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A positive and asymptotic preserving scheme for the linear transport equation on two dimensional unstructured meshes

In this paper, we propose a finite volume scheme for the linear transport equation in two space dimensions. This scheme is based on an upwind scheme where the velocity is modified so as to recover the correct diffusion limit. The resulting scheme is asymptotic preserving, positive under a classical CF L condition and conservative. Besides, we propose two versions of this scheme that are first and second order consistent on unstructured polygonal meshes.

Introduction

In this work, we propose a finite volume scheme that discretises the radiative transfer equation (see [START_REF] Mihalas | Foundations of radiation hydrodynamics[END_REF]):

1 c ∂ t I + div (Iω) + σ t I = σ s 1 4π S 2 Idω + q. ( 1 
)
It is a linear Boltzmann type equation. The unknown I = I(t, x, ω) is the radiative intensity and gives the distribution of photons. It depends on the time variable t ≥ 0, on the space variable x ∈ Ω ⊂ R 3 (Ω being the computational domain) and direction ω ∈ S, where S is the unit sphere in R 3 . The source term q = q(t, x, ω) ≥ 0 is nonnegative. The scattering cross section is σ s ≥ 0 and the total cross section is σ t ≥ σ s . The difference σ t -σ s gives the absorption cross section. We assume here that the speed of light c is equal to 1.

Equation ( 1) is of great importance in the numerical simulation of inertial confinement fusion (ICF). In these experiments, a small ball of hydrogen (the target) is submitted to intense radiation by laser beams. These laser beams are either pointed directly to the target (direct drive approach), or pointed to gold walls of a hohlraum in which the target is located (indirect drive approach, see Figure 1). These gold walls heat up, emitting X-rays toward the target. The outer layers of the target are heated up, hence ablated. By momentum conservation, the inner part of the target implodes (this is usually called the rocket effect). Hence, the pressure and temperature of the hydrogen inside the target increase, hopefully reaching the thermodynamical conditions for nuclear fusion. This process is summarized in Figure 2. Other possible applications of (1) are radiation hydrodynamics in stellar atmospheres. Of course, the model ( 1) is over-simplified for these applications as it should, among other things, include a dependence on the frequency. But (1) should be seen as an elementary building block for more realistic models. It has been shown in [START_REF] Case | Linear Transport Theory. Addison-Wesley series in nuclear engineering[END_REF] that if q > 0 and σ t > 0 and σ t -σ s > 0 then the solution I is positive. Moreover, in [START_REF] Robert | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF] the author proved that if q = 0 and σ t = σ s then the solution satisfies a maximum principle property.

Eventually, Equation (1) admits a diffusion limit. Let ε > 0 be given. If we replace σ t ← σ t /ε, σ s ← σ s /ε and if we perform the following scaling t ← εt , then (1) reads as:

∂ t I + 1 ε div (Iω) + σ t ε 2 I = σ s ε 2 1 4π S 2 Idω + q ε . (2)
Moreover, if q = 0 and σ t -σ s = o(ε 2 ) then the solution I of (2) converges toward the solution of a diffusion equation I ---→ ε→0 E 0 where:

∂ t E 0 -div 1 3σ s ∇E 0 = 0. (3) 
See [START_REF] Bardos | The nonaccretive radiative transfer equations: Existence of solutions and rosseland approximation[END_REF] [5] [START_REF] Mihalas | Foundations of radiation hydrodynamics[END_REF] for instance. Therefore it is important for a numerical scheme that discretises [START_REF] Case | Linear Transport Theory. Addison-Wesley series in nuclear engineering[END_REF] to be consistent with the limit model [START_REF] Robert | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF]. In this case, we say that the scheme is asymptotic-preserving. The very first works in this direction were [START_REF] Edward W Larsen | Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes ii[END_REF] and [START_REF] Shi | Numerical schemes for hyperbolic conservation laws with stiff relaxation terms[END_REF]. These papers were dedicated to 1D calculations. Some extensions in two or three dimensions on unstructured meshes were proposed and were based on the discontinuous finite element methods (see [START_REF] Adams | Discontinuous finite element transport solutions in thick diffusive problems[END_REF] [9] [START_REF] Chaland | Discrete ordinates method for the transport equation preserving onedimensional spherical symmetry in two-dimensional cylindrical geometry[END_REF]). More recent works are based on finite volume methods ( [START_REF] Buet | Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes[END_REF] and [START_REF] Blanc | An asymptotic preserving scheme for the M1 model on conical meshes[END_REF] which are based on [13] [14]). Lastly [START_REF] Anguill | An asymptotic preserving method for the linear transport equation on general meshes[END_REF] proposes an AP finite volume scheme that is based on a micro-macro decomposition.

In this paper, we perform an angular discretisation of (2). We choose K directions (ω k ) 1≤k≤K and we define

I k = I(t, x, ω k ) for 1 ≤ k ≤ K.
The integral over the unit sphere in ( 2) is discretised using a quadrature of Equal Weights (see [START_REF] Carlson | Transport theory: Discrete ordinates quadrature over the unit sphere[END_REF]):

1 4π S 2 Idω ≈ 1 K K k =1 I k .
The quadrature weights are constant and equal to 1/K and the directions (ω k ) 1≤k≤K satisfy:

1 K K k =1 ω k = 0, 1 K K k =1 ω k ⊗ ω k = 1 3 i 3 . ( 4 
)
The matrix i 3 is the identity matrix of size 3. As explained in [START_REF] Carlson | Transport theory: Discrete ordinates quadrature over the unit sphere[END_REF], the number of directions K has to be of the following form K = 4N 2 with N ∈ N. The equation we solve therefore reads as:

∂ t I k + 1 ε div (I k ω k ) + σ t ε 2 I k = σ s ε 2 1 K K k =1 I k + q k ε . ( 5 
)
Moreover, owing to (4), if q = 0 and σ t -σ s = o(ε 2 ), then Equation (5) admits a diffusion limit:

I k ---→ ε→0 E 0
where E 0 is solution to [START_REF] Robert | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF]. Besides, owing to [START_REF] Evans | Partial differential equations[END_REF], Equation (3) satisfies a positivity principle and we can write it as:

∂ t E 0 -div E 0 ∇E 0 3σ s E 0 = 0. (6) 
In this work, we focus on the two dimensional case. Beside, the method we present uses the reformulation (6) and has the following properties:

• asymptotic preserving: the scheme we obtain when ε → 0 is consistent with (3),

• consistent on unstructured 2D meshes in any regime. We propose a scheme that is first order consistent and another one that is second order consistent,

• positivity preserving: if at iteration n the numerical solution is positive (resp nonnegative), then the solution at iteration n + 1 is also positive (resp nonnegative) possibly under a CF L condition,

• conservative.

The main idea of our method is to use an upwind scheme to discretise Equation ( 5) and to modify the streaming velocity in order to obtain a scheme that is consistent with (6) when ε → 0. The scheme is said to be composite as the fluxes are computed at the nodes and at the edges of the cells (this idea was first introduced in [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF][START_REF] Hoch | Nodal extension of Approximate Riemann Solvers and nonlinear high order reconstruction for finite volume method on unstructured polygonal and conical meshes: the homogeneous case[END_REF]). The article is organized as follows. In Section 2, we define the notations that we use in the rest of the paper and we explain the geometrical assumptions we need to develop our method. In Section 3 we present a first order consistent scheme. Section 4 is dedicated to the second order scheme. Numerical examples are shown in Section 5. Eventually, our method being based on an upwind scheme, we present it and we detail its properties in Appendix 6.

Notations assumptions on the mesh

We present here some notations that will be used in the rest of the paper. Let Ω j be a cell of the mesh T paving the domain Ω, we define:

• V j is the volume of the cell Ω j ,

• (x r ) r the coordinates of the vertices of the cell j;

• r∈Ωj the sum over all the vertices of the cell j;

• r + 1/2 is the index of the edge between the nodes x r and x r+1 , its middle is denoted by

x r+1/2 = (x r + x r+1 )/2,
• r+1/2∈Ωj the sum over all edges of the cell j;

• a degree of freedom (denoted as dof ) is either a node or a mid-edge point;

• N j = dof∈Ωj 1 the number of degrees of freedom in the cell Ω j ;

• i|dof∈Ωi the sum, for a given degree of freedom, over all the cells that contains this degree of freedom;

• N r = i|r∈Ωi 1 the number of cells that contains the given node r;

• j∈T the sum over all the cells of the mesh; • J = j∈T 1 is the number of cells of the mesh;

• h the maximum length of edges of the mesh;

• I n k,j is the value of the unknown in direction k, in cell j, at iteration n; • I k = (I k,i ) i∈T is the vector of the values of the unknown in direction k;

• E j = K k =1 I k ,j /K
is the average, in cell j, over the directions; • E = (E i ) i∈T is the vector of the averages;

• for p ∈ N * , the identity matrix of size p is denoted by i p ;

• •, • the inner product in R 2 ;

• • is the L ∞ norm for vectors, that is to say, for p ∈ N * : Let x r-1 , x r and x r+1 be 3 consecutive nodes of Ω j (see Figure 3 for instance). The normal vector to the edge [x r , x r+1 ] is denoted by C r+1/2 j = (x r+1 -x r ) ⊥ , where for any vector ξ ∈ R 2 :

∀ U ∈ R p , U = max 1≤l≤p |U i |, ∀ A ∈ R p×p , A = max U =0 AU U . x r+1 x r+1/2 x r x r-1/2 x r-1 C r+1/2 j C r-1/2 j C r j Ω j
ξ = ξ 1 ξ 2 , ξ ⊥ = -ξ 2 ξ 1 .
Similarly, we define the normal vector to the node r as:

C r j = 1 2 (x r+1 -x r-1 ) ⊥ = 1 2 C r+1/2 j + C r-1/2 j . ( 7 
)
Definition [START_REF] Shi | Numerical schemes for hyperbolic conservation laws with stiff relaxation terms[END_REF] was first introduced in [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF]. We also define the matrix:

β r = i|r∈Ωi C r i ⊗ (x r -x i ), (8) 
We assume that there exists a constant C 1 such that, for any dof and any cell j:

1 C 1 h 2 ≤ V j ≤ C 1 h 2 , N dof ≤ C 1 , N j ≤ C 1 , (9) 
Note that by definition we have C dof j ≤ h. Moreover, we assume that for any node r ∈ T the matrix β r defined in ( 8) is positive definite:

∀ξ ∈ R 2 , β r ξ, ξ ≥ 1 C 1 h 2 ξ 2 . ( 10 
)
Thus it is non-singular and we have:

β -1 r ≤ C 1 1 h 2 . ( 11 
)
Assumption [START_REF] Chaland | Discrete ordinates method for the transport equation preserving onedimensional spherical symmetry in two-dimensional cylindrical geometry[END_REF] is studied in [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF]. We have the following result:

Proposition 2.1. Let r be an inner node, we have:

i|r∈Ωi C r i = 0.
We also have the following quadrature formula.

Theorem 2.2. Let g ∈ C 2 (R 2 ; R). We assume Assumptions (9) are fulfilled. Then, for all θ ∈ [0, 1]:

1 V j ∂Ωj gn = 1 V j   (1 -θ) r∈Ωj g(x r )C r j + θ r+1/2∈Ωj g(x r+1/2 )C r+1/2 j   + O(h). ( 12 
)
Moreover, the remainder in [START_REF] Blanc | An asymptotic preserving scheme for the M1 model on conical meshes[END_REF] vanishes if g is an affine function.

Remark 1.

We propose here some explanations on the choice of the parameter θ:

• θ = 0 : node based scheme, consistent but may suffer from cross stencil phenomena (see [START_REF] Blanc | An asymptotic preserving scheme for the M1 model on conical meshes[END_REF]),

• θ = 1 : edge-based scheme, useful to implement boundary conditions (see Section 6.3),

• θ = 2/3 : better precision. Formula (12) is exact for quadratic functions and the remainder is O(h 2 ). This choice may allow to have third order convergence (see [START_REF] Blanc | Composite finite volume schemes for the diffusion equation on unstructured meshes[END_REF] for instance).

First order scheme

In this Section, we present the construction of our first order scheme.

Upwind scheme and new streaming velocity

Equation ( 5) is integrated over the cell Ω j . We use Theorem 2.2 to approximate the flux:

V j d dt I k,j + θ r∈j ωk,r , C r j Îr k,j + (1 -θ) r+1/2∈j ωk,r+1/2 , C r+1/2 j Îr+1/2 k,j + V j σ t j ε 2 I k,j (13) 
= V j σ s j ε 2 1 K K k =1 I k ,j + V j q k,j . (14) 
The quantity Îdof k,j is an approximation of I at point x dof in cell Ω j . It is computed using an upwind scheme:

Îdof k,j =        I k,j if ωk,dof , C dof j > 0, 1 i∈A + dof ωk,dof , C dof i i∈A + dof ωk,dof , C dof i I k,i else, (15) 
and:

A + dof = {i, ωk,dof , C dof i > 0}.
The upwind scheme and its properties are introduced in detail in Section 6. The streaming velocity ωk,dof is a consistent approximation of ω k /ε, meaning that:

ωk,dof ---→ h→0 1 ε ω k . ( 16 
)
Moreover, in order to be consistent with [START_REF] Edward W Larsen | Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes ii[END_REF], we also impose:

ωk,dof ---→ ε→0 - ∇E 3σ s dof E , ( 17 
)
where E is the average over the directions (see Section 2): [START_REF] Evans | Partial differential equations[END_REF] is justified in the next sections. Therefore we propose:

E = K k =1 I k /K. The condition
ωk,dof = εω k + σ s dof h 2 u dof 3(σ s dof h) 2 + ε 2 . ( 18 
)
The quantity u dof is an approximation of -∇E/E at point x dof that is given below. Therefore Definition [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF] does satisfy ( 16) and [START_REF] Evans | Partial differential equations[END_REF]. Moreover, in the streaming regime, that is to say when σ t = σ s = 0 then we have exactly ωk,dof = ω k /ε. Eventually, u r and u r+1/2 are given by:

u r = β -1 r 1 E r i|r∈Ωi E i C r i , E r = 1 N r i|r∈Ωi E i + h 2 , u r+1/2 = u r + u r+1 2 , ( 19 
)
where β r is defined in [START_REF] Adams | Discontinuous finite element transport solutions in thick diffusive problems[END_REF]. The coefficient E r is an approximation of E at point x r . We add a h 2 term in order to make u r well defined in the case where all the (E i ) i vanish. Moreover, the quantity β -1

r i|r∈Ωi E i C r
i is an approximation of -∇E at point x r . Indeed, using a Taylor expansion, we easily have:

E(x r ) -E(x i ) = ∇E(x r ), x r -x i + O(h 2 ). ( 20 
)
Multiplying ( 20) by C r i and summing around all the neighbouring cells {i|r ∈ Ω i } leads to:

E(x r ) i|r∈Ωi C r i - i|r∈Ωi E(x i )C r i = β r ∇E(x r ) + O(h 3 ).
Using Proposition 2.1 and ( 11), we show that β -1

r i|r∈Ωi E i C r i is indeed first order consistent with -∇E(x r ): ∇E(x r ) = -β -1 r i|r∈Ωi E(x i )C r i + O(h).
Eventually, the resulting scheme is nonlinear and first order consistent with [START_REF] Castor | Radiation Hydrodynamics[END_REF]. We write it more compactly as:

V j d dt I k,j + [M k,ε I k ] j + V j σ t j ε 2 I k,j = V j σ s j ε 2 1 K K k =1 I k ,j + V j q k,j , (21) 
where M k,ε = M ( ωk,dof ) dof∈T is the streaming matrix with velocity field ( ωk,dof ) dof∈T and M (•) is defined in (57). We remind that M k,ε depends on the unknown I k and on ε.

Partially implicit time discretisation

We use a partially implicit time discretisation. The streaming velocity is chosen at time t n while the sources are chosen at time t n+1 :

V j I n+1 k,j -I n k,j ∆t + M n k,ε I n+1 k j + V j σ t j ε 2 I n+1 k,j = V j σ s j ε 2 1 K K k =1 I n+1 k ,j + V j q k,j . ( 22 
)
Even though the scheme ( 13) is nonlinear, the time discretisation we choose only requires to solve a linear system at each iteration. Moreover, it is is conservative: Proposition 3.1. We assume periodic boundary conditions are imposed. If σ t j = σ s j and q = 0, then the scheme (13) is conservative:

j∈T V j E n+1 j = j∈T V j E j .
Proof. This result is a direct consequence of Proposition 6.1.

Besides, we can easily prove that the solution of System ( 22) is positive (Proposition 3.5) as the matrix involved is a strict M -matrix, as defined in Definition 3.2. As stated in Proposition 3.3, the inverses of these matrices have nonnegative entries.

Definition 3.2 (M -matrix).

Let p ∈ N * and A a p × p matrix. A is an M -matrix if it can be written under the form A = cI -B where B has nonnegative coefficients and its spectral radius ρ(B) satisfies:

ρ(B) ≤ c. ( 23 
)
If ( 23) is a strict inequality, then we say that A is a strict M -matrix.

Proposition 3.3. Let p ∈ N and A ∈ R p×p be a strict M -matrix. Then A is nonsingular and its inverse has nonnegative coefficients.

Proof. The proof can be found in [START_REF] Varga | Matrix Iterative Analysis[END_REF].

The following proposition is useful in the proof of Proposition 3.5.

Proposition 3.4. Let p ∈ N * and A ∈ R p×p be such that A l,l ≤ 0 if l = l and:

∀l ≤ p, p l =1,l =l |A l,l | ≤ A l,l . ( 24 
)
Then A is an M -matrix. Besides, if the inequality (24) is strict then A is a strict M -matrix.

Proof. The proof can be found in Appendix 7. Proof. We write [START_REF] Serre | Matrices: Theory and applications[END_REF] as:

I n+1 k,j V j 1 + ∆t ε 2 (σ t j -σ s j ) + σ s j ∆t ε 2 1 - 1 K +∆t M n k,ε I n+1 k j -V j σ s j ∆t ε 2 1 K K k =1,k =k I n+1 k ,j = V j I n k,j +∆tV j q k,j .
(25) The matrices M n k,ε are M -matrices (see Proposition 6.2). Thus the matrix of System ( 22) is a strict Mmatrix, and according to Proposition 3.3, it is nonsingular and its inverse has nonnegative coefficients. The right hand side of ( 25) is nonnegative by assumption, therefore the I n+1 k,j k,j are nonegative. In addition, every line of the invert of the matrix of System ( 22) has at least one nonzero entry, if the right hand side is positive then the I n+1 k,j k,j are also positive.

However, System [START_REF] Serre | Matrices: Theory and applications[END_REF] has size JK × JK. In order to solve it, we reformulate it and we use a fixed point procedure that requires the solving of smaller linear systems. We define:

µ (1) j = ε 2 ε 2 + ∆tσ t j , µ (2) 
j = ∆tσ s j ε 2 + ∆tσ t j ε 2 ε 2 + ∆t(σ t j -σ s j ) . ( 26 
)
Proposition 3.6. System ( 22) is equivalent to:

I n+1 k,j + µ (1) j ∆t V j M n k,ε I n+1 k j = µ (1) j I n k,j + µ (2) j 1 K K k =1 I n k ,j -µ (2) j ∆t V j 1 K K k =1 M n k ,ε I n+1 k j ( 27 
)
+∆t µ

(1)

j q k,j + µ (2) j 1 K K k =1 q k ,j .
Proof. =⇒ Summing [START_REF] Serre | Matrices: Theory and applications[END_REF] over the directions leads to:

1 K K k =1 I n+1 k ,j = ν 1 K K k =1 I n k ,j - ∆t V j M n k ,ε I n+1 k j + ν∆t 1 K K k =1 q k ,j , ( 28 
)
where ν is given by:

ν = ε 2 ε 2 + ∆t(σ t j -σ s j ) . ( 29 
)
Moreover, using Equation [START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF], Equation ( 22) can be written as:

I n+1 k,j + µ (1) j ∆t V j M n k,ε I n+1 k j = µ (1) j I n k ,j + µ (1) j ∆tq j + ∆tσ s j ε 2 + ∆tσ t j 1 K K k =1 I n+1 k ,j (30) 
Inserting ( 28) into [START_REF] Pomraning | Linear kinetic theory and particle transport in stochastic mixtures[END_REF] gives [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF]. ⇐= Summing ( 27) over the directions and using (4) gives:

1

K K k =1 I n+1 k ,j + µ (1) j + µ (2) j ∆t V j 1 K K k =1 M n k,ε I n+1 k j = µ (1) j + µ (2) j 1 K K k =1 I n k ,j +∆t µ (1) j + µ (2) j 1 K K k =1
q k ,j .

(31) Using ( 29) and ( 26), one has µ 31) gives [START_REF] Greenberg | A well-balanced scheme for the numerical processing of source terms in hyperbolic equations[END_REF], which implies [START_REF] Serre | Matrices: Theory and applications[END_REF]. This reformulation [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF] allows to prove the AP property of our scheme. Indeed, choosing σ t j = σ s j and ε = 0 in (27) leads to:

(1) j + µ (2) j = ν. Therefore (
I n+1 k,j = 1 K K k =1 I n k ,j - ∆t V j 1 K K k =1 M n k ,0 I n+1 k j + ∆t 1 K K k =1 q k ,j .
Moreover, noticing that M k ,0 = M 1 3σ s u does not depend on the direction k, we deduce that I n+1 k,j does not depend on k either. The limit scheme consequently reads as:

I n+1 k,j = 1 K K k =1 I n+1 k,j = 1 K K k =1 I n k ,j - ∆t V j M 1 3σ s u n 1 K K k =1 I n+1 k j + ∆t 1 K K k =1 q k ,j . (32) 
In addition, as the matrix M 1 3σ s u discretises a streaming equation with velocity field 1 3σ s u and reminding that the latter is a consistent approximation of -∇E/(3σ s E), we deduce that (32) is consistent with (6).

Solving System (30) with a fixed point algorithm

In order to solve the "big" system of size JK × JK (30), we use a fixed point algorithm and we iterate on the source term:

I n+1,l+1 k,j + µ (1) j ∆t V j M n k,ε I n+1,l+1 k j = µ (1) j I n k,j + µ (2) j 1 K K k =1 I n k ,j -µ (2) j ∆t V j 1 K K k =1 M n k ,ε I n+1,l k j ( 33 
)
+∆t µ

(1)

j q k,j + µ (2) j 1 K K k =1 q k ,j .
At each sub-iteration, we have K linear systems to solve (this step can be paralelized). The rest of this section is devoted to the analysis of the fixed point strategy. In the end we find a condition on ∆t that ensures the convergence of the sequence

I l k,j k,j l∈N
defined in [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF] toward the solution of (30). This result is given in Theorem 3.11. Equation ( 33) can be set under the following form:

f X l+1 = X l , X l ∈ R JK , X l kJ+j = I n+1,l k,j . ( 34 
)
The function f is defined by:

f (X) = i JK + ∆tµ (1) M -1 B + ∆tµ (2) C M X , ( 35 
)
where M and C are (JK) × (JK) matrices:

CkJ+j,k J+j = 1 K 1 k=k , M = diag S -1 M 1,ε , . . . , S -1 M K,ε . ( 36 
)
The matrix S -1 = diag (V -1 j ) j∈T is the matrix of the inverse of the areas of the cells and µ (1) = diag (µ (1) j ) j∈T . The vector B is given by:

B kJ+j = µ (1) j I n k,j + ∆t µ (1) j q k,j + µ (2) j 1 K K k =1 q k ,j + µ (2) j 1 K K k =1 I n k ,j . ( 37 
)
The gradient of f is equal to:

∇f (X) = ∆tµ (2) i JK + ∆tµ (1) M -1 C M . ( 38 
)
Our aim is to find a condition on ∆t that makes the gradient (38) smaller than 1, thus making f a contraction mapping. Lemmas 3.7 3.8 3.9 3.10 allow to give an upper bound on the matrix i JK + ∆tµ (1) M -1 . Theorem 3.11 gives a condition on ∆t for the fixed point procedure to converge. We emphasize that this condition does not becomes ∆t = O(ε). That is to say, our fixed point procedure converges in the diffusion regime and no acceleration procedure is necessary.

Lemma 3.7. Under Assumptions (9) (10) [START_REF] Buet | Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes[END_REF], and assuming that the (I k,j ) k≤K,j∈T are nonnegative, there exists a constant such that, for any dof :

u dof ≤ C 3.6 h .
Proof. As the (I k,j ) k≤K,j∈T are nonnegative, the (E j ) j∈T are also nonnegative and we have:

E i E r ≤ N r ≤ C 1 .
Therefore, using Assumption (9) we have:

1 E r i|r∈Ωi E i C r i ≤ C 2 1 h.
Using [START_REF] Buet | Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes[END_REF] gives the result.

Lemma 3.8. Under the assumptions of Lemma 3.7, there exists a constant such that, for any dof and any direction k:

ωk,dof ≤ C 3.7 σ s dof h + ε .
Proof. We use Lemma 3.7 and ω k ≤ 1 in [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF]. This gives:

ωk,dof ≤ max(1, C 3.6 ) ε + σ s dof h (σ s dof h) 2 + ε 2 ≤ 2 max(1, C 3.6 ) 1 σ s dof h + ε . ( 39 
)
The result is proved.

Lemma 3.9. Under the assumptions of Lemma 3.7, there exists a constant such that:

M ≤ C 3.8 min 1≤j≤J σ s j h 2 + εh . ( 40 
)
Proof. Using Lemmas 3.8 and 6.3 gives the result.

Lemma 3.10. Under the assumptions of Lemma 3.7, if

ε 2 ∆t ε 2 + min j∈T (σ t j )∆t C 3.8 min j∈T (σ s j )h 2 + εh < 1 2 , ( 41 
)
then:

i JK + ∆tµ (1) M -1 ≤ 2. ( 42 
)
Proof. Using Lemma 3.9 and Assumption (41), we have:

∆tµ (1) M ≤ 1 2 .
A classical computation gives the result.

Theorem 3.11. Under the assumptions of Lemma 3.7, if [START_REF] Guojin | Computing integral values involving nurbs curves[END_REF] is fulfilled and:

(∆t) 2 min j∈T (σ s j ) ε 2 + min j∈T (σ t j )∆t

C 3.8 min j∈T (σ s j )h 2 + εh < 1, ( 43 
)
then the function f defined by [START_REF] Després | The structure of well-balanced schemes for Friedrichs systems with linear relaxation[END_REF] satisfies ∇f < 1. Therefore f is a contraction mapping and it admits a unique fixed point which is

I n+1 k,j k,j
the solution of [START_REF] Pomraning | Linear kinetic theory and particle transport in stochastic mixtures[END_REF]. Besides the sequence I n+1,l k,j k,j l∈N defined in [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF] converges toward this solution as l → ∞.

Proof. Using [START_REF] Breil | A cell-centered diffusion scheme on two-dimensional unstructured meshes[END_REF] and Lemmas 3.9 and 3.10 gives the result.

Remark 2.

The following condition is sufficient to ensure [START_REF] Bernard-Champmartin | Extension of centered hydrodynamical schemes to unstructured deforming conical meshes : the case of circles[END_REF]:

∆t ≤ C εh + min j∈T (σ s j )h 2 ,
which is a classical CF L condition for a system with hyperbolic and parabolic terms. In particular, in the diffusion regime, we see that if ∆t = O(h 2 ) then the fixed point procedure converges. Therefore there is no need to use an acceleration procedure.

Particular cases

In this section we present two particular cases: the streaming scheme obtained by choosing (ε, σ t , σ s ) = (1, 0, 0) and the limit diffusion scheme obtained as ε → 0.

Free streaming limit

Choosing ε = 1 and σ t = σ s = 0 leads to:

V j I n+1 k,j -I n k,j ∆t + M (ω k ) I n+1 k j = V j q k,j . ( 44 
)
The scheme reads as K decoupled linear systems. The fixed point algorithm converges in one iteration. Moreover, as the velocity field is constant, the inverse of i J + ∆tM (ω k ) is not only with nonnegative coefficients but it is also stochastic. Therefore the maximum principle is unconditionally ensured at each iteration.

Diffusion limit

We recall here the limit scheme (32):

V j E n+1 j -E n j ∆t + M 1 3σ s u n E n+1 j = V j 1 K K k =1 q k ,j . ( 45 
)
This scheme is first order consistent, unconditionally positive and partially implicit. It is an implicit version of the first order scheme from [START_REF] Blanc | Composite finite volume schemes for the diffusion equation on unstructured meshes[END_REF]. However, System (45) is not solved directly. Indeed, due to the fixed-point strategy, E n+1 in System (45) is computed as the limit of the following sequence:

V j E n+1,l+1 j -E n j ∆t + M 1 3σ s u n E n+1,l j = V j 1 K K k =1 q k ,j . (46) 

Summary of the method

We summarize here our scheme:

• compute the average E n ;

• compute the discrete gradients (u dof ) dof∈T defined in [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF] and the velocities ( ωk,dof ) dof∈T defined in [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF];

• use the fixed-point procedure. Set I n+1,l=0 k,j = I n k,j and iterate Equation ( 33) until the following condition is fulfilled:

max j∈T max 1≤k≤K I n+1,l+1 k,j -I n+1,l k,j ≤ 10 -8 .

Second order scheme 4.1 Method

In this Section we present a second order scheme. This scheme is not an extension of the scheme from Section 3. Indeed, the streaming term is chosen completely explicit whilst the source terms are still implicit:

I n+1 k,j -I n k,j ∆t + R j (I n k , ωn k ) + σ t j ε 2 I n+1 k,j = σ s j ε 2 1 K K k =1 I n+1 k ,j + q k,j . ( 47 
)
The quantity R j (I n k , ωn k ) is a second order approximation of 1

V j ∂Ωj I ωk . ( 48 
)
Its definition and properties are detailed in Section 6.2 and we do not recall them here in order to make the algebra clearer. Note that the scheme (47) is conservative: Proposition 4.1. We assume periodic boundary conditions are imposed. If σ t j = σ s j and q = 0, then the scheme (47) is conservative:

j∈T V j E n+1 j = j∈T V j E j .
Proof. As for Proposition 3.1, this result is a direct consequence of Proposition 6.1.

Besides, owing to Sherman-Morrison Lemma 4.2, we can write an explicit formula for I n+1 k,j

(Proposition 4.3). Lemma 4.2. Let p ∈ N and A ∈ R p×p , u ∈ R p , v ∈ R p . The matrix A + u ⊗ v is nonsingular if and only if 1 + v, A -1 u = 0.
Besides, in this case, its inverse is given by:

(A + u ⊗ v) -1 = A -1 - 1 1 + v, A -1 u A -1 u ⊗ vA -1 .
Proof. The proof can be found in [START_REF] Serre | Matrices: Theory and applications[END_REF].

Proposition 4.3. Equation (47) is equivalent to:

I n+1 k,j = µ (1) j (I n k -∆tR j (I n k , ωn k )) + µ (2) j 1 K K k =1 (I n k -∆tR j (I n k , ωn k )) ( 49 
)
+∆t µ

(1)

j q k,j + µ (2) j 1 K K k =1 q k ,j ,
where µ

(1) j , µ

(2) j are defined in [START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF].

Proof. Using [START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF], Equation (47) reads as:

I n+1 k,j - ∆tσ s j ε 2 + ∆tσ t j 1 K K k =1 I n+1 k ,j = µ (1) j (I n k -∆tR j (I n k , ωn k ) + ∆tq k,j ) . ( 50 
)
Using Lemma 4.2, Equation (50) becomes:

I n+1 k,j = µ (1) j (I n k -∆tR j (I n k , ωn k ) + ∆tq k,j ) + µ (1) j ∆tσ s j ε 2 + ∆t(σ t j -σ s j ) 1 K K k =1 (I n k -∆tR j (I n k , ωn k ) + ∆tq k ,j ) .
(51) Collecting ( 26) and ( 51) gives (49).

We see that, if q = 0 and σ t j = σ s j then µ

(1) j +µ

(2) j = 1 and I n+1 k,j simply reads as a convex combination between the anisotropic and isotropic dynamics. We observe in Section 5 that the scheme (49) is indeed second order convergent. Moreover, the positivity of the solution is preserved under a classical CF L condition: Proposition 4.4. Under Assumptions (9) (10) [START_REF] Buet | Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes[END_REF], there exists a constant C > 0 independent from h, I, σ s , σ t , ε and q such that if I n k,j k,j and q are nonnegative (resp positive), and if:

∆t ≤ C min j∈T σ s j h 2 + εh , ( 52 
)
then the I n+1 k,j k,j
are nonnegative (resp positive).

Proof. Using q ≥ 0 and Lemmas 3.8 and 6.5 gives the result.

Remark 3. The condition (52) is not very restrictive. Indeed, as the scheme (49) is first order consistent in time, we need to set ∆t = O(h 2 ) in order to make the consistency error decrease as h 2 .

AP property and limit scheme

In this Section, we explain why the scheme (49) is AP . Choosing ε = 0 in (49) leads to:

E n+1 j -E n j ∆t + R j E n , 1 3σ s u n = 1 K K k =1 q k ,j . ( 53 
)
As u is a consistent approximation of -∇E/E, the scheme (53) is consistent with (6). This scheme is the second order scheme from [START_REF] Blanc | Composite finite volume schemes for the diffusion equation on unstructured meshes[END_REF].

Numerical results

In this Section we present some numerical examples to illustrate the good properties of our method. In the first three test cases, we compute analytical solutions of ( 2) and we perform a convergence analysis (Sections 5.1, 5.2, 5.3) on cartesian meshes (uniform grids) and random meshes (see Figure 4). Denoting by Ĩ the exact solution and T the final time, the error is computed the following way:

error = max 1≤k≤K j∈T V j I k,j -Ĩ(t, x j , ω k ) j∈T V j Ĩ(T, x j , ω k )
.

We also compute the solution of a Lattice problem defined in [START_REF] Brunner | Two-dimensional time dependent Riemann solvers for neutron transport[END_REF] in Section 5.4.

Figure 4: Random mesh.

Free streaming regime

In this test case, we choose σ s = σ t = 0, q = 0 and ε = 1. The exact solution is given by:

I(t, x, ω) = exp -100 x -tω -x 0 2 , x 0 = (1, 1).
Dirichlet boundary conditions are imposed (see Section 6.3). We choose N = 1 directions (K = 4). The computational domain is Ω = [0, 2] 2 . We set θ = 1. Figure 5 shows the error curve for the first order scheme, at final time T = 0.5 and ∆t = h. Figure 6 shows the error curve for the second order scheme, at final time T = 0.03 and ∆t = h 2 . We see that our method gives the expected rate of convergence. 

Diffusion regime

In this test case, we choose σ s = σ t = 1, q = 0 and ε = 0. The exact solution is the fundamental solution of the diffusion equation:

∂ t E - 1 3 ∆E = 0, E(t, x) = 3 4π(t + t 0 ) exp -3 x -x 0 2 4(t + t 0 ) ,
with t 0 = 0.01 and x 0 = (1, 1). The computational domain is Ω = [0, 2] 2 . Dirichlet boundary conditions are imposed. We choose K = 4 directions and θ = 1/2. The timestep is given by ∆t = h 2 and the final time is T = 0.03. Figure 7 (resp Figure 8) shows the error curves for the first order scheme (resp second order scheme). The right convergence rate is recovered. 

Manufactured test case

We choose ε = 1. The analytical solution of this test case is given by:

I(t, x, y, ω) = e t (10 + sin(2πx) + sin(2πy) + ω, f ) , f = (1, -1),
and the absorption coefficients are given by:

σ t (x, y) = 2 + (sin(2πx) + sin(2πy)) 2 , σ s = 0.1.
We compute the source term q(t, x, y, ω) so as to satisfy Equation ( 2). Periodic boundary conditions are imposed. We set N = 1 (K = 4). Figure 9 plots the error curves with the first order scheme at time T = 0.5 and ∆t = h and θ = 1/2. Figure 10 displays the error curves with the second order scheme at time T = 0.01 and ∆t = h 2 and θ = 1/2. 

Lattice problem

This test case is borrowed from [START_REF] Brunner | Two-dimensional time dependent Riemann solvers for neutron transport[END_REF]. The computational domain is Ω = [0, 7] 2 . The initial condition is 0 and ε = 1. The source term is q = 1 [3,4]× [START_REF] Robert | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF][START_REF] Bardos | The nonaccretive radiative transfer equations: Existence of solutions and rosseland approximation[END_REF] . Homogeneous Dirichlet boundary conditions are imposed. We set θ = 1. The final time is T = 3.2 and the time step is ∆t = 0.01. The absorption coefficients are:

σ t (x) =      10 if x ∈ Ω A , 5.5 if x ∈ ∂Ω A , 1 else, σ s (x) =      0 if x ∈ Ω A , 0.5 if x ∈ ∂Ω A , 1 else.
The domain Ω A is pictured in red color in Figure 11. 

Appendix: upwind scheme

In this Section, we present two approximations of ∂Ωj g a, n , where n is the outward unit vector to ∂Ω j , g is a given function and a is a given velocity field. The first one is a classical upwind scheme where the flux is computed at the nodes and at the edges. It is first order consistent. We present it in Section 6.1. Then we propose an extension that is second order consistent in Section 6.2. Eventually we present in Section 6.3 (resp Section 6.4) a way of discretising Dirichlet (resp periodic) boundary conditions.

First we use Theorem 2.2 and we approximate:

∂Ωj g a, n ≈ θ r∈j a r , C r j g j,r + (1 -θ) r+1/2∈j a r+1/2 , C r+1/2 j g j,r+1/2 , ( 54 
)
where a dof = a(x dof ) and g j,dof is an approximation to (x dof ) in cell j. It is given by an upwind scheme:

g j,dof =        ḡdof j if a dof , C dof j > 0, 1 i∈A + dof a dof , C dof i i∈A + dof a dof , C dof i ḡdof i else, (55) 
where:

A + dof = {i, a dof , C dof i > 0}.
The quantity ḡdof j is an approximation of g at point x dof in cell j that is given below. This scheme is conservative: Proposition 6.1. We assume that periodic boundary conditions are imposed on g, then the scheme (54) (55) is conservative:

j∈T   θ r∈j a r , C r j g j,r + (1 -θ) r+1/2∈j a r+1/2 , C r+1/2 j g j,r+1/2   = 0.
Proof. The proof is given in [START_REF] Blanc | An asymptotic preserving scheme for the M1 model on conical meshes[END_REF].

First order upwind scheme

We set:

ḡdof j = g j , (56) 
then the numerical flux (54)-(55) depends linearly on the (g i ) i∈T . Therefore we write:

θ r∈j a r , C r j g j,r + (1 -θ) r+1/2∈j a r+1/2 , C r+1/2 j g j,r+1/2 = [M (a)g] j ,
where the streaming matrix is defined by:

(M (a)) jl = 1 j=l   (1 -θ) r∈R + j a r , C r j + θ r+1/2∈ R+ j a r+1/2 , C r+1/2 j    (57) +(1 -θ) r∈Ωj ∩Ω l 1 r∈R - j a r , C r j 1 l∈A + r a r , C r l i∈A + r a r , C r i +θ r+1/2∈Ωj ∩Ω l 1 r+1/2∈ R+ j a r+1/2 , C r+1/2 j
, where:

R + j = {r, C r j , a r > 0}, R - j = {r, C r j , a r ≤ 0}, and:

R+ j = {r + 1/2, C r+1/2 j , a r+1/2 > 0}, R- j = {r + 1/2, C r+1/2 j
, a r+1/2 ≤ 0}. Proposition 6.2. We assume periodic boundary conditions are imposed on g, then the matrix M (a) T is an M -matrix.

Proof. This property is a direct consequence of the conservation property. First, according to (57), we already have:

(M (a)) jj ≥ 0, and j = l =⇒ (M (a)) jl ≤ 0.

Moreover, due to the conservation property 6.1, we have:

(1, . . . , 1)M (a)g = j∈T   θ r∈j a r , C r j g j,r + (1 -θ) r+1/2∈j a r+1/2 , C r+1/2 j g j,r+1/2   = 0. (58) 
Equation ( 58) is true for any vector g, therefore leading to:

M (a) T    1 . . . 1    = 0.
The sum of each line of M (a) T is 0. Using Proposition 3.4 gives the result.

We conclude this Section by giving a useful Lemma: Lemma 6.3. Under Assumption [START_REF] Bailey | A piecewise bi-linear discontinuous finite element spatial discretization of the sn transport equation[END_REF], there exists a constant such that:

M (a) ≤ Ch a L ∞ (Ω) .
Proof. We easily have:

r∈R + j a r , C r j + r+1/2∈ R+ j a r+1/2 , C r+1/2 j ≤ Ch a L ∞ (Ω) , (59) a r , C r l i∈A + r a r , C r i ≤ 1, r∈Ωj ∩Ω l 1 r∈R - j a r , C r j 1 l∈A + r a r , C r l i∈A + r a r , C r i ≤ Ch a L ∞ (Ω) , ( 60 
) r+1/2∈Ωj ∩Ω l 1 r+1/2∈ R+ j a r+1/2 , C r+1/2 j ≤ Ch a L ∞ (Ω) . ( 61 
)
Collecting ( 59)-( 60)-(61) gives:

|(M (a)) jl | ≤ Ch a L ∞ (Ω) , (62) 
for any (j, l) ∈ [1, J] 2 . Besides, if j and l do not share a node or an edge, then (M (a)) jl = 0. Therefore the number of non zero entries in line j of the matrix M (a) is O(1). This leads to:

J l=1 |(M (a)) jl | ≤ Ch a L ∞ (Ω) .
Using Lemma 6.4 concludes the proof. Lemma 6.4. Let A ∈ R p×p , then:

A = max U =0 AU U ≤ max 1≤l≤p p l =1
|A l,l |.

Second order scheme

We propose here a version of the scheme (54)-(55) that is second order consistent. To this aim, we set:

ḡdof j = g j -p dof , x j -x dof if | p dof , x j -x dof | < g j , g j else. (63) 
The vector p dof is an approximation of -∇g at point x dof computed as:

p r = β -1 r i|r∈Ωi g i C r i , p r+1/2 = p r + p r+1 2 (64) 
Eventually, we define the second order flux by:

R j (g, a) = θ V j r∈j a r , C r j g j,r + 1 -θ V j r+1/2∈j a r+1/2 , C r+1/2 j g j,r+1/2 , ( 65 
)
and where g j,dof is given by (55) (63) (64). Moreover, the positivity property is still valid: Lemma 6.5. Under Assumption [START_REF] Bailey | A piecewise bi-linear discontinuous finite element spatial discretization of the sn transport equation[END_REF], there exists a constant C > 0 independent from h, a and g such that, if g ≥ 0, and if

∆t ≤ C h a L ∞ (Ω) , ( 66 
)
then g j -∆tR j (g, a) j ≥ 0.

Proof. We easily have: Besides, using Assumption (9), we have:

∆t V j   (1 -θ) r∈R + j a r , C r j + θ r+1/2∈ R+ j a r+1/2 , C r+1/2 j    ≤ C∆t a L ∞ (Ω) h . ( 68 
)
Collecting ( 67) and (68) gives the result.

Dirichlet boundary conditions

We denote by γ ∈ C 0 (∂Ω) the Dirichlet boundary condition: are aligned with the normal vector to the boundary of the domain n. This is not the case for the vectors C r j j,r . Thus we need to set θ = 1 to correctly discretise (69). Besides, in the cells on the boundary and for the edges on the boundary, we set: 

g(t, x) = γ, if x ∈ ∂Ω,
g j,
where ḡr+1/2 j can be computed with the first order method (Section 6.1) or the second order method (Section 6.2).

Note that the gradients u r given by ( 19) is not well-defined in the corner nodes. Indeed there is only one support cell and thus the matrix β r (8) has rank 1 and is singular. To overcome this difficulty we compute the gradient u r at the corner as the average of the gradients at the other nodes of the support cell. Remark 4. In the diffusion regime, the Dirichlet boundary condition is imposed on the whole boundary, thus it is no longer necessary to set θ = 1.

Periodic boundary conditions

In the case of periodic boundary conditions, we add some ghost cells on the outside of the mesh so as to make it periodic. We then define I on these new cells and we use these values and this new geometric data to compute the C dof j on the boundary of the domain.

Appendix: proof of Proposition 3.4

First we recall the Gershgorin lemma, whose proof can be found in [START_REF] Serre | Matrices: Theory and applications[END_REF]: Lemma 7.1 (Gershgorin Lemma). Let A ∈ R p×p and λ A one of its eigenvalues. There exists an index l ∈ [1, p] such that:

|λ A -A l,l | ≤ p l =1,l =l |A l,l |.
Now we can prove Proposition 3.4. We define c = max 1≤l≤p A l,l , then A can be written as:

A = cI -(cI -A).
The matrix cI -A has nonnegative coefficients. We prove that is spectral radius is smaller than c. Its eigenvalues are of the form c -λ A with λ A an eigenvalue of A. Owing to Lemma 7.1, there exists an index l such that:

|c -λ A -(c -A l,l )| ≤ p l =1,l =l |A l,l | = - p l =1,l =l A l,l .
(71)

Therefore, using c -A l,l ≥ 0, we end up with:

|c -λ A | ≤ c -A l,l - p l =1,l =l A l,l . (72) Besides: 
-A l,l -p l =1,l =l

A l,l ≤ 0. ( 73 
)
This leads to |c -λ A | ≤ c and this inequality is strict if [START_REF] Minerbo | Maximum entropy eddington factors[END_REF] is strict.
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 12 Figure 1: Schematic view of the Hohlraum and the target
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 35 If the I n k,j k,j are nonnegative (resp positive), then the solution of (22) I n+1 k,j k,j is also nonnegative (resp positive).
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 5 Figure 5: Error with the first order scheme of Section 3 on cartesian (left) and random (right) meshes.
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 6 Figure 6: Error with the second order scheme of Section 4 on cartesian (left) and random (right) meshes.
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 7 Figure 7: Error with the first order scheme of Section 3 on cartesian (left) and random (right) meshes.
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 8 Figure 8: Error with the second order scheme of Section 4 on cartesian (left) and random (right) meshes.
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 9 Figure 9: Error with the first order scheme of Section 3 on cartesian meshes (left) and random meshes (right).
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 10 Figure 10: Error with the second order scheme of Section 4 on cartesian meshes (left) and random meshes (right).
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 11 Figure 11: The domain Ω A in red color. Some numerical solutions are plotted in the following Figures. The log scale map is limited to seven orders of magnitude: we display with the same blue color all the regions where the solution is smaller or equal to 10 -7 . Figures 12 plots the numerical solution computed with the first order scheme of Section 3 with K = 4. Figures 13, 14and 15 display the numerical solution computed with the second order explicit scheme of Section 4 with K = 4, K = 144 and K = 484 respectively. We see that we recover the results of[START_REF] Brunner | Two-dimensional time dependent Riemann solvers for neutron transport[END_REF].
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 12 Figure 12: Numerical solution (in log scale) at time T = 3.2 computed with the first order scheme of Section 3 on a cartesian mesh of size 140 × 140 and with N = 1 (K = 4).
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 13 Figure 13: Numerical solution (in log scale) at time T = 3.2 computed with the second order scheme of Section 4 on a cartesian mesh of size 140 × 140 and with N = 1 (K = 4).
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 14 Figure 14: Numerical solution (in log scale) at time T = 3.2 computed with the second order scheme of Section 4 on a cartesian mesh of size 140 × 140 and with N = 6 (K = 144).
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 15 Figure 15: Numerical solution (in log scale) at time T = 3.2 computed with the second order scheme of Section 4 on a cartesian mesh of size 140 × 140 and with N = 11 (K = 484).
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  j -∆tR j (g, a) ≥ g j -According to (63), we have ḡdof j ≤ 2g j . This leads to: g j -∆tR j (g, a) ≥ g j