn

k,ε are M -matrices (see Proposition 6.2). Thus the matrix of System (22) is a strict M -
matrix, and according to Proposition 3.3, it is nonsingular and its inverse has nonnegative coefficients. The
right hand side of (25) is nonnegative by assumption, therefore the

(
In+1
k,j

)
k,j

are nonegative. In addition,
every line of the invert of the matrix of System (22) has at least one nonzero entry, if the right hand side is
positive then the

(
In+1
k,j

)
k,j

are also positive.

However, System (22) has size JK × JK. In order to solve it, we reformulate it and we use a fixed point
procedure that requires the solving of smaller linear systems. We define:

µ
(1)
j = ε2

ε2 + ∆tσtj
, µ

(2)
j =

∆tσsj
ε2 + ∆tσtj

ε2

ε2 + ∆t(σtj − σsj )
. (26)

Proposition 3.6. System (22) is equivalent to:

In+1
k,j + µ

(1)
j

∆t
Vj

[
Mn
k,εI

n+1
k

]
j

= µ
(1)
j Ink,j + µ

(2)
j

1
K

K∑
k′=1

Ink′,j − µ
(2)
j

∆t
Vj

1
K

K∑
k′=1

[
Mn
k′,εI

n+1
k′

]
j

(27)

+∆t
(
µ

(1)
j qk,j + µ

(2)
j

1
K

K∑
k′=1

qk′,j

)
.
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Proof. =⇒ Summing (22) over the directions leads to:

1
K

K∑
k′=1

In+1
k′,j = ν

1
K

K∑
k′=1

(
Ink′,j −

∆t
Vj

[
Mn
k′,εI

n+1
k′

]
j

)
+ ν∆t 1

K

K∑
k′=1

qk′,j , (28)

where ν is given by:

ν = ε2

ε2 + ∆t(σtj − σsj )
. (29)

Moreover, using Equation (26), Equation (22) can be written as:

In+1
k,j + µ

(1)
j

∆t
Vj

[
Mn
k,εI

n+1
k

]
j

= µ
(1)
j Ink′,j + µ

(1)
j ∆tqj +

∆tσsj
ε2 + ∆tσtj

1
K

K∑
k′=1

In+1
k′,j (30)

Inserting (28) into (30) gives (27).
⇐= Summing (27) over the directions and using (4) gives:

1
K

K∑
k′=1

In+1
k′,j +

(
µ

(1)
j + µ

(2)
j

) ∆t
Vj

1
K

K∑
k′=1

[
Mn
k,εI

n+1
k

]
j

=
(
µ

(1)
j + µ

(2)
j

) 1
K

K∑
k′=1

Ink′,j+∆t
(
µ

(1)
j + µ

(2)
j

) 1
K

K∑
k′=1

qk′,j .

(31)
Using (29) and (26), one has µ(1)

j + µ
(2)
j = ν. Therefore (31) gives (28), which implies (22).

This reformulation (27) allows to prove the AP property of our scheme. Indeed, choosing σtj = σsj and ε = 0
in (27) leads to:

In+1
k,j =

(
1
K

K∑
k′=1

Ink′,j

)
− ∆t
Vj

1
K

K∑
k′=1

[
Mn
k′,0I

n+1
k′

]
j

+ ∆t 1
K

K∑
k′=1

qk′,j .

Moreover, noticing that Mk′,0 = M
( 1

3σs u
)
does not depend on the direction k, we deduce that In+1

k,j does
not depend on k either. The limit scheme consequently reads as:

In+1
k,j = 1

K

K∑
k′=1

In+1
k,j =

(
1
K

K∑
k′=1

Ink′,j

)
− ∆t
Vj

[
M

(
1

3σsun
)(

1
K

K∑
k′=1

In+1
k′

)]
j

+ ∆t 1
K

K∑
k′=1

qk′,j . (32)

In addition, as the matrix M
( 1

3σs u
)
discretises a streaming equation with velocity field 1

3σs u and reminding
that the latter is a consistent approximation of −∇E/(3σsE), we deduce that (32) is consistent with (6).

3.3 Solving System (30) with a fixed point algorithm
In order to solve the "big" system of size JK × JK (30), we use a fixed point algorithm and we iterate on
the source term:

In+1,l+1
k,j + µ

(1)
j

∆t
Vj

[
Mn
k,εI

n+1,l+1
k

]
j

= µ
(1)
j Ink,j + µ

(2)
j

1
K

K∑
k′=1

Ink′,j − µ
(2)
j

∆t
Vj

1
K

K∑
k′=1

[
Mn
k′,εI

n+1,l
k′

]
j

(33)

+∆t
(
µ

(1)
j qk,j + µ

(2)
j

1
K

K∑
k′=1

qk′,j

)
.

At each sub-iteration, we have K linear systems to solve (this step can be paralelized). The rest of this
section is devoted to the analysis of the fixed point strategy. In the end we find a condition on ∆t that
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ensures the convergence of the sequence
([
I lk,j

]
k,j

)
l∈N

defined in (33) toward the solution of (30). This

result is given in Theorem 3.11. Equation (33) can be set under the following form:

f
(
X l+1) = X l, X l ∈ RJK , X l

kJ+j = In+1,l
k,j . (34)

The function f is defined by:

f(X) =
[
iJK + ∆tµ(1)M̄

]−1 (
B + ∆tµ(2)C̄M̄X

)
, (35)

where M̄ and C̄ are (JK)× (JK) matrices:

C̄kJ+j,k′J+j′ = 1
K

1k=k′ , M̄ = diag
(
S−1M1,ε, . . . , S

−1MK,ε

)
. (36)

The matrix S−1 = diag
(
(V −1
j )j∈T

)
is the matrix of the inverse of the areas of the cells and µ(1) =

diag
(

(µ(1)
j )j∈T

)
. The vector B is given by:

BkJ+j = µ
(1)
j Ink,j + ∆t

(
µ

(1)
j qk,j + µ

(2)
j

1
K

K∑
k′=1

qk′,j

)
+ µ

(2)
j

1
K

K∑
k′=1

Ink′,j . (37)

The gradient of f is equal to:

∇f(X) = ∆tµ(2)
[
iJK + ∆tµ(1)M̄

]−1
C̄M̄ . (38)

Our aim is to find a condition on ∆t that makes the gradient (38) smaller than 1, thus making f a contraction
mapping. Lemmas 3.7 3.8 3.9 3.10 allow to give an upper bound on the matrix

[
iJK + ∆tµ(1)M̄

]−1. Theorem
3.11 gives a condition on ∆t for the fixed point procedure to converge. We emphasize that this condition
does not becomes ∆t = O(ε). That is to say, our fixed point procedure converges in the diffusion regime
and no acceleration procedure is necessary.

Lemma 3.7. Under Assumptions (9) (10) (11), and assuming that the (Ik,j)k≤K,j∈T are nonnegative, there
exists a constant such that, for any dof :

‖udof‖ ≤
C3.6

h
.

Proof. As the (Ik,j)k≤K,j∈T are nonnegative, the (Ej)j∈T are also nonnegative and we have:

Ei
Er
≤ Nr ≤ C1.

Therefore, using Assumption (9) we have:∥∥∥∥∥∥ 1
Er

∑
i|r∈Ωi

EiCr
i

∥∥∥∥∥∥ ≤ C2
1h.

Using (11) gives the result.

Lemma 3.8. Under the assumptions of Lemma 3.7, there exists a constant such that, for any dof and any
direction k:

‖ω̄k,dof‖ ≤
C3.7

σsdofh+ ε
.

11



Proof. We use Lemma 3.7 and ‖ωk‖ ≤ 1 in (18). This gives:

‖ω̄k,dof‖ ≤ max(1, C3.6) ε+ σsdofh

(σsdofh)2 + ε2 ≤ 2 max(1, C3.6) 1
σsdofh+ ε

. (39)

The result is proved.

Lemma 3.9. Under the assumptions of Lemma 3.7, there exists a constant such that:

‖M̄‖ ≤ C3.8

min1≤j≤J
(
σsj
)
h2 + εh

. (40)

Proof. Using Lemmas 3.8 and 6.3 gives the result.

Lemma 3.10. Under the assumptions of Lemma 3.7, if

ε2∆t
ε2 + minj∈T (σtj)∆t

C3.8

minj∈T (σsj )h2 + εh
<

1
2 , (41)

then: ∥∥∥∥[iJK + ∆tµ(1)M̄
]−1
∥∥∥∥ ≤ 2. (42)

Proof. Using Lemma 3.9 and Assumption (41), we have:∥∥∥∆tµ(1)M̄
∥∥∥ ≤ 1

2 .

A classical computation gives the result.

Theorem 3.11. Under the assumptions of Lemma 3.7, if (41) is fulfilled and:

(∆t)2 minj∈T (σsj )
ε2 + minj∈T (σtj)∆t

C3.8

minj∈T (σsj )h2 + εh
< 1, (43)

then the function f defined by (35) satisfies ‖∇f‖ < 1. Therefore f is a contraction mapping and it admits

a unique fixed point which is
(
In+1
k,j

)
k,j

the solution of (30). Besides the sequence
([
In+1,l
k,j

]
k,j

)
l∈N

defined

in (33) converges toward this solution as l→∞.

Proof. Using (38) and Lemmas 3.9 and 3.10 gives the result.

Remark 2. The following condition is sufficient to ensure (43):

∆t ≤ C
(
εh+ min

j∈T
(σsj )h2

)
,

which is a classical CFL condition for a system with hyperbolic and parabolic terms.
In particular, in the diffusion regime, we see that if ∆t = O(h2) then the fixed point procedure converges.
Therefore there is no need to use an acceleration procedure.

3.4 Particular cases
In this section we present two particular cases: the streaming scheme obtained by choosing (ε, σt, σs) =
(1, 0, 0) and the limit diffusion scheme obtained as ε→ 0.

12



3.4.1 Free streaming limit

Choosing ε = 1 and σt = σs = 0 leads to:

Vj
In+1
k,j − Ink,j

∆t +
[
M (ωk) In+1

k

]
j

= Vjqk,j . (44)

The scheme reads as K decoupled linear systems. The fixed point algorithm converges in one iteration.
Moreover, as the velocity field is constant, the inverse of iJ + ∆tM (ωk) is not only with nonnegative
coefficients but it is also stochastic. Therefore the maximum principle is unconditionally ensured at each
iteration.

3.4.2 Diffusion limit

We recall here the limit scheme (32):

Vj
En+1
j − Enj

∆t +
[
M

(
1

3σsun
)
En+1

]
j

= Vj
1
K

K∑
k′=1

qk′,j . (45)

This scheme is first order consistent, unconditionally positive and partially implicit. It is an implicit version
of the first order scheme from [20]. However, System (45) is not solved directly. Indeed, due to the fixed-point
strategy, En+1 in System (45) is computed as the limit of the following sequence:

Vj
En+1,l+1
j − Enj

∆t +
[
M

(
1

3σsun
)
En+1,l

]
j

= Vj
1
K

K∑
k′=1

qk′,j . (46)

3.5 Summary of the method
We summarize here our scheme:

• compute the average En;

• compute the discrete gradients (udof)dof∈T defined in (19) and the velocities (ω̄k,dof)dof∈T defined in
(18);

• use the fixed-point procedure. Set In+1,l=0
k,j = Ink,j and iterate Equation (33) until the following condi-

tion is fulfilled:

max
j∈T

max
1≤k≤K

∣∣∣In+1,l+1
k,j − In+1,l

k,j

∣∣∣ ≤ 10−8.

4 Second order scheme
4.1 Method
In this Section we present a second order scheme. This scheme is not an extension of the scheme from Section
3. Indeed, the streaming term is chosen completely explicit whilst the source terms are still implicit:

In+1
k,j − Ink,j

∆t +Rj(Ink , ω̄nk ) +
σtj
ε2 I

n+1
k,j =

σsj
ε2

1
K

K∑
k′=1

In+1
k′,j + qk,j . (47)

The quantity Rj(Ink , ω̄nk ) is a second order approximation of

1
Vj

∫
∂Ωj

Iω̄k. (48)

Its definition and properties are detailed in Section 6.2 and we do not recall them here in order to make the
algebra clearer. Note that the scheme (47) is conservative:
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Proposition 4.1. We assume periodic boundary conditions are imposed. If σtj = σsj and q = 0, then the
scheme (47) is conservative: ∑

j∈T
VjE

n+1
j =

∑
j∈T

VjEj .

Proof. As for Proposition 3.1, this result is a direct consequence of Proposition 6.1.

Besides, owing to Sherman-Morrison Lemma 4.2, we can write an explicit formula for In+1
k,j (Proposition

4.3).

Lemma 4.2. Let p ∈ N and A ∈ Rp×p, u ∈ Rp, v ∈ Rp. The matrix A+ u⊗ v is nonsingular if and only if
1 + 〈v,A−1u〉 6= 0. Besides, in this case, its inverse is given by:

(A+ u⊗ v)−1 = A−1 − 1
1 + 〈v,A−1u〉

A−1u⊗ vA−1.

Proof. The proof can be found in [22].

Proposition 4.3. Equation (47) is equivalent to:

In+1
k,j = µ

(1)
j (Ink −∆tRj(Ink , ω̄nk )) + µ

(2)
j

1
K

K∑
k′=1

(Ink −∆tRj(Ink , ω̄nk )) (49)

+∆t
(
µ

(1)
j qk,j + µ

(2)
j

1
K

K∑
k′=1

qk′,j

)
,

where µ(1)
j , µ

(2)
j are defined in (26).

Proof. Using (26), Equation (47) reads as:

In+1
k,j −

∆tσsj
ε2 + ∆tσtj

1
K

K∑
k′=1

In+1
k′,j = µ

(1)
j (Ink −∆tRj(Ink , ω̄nk ) + ∆tqk,j) . (50)

Using Lemma 4.2, Equation (50) becomes:

In+1
k,j = µ

(1)
j (Ink −∆tRj(Ink , ω̄nk ) + ∆tqk,j) + µ

(1)
j

∆tσsj
ε2 + ∆t(σtj − σsj )

1
K

K∑
k′=1

(Ink −∆tRj(Ink , ω̄nk ) + ∆tqk′,j) .

(51)
Collecting (26) and (51) gives (49).

We see that, if q = 0 and σtj = σsj then µ
(1)
j +µ(2)

j = 1 and In+1
k,j simply reads as a convex combination between

the anisotropic and isotropic dynamics. We observe in Section 5 that the scheme (49) is indeed second order
convergent. Moreover, the positivity of the solution is preserved under a classical CFL condition:

Proposition 4.4. Under Assumptions (9) (10) (11), there exists a constant C > 0 independent from h, I,
σs, σt, ε and q such that if

(
Ink,j

)
k,j

and q are nonnegative (resp positive), and if:

∆t ≤ C
(

min
j∈T

(
σsj
)
h2 + εh

)
, (52)

then the
(
In+1
k,j

)
k,j

are nonnegative (resp positive).

Proof. Using q ≥ 0 and Lemmas 3.8 and 6.5 gives the result.

Remark 3. The condition (52) is not very restrictive. Indeed, as the scheme (49) is first order consistent
in time, we need to set ∆t = O(h2) in order to make the consistency error decrease as h2.
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4.2 AP property and limit scheme
In this Section, we explain why the scheme (49) is AP . Choosing ε = 0 in (49) leads to:

En+1
j − Enj

∆t +Rj
(
En,

1
3σsun

)
= 1
K

K∑
k′=1

qk′,j . (53)

As u is a consistent approximation of −∇E/E, the scheme (53) is consistent with (6). This scheme is the
second order scheme from [20].

5 Numerical results
In this Section we present some numerical examples to illustrate the good properties of our method. In the
first three test cases, we compute analytical solutions of (2) and we perform a convergence analysis (Sections
5.1, 5.2, 5.3) on cartesian meshes (uniform grids) and random meshes (see Figure 4). Denoting by Ĩ the
exact solution and T the final time, the error is computed the following way:

error = max
1≤k≤K

(∑
j∈T Vj

∣∣Ik,j − Ĩ(t,xj ,ωk)
∣∣∑

j∈T Vj Ĩ(T,xj ,ωk)

)
.

We also compute the solution of a Lattice problem defined in [23] in Section 5.4.

Figure 4: Random mesh.

5.1 Free streaming regime
In this test case, we choose σs = σt = 0, q = 0 and ε = 1. The exact solution is given by:

I(t,x,ω) = exp
(
−100 ‖x− tω − x0‖2

)
, x0 = (1, 1).

Dirichlet boundary conditions are imposed (see Section 6.3). We choose N = 1 directions (K = 4). The
computational domain is Ω = [0, 2]2. We set θ = 1. Figure 5 shows the error curve for the first order scheme,
at final time T = 0.5 and ∆t = h. Figure 6 shows the error curve for the second order scheme, at final time
T = 0.03 and ∆t = h2. We see that our method gives the expected rate of convergence.
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Figure 5: Error with the first order scheme of Section 3 on cartesian (left) and random (right) meshes.

Figure 6: Error with the second order scheme of Section 4 on cartesian (left) and random (right) meshes.

5.2 Diffusion regime
In this test case, we choose σs = σt = 1, q = 0 and ε = 0. The exact solution is the fundamental solution of
the diffusion equation:

∂tE −
1
3∆E = 0, E(t,x) = 3

4π(t+ t0) exp
(
−3‖x− x0‖2

4(t+ t0)

)
,

with t0 = 0.01 and x0 = (1, 1). The computational domain is Ω = [0, 2]2. Dirichlet boundary conditions are
imposed. We choose K = 4 directions and θ = 1/2. The timestep is given by ∆t = h2 and the final time
is T = 0.03. Figure 7 (resp Figure 8) shows the error curves for the first order scheme (resp second order
scheme). The right convergence rate is recovered.

Figure 7: Error with the first order scheme of Section 3 on cartesian (left) and random (right) meshes.
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Figure 8: Error with the second order scheme of Section 4 on cartesian (left) and random (right) meshes.

5.3 Manufactured test case
We choose ε = 1. The analytical solution of this test case is given by:

I(t, x, y,ω) = et (10 + sin(2πx) + sin(2πy) + 〈ω, f〉) , f = (1,−1),
and the absorption coefficients are given by:

σt(x, y) = 2 + (sin(2πx) + sin(2πy))2, σs = 0.1.
We compute the source term q(t, x, y,ω) so as to satisfy Equation (2). Periodic boundary conditions are
imposed. We set N = 1 (K = 4). Figure 9 plots the error curves with the first order scheme at time T = 0.5
and ∆t = h and θ = 1/2. Figure 10 displays the error curves with the second order scheme at time T = 0.01
and ∆t = h2 and θ = 1/2.

Figure 9: Error with the first order scheme of Section 3 on cartesian meshes (left) and random meshes (right).

Figure 10: Error with the second order scheme of Section 4 on cartesian meshes (left) and random meshes
(right).
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5.4 Lattice problem
This test case is borrowed from [23]. The computational domain is Ω = [0, 7]2. The initial condition is 0
and ε = 1. The source term is q = 1[3,4]×[3,4]. Homogeneous Dirichlet boundary conditions are imposed. We
set θ = 1. The final time is T = 3.2 and the time step is ∆t = 0.01. The absorption coefficients are:

σt(x) =


10 if x ∈ ΩA,
5.5 if x ∈ ∂ΩA,
1 else,

σs(x) =


0 if x ∈ ΩA,
0.5 if x ∈ ∂ΩA,
1 else.

The domain ΩA is pictured in red color in Figure 11.

Figure 11: The domain ΩA in red color.

Some numerical solutions are plotted in the following Figures. The log scale map is limited to seven orders of
magnitude: we display with the same blue color all the regions where the solution is smaller or equal to 10−7.

Figures 12 plots the numerical solution computed with the first order scheme of Section 3 with K = 4.
Figures 13, 14 and 15 display the numerical solution computed with the second order explicit scheme of
Section 4 with K = 4, K = 144 and K = 484 respectively. We see that we recover the results of [23].

Figure 12: Numerical solution (in log scale) at time T = 3.2 computed with the first order scheme of Section
3 on a cartesian mesh of size 140× 140 and with N = 1 (K = 4).
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Figure 13: Numerical solution (in log scale) at time T = 3.2 computed with the second order scheme of
Section 4 on a cartesian mesh of size 140× 140 and with N = 1 (K = 4).

Figure 14: Numerical solution (in log scale) at time T = 3.2 computed with the second order scheme of
Section 4 on a cartesian mesh of size 140× 140 and with N = 6 (K = 144).
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Figure 15: Numerical solution (in log scale) at time T = 3.2 computed with the second order scheme of
Section 4 on a cartesian mesh of size 140× 140 and with N = 11 (K = 484).

6 Appendix: upwind scheme
In this Section, we present two approximations of

∫
∂Ωj

g〈a,n〉, where n is the outward unit vector to ∂Ωj , g
is a given function and a is a given velocity field. The first one is a classical upwind scheme where the flux
is computed at the nodes and at the edges. It is first order consistent. We present it in Section 6.1. Then
we propose an extension that is second order consistent in Section 6.2. Eventually we present in Section 6.3
(resp Section 6.4) a way of discretising Dirichlet (resp periodic) boundary conditions.

First we use Theorem 2.2 and we approximate:∫
∂Ωj

g〈a,n〉 ≈ θ
∑
r∈j

〈
ar,Cr

j

〉
gj,r + (1− θ)

∑
r+1/2∈j

〈
ar+1/2,C

r+1/2
j

〉
gj,r+1/2, (54)

where adof = a(xdof) and gj,dof is an approximation to (xdof) in cell j. It is given by an upwind scheme:

gj,dof =


ḡdof
j if 〈adof,Cdof

j 〉 > 0,
1∑

i∈A+
dof
〈adof,Cdof

i 〉
∑
i∈A+

dof

〈adof,Cdof
i 〉ḡdof

i else, (55)

where: A+
dof = {i, 〈adof,Cdof

i 〉 > 0}. The quantity ḡdof
j is an approximation of g at point xdof in cell j that

is given below. This scheme is conservative:

Proposition 6.1. We assume that periodic boundary conditions are imposed on g, then the scheme (54)
(55) is conservative:

∑
j∈T

θ∑
r∈j

〈
ar,Cr

j

〉
gj,r + (1− θ)

∑
r+1/2∈j

〈
ar+1/2,C

r+1/2
j

〉
gj,r+1/2

 = 0.

Proof. The proof is given in [12].

6.1 First order upwind scheme
We set:

ḡdof
j = gj , (56)
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then the numerical flux (54)-(55) depends linearly on the (gi)i∈T . Therefore we write:

θ
∑
r∈j

〈
ar,Cr

j

〉
gj,r + (1− θ)

∑
r+1/2∈j

〈
ar+1/2,C

r+1/2
j

〉
gj,r+1/2 = [M(a)g]j ,

where the streaming matrix is defined by:

(M(a))jl = 1j=l

(1− θ)
∑
r∈R+

j

〈
ar,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
ar+1/2,C

r+1/2
j

〉 (57)

+(1− θ)
∑

r∈Ωj∩Ωl

1r∈R−
j

〈
ar,Cr

j

〉
1l∈A+

r

〈ar,Cr
l 〉∑

i∈A+
r
〈ar,Cr

i 〉

+θ
∑

r+1/2∈Ωj∩Ωl

1r+1/2∈R̃+
j

〈
ar+1/2,C

r+1/2
j

〉
,

where:

R+
j = {r, 〈Cr

j ,ar〉 > 0}, R−j = {r, 〈Cr
j ,ar〉 ≤ 0},

and:

R̃+
j = {r + 1/2, 〈Cr+1/2

j ,ar+1/2〉 > 0}, R̃−j = {r + 1/2, 〈Cr+1/2
j ,ar+1/2〉 ≤ 0}.

Proposition 6.2. We assume periodic boundary conditions are imposed on g, then the matrix M(a)T is an
M -matrix.

Proof. This property is a direct consequence of the conservation property. First, according to (57), we
already have:

(M(a))jj ≥ 0, and j 6= l =⇒ (M(a))jl ≤ 0.

Moreover, due to the conservation property 6.1, we have:

(1, . . . , 1)M(a)g =
∑
j∈T

θ∑
r∈j

〈
ar,Cr

j

〉
gj,r + (1− θ)

∑
r+1/2∈j

〈
ar+1/2,C

r+1/2
j

〉
gj,r+1/2

 = 0. (58)

Equation (58) is true for any vector g, therefore leading to:

M(a)T

1
...
1

 = 0.

The sum of each line of M(a)T is 0. Using Proposition 3.4 gives the result.

We conclude this Section by giving a useful Lemma:

Lemma 6.3. Under Assumption (9), there exists a constant such that:

‖M(a)‖ ≤ Ch‖a‖L∞(Ω).
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Proof. We easily have:∣∣∣∣∣∣∣
∑
r∈R+

j

〈
ar,Cr

j

〉∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∑

r+1/2∈R̃+
j

〈
ar+1/2,C

r+1/2
j

〉∣∣∣∣∣∣∣ ≤ Ch‖a‖L∞(Ω), (59)

∣∣∣∣∣ 〈ar,Cr
l 〉∑

i∈A+
r
〈ar,Cr

i 〉

∣∣∣∣∣ ≤ 1,

∣∣∣∣∣∣
∑

r∈Ωj∩Ωl

1r∈R−
j

〈
ar,Cr

j

〉
1l∈A+

r

〈ar,Cr
l 〉∑

i∈A+
r
〈ar,Cr

i 〉

∣∣∣∣∣∣ ≤ Ch‖a‖L∞(Ω), (60)

∣∣∣∣∣∣
∑

r+1/2∈Ωj∩Ωl

1r+1/2∈R̃+
j

〈
ar+1/2,C

r+1/2
j

〉∣∣∣∣∣∣ ≤ Ch‖a‖L∞(Ω). (61)

Collecting (59)-(60)-(61) gives:

|(M(a))jl| ≤ Ch‖a‖L∞(Ω), (62)

for any (j, l) ∈ [1, J ]2. Besides, if j and l do not share a node or an edge, then (M(a))jl = 0. Therefore the
number of non zero entries in line j of the matrix M(a) is O(1). This leads to:

J∑
l=1
|(M(a))jl| ≤ Ch‖a‖L∞(Ω).

Using Lemma 6.4 concludes the proof.

Lemma 6.4. Let A ∈ Rp×p, then:

‖A‖ = max
U 6=0

‖AU‖
‖U‖

≤ max
1≤l≤p

p∑
l′=1
|Al,l′ |.

6.2 Second order scheme
We propose here a version of the scheme (54)-(55) that is second order consistent. To this aim, we set:

ḡdof
j =

{
gj − 〈pdof,xj − xdof〉 if |〈pdof,xj − xdof〉| < gj ,

gj else.
(63)

The vector pdof is an approximation of −∇g at point xdof computed as:

pr = β−1
r

∑
i|r∈Ωi

giCr
i , pr+1/2 = pr + pr+1

2 (64)

Eventually, we define the second order flux by:

Rj(g,a) = θ

Vj

∑
r∈j

〈
ar,Cr

j

〉
gj,r + 1− θ

Vj

∑
r+1/2∈j

〈
ar+1/2,C

r+1/2
j

〉
gj,r+1/2, (65)

and where gj,dof is given by (55) (63) (64). Moreover, the positivity property is still valid:

Lemma 6.5. Under Assumption (9), there exists a constant C > 0 independent from h, a and g such that,
if g ≥ 0, and if

∆t ≤ C h

‖a‖L∞(Ω)
, (66)

then gj −∆tRj(g,a)j ≥ 0.
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Proof. We easily have:

gj −∆tRj(g,a) ≥ gj −
∆t
Vj

(1− θ)
∑
r∈R+

j

〈
ar,Cr

j

〉
ḡrj + θ

∑
r+1/2∈R̃+

j

〈
ar+1/2,C

r+1/2
j

〉
ḡ
r+1/2
j

 .
According to (63), we have ḡdof

j ≤ 2gj . This leads to:

gj −∆tRj(g,a) ≥ gj

1− ∆t
Vj

(1− θ)
∑
r∈R+

j

〈
ar,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
ar+1/2,C

r+1/2
j

〉
 . (67)

Besides, using Assumption (9), we have:

∆t
Vj

(1− θ)
∑
r∈R+

j

〈
ar,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
ar+1/2,C

r+1/2
j

〉 ≤ C∆t
‖a‖L∞(Ω)

h
. (68)

Collecting (67) and (68) gives the result.

6.3 Dirichlet boundary conditions
We denote by γ ∈ C0(∂Ω) the Dirichlet boundary condition:

g(t,x) = γ, if x ∈ ∂Ω, and 〈a(x),n〉 < 0. (69)

On the boundary of the domain, the vectors
(

Cr+1/2
j

)
j,r+1/2

are aligned with the normal vector to the

boundary of the domain n. This is not the case for the vectors
(
Cr
j

)
j,r

. Thus we need to set θ = 1 to
correctly discretise (69).
Besides, in the cells on the boundary and for the edges on the boundary, we set:

gj,r+1/2 =
{
ḡ
r+1/2
j , if 〈ar+1/2,C

r+1/2
j 〉 > 0,

γ(xr+1/2) else,
(70)

where ḡr+1/2
j can be computed with the first order method (Section 6.1) or the second order method (Section

6.2).

Note that the gradients ur given by (19) is not well-defined in the corner nodes. Indeed there is only
one support cell and thus the matrix βr (8) has rank 1 and is singular. To overcome this difficulty we
compute the gradient ur at the corner as the average of the gradients at the other nodes of the support cell.

Remark 4. In the diffusion regime, the Dirichlet boundary condition is imposed on the whole boundary,
thus it is no longer necessary to set θ = 1.

6.4 Periodic boundary conditions
In the case of periodic boundary conditions, we add some ghost cells on the outside of the mesh so as to
make it periodic. We then define I on these new cells and we use these values and this new geometric data
to compute the Cdof

j on the boundary of the domain.
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7 Appendix: proof of Proposition 3.4
First we recall the Gershgorin lemma, whose proof can be found in [22]:

Lemma 7.1 (Gershgorin Lemma). Let A ∈ Rp×p and λA one of its eigenvalues. There exists an index
l ∈ [1, p] such that:

|λA −Al,l| ≤
p∑

l′=1,l′ 6=l
|Al,l′ |.

Now we can prove Proposition 3.4. We define c = max1≤l≤pAl,l, then A can be written as:

A = cI − (cI −A).

The matrix cI − A has nonnegative coefficients. We prove that is spectral radius is smaller than c. Its
eigenvalues are of the form c− λA with λA an eigenvalue of A. Owing to Lemma 7.1, there exists an index
l such that:

|c− λA − (c−Al,l)| ≤
p∑

l′=1,l′ 6=l
|Al,l′ | = −

p∑
l′=1,l′ 6=l

Al,l′ . (71)

Therefore, using c−Al,l ≥ 0, we end up with:

|c− λA| ≤ c−Al,l −
p∑

l′=1,l′ 6=l
Al,l′ . (72)

Besides:

−Al,l −
p∑

l′=1,l′ 6=l
Al,l′ ≤ 0. (73)

This leads to |c− λA| ≤ c and this inequality is strict if (24) is strict.
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