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Abstract
Mathematical models of biological tissues are a promising tool for multi-scale data integration,

computational experiments and system biology approaches. While some data and insights are rooted
at the cellular level, macroscopic mechanisms emerge and are observed at the tissue scale, rendering
tissue modeling an inherently multi-scale process. As a consequence, tissue models can be broadly
categorized as either individual-based or continuous population-based.

In this paper, we first introduce a generic individual-based model of epithelial tissue including the
main regulation processes such as cell division, differentiation, migration and death, together with
cell-cell mechanical interactions. The coupling with diffusing molecules is also considered. This model
is a measure-valuedpiecewise-deterministic Markov processes, coupled with reaction-diffusion PDEs.
The well-posedness of the model is assessed and large population deterministic limit is rigorously
derived. Finally, numerical experiments are conducted: this model is applied to the context of
epithelial tissues in the intestinal crypt and the convergence towards the deterministic model are
numerically illustrated.
Keywords: biological tissue model; individual-based model (IBM); large population asymptotics.
AMS Subject Classification: 60J85, 92D25, 92C15.
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1 Introduction
Biological tissues are meso-scale biological structures between micro-scale individual cells and macro-
scale organs. Tissues are characterized by interacting cells with similar physiology embedded into an
extracellular matrix. Thus, tissues have their own regulation mechanisms including cell metabolism,
cell-cell communications, cell movement and mechanical interactions [MFK09]. In the framework of cell-
population studies at the tissue scale, mathematical models of biological tissues are particularly useful for
integrating data at different scales or for testing hypothesis with high-throughput in silico experiments
[FO22]. A large set of tissue models have then been developed in different contexts as diverse as surgical
robotics [FS08], embryogenesis [BNL19; Ros+20] or mathematical oncology [Roc+19].

Usually, tissue models are either individual-based models (IBM) or continuous population models.
IBMs treat cells as distinct entities, aggregating a large number of individual cell models. These models
are interconnected through cell-to-cell interactions, facilitating the emergence of patterns at the tissue
scale [Osb+17]. IBMs offer several key advantages. Primarily, they align well with biological observations
frequently made at the cellular level, such as through microscopy or single-cell experiments, making them
suitable for integrating data and knowledge. Additionally, they are particularly well adapted to object-
oriented programming, allowing to leverage high-performance and parallel computing. Furthermore,
IBMs efficiently incorporate stochastic events at the individual level, allowing for the exploration of
inter-individual variability within populations. However, the computational and memory requirements
for IBM scale at least linearly with the number of cell models, posing challenges for large cell numbers
that approach real tissue scales. In such cases, the synthetic data generated by IBMs can be as complex
to analyze as actual experimental data [Osb+17].

On the other hand, continuous population models consider the fate of the cell distribution at the
population level. They focus on the dynamics of averaged quantities across the population, such as the
mean of a quantitative trait or higher order momentum, using ordinary or partial differential equations
(ODE or PDE). These models, however, lack important properties of the IBMs. They are most often
fully deterministic (although stochastic events can technically be incorporated) whereas stochasticity is
an important aspect of cellular behaviour [LD08]. Additionally, they do not facilitate the modelling of
individual trajectories hindering the comparison with individual-based data. The main advantage of
continuous population models is their ability to analyze population-wide traits independent of the actual
cell count, allowing scalability for large populations. Moreover, their relative simplicity compared to
large scale IBMs make them more amenable to mathematical analysis.

Tissue models can integrate both formalism. For instance, IBMs often include smaller-scale elements
such as nutrients through a continuous model coupled to the IBM [Smi+12; Osb+17]. Furthermore,
continuous population models can be directly derived from IBMs using large population approximations
[EK86]. This approach is particularly attractive for several reasons. It establishes a formal link between
micro-scale IBM parameters and macro-scale population model parameters, facilitating the connection
of measurements across scales. Additionally, the deterministic asymptotic model derived from the IBM
can be used to accelerate computations in computationally intensive tasks such as parameter inference
or sensitivity analysis. If qualitative mathematical analysis is impractical on IBMs due to technical
constraints, it might be feasible on the deterministic approximation. This qualitative behavior may then
be extrapolated to the IBM for large enough populations.

The goal of this paper is twofold: we aim to propose a versatile stochastic individual-based model
of epithelial tissues, that depicts a population of cells interacting with diffusing chemicals, alongside a
rigorous deterministic approximation. We want the IBM general enough to be applicable to a broad range
of tissues, encapsulating essential aspects of biological tissues turnover. The model is structured by cell
types and spatial dimensions, enabling the representation of population distributions along these axes.
Additionally, it accounts for cell fate regulation by diffusing extracellular molecules and the associated
spatial variations in chemical concentrations. We therefore model : 1) spatial movement of cells driven by
mechanical interactions with neighbouring cells, 2) stochastic cell division, extrusion and differentiation
regulated by chemical concentrations, cell location and local cell density, 3) spatial diffusion of chemicals,
4) consumption or production of chemicals by cell metabolism.

Although these cellular functions are broadly applicable, our primary focus is on the epithelium of
the intestinal colon crypt, a tissue with unique characteristics that make it an ideal test case for our
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model. First, the gut epithelium is one of the tissue with the highest renewal rate in the human body:
the cell turn over is in the range of a few days and includes strong dynamical processes such as differenti-
ation and cell migration [Bar14]. Next, a lot of different cell-cell interactions occur, including mechanical
repression of division (contact inhibition), contact signaling [Bat+02] and longer scale interactions with
diffusing molecules [Wan+18]. Furthermore, complex interactions with the cell environment take place,
in particular the uptake of gut-microbes-derived metabolites [Kai+16]. Models of the gut crypt already
exist, both in the IBMs [DNO13; Bus+12; Tha+18] and continuous population model [Joh+07; Mur+11]
frameworks. However, these IBMs lack a rigorous mathematical foundation, particularly in their stochas-
tic components, limiting the scope for mathematical asymptotic analysis. We note a previous derivation
of a population model from IBMs [Mur+11] but the derivation is purely formal. Our paper addresses
these gaps by defining an IBM within the PDMP (Piecewise Deterministic Markov Process) framework
and proving convergence to the population model using functional analysis tools. This mathematical
framework was first introduced in theoretical ecology and evolution [FM04; CFM07; Tra06]. It was then
adapted to other biological context with less emphasis on evolutionary dynamics such as the chemostat
[CF14] or the ovarian follicle [Mic17]. Our work extends previous studies by accounting for a greater
diversity of biological phenomena. It provides a strong theoretical grounding for the models used in the
community for mathematical oncology, morphogenesis and gut microbiota studies [Dar+22].

Our individual based PDMP model (PDMP-IBM) represents the population of cells as a point mea-
sure and concentrations of molecules as smooth densities. In this class of IBM continuous processes mod-
eled by deterministic equations (like ODEs) are punctuated by stochastic events: the random process
determines the time occurrence and the magnitude of stochastic jumps in the state space, with individual
trajectories driven by the continuous deterministic model between jumps [Tra08; CF14; Ben+15]. Our
model’s deterministic part includes cell-to-cell interactions and the reaction-diffusion of chemicals, while
the stochastic part models cell division, extrusion and differentiation. Custom notations used through-
out the paper are defined in section 2. The PDMP is introduced in section 3, with its deterministic
part presented in section 3.1 and its stochastic part in 3.2. The well-posedness and stability of the
process are shown in 4. We then prove in section 5 weak convergence of this stochastic cell-based model
to a deterministic model of self-aggregation type, under the hypothesis of large population. This part
is inspired by previous works [FM04; Tra06; CF14] with adaptations to take into account mechanical
interactions between cells and the strong coupling of the cell population with reaction-diffusion PDEs.
Finally, section 6 assesses the convergence numerically, using a model that simulates epithelial turn-over
in an intestinal crypt.

2 Preliminary notations and definitions
We consider a finite set T of cell types, and a spatial domain Z which is a compact subset of Rd, with
d ≤ 3. Cells are characterised by their position and their type x = (z, l) ∈ Z ×T . We model a population
of cells ν as a point measure on X = Z × T :

ν =
n∑
i=1

δxi(dx) (1)

where δx(dx) is the Dirac measure on x and n = ⟨ν, 1⟩ is the total number of cells in the population. We
also model the spatial and temporal evolution of c, the vector of concentrations of Nm ∈ N∗ chemicals
on Z.

2.1 Topology and metric on Z and X
We endow Z ⊂ Rd with the topology associated to the euclidean norm and denote B(Z) the corresponding
Borel σ-algebra, and endow T with the topology generated by P(T ), the set of its parts. The product
space X = Z × T is equipped with the product topology for which an associated metric dX is defined as

dX : X × X → R+

((z1, l1), (z2, l2)) 7→

{
|z1 − z2| if l1 = l2,

β otherwise,
(2)

with β > diam(Z) and | · | the euclidean norm on Z. Then the product σ-algebra B(X ) = B(Z) ⊗ P(T )
is the Borel σ-algebra on (X , dX ).

Moreover, we sometimes use Ẑ := {z − y : (z, y) ∈ Z2}.
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2.2 Functions defined on X
Let f be a function defined on X . For all l in T , we denote fl : z 7→ f(z, l) the restriction of f to Z ×{l}.
Then f is:

• measurable (resp. continuous) iff, for all l ∈ T , fl is measurable (resp. continuous) with respect to
the Borel σ-algebra (resp. the euclidian norm) on Z.

• f ∈ Ck,•(X ,R) iff, for all l ∈ T , fl is continuous of class k in Z (fl ∈ Ck), meaning that it is k times
differentiable on Z, with k-th derivative continuous on Z. When k ≥ 1, we denote ∇zf(x) ∈ Rd
the gradient operator with respect to the space variable z.

• f ∈ Ck1,k2,•(R+ × X ,R) iff, for all l ∈ T , fl(t, z) is continuous of class k1 with respect to t ∈ R+

and continuous of class k2 with respect to z ∈ Z.
For f : X → R, we write

||f ||∞ = sup
x∈X

|f(x)| and ||f ||Lip = sup
(x,y)∈X ,x ̸=y

{
|f(x) − f(y)|
dX (x, y)

}
.

We have the following elementary proposition.
Proposition 1. f : X → R is Lipschitz on X iff, ∀l ∈ T , fl is Lipschitz on Z. Moreover,

||f ||Lip ≤ max
(

max
l∈T

||fl||Lip(Z),
2||f ||∞
β

)
with ||fl||Lip(Z) is the Lipschitz constant of fl on Z and β is defined in (2).

For f Lipschitz on X , we define

||f ||∨ = max(||f ||∞, ||f ||Lip) (3)

and introduce the space of functions bounded by 1 with Lipschitz constant lower than 1

Lip1,1(X ,R) = {f : X → R : ||f ||∨ ≤ 1}.

2.3 Measures on X
We denote MF (X ) (MF+(X )) the space of finite (resp. finite positive) measures on (X ,B(X )), and
MP (X ) the subset of finite positive point measures:

MP (X ) =
{

n∑
i=1

δxi ;n ∈ N, xi = (zi, li) ∈ Z × T

}
,

with
0∑
i=1

δxi(x) the null measure by convention.

Let ν be a measure of MF (X ), then, for all l ∈ T , we define νl ∈ MFZ as

νl(Z) = ν(Z × {l})

with Z any Borel set of Z. Then:

ν(dz, dl) =
∑
k∈T

δk(dl)νk(dz) (4)

as for any set X of B(X ), X = ∪l∈T Zl × {l} with Zl a Borel set of Z.
For a measurable function f : X → R and a measure ν ∈ MF (X ), we define

⟨ν, f⟩ :=
∫

X
f(x)ν(dx) =

∑
l∈T

∫
Z
f(z, l)ν(dz, l). (5)

If ν ∈ MP (X ), that is to say ν =
∑n
i=1 δxi for some n ∈ N,

⟨ν, f⟩ =
n∑
i=1

f(xi) =
n∑
i=1

fli(zi).

In particular,
⟨ν, 1⟩ = n.
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2.4 Convolution
For a measurable function D : Rd × T → R and ν ∈ MF (X ), we set for x = (z, l) ∈ X

ν ∗D(x) :=
∑
l∈T

∫
Z
D(z − y, l)ν(dy, l). (6)

If ν ∈ MP (X ),

ν ∗D(x) =
⟨ν,1⟩∑
i=1

D(z − zi, li).

3 Definition of the process
We now describe our generic individual based cell model, expressed as a piecewise-deterministic (or
hybrid) Markov process.

3.1 Deterministic movement of cells and reaction-diffusion of chemicals
3.1.1 Movement of cells

For each cell i with mass mi << 1, the position of its center zi(t) evolves continuously in the spatial
domain Z, in a non-inertial regime:

��
���

mi
d2zi

dt2
(t)︸ ︷︷ ︸

inertia

+ dzi

dt
(t)︸ ︷︷ ︸

friction

= F( zi(t), νt ∗ F (zi(t)) )︸ ︷︷ ︸
other forces

(7)

with
F : Rd → Rd and F : Z × Rd → Rd.

The first variable zi(t) in F is introduced to take into account local modulations (if any) in the total
force (apart from friction). The second variable is the total force exerted by other cells. The cell j at
position zj exerts on cell i at position zi a force F (zi − zj). This force only depends on spatial distance
and direction between cells, and not on cell types. The total force exerted on cell i is

n∑
j=1,j ̸=i

F (zi − zj) =
n∑
j=1

F (zi − zj) = ν ∗ F (zi). (8)

We assume that
Hypothesis 2. 1. F ∈ C1(Z × Rd,Rd), F ∈ C1(Rd,Rd),

2. F (0) = 0,

3. F(z, ·) = 0 ∀z ∈ ∂Z.
We have the following standard result.

Proposition 3 (Cauchy-Lipschitz). Thanks to hypothesis (3) and regularity assumptions on F and F ,
the system of coupled equations (7) has a unique solution on R+, taking values in Zn, for any initial
condition in Zn.
Remark 4. Proposition 3 holds under the weaker hypothesis that F and F are locally Lipschitz, the
C1 regularity will be used later in section 5.
Remark 5. Assumption (2) deserves an explanation. It means that two cells can occupy the same
location without exerting a force on each other. Such situation occurs when the space dimension is
reduced due to symmetry assumptions, in which case cells are allowed to form vertical or spherical layers
corresponding to the same altitude or radial distance, see for instance [Dar+22]. More generally, we
assume that when they get very close, cells exert a repulsive force on each other. However, when the
distance between cells is too small, this correspond to a high compression and cells are damaged, so
that they cannot exert a force on each other any more. This usually comes with a high probability of
extrusion (expulsion of damaged cells), as reminded in the description of cell fate events below.
Remark 6. We could take into account an effect of cell types in mechanical interaction by using for the
force F (zi − zj , li, lj) with F : Rd × T × T → Rd, and li, lj are respectively the cell types of cell i and
cell j. By extending hypotheses done on F to F (·, li, lj), all of the following results are still valid.
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3.1.2 Reaction-diffusion of chemicals

Let a be the typical diameter of a cell and BRd(z, r) be the open ball of Rd centered on z of radius r.
We define

Za :=
⋃
z∈Z

BRd

(
z,

1
2a
)

the spatial domain we use for modelling concentrations of chemicals. It is an enlarged version of Z which
contains not only the position of the center of cells, as Z, but also the whole cells area (or volume),
which is appropriate to model surfacic absorption of chemicals. We assume the following:

Hypothesis 7. Za is an open set of Rd of regularity C∞, with boundary Γ.

Let c(z) be the vector of concentrations of the Nm chemicals located at z. Each cell type l ∈ T can
degrade or produce chemical m, 1 ≤ m ≤ Nm, at speed γml(c(z)). A cell i located at zi can catalyze a
reaction only if it is physically close to z. Therefore, we weight the reaction speed γml(c(z)) with a term
ψa(z − zi) where

Hypothesis 8. ψa is a positive function with radial symmetry, Lipschitz on Rd with support contained
in BRd(0, 1

2a) and its integral is 1.

On the boundary of Za, concentrations are influenced by the external media through quantities fm
which depend of time and space. Then, concentrations c on Za evolve according to the following system
of coupled reaction-diffusion equations

∀1 ≤ m ≤ Nm, ∂tcm − σ∆cm =
∑
l∈T

γml(c) νlt ∗ ψa(z), (9)

∂ncm,|[0,T ]×Γ + bmcm,|[0,T ]×Γ = fm,

cm(·, 0) = c0m,

where ∂n is the normal derivative on Γ.
For an open set U ⊂ Rd and α ≥ 0, let

W
2α,⌈α⌉
L2(U) :=

{
f ∈ L2([0, T ], H2α(U)); ∀j ∈ {1, · · · , ⌈α⌉} ∂jf

∂tj
∈ L2([0, T ], H2α−2j(U))

}
with ⌈·⌉ the ceiling function.

We assume that

Hypothesis 9. For all 1 ≤ m ≤ Nm,

1. bm is in C∞(Za),

2. ∀l ∈ T , γml is bounded and uniformly Lipschitz from RNm
+ to R,

3. the initial condition c0m is in H1(Za),

4. fm is in W
1
2 ,1
L2(Γ).

With the notations introduced in section B, we denote Sm the analytic semi-group S on L2(Za)
generated by σ∆ with boundary conditions of chemical m, Dm the related lifting operator (D in the
appendix) and λm the associated scalar (λ in the appendix). Moreover, for ν ∈ MF (X ), let ||ν||TV be
the total variation norm defined in equation (63) of the appendix. Then the following proposition is
verified.

Proposition 10. Under hypothesis 9, for all ν measurable on [0, T ] with values in MF+(X ) endowed
with the weak convergence topology and the associated σ-algebra, and such that supt∈[0,T ] ||νt||TV < +∞,

the non-linear evolution problem (9) has a unique solution c in
(
W 2,1
L2(Za)

)Nm

∩ C([0, T ], H1(Za)Nm),
verifying for 1 ≤ m ≤ Nm:

cm(., t) = Sm(t)c0m + (λmI − ∆)(
∫ t

0
Sm(t− s)Dm(fm)(., s)ds) (10)

+
∫ t

0
Sm(t− s)

∑
l∈T

γml(c(s)) νls ∗ ψa(·)ds

6



Proof. Let us define the function G on [0, T ] × L2(Za)Nm as

G(t, c) :=
(∑
l∈T

γ1l(c) νlt ∗ ψa(·), · · · ,
∑
l∈T

γNml(c) νlt ∗ ψa(·)
)

∈ L∞([0, T ], L2(Za)Nm).

G is Lipschitz with respect to c on L2(Za)Nm , uniformly for t ∈ [0, T ]. Indeed, as γml are Lipschitz
under hypothesis 2,

||γ||Lip = sup
m,l

||γml||Lip < ∞. (11)

Let c1, c2 in L2(Za)Nm , then

sup
t∈[0,T ]

∥G(t, c1) −G(t, c2)∥L2(Za)Nm ≤
Nm∑
m=1

∑
l∈T

sup
t∈[0,T ]

||νlt||TV ∥γml(c1) − γml(c2)∥L2(Za)

≤ sup
t∈[0,T ]

||νt||TV ×Nm|T |K∥c1 − c2∥L2(Za)Nm .

With a standard fixed point argument (see [CZ12; Ama93]) on the system (10) and the semi-group of
L2(Za)Nm defined by S = diag(S1, . . . , SNm

), we prove the existence of a weak solution c̃ in C([0, T ], L2(Za)Nm).
Then

u(z, t) =
∑
l∈T

γml(c̃(z, t))νlt ∗ ψa(z) ∈ L∞([0, T ], L2(Za)) ⊂ W 0,0
L2(Za).

Indeed, γml are bounded lipschitz on RNm
+ under hypothesis 2, so γml(c̃(z, t)) ∈ C([0, T ], L2(Za)) as

c̃ ∈ C([0, T ], L2(Za)Nm) according to the previous step. Moreover, νlt ∗ ψa(z) ∈ L∞([0, T ], L2(Za))
because ψa is bounded and supt∈[0,T ] ||νt||TV < ∞.

We obtain the adequate regularity result by observing that cm is a solution of a problem of type (73)
with c0m ∈ H1(Za), fm verifying the regularity conditions stated in proposition 35 and u ∈ W 0,0

L2(Za).

Therefore cm ∈ W 2,1
L2(Za) ∩ C([0, T ], H1(Za)).

The following lemma will be used later. It bounds the distance between two populations of cells ν1

and ν2, by a quantity depending on the distance between the two corresponding solutions of (9).

Lemma 11. Let ν1, ν2 be two measurable functions from [0, T ] to MF+(X ) (endowed with the topology
of weak convergence and the associated Borel σ-algebra) such that

sup
t∈[0,T ]

||ν1
t ||TV ≤ B < +∞ and sup

t∈[0,T ]
||ν2
t ||TV ≤ B < +∞.

Let c1 et c2 be the associated solutions of (9), with c0 and f verifying the regularity hypothesis 9. Then,
∀t ∈ [0, T ],

∥c1(·, t) − c2(·, t)∥L2(Za)Nm ≤ Nme
Ctγ∞

∫ t

0

∑
l∈T

||ν1l
s ∗ ψa(·) − ν2l

s ∗ ψa(·)||L2(Za) ds, (12)

where C = Nm||ψa||∞||γ||LipB and γ∞ are positive constants. We can deduce that

∥c1(·, t) − c2(·, t)∥L2(Za)Nm ≤ Nmγ
∞||ψa||∞|Za|1/2|T |eCt

∫ t

0
dF (ν1

s , ν
2
s ) ds, (13)

where dF is the flat metric (see A) defined on MF+(X ) by

dF (ν, ξ) = sup
f∈Lip1,1(X ,R)

⟨ν − ξ, f⟩.

7



Proof. By formula (10),

∥c1
m(·, t) − c2

m(·, t)∥L2(Za) = ||
∫ t

0
Sm(t− s)

∑
l∈T

[
γml(c1(·, s))ν1l

s ∗ ψa(·)

− γml(c2(·, s))ν2l
s ∗ ψa(·)

]
ds||L2(Za)

= ||
∫ t

0
Sm(t− s)

∑
l∈T

[
γml(c1(·, s))

(
ν1l
s ∗ ψa(·) − ν2l

s ∗ ψa(·)
)

−
(
γml(c2(·, s)) − γml(c1(·, s))

)
ν2l
s ∗ ψa(·)

]
ds||L2(Za)

≤
∫ t

0

∑
l∈T

[
||γml(c1(·, s))

(
ν1l
s ∗ ψa(·) − ν2l

s ∗ ψa(·)
)

||L2(Za)

+ ||
(
γml(c2(·, s)) − γml(c1(·, s))

)
ν2l
s ∗ ψa(·)||L2(Za)

]
ds

because Sm is a contraction semi-group (see B). Moreover, there exists a constant γ∞ such that ∀m, l,
|γml(·)| ≤ γ∞ < ∞. Therefore,

∥c1
m(·, t) − c2

m(·, t)∥L2(Za) ≤γ∞
∫ t

0

∑
l∈T

||ν1l
s ∗ ψa(·) − ν2l

s ∗ ψa(·)||L2(Za) ds

+||ψa||∞||γ||Lip sup
[0,T ]

||ν2
s ||TV

∫ t

0
∥c1(·, s) − c2(·, s)∥L2(Za)Nm ds.

We set C = Nm||ψa||∞||γ||LipB and deduce from the previous inequality that

∥c1(·, t) − c2(·, t)∥L2(Za)Nm ≤Nmγ∞
∫ t

0

∑
l∈T

||ν1l
s ∗ ψa(·) − ν2l

s ∗ ψa(·)||L2(Za) ds

+C
∫ t

0
∥c1(·, s) − c2(·, s)∥L2(Za)Nm ds

By Gronwall lemma, ∀t ∈ [0, T ],

∥c1(·, t) − c2(·, t)∥L2(Za)Nm ≤ Nme
Ctγ∞

∫ t

0

∑
l∈T

||ν1l
s ∗ ψa(·) − ν2l

s ∗ ψa(·)∥L2(Za) ds, (14)

which is the first result of the lemma. We obtain the second as for all 0 ≤ s ≤ t,

||ν1l
s ∗ ψa(·) − ν2l

s ∗ ψa(·)||L2(Za) ≤ ||ψa||∞|Za|1/2dF (ν1
s , ν

2
s )

where |Za| is the Lebesgue measure of Za.

3.2 Stochastic model of cell fate
Cells can divide symmetrically, differentiate or die. These phenomena are modeled as independent
random events, indexed by E the finite set of event types. When at t the cell i undergoes a jump of type
k, the population is modified according to

νt = νt− + µk(xi(t−))

where
µk : X → MF+(X ), (15)

and

• if k is an extrusion: µk(x) = −δx,

• if k is a differenciation of a cell of type l into a type l∗: µk(z, l) = −δ(z,l) + δ(z,l∗),
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• if k is a division: we introduce a new daughter cell at a distance λ(z) from mother cell that is to
say µk(z, l) = δ(z+λ(z),l). We assume the following

Hypothesis 12. – λ : Z → Rd is continuous and such that, ∀z ∈ Z, z + λ(z) ∈ Z,
– λ is locally Lipschitz from Z to Rd.

Remark 13. We conjecture that our results could be extended to a stochastic division shift λ, as done
in [FM04; Tra06; CF14].

For a cell at x ∈ X , in a population ν ∈ MF+(X ), the individual jump rate associated to jump k ∈ E
takes the form

q∞
k × qk(x, ν ∗D(z), c ∗ ψa(z)) (16)

with
D : Rd → R+, qk : X × R × R+ → R+,

ψa the function representing the cell volume defined in hypothesis 8, and q∞
k < +∞ are constants.

Moreover,
c ∗ ψa(z) =

(∫
Za

c1(y)ψa(z − y)dy, · · · ,
∫

Za

cNm
(y)ψa(z − y)dy

)
is the vector of each coordinate of c convoluted with ψa. Therefore, we model a cell population where
jump rates depend of the cell state x, the local density of the population through the term ν ∗D(z), and
concentrations of chemicals near the cell through the term c ∗ ψa(z). For instance, as mentioned earlier,
a high local density could promote extrusion events as observed experimentally [Eis+12].

We assume the following

Hypothesis 14. • For all k ∈ E, qk ≤ 1,

• For all k ∈ E, for all l ∈ T , (z, y, c) 7→ qk((z, l), y, c) is Lipschitz on Z × R × R. We denote Kk,l

be a Lipschitz constant and set C(qk) = maxl∈T Kk,l.

• D ∈ C1(Rd,R+)

4 Rescaled process
We introduce a sequence of processes (cNt , νNt )N∈N∗ similar to the model described in sections 3.1-3.2
with parameters FN , DN , γN· such that

FN = F

N
, DN = D

N
, γN· = γ·

N
, (17)

leaving the other model parameters unchanged. Note that N = 1 corresponds to the process described
in sections 3.1-3.2. The rescaled process is defined as

ν̄Nt := 1
N
νNt .

Remark 15. Obviously, the global existence and uniqueness properties of cell spatial trajectories and
concentrations of chemicals as stated in propositions 3 and 10 readily extended to (cNt , νNt )N∈N∗ , for all
N ∈ N∗.

We consider independent Poisson random measure on [0, 1] × N∗ × R+, one for each type of jump
k ∈ E , denoted Nk(dθ, di, dt), with intensity

nk(dθ, di, ds) = q∞
k dθdt

∑
k∈N∗

δk(di).

From hypothesis 17, for all z ∈ Z,

νNt ∗ FN (z) = νNt ∗ F (z)
N

= ν̄Nt ∗ F (z),

νNt ∗DN (z) = ν̄Nt ∗D(z),

9



and, for all (m, l) ∈ {1, · · · , Nm} × T ,

γNml(cN ) νlNt ∗ ψa(z) = γml(cN ) ν̄lNt ∗ ψa(z).

Provided trajectories exist on R+ (which will be proved in proposition 17 below), the process (cNt , ν̄Nt )t ∈
C([0, T ] , H1(Za)Nm) × D([0, T ] ,MF+(X )) is solution of, ∀f ∈ C1,1,•(R+ × X ,R),

⟨ν̄Nt , ft⟩ =⟨ν̄N0 , f0⟩

+
∫ t

0
⟨ν̄Ns ,F(·, ν̄Ns ∗ F ) ∇zfs + ∂sfs⟩ ds

+
∑
k∈E

∫ t

0

∫
N∗

∫ 1

0

[
⟨ν̄Ns− + µk

N
(xNis− ), fs⟩ − ⟨ν̄Ns− , fs⟩

]
× 1{i≤⟨νs− ,1⟩}(i)1{θ≤qk(xNi

s− ,ν̄
N

s− ∗D(zNi

s− ),cN
s ∗ψa(zNi

s− ))}(θ)Nk(dθ, di, ds),

(18)

and, for chemical m, 1 ≤ m ≤ Nm,

∂tc
N
m − σ∆cNm =

∑
l∈T

γml(cN ) ν̄lNt ∗ ψa(z), (19)

∂nc
N
|[0,T ]×Γ + bmc

N
|[0,T ]×Γ = fm,

cNm(·, 0) = c0m.

Remark 16. The motivation for employing test functions ft depending on both space and time comes
from our proof of the convergence theorem 21, more specifically in lemma 26, second step.

Without stochastic jumps (or between jumps), the deterministic flow of the process is defined on R+

for all N ∈ N∗ (see remark 15). For (cNt , ν̄Nt ) to have trajectories on R+ when stochastic events occur,
the process needs to be stable meaning that an infinite number of jumps cannot accumulate in finite
time. This is shown in the next proposition.

Proposition 17. 1. (Control of the population size) Let t ≥ 0 and p ∈ N∗. If supN∈N∗ E
[
⟨ν̄N0 , 1⟩p

]
<

+∞, then

sup
N∈N∗

E
[
sup
s≤t

⟨ν̄Ns , 1⟩p
]

≤ C(p, t) < +∞ (20)

with C(p, t) a constant that depends of p and t.

2. (Stability) For all N ∈ N∗, the process (cNt , ν̄Nt ) solution of (18-19) is stable and trajectories exist
on R+.

Proof. (1) : Let p,N ∈ N∗. For all n ∈ N, we define the stopping-time τNn = inf{t ≥ 0, ⟨νNt , 1⟩ = n}.
The process (cNt∧τN

n
, ν̄Nt∧τN

n
)t is well-defined as the cell population is bounded by n and, by property 15,

cN exists.
Note that the determinist evolution does not change population size, and jumps modify it at most

by one. Let t ≥ 0, applying Itô formula (theorem 5.1 chapter II in [IW89]) to ⟨ν̄Nt∧τN
n
, 1⟩p, we get

⟨ν̄Nt∧τN
n
, 1⟩p ≤ ⟨ν̄N0 , 1⟩p

+
∑
k∈E

∫ t∧τN
n

0

∫
N∗

∫ 1

0

[(
⟨ν̄Ns− , 1⟩ + 1

N

)p
− ⟨ν̄Ns− , 1⟩p

]
1{i≤⟨νN

s− ,1⟩}(i)

1{θ≤qk(·)}(θ) Nk(dθ, di, ds).

The integral is increasing with time so we can switch to sup
s≤t∧τN

n

on the left hand-side. For positive x,

(x+ 1
N

)p − xp ≤ C(p)
Np

((Nx)p−1 + 1) ≤ C(p)
N

(xp−1 + 1)
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with C(p) =
∑p−1
k=1

(
p

k

)
. Therefore,

sup
s≤t∧τn

⟨ν̄Ns , 1⟩p ≤ ⟨ν̄N0 , 1⟩p+
∑
k∈E

∫ t∧τN
n

0

∫
N∗

∫ 1

0

C(p)
N

(
⟨ν̄Ns− , 1⟩p−1 + 1

)
1{i≤⟨νN

s− ,1⟩}(i)

1{θ≤qk(·)}(θ)Nk(dθ, di, ds).

Taking expectation:

E
[

sup
s≤t∧τn

⟨ν̄Ns , 1⟩p
]

≤ E
[
⟨ν̄N0 , 1⟩p

]
+
∑
k∈E

E

∫ t∧τN
n

0

⟨νN

s− ,1⟩∑
i=1

C(p)
N

(
⟨ν̄Ns− , 1⟩p−1 + 1

)
q∞
k qk(·) ds


≤ E

[
⟨ν̄N0 , 1⟩p

]
+
∑
k∈E

E
[∫ t

0
q∞
k C(p)

(
⟨ν̄Ns∧τN

n
, 1⟩p + ⟨ν̄Ns∧τN

n
, 1⟩
)
ds

]

≤ E
[
⟨ν̄N0 , 1⟩p

]
+ 2C(p)

(∑
k∈E

q∞
k

)∫ t

0
E

[
sup

u≤s∧τN
n

⟨ν̄Nu , 1⟩p
]
ds.

as for p ≥ 1, n+ np ≤ 2np. Using Gronwall lemma and our hypotheses, we can find a bound which does
not depend of n nor N :

E

[
sup

s≤t∧τN
n

⟨ν̄Ns , 1⟩p
]

≤ E
[
⟨ν̄N0 , 1⟩p

]
exp

(
2C(p)

(∑
k∈E

q∞
k

)
t

)
= C(p, t). (21)

Therefore τn → ∞ a.s. Then, by Fatou lemma:

E
[
sup
s≤t

⟨ν̄Ns , 1⟩p
]

= E

[
lim inf
n→∞

sup
s≤t∧τN

n

⟨ν̄Ns , 1⟩p
]

≤ lim inf
n→∞

E

[
sup

s≤t∧τN
n

⟨ν̄Ns , 1⟩p
]

≤ C(p, t).

(2) : A direct consequence of (1) is that the population does not explode in finite time a.s. Individual
jump rates being bounded, as long as the population is finite, the total jump rate is finite and only a
finite number of jumps occurs on finite time interval.

We now establish a martingale property which will be used in our convergence study. To do so, we
introduce for each jump type k ∈ E the compensated random Poisson measure:

Ñk(dθ, di, ds) = Nk(dθ, di, ds) − nk(dθ, di, ds).

Proposition 18. We suppose that E
[
⟨ν̄N0 , 1⟩2] < ∞. For all f ∈ C1,1,•(R+ × X ,R) and t ≥ 0,

⟨ν̄Nt , ft⟩ = ⟨ν̄N0 , f0⟩ +
∫ t

0
⟨ν̄Ns ,F(·, ν̄Ns ∗ F )∇zfs + ∂sfs⟩ds (22)

+
∑
k∈E

q∞
k

∫ t

0

∫
X

⟨µk(x), fs⟩qk(x, ν̄Ns ∗D(z), cNs ∗ ψa(z)) ν̄Ns (dx)ds

+ Zf,Nt

where Zf,Nt is the square integrable martingale

Zf,Nt =
∑
k∈E

∫ t

0

∫
N∗

∫ 1

0
⟨µk(xNis− ), 1

N
fs⟩1{i≤⟨νN

s− ,1⟩}(i)1{θ≤qk(·)}(θ)Ñk(dθ, di, ds), (23)

with quadratic variation

⟨Zf,N ⟩t = 1
N

∑
k∈E

q∞
k

∫ t

0

∫
X

⟨µk(x), fs⟩2qk(x, ν̄Ns ∗D(z), cNs ∗ ψa(z))ν̄Ns (dx)ds. (24)
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Proof. The integrands in (23) are left-continuous and therefore predictable. From proposition 17, for all
t ≥ 0,

E

[∑
k∈E

∫ t

0

∫
N∗

∫ 1

0

∣∣∣∣⟨µk(xNis− ), 1
N
fs⟩
∣∣∣∣1{i≤⟨νN

s− ,1⟩}(i)1{θ≤qk(·)}(θ)nk(dθ, di, ds)
]

=
∑
k∈E

∫ t

0

∫
X
E
[
q∞
k

∣∣∣∣⟨µk(x), 1
N
fs⟩
∣∣∣∣ qk(x, ν̄Ns ∗D(z), cNs ∗ ψa(z)) ν̄Ns (dx)ds

]
< +∞

and

E

[∑
k∈E

∫ t

0

∫
N∗

∫ 1

0

∣∣∣∣⟨µk(xNis− ), 1
N
fs⟩
∣∣∣∣2 1{i≤⟨νN

s− ,1⟩}(i)1{θ≤qk(·)}(θ)nk(dθ, di, ds)
]

< +∞.

We can then apply the classical result given p.62 of [IW89].

Remark 19. Note that results presented in this section are valid when the rate functions qk are mea-
surable. The stronger hypothesis 14 will prove necessary in section 5

5 Deterministic limit of the rescaled process by a large popu-
lation approximation.

Let T be a positive time. Let D([0, T ] ,MF+(X )) be the space of càdlàg functions of [0, T ] to MF+(X ).
We now prove the weak convergence of the rescaled process sequence (cNt , ν̄Nt )N∈N∗ defined in section 4
towards a deterministic process in the space

C([0, T ] , H1(Za)Nm) × D([0, T ] ,MF+(X )).

We endow D([0, T ] ,MF+(X )) with the Skorokhod metric, using the Prokhorov distance dPR on MF+(X ).
The topology associated to the Prokhorov metric is the topology of the weak convergence on MF+(X ).
For more details on these points, see A.

We suppose that hypotheses 2, 7, 8, 9, 12, 14 are verified. Additionally, we assume that :

Hypothesis 20. • the sequence ν̄N0 = 1
N ν

N
0 , seen as a sequence of random variables on MF+(X ),

converges weakly to ξ0 ∈ MF+(X ) where ξ0 can be random.

• There exists an integer p ≥ 2 such that supN∈N∗ E
[
⟨ν̄N0 , 1⟩p

]
< +∞.

We can now state the main result of the paper.

Theorem 21. Under all the hypotheses mentioned above, the process (cNt , ν̄Nt )t≥0 converges weakly on
C([0, T ] , H1(Za)Nm) × D([0, T ] ,MF+(X )) to the solution of

⟨ξt, ft⟩ = ⟨ξ0, f0⟩ +
∫ t

0
⟨ξs,F(·, ξs ∗ F )∇zfs + ∂tfs⟩ds

+
∑
k∈E

∫ t

0

∑
l∈T

∫
Z

⟨µk(z, l), fs⟩q∞
k qk((z, l), ξs ∗D(z), cs ∗ ψa(z))ξs(dz, l)ds (25)

for all f ∈ C1,1,•(R+ × X ,R), and ∀1 ≤ m ≤ Nm,

∂tcm − σ∆cm =
∑
l∈T

γml(c) ξlt ∗ ψa(z), (26)

∂ncm,|[0,T ]×Γ + bmcm,|[0,T ]×Γ = fm,

cm(·, 0) = c0m,

The proof of theorem 21 is established through three successive steps:
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• the sequence of laws of (ν̄N )N∈N∗ , considered as probability measures on D([0, T ] ,MF+(X )), is
tight (lemma 22).

• All accumulation points of (ν̄N )N∈N∗ are almost surely solutions of (25), and the corresponding
accumulation points in the concentration space are solutions of (26) (lemma 25).

• Uniqueness of the solution of (25-26) in lemma 26.

Lemma 22. The sequence of laws of (ν̄N )N∈N∗ , considered as probability measures on D([0, T ] ,MF+(X )),
is tight.

Proof. Based on a theorem from Roelly (Thm. 2.1 in [Cop86]), the tightness of (ν̄N )N∈N∗ is equivalent
to the tightness of laws of (⟨ν̄N , f⟩)N∈N∗ on D([0, T ] ,R), for all f in a dense set of C(X ,R) endowed
with the topology of uniform convergence. Here, we choose f ∈ C1,•(X ,R).

A sufficient condition for this property is given by the Aldous-Rebolledo criteria (Cor. 2.3.3 in [JM86])
according to which we have to establish that

1) for t ≥ 0, the sequence (⟨ν̄Nt , f⟩)N∈N∗ is tight on R,

2) considering the semi-martingale decomposition defined at Prop. 18

⟨ν̄Nt , f⟩ = ⟨ν̄N0 , f⟩ +Af,Nt + Zf,Nt

with Af,Nt a finite variation process and Zf,Nt a martingale, then for t ≥ 0, ϵ > 0, η > 0, there exists
δ > 0 and N0 ∈ N∗ such that for all sequence of stopping times (τN )N∈N∗ (τN is a FN -stopping
time) with τN ≤ t we have

sup
N≥N0

sup
θ∈[0,δ]

P (|Af,NτN +θ −Af,NτN
| ≥ η) ≤ ϵ, (27)

sup
N≥N0

sup
θ∈[0,δ]

P (|⟨Zf,N ⟩τN +θ − ⟨Zf,N ⟩τN
| ≥ η) ≤ ϵ. (28)

Proof of 1): Let f ∈ C1,•(X ,R) and t ≥ 0. Under Hyp. 20, from Prop. 17.1 p.10, there exists an
integer p ≥ 2 and a constant C(p, t) such that supN∈N∗ E

[
sups≤t⟨ν̄Ns , 1⟩p

]
≤ C(p, t). Then, for every

integer q ≤ p,
sup
N∈N∗

E
[
sup
s≤t

⟨ν̄Ns , 1⟩q
]

≤ C(p, t) + 1. (29)

From Markov inequality, for any N ,

P (⟨ν̄Nt , f⟩ ≥ K) ≤ 1
K

||f ||∞E
[
⟨ν̄Nt , 1⟩

]
≤ 1
K

||f ||∞(C(p, t) + 1).

Therefore, the sequence (⟨ν̄Nt , f⟩)N∈N∗ is tight.
Proof of 2): Let t, η, ϵ, δ ≥ 0, and θ ≤ δ, τN < t. From proposition 18,

E
[
|Af,NτN +θ −Af,NτN

|
]

≤ E

[
|
∫ τN +θ

τN

⟨ν̄Ns ,F(·, ν̄Ns ∗ F )∇zf⟩ds|

]

+
∑
k∈E

E

[
|
∫ τN +θ

τN

∫
X
qk(x, ν̄Ns ∗D(z), cNs ∗ ψa(z))⟨µk(x), f⟩ ν̄Ns (dx)ds|

]

A consequence of hypothesis 2 is that there exists a constant C(F) such that, ∀(z, y1, y2) ∈ Z ×Rd×Rd,

|F(z, y1) − F(z, y2)| ≤ C(F)|y1 − y2|,

and so
|F(z, y1)| ≤ C(F) × |y1| + F(z, 0) ≤ C(F) × |y1| + ||F(·, 0)||∞ < +∞
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as z 7→ F(z, 0) is continuous on Z compact. Then,

|⟨ν̄Ns ,F(·, ν̄Ns ∗ F )∇zf⟩| ≤ ||∇zf ||∞⟨ν̄Ns , |F(·, ν̄Ns ∗ F )|⟩
≤||∇zf ||∞⟨ν̄Ns , C(F)|ν̄Ns ∗ F (·)| + ||F(·, 0)||∞⟩
≤||∇zf ||∞(C(F)||F|Ẑ ||∞⟨ν̄Ns , 1⟩2 + ||F(·, 0)||∞⟨ν̄Ns , 1⟩)

as, ∀ z ∈ Z, |ν̄Ns ∗ F (z)| ≤ ||F|Ẑ ||∞⟨ν̄Ns , 1⟩. Therefore,

E
[
|Af,NτN +θ −Af,NτN

|
]

≤ ||∇zf ||∞C(F)||F|Ẑ ||∞E

[∫ τN +θ

τN

⟨ν̄Ns , 1⟩2ds

]

+ (||∇zf ||∞||F(·, 0)||∞ +
∑
k∈E

2q∞
k ||f ||∞)E

[∫ τN +θ

τN

⟨ν̄Ns , 1⟩ds

]
.

We have that
∫ τN +θ
τN

⟨ν̄Ns , 1⟩2ds ≤ δ sups≤t⟨ν̄Ns , 1⟩2. So, applying proposition 17.1 under Hyp. 20, we get
that

E
[
|Af,NτN +θ −Af,NτN

|
]

≤ δ × ||∇zf ||∞C(F)||F|Ẑ ||∞(C(p, t+ δ) + 1)

+ δ × (||∇zf ||∞||F(·, 0)||∞ +
∑
k∈E

2q∞
k ||f ||∞)(C(p, t+ δ) + 1).

As δ can be made arbitrary small and the upper bound is uniform in N and θ, we get (27) by Markov
inequality.

Following the same reasoning, we get that

E
[
|⟨ZN ⟩τN +θ − ⟨ZN ⟩τN

|
]

≤ δ

N
× (C(p, t+ δ) + 1)

∑
k∈T

2q∞
k ||f2||∞

and we deduce (28), which ends the proof of the lemma.

We now define two mappings. The first one is

Φ : D([0, T ],MF+(X )) →
(
W 2,1
L2(Za)

)Nm

∩ C([0, T ], H1(Za)Nm)

ν 7→ Φ(ν) = c,
(30)

which associates to ν the solution of the reaction-diffusion equation (9), with fixed c0 and boundary
conditions satisfying hypothesis 9. The second one is defined for a fixed t ∈ [0, T ], f ∈ C1,1,•([0, T ]×X ,R)
by

∀ν ∈ D([0, T ],MF+(X )),

Ψt(ν) = ⟨νt, ft⟩ − ⟨ν0, f0⟩ −
∫ t

0
⟨νs,F(·, νs ∗ F (·))∇zfs + ∂sfs⟩ds

−
∑
k∈E

∫ t

0

∫
X

⟨µk(x), fs⟩qk(x, νs ∗D(z),Φ(ν)s ∗ ψa(z))νs(dx)ds. (31)

Let us establish two technical lemmas.

Lemma 23. Φ is continuous from D([0, T ],MF+(X )) to C([0, T ], H1(Za)Nm).

Proof. Let (νN )N be a sequence which converges to a given ξ in D([0, T ],MF+(X )). We denote cN =
Φ(νN ) and c̃ = Φ(ξ) ∈ C([0, T ], H1(Za)Nm) the solutions of the reaction-diffusion equation (9), for fixed
c0 and boundary conditions . Let

GN = (
∑
l∈T

γ1l(cN ) νNl ∗ ψa(·), · · · ,
∑
l∈T

γNml(cN ) νNl ∗ ψa(·)) ∈
(
W 0,0
L2(Za)

)Nm

and
G = (

∑
l∈T

γ1l(c̃) ξl ∗ ψa(·), · · · ,
∑
l∈T

γNml(c̃) ξl ∗ ψa(·)) ∈
(
W 0,0
L2(Za)

)Nm

.
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By the continuous injection of
(
W 2,1
L2(Za)

)Nm

in C([0, T ], H1(Za)Nm) and the proposition 35 applied to
u = GN −G, we get that

sup
t∈[0,T ]

∥cN (t) − c̃(t)∥(L2(Za))Nm ≤ sup
t∈[0,T ]

∥cN (t) − c̃(t)∥H1(Za)Nm ≤ β1∥cN − c̃∥(
W 2,1

L2(Za)

)Nm (32)

and
∥cN − c̃∥(

W 2,1
L2(Za)

)Nm ≤ β2∥GN −G∥(
W 0,0

L2(Za)

)Nm . (33)

Then, using the same estimates as in Prop. 10 and lemma 11,

∥GN −G∥(
W 0,0

L2(Za)

)Nm ≤
Nm∑
m=1

(∫ T

0
∥
∑
l∈T

(
γml(cN (t)) νNlt ∗ ψa − γml(c̃(t)) ξl ∗ ψa

)
∥2
L2(Za)dt

)1/2

≤ Nm

[
γ∞

∑
l∈T

∫ T

0
∥(νlNt − ξlt) ∗ ψa∥L2(Za)dt

+ ||ψa||∞||γ||LipC(T, ξ)
∫ T

0
∥cN (t) − c̃(t)∥(L2(Za))Nm

]
. (34)

with, for all ν ∈ D([0, T ],MF+(X )), C(T, ν) = sup[0,T ] ||νt||TV < ∞. Combining (32), (33), (34) and
applying Gronwall lemma, we obtain that C := Nmβ1β2||ψa||∞||γ||LipC(T, ξ) is a positive constant
independent of N such that

sup
t∈[0,T ]

∥cN (t) − c̃(t)∥H1(Za)Nm ≤ Nmβ1β2γ
∞eCT

∑
l∈T

∫ T

0
∥(νlNt − ξlt) ∗ ψa∥L2(Za) dt. (35)

From proposition 29, for almost every t ∈ [0, T ], dPR(νNt , ξt) →
n

0. So, for almost every t, dPR(νlNt , ξlt) →
n

0. Then, from proposition 34 (to be perfectly rigorous: replace Z by Za in the statement of this propo-
sition), for almost every t,

sup
z∈Za

|(νlNt − ξlt) ∗ ψa(z)| →
n

0

and so
∥(νlNt − ξlt) ∗ ψa∥L2(Za) →

n
0.

From the dominated convergence theorem, we conclude that the right hand side of (35) goes to 0 when
N → ∞, which shows the desired continuity result.

From lemma 22 and Prokhorov theorem, we deduce that we can find a subsequence (ν̄N(n))n of
(ν̄N )N∈N∗ which converges weakly in D([0, T ] ,MF+(X )) to a limit denoted ν̃. Thanks to lemma 23 and
the continuous mapping theorem, it is actually the couple (ν̄N(n), cN(n)) which converges weakly in the
product space to (ν̃, c̃), c̃ being the solution of (9) associated with ν̃.

Before proving that the limit ν̃ is solution of (25), we need a second technical lemma.

Lemma 24. Let ν ∈ C([0, T ],MF+(X )), then for any sequence (νn)n∈N of D([0, T ],MF+(X )) such that
limn→∞ νn = ν, we have that

lim
n→∞

Ψt(νn) = Ψt(ν).

Proof. Let C(T, ν) = sup[0,T ]⟨νt, 1⟩. Under the hypothesis that limn→∞ νn = ν with ν ∈ C([0, T ],MF+(X )),
we know that the convergence is uniform in time (Prop. 28). So, for all ϵ > 0, there exists Nϵ ∈ N such
that for all n ≥ Nϵ,

sup
t∈[0,T ]

dPR(νnt , νt) ≤ ϵ (36)

As a consequence of the definition of dPR (see (62)), we have

sup
t∈[0,T ]

⟨νnt , 1⟩ ≤ sup
t∈[0,T ]

⟨νt, 1⟩ + ϵ ≤ C(T, ν) + ϵ (37)
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Therefore, we restrict ourselves without loss of generality to sequences such that, for all n ∈ N,

sup
t∈[0,T ]

⟨νnt , 1⟩ ≤ 2C(T, ν). (38)

Moreover, uniform convergence of (νn)n∈N to ν implies that for all t ≤ T , the projection at t πt :
ν 7→ νt from D([0, T ] ,MF+(X )) to MF+(X ) at every element ν continuous in time. Prokhorov distance
metrizes the weak topology on MF+(X ), that is to say that for all continuous bounded function f ∈
Cb(X ,R), the mapping ν 7→ ⟨ν, f⟩ is continuous on MF+(X ). So ν 7→ ⟨πt(ν), f⟩ is continuous at each
element of C([0, T ] ,MF+(X )).

We can now show the continuity of Ψt at ν. We denote cn = Φ(νn) and c = Φ(ν), then

Ψt(νn) − Ψt(ν) = ⟨νnt − νt, ft⟩ − ⟨νn0 − ν0, f0⟩ −
∫ t

0
⟨νns − νs, ∂sfs⟩ds︸ ︷︷ ︸

(An)

−
(∫ t

0
⟨νns ,F(·, νns ∗ F (·))∇zfs⟩ds−

∫ t

0
⟨νs,F(·, νs ∗ F (·))∇zfs⟩ds

)
︸ ︷︷ ︸

(Bn)

−
∑
k∈E

∫ t

0

(∫
X

⟨µk(x), fs⟩qk(x, νn
s ∗D(z), cn

s ∗ ψa(z))νn
s (dx)ds−

∫
X

⟨µk(x), fs⟩qk(x, νs ∗D(z), cs ∗ ψa(z))νs(dx)
)
ds︸ ︷︷ ︸

(Cn)

.

According to the foregoing, regularity of f and compactness of X , we have ⟨νnt − νt, ft⟩ →
n→+∞

0,
⟨νn0 − ν0, f0⟩ →

n→+∞
0 and s 7→ ⟨νns − νs, ∂sfs⟩ converges pointwise to 0. Moreover,

|⟨νns − νs, ∂sfs⟩| ≤ sup
(s,x)

{∂sfs(x)} × (⟨νns , 1⟩ + ⟨νs, 1⟩)

≤ 3C(T, ν) sup
(s,x)

{∂sfs(x)} < +∞.

By dominated convergence,
∫ t

0 ⟨νns − νs, ∂sfs⟩ds →n→+∞ 0. Therefore, limn→+∞ An = 0.
We have Bn = B1

n +B2
n with

B1
n =

∫ t

0
⟨νns − νs,F(·, νs ∗ F (·))∇zfs⟩ds

and

B2
n =

∫ t

0
⟨νns , (F(·, νns ∗ F (·)) − F(·, νs ∗ F (·)))∇zfs⟩ds.

F(·, νs ∗F (·))∇zfs is continuous bounded as X is compact, so the integrand in B1
n converges pointwise to

0. As for An, by the dominated convergence theorem, B1
n −→
n→+∞

0. Moreover, F is Lipschitz according
to Hyp. 2.1, therefore

B2
n ≤

∫ t

0
⟨νns , ||F||Lip × |νns ∗ F (·) − νs ∗ F (·)| × |∇zfs|⟩ds.

As F is Lipschitz and bounded on the compact set Ẑ under Hyp. 2.1, we can apply proposition 34:
∀t ∈ [0, T ]:

sup
z∈Z

|(νnt − νt) ∗ F (z)| →
n→∞

0.

So B2
n −→
n→+∞

0.
Finally, let Cn = C1

n + C2
n with

C1
n =

∑
k∈E

∫ t

0

∫
X

⟨µk(x), fs⟩qk(x, νns ∗D(z), cns ∗ ψa(z)) (νns (dx) − νs(dx))ds
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and

C2
n =

∑
k∈E

∫ t

0

∫
X

⟨µk(x), fs⟩ (qk(x, νs ∗D(z), cs ∗ ψa(z)) − qk(x, νns ∗D(z), cns ∗ ψa(z))) νs(dx)ds

The term C1
n →
n→+∞

0 as qk are continuous bounded according to Hyp. 14. To tackle the term C2
n, we

observe that for all t ∈ [0, T ] and all z ∈ Z,

|(cnt − ct) ∗ ψa(z)| ≤ ∥ψa∥L2∥cnt − ct∥L2(Za)Nm

≤ ∥ψa∥L2 sup
t∈[0,T ]

∥Φ(νn)t − Φ(ν)t∥H1(Za)Nm −→
n→+∞

0

where we used lemma 23. Due to Hyp. 8 on ψa, we use proposition 34 and get

sup
z∈Z

|(νnt − νt) ∗D(z)| →
n→∞

0.

Finally, using that qk is Lipschitz with respect to its second and third variable (Hyp. 14), proposition
34 for the term involving D (Lipschitz and bounded on Ẑ according to Hyp. 14) and the dominated
convergence theorem, we get that C2

n →
n

0.
This ends the proof of the continuity of Ψt at ν.

Lemma 25. ν̃ is almost surely a solution of (25).

Proof. We observe that ν̃ is solution of (25) if and only if Ψt(ν̃) = 0 a.s. for all t and f . We therefore
prove the latter. We first show that

ν̃ ∈ C([0, T ],MF+(X )) a.s. (39)

ν̃ is right continuous by definition. Let us prove the left continuity. We use total variation norm on
MF+(X ) defined by (see A p.29)

||µ− ν||TV = sup {⟨µ− ν, f⟩; f ∈ C(X ), ||f ||∞ ≤ 1} .

Let f ∈ C(X ), ||f ||∞ ≤ 1. For all n, random jumps of ν̄N(n) happen one at a time a.s. so, for all t ≤ T ,

|⟨ν̄N(n)
t , f⟩ − ⟨ν̄N(n)

t− , f⟩| ≤ 2 ||f ||∞
N(n) ≤ 2

N(n) a.s.

⇒ sup
0≤t≤T

||ν̄N(n)
t − ν̄

N(n)
t− ||TV ≤ 2

N(n) a.s..

Total variation distance dominates over Prokhorov distance on MF+(X ) (30 p.30). Therefore,

lim
n→∞

sup
0≤t≤T

dPR(ν̄N(n)
t , ν̄

N(n)
t− ) = 0 a.s.

and, by theorem 10.2 p.148 in [EK86],

sup
0≤t≤T

dPR(ν̃t, ν̃t−) = 0 a.s.

which proves (39).
We now observe that

Ψt(ν̄N ) = Zf,Nt

with Zf,Nt the martingale defined in Prop. 18. Then, under Hyp. 20:

E
[
Ψt(ν̄N(n))2

]
= E

[
⟨Zf,N(n)⟩t

]
≤ 1
N(n) ||f ||2∞t(C(p, t) + 1)

∑
k∈E

q∞
k −→

n→∞
0 (40)

with C(p, t) a constant defined in Prop. 17. Therefore, (Ψt(ν̄N(n)))n converges in L2, and so in L1 by
Cauchy-Schwartz, to 0.
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Given ν̄N(n) converges weakly to ν̃ and Ψt is continuous at ν̃, we get from lemma 24 and the continuous
mapping theorem that |Ψt(ν̄N(n))| converges weakly to |Ψt(ν̃)|. Moreover, under Hyp. 20 and from Prop.
17.1, the sequence (Ψt(ν̄N(n)))n is bounded in Lp with p ≥ 2 and so uniformly integrable. Then, we have
(see theorem 3.5 in [Bil99]) that, ∀q ≤ p,

lim
n→∞

E
[
|Ψt(ν̄N(n))|q

]
= E [|Ψt(ν̃)|q] .

In particular,

0 = lim
n→∞

E
[
|Ψt(ν̄N(n))|

]
= E [|Ψt(ν̃|]

⇔ Ψt(ν̃) = 0 as.

Note that ν̃ is continuous in time a.s., and therefore ν̄N0 converges weakly to ν̃0. But, under Hyp. 20,
ν̄N0 converges in distribution to ξ0 so ξ0 and ν̃0 have the same law.

This is true for any t ≥ 0, we deduce that ν̃ is solution of (25), and the sequence of concentrations
(cN(n))n converges as well to the solution of (26) in C([0, T ] , H1(Za)Nm).

So far, we showed that all accumulation points of (ν̄N )N∈N∗ are positive measures, solutions of (25),
and related accumulation points in the concentrations’ space are solutions of (26) in C([0, T ] , H1(Za)Nm).
To complete the proof of theorem 21, we tackle uniqueness of the solution.
Lemma 26. If (25-26) has a solution (ξ, c) such that ξ ∈ C([0, T ],MF+(X )) then this solution is unique.

Proof. We proceed in two steps.
Step 1 : on a finite time horizon, positive solutions of (25) have finite mass. Let (c0, ξ0) ∈ H1(Za)Nm ×
MF+(X ) be a deterministic initial condition. We suppose that there exists a solution (ct, ξt)t≥0 ∈
C([0, T ] , H1(Za)Nm) × D([0, T ] ,MF+(X )). Let show that the mass of ξt is bounded at finite time by a
constant depending only of ξ0 and t. From (25), for t ≤ T ,

⟨ξt, 1⟩ = ⟨ξ0, 1⟩ +
∑
k∈E

∫ t

0

∑
l∈T

∫
Z

⟨µk(z, l), 1⟩q∞
k qk((z, l), ξs ∗D(z), cs ∗ ψa(z))ξs(dz, l)ds

≤ ⟨ξ0, 1⟩ +
∑
k∈E

q∞
k

∫ t

0

∑
l∈T

∫
Z
ξs(dz, l)ds = ⟨ξ0, 1⟩ +

∑
k∈E

q∞
k

∫ t

0
⟨ξs, 1⟩ds. (41)

By Gronwall lemma, we see that

⟨ξt, 1⟩ ≤ ⟨ξ0, 1⟩ exp(t
∑
k∈E

q∞
k ) < +∞,

which is the desired result.
Step 2 : a positive solution of (25-26) is unique. Let (c1

t , ξ
1
t ) and (c2

t , ξ
2
t ) be two solutions of (25-26) on

[0, T ], with ξit positive as in the previous step. We use the flat metric dF on MF+(X ) defined as (more
details are given in A)

dF (ν, ξ) = sup
f∈Lip1,1(X ,R)

⟨ν − ξ, f⟩,

and derive a bound for ||c1
t − c2

t ||L2 + dF (ξ1
t , ξ

2
t ), for t ∈ [0, T ].

From step 1, we can define
C(t, ξ1 + ξ2) := sup

s≤t
⟨ξ1
s + ξ2

s , 1⟩ < +∞.

Moreover, ξ1
t , ξ

2
t are finite positive measures so, from lemma 11, there exists a constant C such that

||c1
t − c2

t ||L2 ≤ C

∫ t

0
dF (ξ1

s , ξ
2
s ) ds. (42)

We now bound dF (ξ1
t , ξ

2
t ) using formula (25). As done in [Tra06], the idea is to cancel in equation

(25) the integral term accounting for the deterministic movement of cells between jumps. Let u ∈
Lip1,1 ∩ C1,•(X ,R). From lemma 38, there exists a unique function

u1 : [0, T ] × X → R
(s, z, l) 7→ u1

s(z, l)
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such that, ∀l ∈ T , u1
s(z, l) is solution of (74), with ξs = ξ1

s and the condition u1
t (z, l) = u(z, l), that is to

say
∂su

1
s(z, l) + F(z, ξ1

s ∗ F (z))∇zu
1
s(z, l) = 0 and u1

t (x) = u(x).

We also know that u1
s(z, l) = u(Z1(s; t, z), l) where Z1(·) are the characteristics associated to (74) when

ξs = ξ1
s . Similarly, let u2

s(z, l) = u(Z2(s; t, z), l), with ξs = ξ2
s in (74). Moreover, still from lemma 38,

ui·(·, l) ∈ C1([0, T ] × Z,R).

We then apply formula (25), with ξ1
0 = ξ2

0 = ξ0.

|⟨ξ1
t − ξ2

t , u⟩| = |⟨ξ0, u
1
0 − u2

0⟩

+
∑
k∈E

∫ t

0

∑
l∈T

∫
Z

⟨µk(z, l), u1
s⟩qk((z, l), ξ1

s ∗D(z), c1
s ∗ ψa(z))ξ1

s (dz, l)ds

−
∑
k∈E

∫ t

0

∑
l∈T

∫
Z

⟨µk(z, l), u2
s⟩qk((z, l), ξ2

s ∗D(z), c2
s ∗ ψa(z))ξ2

s (dz, l)ds

= | ⟨ξ0, u
1
0 − u2

0⟩︸ ︷︷ ︸
(A)

+
∑
k∈E

∫ t

0

∑
l∈T

∫
Z

⟨µk(z, l), u1
s − u2

s⟩qk((z, l), ξ1
s ∗D(z), c1

s ∗ ψa(z))ξ1
s (dz, l)ds︸ ︷︷ ︸

(B)

+
∑
k∈E

∫ t

0

∑
l∈T

∫
Z

⟨µk(z, l), u2
s⟩(qk(z, l), ξ1

s ∗D(z), c1
s ∗ ψa(z)) − qk((z, l), ξ2

s ∗D(z), c1
s ∗ ψa(z)))ξ1

s (dz, l)ds︸ ︷︷ ︸
(C)

+
∑
k∈E

∫ t

0

∑
l∈T

∫
Z

⟨µk(z, l), u2
s⟩(qk((z, l), ξ2

s ∗D(z), c1
s ∗ ψa(z)) − qk((z, l), ξ2

s ∗D(z), c2
s ∗ ψa(z)))ξ1

s (dz, l)ds︸ ︷︷ ︸
(D)

+
∑
k∈E

∫ t

0

∑
l∈T

∫
Z

⟨µk(z, l), u2
s⟩qk((z, l), ξ2

s ∗D(z), c2
s ∗ ψa(z))(ξ1

s − ξ2
s )(dz, l)ds︸ ︷︷ ︸

(E)

|.

Before proceeding, we recall the following simple properties that we will use extensively. Let f be
Lipschitz on X , then || f

||f ||∨
||∞ ≤ 1, || f

||f ||∨
||Lip ≤ 1 and, for ν1, ν2 ∈ MF+(X )

⟨ν1 − ν2, f⟩ ≤ ||f ||∨ × dF (ν1, ν2).

We first derive a bound for (C). Remember that ⟨µk(z, l), u2
s⟩ is the sum of at most two punctual

evaluations of u2
s. So ||⟨µk(z, l), u2

s⟩||∞ ≤ 2. We supposed (Hyp. 14) that qk is Lipschitz with respect to
its second variable, therefore there exists a constant C(qk) such that

(C) ≤ 2
∑
k∈E

∫ t

0

∑
l∈T

∫
Z
C(qk)|ξ1

s ∗D(z) − ξ2
s ∗D(z)|ξ1

s (dz, l)ds.

D is locally Lipschitz in z under Hyp. 14 on the compact set Ẑ := {z − y : (z, y) ∈ Z2}. Therefore, for
all z ∈ Z, |ξ1

s ∗D(z) − ξ2
s ∗D(z)| ≤ ||Da|Ẑ ||∨dF (ξ1

s , ξ
2
s ). Let C(C) := 2

∑
k∈E C(qk)C(t, ξ1 + ξ2)||Da|Ẑ ||∨.

Then
(C) ≤ C(C)

∫ t

0
dF (ξ1

s , ξ
2
s )ds.

We find an upper bound for the term (D) using again the fact that qk is Lipschitz with respect to its
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third variable:

(D) ≤ 2
∑
k∈E

C(qk)
∫ t

0

∑
l∈T

∫
Z

|(c1
s − c2

s) ∗ ψa(z)| ξ1
s (dz, l)ds

≤ 2
∑
k∈E

C(qk)||ψa||L2C(t, ξ1 + ξ2)
∫ t

0
||c1
s − c2

s||L2(Za)Nm ds

≤ C(D)

∫ t

0
||c1
s − c2

s||L2(Za)Nm ds

setting C(D) := 2
∑
k∈E C(qk)||ψa||L2(Rd)C(t, ξ1 + ξ2).

We move on to term (E). For s ≤ t, let fs : (z, l) 7→ ⟨µk(z, l), u2
s⟩qk(z, l, ξ2

s ∗ D(z), c2
s ∗ ψa(z)) be

defined on X . Let us show that fs is uniformly bounded and uniformly Lipschitz for s ≤ t.
On the one hand, qk and u2 are bounded, so sups≤t ||fs||∞ < +∞.
On the other hand, ∀l ∈ T , z 7→ qk(z, l, ξ2

s ∗D(z), c2
s ∗ψa(z)) is Lipschitz uniformly for s ≤ t. Indeed,

z 7→ ξ2
s ∗D(z) is Lipschitz uniformly for s ≤ t under Hyp. 14. It is the case of c2

s ∗ψa(z) as well because
sups≤t ||c2

s||L2(Za)Nm < +∞ from Prop. 10 and ψa(z) is Lipschitz on Ẑ under Hyp. 8. Eventually, ∀l ∈ T ,
qk(·, l, · · · ) is Lipschitz under Hyp. 14 so z 7→ qk((z, l), ξ2

s ∗ D(z), c2
s ∗ ψa(z)) is Lipschitz uniformly for

s ≤ t from Prop. 1.
Moreover, for all l, z 7→ u2

s(z, l) is Lipschitz uniformly in time as it is continuously derivable, so u2
s

is Lipschitz on X uniformly in time. Then, when the jump type k is a differentiation or an extrusion,
⟨µk(z, l), u2

s⟩ is also Lipschitz uniformly in time. If k is a division, it is the case as well because λ(z) is
Lipschitz according to Hyp. 12. Eventually, the product of two Lipschitz bounded functions is Lipschitz.
Therefore, fs is Lipschitz uniformly for s ≤ t. Let C(E) := sups≤t ||fs||∨ < +∞. Then,

(E) ≤ C(E)

∫ t

0
dF (ξ1

s , ξ
2
s ) ds.

In order to bound the remaining terms (A) and (B), we want an upper bound on |u1
s(z) − u2

s(z)|
depending of dF (ξ1

s , ξ
2
s ). We have

|u1
s(z) − u2

s(z)| = |u(Z1(t; s, z)) − u(Z2(t; s, z))|
≤ ||u||∨|Z1(t; s, z) − Z2(t; s, z)| ≤ |Z1(t; s, z) − Z2(t; s, z)|

since u ∈ Lip1,1(X ,R).
Using proposition 39, there exists a constant C(t) such that

(A) =
∑
l∈T

∫
Z
u(Z1(t; 0, z), l) − u(Z2(t; 0, z), l) ξ0(dz, l)

≤
∑
l∈T

∫
Z

|Z1(t; 0, z) − Z2(t; 0, z)| ξ0(dz, l)

≤ ⟨ξ0, 1⟩C(t)
∫ t

0
dF (ξ1

s , ξ
2
s ) ds

≤ C(A)

∫ t

0
dF (ξ1

s , ξ
2
s ) ds

with C(A) := ⟨ξ0, 1⟩C(t). Note that the first inequality comes from the assumption that u is 1-Lipschitz,
which motivates the use of the flat metric dF .

With proposition 39 and as u is 1-Lipschitz, we can also tackle term (B):

(B) ≤
∑
k∈E

2q∞
k C(t, ξ1 + ξ2)C(t)

∫ t

0

∫ t

s

dF (ξ1
r , ξ

2
r )drds

≤
∑
k∈E

2q∞
k C(t, ξ1 + ξ2)C(t)t

∫ t

0
dF (ξ1

s , ξ
2
s ) ds

≤ C(B)

∫ t

0
dF (ξ1

s , ξ
2
s ) ds
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with C(B) :=
∑
k∈E 2q∞

k C(t, ξ1 + ξ2C(t)t.
Therefore, we showed that there exists a constant C such that, ∀u ∈ Lip1,1(X ,R) ∩ C1,•(X ,R),

|⟨ξ1
t − ξ2

t , u⟩| ≤ C

∫ t

0
||c1
s − c2

s||L2(Z) + dF (ξ1
s , ξ

2
s ) ds.

As X is compact, according to Stone-Weierstrass theorem, the set of functions C1,•(X ,R) is dense in
C(X ,R) for the uniform norm. So

sup
u∈Lip1,1∩C1,•

|⟨ξ1
t − ξ2

t , u⟩| = sup
u∈Lip1,1

|⟨ξ1
t − ξ2

t , u⟩| = dF (ξ1
t , ξ

2
t )

and
dF (ξ1

t , ξ
2
t ) ≤ C

∫ t

0
dF (ξ1

s , ξ
2
s ) + ||c1

s − c2
s||L2(Z) ds. (43)

Using (42), we obtain that there exists a constant C such that

||c1
t − c2

t ||L2 + dF (ξ1
t , ξ

2
t ) ≤ C

∫ t

0
||c1
s − c2

s||L2(Z) + dF (ξ1
s , ξ

2
s ) ds. (44)

From Gronwall lemma,
||c1
t − c2

t ||L2 + dF (ξ1
t , ξ

2
t ) = 0

which proves the uniqueness of a positive solution.

This shows that the sequence (ν̄N )N∈N∗ is tight with a unique accumulation point, which is solution
of (25), so it is convergent and the sequence of concentrations converges to the corresponding solution
of (26) in C([0, T ] , H1(Za)Nm). This ends the proof of theorem 21.

6 Numerical convergence of the PDMP towards a deterministic
limit

6.1 Description of the PDMP model
We illustrate our result on a simple model inspired from a more complex intestinal crypt model previously
introduced [Dar+22]. We first set the precise numerical experiments that are conducted, considering two
populations of different types and stochastic regulation processes including cell division, extrusion and
differentiation. Then, we introduce the corresponding deterministic limit in large population for this
model.

We consider a one dimensional spatial model on Z = [0, zmax], 0 < zmax < ∞, with two different type
of cells: progenitor cell (pc) and enterocyte cells (ent) that is to say T = {pc, ent}, and two metabolites:
butyrate and oxygen (Nm = 2). We denote cb(z, t) and co(z, t) the respective concentration of butyrate
and oxygen. The size of the cells is modelled through a parameter a > 0.

Mechanical interactions for cell migration. We set

dzi

dt
(t) = F( zi(t), νt ∗ Fa(zi(t)) ) := ϕ(zi(t)) νt ∗ Fa(zi(t)) (45)

with

Fa(z) = ka
fa(z)

||fa||∞
where fa(z) =

 z
a exp

(
−

|z|
a

1− |z|
a

)
if |z| ≤ a,

0 otherwise.
(46)

ka is a scaling parameter driving the maximal intensity of the force. Fa is plotted in Fig. 1a with
ka = 1. ϕ(z) is a positive continuously derivable function, such that 0 ≤ ϕ(z) ≤ 1, ϕ(0) = ϕ(zmax) = 0
and ϕ(z) = 1 if z ∈ [ϵ, zmax − ϵ]. The function ϕ models the vanishing of interaction forces near the
boundaries, induced by geometrical constraints (see [Dar+22] for more details). The exact expression of
ϕ is given in equation (78).
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(a) Interaction kernels Fa (with ka = 1, blue)
and Da (with da = 1, orange). The function
Fa describes repulsive forces, while Da renders
density dependant interactions in jump rates.

(b) Regulation function y 7→ R(y,K, κ) for var-
ious values of K and κ. The parameter K tunes
the location of the transition and κ its slope.

Figure 1: Interactions and regulations. Shapes of interaction kernels and regulation functions used
in the model

Reaction-diffusion of chemicals. The oxygen and butyrate concentrations co and cb follow the
reaction-diffusion equation (9), leading to the system:

∂tco − σ∆co =
∑

l∈{pc,ent}

γml(co, cb) νlt ∗ ψa(z), (47)

∂tcb − σ∆cb =
∑

l∈{pc,ent}

γml(co, cb) νlt ∗ ψa(z). (48)

Progenitor cells do not use oxygen and butyrate for their metablism, while enterocytes catalyze them
with the following chemical reaction

1 butyrate + 4 O2 −→ energy + byproducts.

Therefore we set for the reaction speed in equation (47)-(48), γm,l(co, cb) = 0 if l = pc, and, if l = ent,

γm,l(co, cb) = −smγ∞ c4
ocb

c4
ocb +K5 (49)

where sm is the stoechiometric coefficient of metabolite m. γ∞ is the maximal reaction speed of the
reaction and K > 0 is a constant. We define ψa(z) as follow. Let

Da(z) := daD
(z
a

)
, where D(z) :=

{
exp

(
− z2

1−z2

)
if 0 ≤ |z| ≤ 1

0 otherwise,
(50)

and da is a scaling parameter (see Fig. 1a for a plot with da = 1). We then derive a normalized version
of the density kernel Da by writing

ψa(z) :=
Da/2(z)∫ a/2

−a/2 Da/2(u)du
. (51)

Then, for all z ∈ [0, zmax],
∫

Za
ψa(z − y)dy = 1. We see with this kernel definition that the extended

domain Za has been introduced for compatibility reasons between the reaction-diffusion domain and the
epithelial cell domain [0, zmax].

This system of equations is supplemented with boundary conditions modeling the chemical fluxes at
the crypt extremities. For butyrate:{

cb = cb,lum at z = zmax + a
2

∂zcb = 0 at z = −a
2

(52)
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and for oxygen: {
∂zco = 0 at z = zmax + a

2
co = co,bot at z = −a

2
(53)

Constant parameters ci,lum, ci,bot represent the chemical concentrations in the gut lumen or at the bottom
of the crypt, respectively reflecting microbial or host physiology.

Stochastic jumps modelling cell fate. We consider three types of stochastic events. Progenitor
cells can divide symmetrically or differentiate into enterocytes, and enterocytes can die. As explained in
section 3.2, these stochastic events are regulated in various ways, which are summarized in table 1:

• the rate of progenitor cell division qpc,pc(·) is a decreasing function of local butyrate concentration,
height in the crypt (z ∈ [0, zmax]) and local cell density. Upon division, the spatial shift of the
daughter cell λ is

λ(z) =


a
2 if z ≤ zmax/2 − a,
−a
2 if z ≥ zmax/2 + a,
a
2 − a z−(zmax/2−a)

2a otherwise,

• The rate of progenitor cell differentiation qpc,ent(·) is positively correlated to height in the crypt.

• The rate of enterocyte death qent,∅(·) is positively correlated to height in the crypt and local cell
density.

More precisely, we define the local density of the population d as

d(νt, z) = d(z)νt ∗Da(z) (54)

where Da is defined in Eq.(50) and

d(z) =
∫ a

−aDa(u) du∫min(a,zmax−z)
max(−a,−z) Da(u) du

(55)

is a rescaling function ensuring that the density kernel sums to 1 even near the boundaries. As a << zmax,
1 ≤ d(z) ≤ 2.

We also define the local concentration of butyrate cb as

cb(cb, z) = cb ∗ ψa(z) (56)

where ψa(z) is introduced in Eq. (51). Eventually, for a cell at x := (z, l) ∈ X , in a population
ν ∈ MF+(X ) and for butyrate and oxygen concentration c := (co, cb), we define the individual jump rate
of progenitor cell division by

qpc,pc(x, ν ∗D(z), c ∗ ψa(z)) =
0 if not prog. cell︷ ︸︸ ︷
1{l = pc} ×

inhibition by z︷ ︸︸ ︷
(1 −R(z,Kpc,pc[z], κpc,pc[z]))

×

inhibition by density︷ ︸︸ ︷
(1 −R(d(νt, z),Kpc,pc[dens], κpc,pc[dens]) × (1 −R(cb(cb, z),Kpc,pc[but], κpc,pc[but]))︸ ︷︷ ︸

inhibition by butyrate

(57)

with Kpc,pc[·] and κpc,pc[·] strictly positive constants and R(y,K, κ) is the piecewise polynomial function
(plotted on Fig. 1b for several values of K, and κ) defined by

R(y,K, κ) :=


0 if y ≤ K − κ,

− 1
4κ3 y

3 + 3K
4κ3 y

2 − 3K2−3κ2

4l3 y + K3+2κ3−3Kκ2

4κ3 if K − κ ≤ y ≤ K + κ,

1 if K + κ ≥ y.

Note that R connects continuously the values 0 and 1 for K − κ < z < K + κ and has value 1/2 in
y = K.

We see that the jump rate depends on a product of three regulation terms involving the function R
that corresponds to the three biological regulation of progenitor cell division given in table 1. Using the
same construction, we define functions qpc,ent and qent,∅ based on biological regulations given in table
1. For a positive regulation, we use a term R(·) instead of 1 −R(·). And no regulation correspond to a
constant term equal to 1.

The values of parameters used for simulation are given in table 2.
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Regulation pathway (j)
Jump type Jump index (k ∈ E) butyrate [but] position [z] density [dens]

Progenitor cell division pc,pc − − −
Progenitor cell differentiation pc, ent + + ∅

Enterocyte death ent,∅ ∅ + +

Table 1: Enumeration of stochastic jump types and their corresponding regulation. For
the jump k and a given regulation pathway j, a negative regulation (−) is represented by the term
(1 −R(y,Kk[j], κk[j])), a positive regulation (+) by the term R(y,Kk[j], κk[j]) and a neutral regulation
(∅) by a constant value equal to 1, where y = z, y = d(νt, z) or y = cb(cb, z) for respectively position,
density or butyrate regulation. The values of Kk[j] and κk[j] can be found in table 2.

Initial conditions Initial conditions for the position of the cells in the stochastic process are sampled in
distributions ρpc and ρent defined in eqs. (79)-(80), in D with a Monte-Carlo sampling, hence guarantying
the weak convergence of the rescaled initial condition towards ρpc and ρent (see next section).

Furthermore, initial conditions for chemicals are defined : cb(0, z) = cb0(z) and co(0, z) = co0(z), for
smooth cb0 and co0 functions defined in eq. (81).

Rescaled parameters. To illustrate the convergence of the stochastic model, we used the following
rescaled parameters:

FNa = Fa
N
, DN

a = Da

N
, γN = γ

N
.

where N is a multiplicative factor applied to the progenitor and enterocyte cell populations included in
the initial condition.

6.2 Deterministic model obtained as a limit of the PDMP: SA equation
Since the PDMP model definition complies with the hypothesis 2, 7, 8, 9, 12, 14 and 20, according to
Th. 21 and formula 25, the deterministic limit ξ(SA)

t of the PDMP model is the weak solution of the
following system, here written in the strong form:

∂tξ
(SA)
t + ∇z

(
F(·, ξ(SA)

t ∗ Fa)ξ(SA)
t

)
=∑

k∈E

∑
l∈T

∫
Z
µk(z, l)q∞

k qk((z, l), ξ(SA)
t ∗Da(z), ct ∗ ψa(z))ξ(SA)

t (dz, l). (58)

This equation can be interpreted as a non-linear advection-reaction equation, that will be termed self-
aggregation (SA) equation in the sequel. Note that the non linear transport term ∇z (F(·, ξt ∗ Fa)ξt)
comes from the cell interaction model of the deterministic flow of the PDMP model. The reaction term
is a deterministic approximation of the stochastic terms of the PDMP.

For the metabolites m ∈ {but, oxy}, the same PDE equations as in the PDMP model are kept, except
for the reaction term that now includes the density ξ(SA)

t

∂tc
(SA)
m − σ∆c(SA)

m =
∑
l∈T

γml(c(SA)) ξ(SA)
t

l
∗ ψa(z). (59)

This model is supplemented by a deterministic version of the boundary conditions

F(·, ξ(SA)
t ∗ F )ξ(SA)

t (0, t) = 0
c(SA)
m (z, t) = fm(z, t) for z ∈ Γ,

ξ
(SA)
0 (·, 0) = (ρpc, ρent)
c(SA)
m (·, 0) = c0m,
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6.3 Numerical implementation
Simulations are performed with dedicated Python scripts available here https://forgemia.inra.fr/
leo.darrigade/cvg. To solve the PDMP, we use a standard Gillespie algorithm with an acceptation-
reject method for stochastic events, while the deterministic flows are solved with an explicit Euler method
for the cell movement, and with a semi-implicit Euler scheme with operator splitting for the reaction-
diffusion equations on butyrate and oxygen. To solve the deterministic limit, we use a semi-implicit
scheme for the non-linear diffusion term and a Runge-Kutta4 scheme for time integration. Scripts
use NumPy[Har+20], Scipy[Vir+20] sparse algebra and Numba [LPS15] packages for additional code
acceleration.

6.4 Numerical assessment of the convergence
As the deterministic limit of cell densities ξ(SA)

t is actually continuous in time (see proof of lemma 25),
the weak convergence of ν̄Nt to ξ(SA)

t at a fixed time t is true for almost every t. Then, for a continuous
and bounded function f : X → R, ⟨ν̄Nt , f⟩ converges weakly to ⟨ξ(SA)

t , f⟩. From uniform integrability of
the sequence (⟨ν̄Nt , f⟩)N , as in the proof of lemma 25, we get that

E
[
⟨ν̄Nt , f⟩

]
→N ⟨ξ(SA)

t , f⟩. (60)

We now illustrate this convergence using some specific functions f .

6.4.1 Total populations

First, taking f = 1, the quantity E
[
⟨ν̄Nt , f⟩

]
and ⟨ξ(SA)

t , f⟩ represent the total cell population at time t
in the PDMP and the SA equation, respectively. Fig. 2 displays the evolution of the total populations
in the PDMP (mean and quantiles 2.5% and 97.5% for nr = 30 replicates) when the population scaling
N = 60. We can observe that the progenitor cells of the SA equation is in the range of the PDMP
outputs, while the total number of enterocytes is over-estimated by the SA deterministic limit by 10%
at t = 29h. This discrepancy could be due to the effect of death events occuring in the upper part of the
crypt near zmax. This results in lower cell populations in this region, for which the convergence towards
the deterministic limit is very slow.

The inacurracies in total enterocyte populations are propagated to the evaluation of the total number
of cells (progenitor and enterocyte cells).

6.4.2 Convergence for growing N

Let us first introduce, for (za, z2) ∈ (0, zmax)2 and a scaling parameter α > 0 the kernel

φ(z1, z2|α) =
{

exp( −1
1−( |z1−z2|

α )2
) if |z1 − z2| < α

0 otherwise

and, for z ∈ (0, zmax, we define the function ϕz indexed by z so that

ϕz(x) := φ(z, x) for any x ∈ (0, zmax).

The functions ϕz allow to test the PDMP and SA solutions in different zones of the crypt.
We finally define the residual for cell populations with

RN (t, z) := 1
2

∑
l∈{pc,ent}

∣∣∣E [⟨ν̄Nl,t − ξ
(SA)
l,t , ϕz⟩

]∣∣∣ (61)

where the true expectation E [·] is approximated by the mean over nr replicates of the PDMP, and
ν̄Nl,t = 1

N ν
N
l,t is the rescaled solution of the PDMP for the rescaling parameter N and the population

l ∈ {pc, ent} at time t > 0.
According to the convergence theorem, we must have for any t > 0 and z ∈ (0, zmax)

RN (z, t) →N 0

We display the curves N 7→ RN (t, z) (N ∈ {15, 20, 25, 30, 35, 40, 45, 50, 55, 60}) for several
t (8 h, 16 h, 24 h, 29 h) and several z (34 µm, 42 µm, 59 µm, 68 µm), either grouped by t (Figure 3) or

25

https://forgemia.inra.fr/leo.darrigade/cvg
https://forgemia.inra.fr/leo.darrigade/cvg


by z (Figure 4). In all curves, we observe a consistent reduction in residuals between the PDMP and
SA equation as N increases, despite some local fluctuations. The convergence rate is relatively slow :
an average calculation shows that, with a fourfold increase in the population scaling parameter (from
N = 15 to N = 60), residuals decrease by an average factor of 0.86.

We note that at a given time, this decrease follows a common pattern for every z ∈ {34, 42, 59, 68},
since the curves are nearly parallel in Figure 3. However, convergence seems to be faster for higher z,
since red curves (z = 68) and green curves (z = 59) have the steepest decrease in the four panels of
Figure 3. At a given z (Figure 4, the decrease of residuals tends to be more stochastic than for the curves
grouped by times (Figure 3). The convergence rate is lower at the end of the simulation, for t = 29 h,
but no general trend can be deciphered for earlier times.

The residual RN (z, t) is a metric that only focuses on cell populations. We now look at the con-
vergence of the PDMP towards the SA equation for the metabolite concentrations. In Figure 5, the
concentration distributions z 7→ cNo and z 7→ cNb obtained with the PDMP for different scaling pa-
rameters N ∈ {15, 20, 50, 60} are displayed at t = 29 h together with the functions z 7→ c

(SA)
o and

z 7→ c
(SA)
b computed with the deterministic SA equation. We can see that the concentration maps are

very similar whatever the value of N . The SA equation renders very well the butyrate distribution,
which has the main impact on the cell population dynamics through butyrate regulation of growth rates
(see eq.(57)). Comparatively, discrepancies are higher for oxygen distribution, specially at the top of
the crypt (z = 100 µm), probably for the same reasons as above: the very slow convergence towards
the asymptotic cell density in this region, with an underestimation of the enterocytes, is reflected in the
underestimation of the oxygen consumption. Note that the Dirichlet condition at the top of the crypt
renders this effect invisible for the butyrate concentration.
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Figure 2: Total populations over time : The total population of progenitor cell and enterocytes are
plotted over time for the PDMP (with population scaling = 60) and the SA equation. The averaged over
30 PDMP repetitions are plotted (continuous line) together with quantiles 2.5% and 97.5% (thin dots).
The deterministic self-aggregation limit is plotted with thick dots.

7 Conclusive discussion
In this study, we introduced a generic model of epithelial tissues interacting with diffusive compounds,
in a rigorous PDMP framework. We determined the deterministic limit of the PDMP model, which is
a self-aggregation like equation. We then proved the convergence of the IBM model towards this limit
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Figure 3: Evolution of the residual RN (z, t) for increasing N at different t and z, grouped
by times: we display for different times (8h, upper left; 16h, upper right; 24h, lower left and 29h,
lower right) and different z (34 µm,42 µm,59 µm,68 µm) the evolution of the residual for growing N
(N ∈ {15, 20, 25, 30, 35, 40, 45, 50, 55, 60}), grouped by times. To visualize all the graphs in a common
plot, we normalized the residuals by the value of the residual for N = 15: we then plot the functions
N 7→ RN (z, t)/R15(z, t).
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Figure 4: Evolution of the residual RN (z, t) for increasing N at different t and z, grouped
by z: we display for different times (8h, 16h, 24h, 29h) and different z (34 µm, upper left; 42 µm,
upper right; 59 µm, lower left; 68 µm lower right) the evolution of the residual for growing N (N ∈
{15, 20, 25, 30, 35, 40, 45, 50, 55, 60}), grouped by z. To visualize all the graphs in a common plot, we
normalized the residuals by the value of the residual for N = 15: we then plot the functions N 7→
RN (z, t)/R15(z, t)

0 20 40 60 80 100
z ([ m])

2

3

4

5

6

7

8

9

10

C
on

ce
nt

ra
tio

n 
([m

m
ol

.L
1 ]

)

Oxygen (t=29h)

0 20 40 60 80 100
z ([ m])

2.5

3.0

3.5

4.0

4.5

5.0

Butyrate (t=29h)

15
20
50
60
SA

Figure 5: Metabolite concentrations : the distribution of oxygen (left) and butyrate (right) con-
centrations at t = 29h is plotted for the PDMP (with population scalings = 15,20,50 and 60) and the
self-aggregation equation (dotted lines). The mean over 30 PDMP repetitions are plotted.
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under a large population assumption. This convergence is finally checked numerically by solving both
the deterministic limit model and the PDMP model for several population scaling parameters.

This work is of special interest for modelers of epithelial tissues. It effectively links a PDMP IBM and
its deterministic, continuous population counterpart, combining the strength of both modeling frame-
works for epithelial tissues modeling. Micro-scale data like microscopy imaging can be used to calibrate
the IBM model, while the deterministic limit allows upscaling this calibration to the continuous popu-
lation model. Conversely, continuous population model parameters inferred from macro-scale data like
metabolomics can be down-scaled to the IBM. Following the same idea, a PDMP IBM model can be used
to model accurately intra-specific distribution in cell populations, but the deterministic limit would be
more appropriate for intensive numerical exploration such as sensitivity analysis. Such an approach has
been previously used to analyse a PDMP model of the cell turn-over in the intestinal crypt [Dar+22].

The main achievement of this work is the rigorous derivation of the deterministic limit and the proof
of the convergence of the PDMP model towards this limit. Although the general functional analysis
framework is well established, in particular in the theoretical ecology and evolution community [FM04;
CFM07; Tra06], technical issues had to be overcome in the specific context of epithelial tissues. Notably,
dealing with cell-to-cell interactions introduced non-linearities in the deterministic limit, and complex
regulatory processes in epithelial cell turnover added technical difficulties in proofs.

The main limitation of our study is the lack of convergence rate estimates. We could check numerically
that in our test case, this convergence rate is relatively slow. Consequently, we have no guarantee that the
number of cells observed in real tissues is in the convergence regime. Most probably, at the crypt scale,
cell numbers might be too low for stochastic events to approximate the "average process" accurately,
suggesting the importance to retain stochasticity at this scale to model population distribution around
the mean. However, at the tissue scale, with numerous crypts, the large population assumption could be
more valid, making the deterministic limit accurate. In conclusion, modelers should not avoid a discussion
of the number of cells in the tissue of interest before choosing between a PDMP or a continuous population
model, bearing in mind that connections can be made between these formalisms.

A Metrics on MF+(X ), properties of D([0, T ] , (MF+(X ), dPR))
We remind the reader that (X , d), with d defined at (2) is a complete separable metric space (Polish
space). For a closed set F of X and ϵ ≥ 0, let Fϵ = {x ∈ X : d(x, F ) < ϵ}. The Prokhorov distance dPR
on MF+(X ) is defined by (Appendix A2.5 of [DVon])

dPR(µ, ν) = inf {ϵ ≥ 0 : for all closed F ⊂ X , µ(F ) ≤ ν(Fϵ) + ϵ

and ν(F ) ≤ µ(Fϵ) + ϵ} . (62)

The first important property of the Prokhorov distance is that it metrizes the weak convergence topology
on MF+(X ) (Corollary A2.5.II in [DVon]) and this is why we use it. Another useful property is that, if
(X, d) is Polish, the space (MF+(X ), dPR) is Polish too (Proposition A.2.5.III of [DVon]).

On MF (X ), we also define the total variation norm:

||µ||TV = µ+(X ) + µ−(X )

= sup
f measurable,||f ||∞≤1

{∫
X
f dµ

}
(63)

where the couple µ+, µ− is the Hahn-Jordan decomposition of µ.
Eventually, we will use the flat distance (or Kantorovtich-Rubinstein distance) defined on MF+(X )

as
dF (ν, ξ) = sup

f∈Lip1,1(X ,R)
⟨ν − ξ, f⟩. (64)

We now remind (and prove some) useful properties on these metrics.

Proposition 27 (Theorem 1.2 p.96 in [EK86]). Let µ and ν be two probability measures on X . Let
Π(µ, ν) be the set of probability measures on X × X with marginal distributions µ and ν. Then

dPR(µ, ν) = inf
γ∈Π(µ,ν)

inf
{
ϵ > 0 : γ{(x, y) ∈ X 2 : d(x, y) ≥ ϵ} ≤ ϵ

}
. (65)

29



Once a metric is defined on MF+(X ), we can define the Skorokhod metric (see [Bil99]) on the space
D([0, T ] , (MF+(X ), dPR)) of càdlàg functions of [0, T ] to MF+(X ). The space D([0, T ] , (MF+(X ), dPR))
equipped with the Skorokhod metric inherits the Polish space property from (MF+(X ), dPR). Polish
spaces are well suited to study weak convergence of random variable.

Proposition 28. Let (νn)n∈N be a sequence which converges to ν in D([0, T ],MF+(X )). We suppose
that ν ∈ C([0, T ],MF+(X )). Then, (νn)n converges to ν uniformly in time:

sup
0≤t≤T

dPR(νnt , νt) →
n

0.

Proof. From the definition of the Skorokhod metric (Prop. 5.3 p.119 in [EK86]), νn → ν iff

1. there exists a family of functions (λn)n strictly increasing from [0, T ] to [0, T ], with λn(0) = 0 and
λn(T ) = T , and such that

lim
n→∞

sup
0≤t≤T

|t− λn(t)| = 0.

2. And
lim
n→∞

sup
0≤t≤T

dPR(νnt , νλn(t)) = 0.

Therefore:

sup
0≤t≤T

dPR(νnt , νt) ≤ sup
0≤t≤T

dPR(νnt , νλn(t)) + sup
0≤t≤T

dPR(νλn(t), νt).

But, when n → ∞, the first term of the right hand side goes to 0 from the definition of convergence in
the Skorokhod space, and the second term goes also to 0 from the uniform continuity in time of ν on
[0, T ].

Proposition 29. Let (νn)n∈N be a sequence which converges to ν in D([0, T ],MF+(X )). Then, (νnt )n
converges to νt for almost every t ∈ [0, T ], that is to say

dPR(νnt , νt) →
n

0 t− a.e..

Proof. ν has at most a countable set of time discontinuities, written A (lemma 5.1 in [EK86]). Then, by
definition of the Skorokhod metric (see Prop. 28), ∀t0 ∈ [0, T ] \A,

dPR(νnt0 , νt0) ≤ dPR(νnt0 , νλn(t0)) + dPR(νλn(t0), νt0) →
n

0.

Indeed, the first term of the right hand side goes to 0 by definition of the convergence in Skorokhod
distance, and the second as well as νt is continuous at t0.

Proposition 30. The total variation distance is greater than the Prokhorov distance on MF+(X ).

Proof. For all µ ∈ MF (X ), we admit that (and this can be simply proven using the Hahn-Jordan
decomposition of µ):

||µ||TV ≤ 2 sup
B∈B(X )

{|µ(B)|} ≤ 2||µ||TV , (66)

with B(X ) the Borel sets. Let F be a closed set of X , µ and ν ∈ MF+(X ),

µ(F ) = µ(F ) − ν(F ) + ν(F ) ≤ sup
B∈B(X )

{|µ(B) − ν(B)|} + ν(F )

≤ 1
2 ||µ− ν||TV + ν(F 1

2 ||µ−ν||T V
)

where we used the fact that ν is a positive measure. We can switch µ and ν in those expressions and we
obtain that

dPR(µ, ν) ≤ 1
2 ||µ− ν||TV .

Proposition 31. Let ν ∈ MF (X ),

||ν||TV = sup {⟨ν, f⟩; f ∈ C(X ), ||f ||∞ ≤ 1} . (67)
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Proof. As ν is finite L∞(X , |ν|) ⊂ L1(X , |ν|), and continuous functions are dense in L1(X , |ν|).

Proposition 32. Let α ∈ R+, ν ∈ MF+(X ),

dPR(αν, ν) ≤ |α− 1| × ||ν||TV .

Proof. Suppose that 0 ≤ α ≤ 1. Let ϵ ≥ 0, F a closed set of X . Then

αν(F ) ≤ ν(F ϵ) + ϵ

as ν is a positive measure. Moreover

ν(F ) − αν(F ϵ) ≤ ν(F ) − αν(F ) ≤ (1 − α)||ν||TV .

Therefore
dPR(αν, ν) ≤ (1 − α)||ν||TV .

Now suppose that α ≥ 1. Then dPR(αν, ν) = dPR(µ, 1
αµ) with µ := αν. Using what we have shown

above:
dPR(αν, ν) ≤ (1 − 1

α
)||µ||TV = (1 − 1

α
)α||ν||TV = (α− 1)||ν||TV .

This completes the proof.

Proposition 33. Let α > 0 and ν, µ ∈ MF+(X ).

dPR(αµ, αν) ≤ max(α, 1
α

)dPR(µ, ν).

Proof. Let F be a closed set of X .

ν(F ) ≤ µ(F dP R(µ,ν)) + dPR(µ, ν)
⇔ αν(F ) ≤ αµ(F dP R(µ,ν)) + αdPR(µ, ν).

The second inequality implies that

αν(F ) ≤ αµ(Fmax(α, 1
α )dP R(µ,ν)) + max(α, 1

α
)dPR(µ, ν).

From the definition of the Prokhorov metric, this concludes the proof.

Proposition 34. Let ν ∈ MF+(X ) and (νn)n∈N a sequence of MF+(X ) such that dPR(ν, νn) →
n

0. Let
G : Rd → R Lipschitz bounded. Then,

sup
z∈Z

|(ν − νn) ∗G(z)| →
n

0.

Proof. We remind the reader that if dPR(νn, ν) →
n

0 then ||νn||TV →
n

||ν||TV , with ||ν||TV = ν(X ) when
ν ∈ MF+(X ). Indeed, if dPR(ν, νn) ≤ ϵ, from the definition (62), |ν(X ) − νn(X )| ≤ ϵ.

We start by treating the case when ν is the null measure. Then, ∀z ∈ Z,

|(ν − νn) ∗G(z)| ≤ |ν ∗G(z)| + |νn ∗G(z)| ≤ ||G||∞||νn||TV
−→
n→∞

0.

Let us suppose now that ||ν||TV > 0. As ||νn||TV → ||ν||TV , we also suppose that ||νn||TV > 0
∀n ∈ N. We want to use proposition 27 p.29 which is valid for probability measures. We have that

dPR(ν, νn) →
n

0 ⇒ dPR

(
ν

||ν||TV
,

νn

||νn||TV

)
→
n

0. (68)

Indeed:

dPR

(
ν

||ν||TV
,

νn

||νn||TV

)
≤ dPR

(
ν

||ν||TV
,

νn

||ν||TV

)
+ dPR

(
νn

||ν||TV
,

νn

||νn||TV

)
.
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The first term of the right hand side goes to 0 by proposition 33. The second term of the right hand side
goes to 0 by proposition 32. Let ϵ such that 0 < ϵ. From what was shown above, there exists Nϵ such
that, if n ≥ Nϵ,

dPR

(
ν

||ν||TV
,

νn

||νn||TV

)
≤ ϵ and |1 − ||νn||TV

||ν||TV
| ≤ ϵ.

Let n ≥ Nϵ. Let G+(z) and G−(z) be two positive functions such that G(z) = G+(z) −G−(z).

|(νn − ν) ∗G(z)| ≤ |(νn − ν) ∗G+(z)| + |(νn − ν) ∗G−(z)|.

Then,

|(ν − νn) ∗G+(z)| = ||ν||TV ×
∣∣∣∣( ν

||ν||TV
− ||νn||TV

||ν||TV
× νn

||νn||TV

)
∗G+(z)

∣∣∣∣
≤ ||ν||TV ×

∣∣∣∣( ν

||ν||TV
− νn

||νn||TV

)
∗G+(z)

∣∣∣∣+ ||ν||TV ×
∣∣∣∣(1 − ||νn||TV

||ν||TV
) × νn

||νn||TV
∗G+(z)

∣∣∣∣
≤ ||ν||TV ×

∣∣∣∣( ν

||ν||TV
− νn

||νn||TV

)
∗G+(z)

∣∣∣∣+ ||ν||TV ϵ||G+||∞

Let ν̂n := νn

||νn||T V
and ν̂ := ν

||ν||T V
, which are probability measures on X . From proposition 27 p.29,

∀δ such that ϵ < δ, there exists a probability measure on X × X γ ∈ Π(ν̂n, ν̂) and a set E ⊃ {(x, y) ∈
X 2 : d(x, y) ≥ δ} such that γ(E) ≤ δ. Then

(ν̂n − ν̂) ∗G+(z) =
∑
l∈T

∫
Z
G+(z − y) (ν̂n − ν̂)(dy, dl)

=
∑
l∈T

∫
Z
G+(z − y) ν̂n(dy, dl) −

∑
k∈T

∫
Z
G+(z − u) ν̂(du, dk)

=
∑
l∈T

∫
Z

∑
k∈T

∫
Z
G+(z − y) −G+(z − u) γ(dy, dl, du, dk)

≤ 2δ||G+||∞ +
∫

X \E
||G+||Lipδ γ(dy, dl, du, dk)

≤ δ(2||G+||∞ + ||G+||Lip).

We can moreover assume that ϵ < δ < diam(Z). Then, for all x1 = (z1, l1), x2 = (z2, l2) ∈ X 2, if l1 ̸= l2

then (x1, x2) ∈ E. Thus, we can use the fact that G+ is Lipschitz in space to find an upper bound for
the last integral on the domain X \ E:∑

l∈T

∫
Z

∑
k∈T

∫
Z
G+(z − y) −G+(z − u) γ(dy, dl, du, dk)

≤ 2δ||G+||∞ +
∫

X \E
||G+||Lipδ γ(dy, dl, du, dk)

≤ δ(2||G+||∞ + ||G+||Lip).

As this is true for any δ > ϵ, we get that

(ν̂n − ν̂) ∗G+(z) ≤ ϵ(2||G+||∞ + ||G+||Lip). (69)

The same kind of upper bound can be found for |(νn − ν) ∗G−(z)|. And so, ∀z ∈ Z,

|(νn − ν) ∗G(z)| ≤ 2ϵ||ν||TV (3||G||∞ + ||G||Lip).

This concludes the proof as ϵ → 0.

B Reaction-diffusion equations
In this section we recall some classical results on linear reaction-diffusion equations with non-homogeneous
boundary conditions. The main result is proposition 35 which states existence and uniqueness of solution
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for the reaction-diffusion problem (73). We use this result to obtain the existence and uniqueness of
solutions to the problem governing the evolution of chemical concentrations in our model (proposition
10 in the main text).

Let U ⊂ Rd be a bounded open set of regularity C∞. We denote ∂U the boundary of U and consider
the homogeneous Robin boundary condition

∂nu|∂U + bu|∂U = 0 (70)

where b is a function in C∞(Ū) and ∂n is the normal derivative on ∂U . It is a standard result (see
[Paz12; Ama93]) that the unbounded operator A = σ∆ whose domain D(A) is the closure in H2(U) of
the set of function in C2(Ū) which satisfy (70) generates a strongly continuous semi-group on L2(U),
denoted S. Moreover, this semi-group is positive and analytical.

Let us consider the non-homogeneous elliptic problem defined on U :
− λc+Ac = 0 (71)
∂nc|∂U + bc|∂U = f (72)

where λ ≥ 0 is a real number greater than the largest spectral value of A. For all α ≥ 0, the problem (71)
has a unique solution c in H2α(U) when f ∈ H2α− 3

2 (∂U), denoted c = D(f). Operator D is bounded
from H2α− 3

2 (∂U) to H2α(U). These standard results can be found in [LM72] or [Ama93] .
Using notations taken from [Las80] , we define the following functional spaces, for all α ≥ 0 and for

L2(U) = H0(U),

W
2α,⌈α⌉
L2(U) =

{
f ∈ L2([0, T ], H2α(U)); ∀j ∈ {1, · · · , ⌈α⌉} ∂jf

∂tj
∈ L2([0, T ], H2α−2j(U))

}
where ⌈·⌉ is the ceiling function. W 2α,⌈α⌉

L2(U) is a Hilbert space endowed with the norm∥f∥2
L2([0,T ],H2α(U)) +

⌈α⌉∑
j=1

∥ ∂
j

∂tj
f∥2

L2([0,T ],H2α−2j(U))

 1
2

.

Note that with these notations, W 0,0
L2(U) = L2([0, T ] ×U). We define in the same way the space W 2α,⌈α⌉

L2(∂U).
From [LM72] theorem 3.1 p. 19, we know that:

• if f ∈ W
3
2 ,1
L2(∂U), then f ∈ L2([0, T ], H 3

2 (∂U)) and ∂f
∂t ∈ L2([0, T ], H− 1

2 (∂U)), so f ∈ C([0, T ], H 1
2 (∂U))

and the injection is continuous.

• Similarly, if c ∈ W 2,1
L2(U) then c ∈ C([0, T ], H1(U)) and the injection is continuous.

With these definitions and properties, we have the following result

Proposition 35. If b ∈ C∞(Ū), c0 ∈ H1(U), f ∈ W
1
2 ,1
L2(∂U), and u ∈ W 0,0

L2(U), then

c(., t) = S(t)c0 + (λI − σ∆)(
∫ t

0
S(t− s)D(f)(., s)ds) +

∫ t

0
S(t− s)u(., s)ds

is the unique weak solution in W 2,1
L2(U) of the following evolution problem

∂tc− σ∆c = u, (73)
∂nc|[0,T ]×∂U + bc|[0,T ]×∂U = f

c(., 0) = c0

This solution belongs to W 2,1
L2(U) ∩ C([0, T ], H1(U)). Moreover, the operator (c0, f, u) 7→ c is continuous

from
(
H1(U) ×W

1
2 ,1
L2(∂U) ×W 0,0

L2(U)

)
to W 2,1

L2(U).

Proof. It is a consequence of theorem 6.1 from [Las80] for problems with mixed (Robin) boundary
conditions in the case α = 1/4 and k = 0.

Remark 36. The same type of results hold for Dirichlet boundary conditions with f ∈ W
3
2 ,1
L2(∂U) if the

compatibility condition c0|∂U = f(0) is satisfied (see[Las80]).
Remark 37. It is difficult to state general results when U is non smooth or in the case of mixed
Dirichlet-Neumann boundary conditions, where the analysis of each specific case is required.
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C Technical results for the proof of theorem 21
Lemma 38. Under hypotheses 2, let (cs, ξs)s≥0 be a solution of (25-26) on [0, T ], let t ∈ [0, T ] and
u∗(z) ∈ C1(Z,R). The transport equation on [0, T ]{

∂su(s, z) + F(·, ξs ∗ F )∇zu(s, z) = 0,
u(t, z) = u∗(z),

(74)

admits a unique solution constant along characteristics Z(s; t, z):

u(s, z) = u∗(Z(t; s, z)), (75)

where characteristics Z(s; t, z) are solutions of{
dsZ(s; t, z) = F(Z(s; t, z), ξs ∗ F (Z(s; t, z))),
Z(t; t, z) = z for z ∈ Z.

(76)

Moreover, the solution u ∈ C1(|0, T ] × Z,R).

Proof. This is an application of theorem 6.1 in [Per07], which relies on the continuous derivability of
the flow associated to the ODE (76). To prove the latter, one must show that the vector field (t, z) 7→
F(z, ξt∗F (z)) is continuously derivable on [0, T ]×Z, which is a standard consequence of the C1 regularity
assumption (1) in hypothesis 2. The detailed proof can be found in A.3 p.119 of [Dar20].

Let (c1
t , ξ

1
t ) and (c2

t , ξ
2
t ) be two solutions of (25-26) on [0, T ] with ξit positive, and let Z1(s; t, z) and

Z2(s; t, z) be the associated characteristics defined in (76). Then, the following proposition is true.

Proposition 39. Let z ∈ Z and 0 ≤ s ≤ t,

|Z1(t; s, z) − Z2(t; s, z)| ≤ C(t)
∫ t

s

dF (ξ1
r , ξ

2
r )dr (77)

with C(t) a constant which depends on t.

Proof. Proof can be found in A.4 p.125 of [Dar20].

D Exact expression and parameters values for the numerical
implementation

Shape of the domain The function ϕ appearing in equation (45) is defined as

ϕ(z) :=



f(z)
r0

− f(0)
r0

1− f(0)
r0

if z ≤ r0 − ϵ

1 if r0 − ϵ < z < zmax − r0 + ϵ
f(zmax)

r0
− f(z)

r0
f(zmax)

r0
−1

if z ≥ zmax − r0 + ϵ

(78)

with

f(z) =


r0

√
z+ϵ
r0

(
2 − z+ϵ

r0

)
if z ≤ r0 − ϵ

r0 if r0 − ϵ < z < zmax − r0 + ϵ

r0

(
2 −

√
zmax−z+ϵ

r0

(
2 − zmax−z+ϵ

r0

))
if z ≥ zmax − r0 + ϵ

where we assume that r0 is small compared to zmax, and ϵ is small compared to r0.
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Initial conditions Let

ρpc(z) =


1

20 if z ≤ 20,
1

20 × 30−z
10 if 20 < z < 30,

0 if 30 ≤ z,

(79)

and

ρent(z) =


0 if z ≤ 20,
1

70 × z−20
10 if 20 < z < 30,

1
70 if 30 ≤ z.

(80)

To initialize the simulations of the PDMP, we sample randomly the position of 55 ×N progenitor cells
in ρpc and 100 ×N enterocytes in ρent.

The initial conditions cb0 and co0 are defined with

cb0(z) = z

zmax
cb,lum co0(z) = zmax − z

zmax
co,bot (81)

where cb,lum and co,bot are the Dirichlet boundary conditions for respectively the butyrate and the oxygen
(see Table 2).

Table 2: Parameters for Sect. 6.1. For references, see [Dar+22].

Value Unit Description
zmax 100 µm height of the crypt
r0 12.5 µm shape parameter of the crypt
ϵ = 0.1 × r0 µm shape parameter of the crypt
a 10 µm cell diameter
ka 15 µm× h−1 maximal intensity of F
da 1 ∅ maximal value of D

q∞
pc,pc 0.11 h−1 maximal rate of progenitor cell division

Kpc,pc[z] 20 µm space regulation for progenitor cell div.
κpc,pc[z] 7.5 µm space regulation for progenitor cell div.

Kpc,pc[dens] 20 cell cell density regulation for progenitor cell div.
κpc,pc[dens] 6 cell space regulation for progenitor cell div.
Kpc,pc[but] 2.5 butyrate regulation for progenitor cell div.
κpc,pc[but] 5 butyrate regulation for progenitor cell div.
q∞

pc,ent 0.125 h−1 max. rate of progenitor cell to enterocyte
Kpc,ent[z] = Kpc,pc[z] µm space regulation of progenitor cell to diff.
κpc,ent[z] = κpc,pc[z] µm space regulation of progenitor cell to diff.
Kpc,ent[but] = Kpc,pc[but] µm butyrate regulation of progenitor cell to diff.
κpc,ent[but] = κpc,pc[but] µm butyrate regulation of progenitor cell to diff.
q∞

ent,∅ 0.17 h−1 maximal rate of diff. extrusion
Kent,∅[z] 90 µm space regulation for diff. extrusion
κent,∅[z] 10 µm space regulation for diff. extrusion

Kent,∅[dens] 20 cell cell density regulation for diff. extrusion
κent,∅[dens] = κpc,pc[dens] cell cell density regulation for diff. extrusion

so −4 ∅ stoechiometric coefficient for O2
sb −1 ∅ stoechiometric coefficient for butyrate
σo 3.6 × 104 µm2/h diffusion coefficient for O2
σbut = σo µm2/h diffusion coefficient for butyrate
γ∞ 1.6 × 102 10−15 × mmol

h×µm2 max. reaction speed of β-oxydation
K 18401/5 mM affinity of β-oxydation

cb,lum 5 mM luminal concentration of butyrate
co,bot 10 a.u. O2 concentration at the bottom of the crypt
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