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Abstract—Knee  osteoarthritis  (KOA)  is  a  debilitating
disease  that  greatly  impacts  the  quality  of  life,  particularly
among  the  elderly  population.  Conventional  subjective
assessment  methods  for  KOA  have  limitations  in  terms  of
accuracy  and  objective  diagnosis.  This  paper  proposes  an
innovative  approach  by  integrating  advanced  technologies,
specifically the Spatio-Temporal Graph Convolutional Network
(STGCN), applied to gait analysis from markerless videos, for
precise  and  quantitative  assessment  of  KOA.  The  STGCN
network  is  applied  to  normalized  data  obtained  from
Blazepose, a markerless pose estimation technique. Evaluated
on  an  academic  dataset  of  80  RGB  videos,  it  provides  an
accuracy  of  93.75%.  By  leveraging  the  capabilities  of  the
STGCN  network,  this  study  significantly  enhances  the
classification  of  KOA  based  on  gait  patterns,  offering
promising  prospects  for  improved  diagnosis  and  treatment
strategies for individuals with KOA.

Keywords—KOA  classification,  Pose  estimation,  Gait
analysis, Deep Learning , STGCN model

I. INTRODUCTION AND  RELATED WORK

Knee osteoarthritis (KOA) is a disease that causes pain
from cartilage and meniscus damage. This disease leads
to walking disorders and decreases a person’s quality of
life.  In  an  aging  society,  the  number  of  patients  who
suffer from KOA is increasing. Gait analysis plays a crucial
role in evaluating the condition of patients with KOA, a
prevalent  form  of  arthritis  among  the  elderly,
characterized by symptoms such as joint pain, stiffness,
and reduced range of motion. Traditionally, gait analysis
has  relied  on  subjective  assessments  by  physicians  or
therapists,  who  observe  and  document  a  patient's
walking pattern, according to a rating scale like Kellgren-
Lawrence  (KL)  and  Hoehn  and  Yahr  (H&Y).  However,
these scales  have limited effectiveness,  which  hampers
reliable  quantitative  diagnosis.  To  overcome  these
limitations, there is a growing need to integrate advanced
technologies  and  objective  methods  into  gait  analysis,

allowing for more accurate assessment and monitoring of
KOA  patients.  Many  researchers  have  investigated  the
application  of  machine  learning  technology  to  the
classification of  knee osteoarthritis.  These studies have
witnessed  significant  progress,  notable  advancements
being made such as the introduction of pressure sensors
specifically  designed  for  shoes.  These  sensors  have
revolutionized  the  clinical  analysis  of  gait  by  providing
valuable data on pressure distribution during walking. In
[1] the  authors  examine  the  effects  of  early-stage
clinically diagnosed knee osteoarthritis on insole pressure
sensors  during  walking  at  normal  speeds.  Their  study
focuses  on  evaluating  the  impact  on  pressure  points
where knee forces typically peak for individuals without
knee  conditions.  A  considerable  emphasis  has  been
placed on image-based approaches in the literature for
classifying  KOA.  These  studies  utilize  diverse  imaging
modalities,  including X-ray,  MRI,  and depth sensors,  to
capture  valuable  information  that  aids  in  KOA
classification. In  [2], the authors present a methodology
using  Deep  Convolutional  Neural  Networks  (DCNN)  to
classify the severity of KOA  based on X-ray images. This
approach aims to reduce subjectivity among radiologists
and  accelerate  the  classification  process.  The
experimental  results  highlight  the  superior  accuracy  of
their proposed method compared to other KOA severity
classification algorithms, achieving a significant accuracy
of  77.24%.  Furthermore,  the  use  of  marker-based
approaches aids in the accurate detection of keypoints,
enabling effective feature extraction. In  [3] the authors
introduce  a  framework  that  effectively  classifies
abnormal  gait  patterns  associated  with  KOA   and
Parkinson's  disease  (PD)  from  normal  (NM)  gait.  They
employ a vision-based (VB) approach, leveraging a newly
created  and  presented  Vision-based  Gait  Dataset.
Markers are employed to aid in the detection of relevant
joints and specific areas associated with the disease. An
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enhanced  segmentation  technique  is  utilized  to
accurately identify the regions of  interest (ROIs)  where
the  markers  are  positioned.  The  study  enables  precise
extraction of the necessary features, which enhances the
accuracy  of  the  classification  process  using  KNN.  In  a
study by  [4], an RGB-D camera was employed to assess
the  gait  of  both  KOA  patients  and  healthy  individuals.
Kinematic and spatiotemporal (SPT) data were collected
to  obtain  body  joint  information.  By  implementing
Support Vector Machine (SVM) with this approach. In [5],
the authors incorporated pain scores and gait features as
key factors  in  characterizing KOA.  They utilized spatial-
temporal,  kinematic,  and  electromyographic  correlated
features as relevant characteristics. Severity classes were
subsequently formed and tested using an SVM classifier.
The highest-performing classification model achieved an
accuracy  of  85.2%.  In  addition  to  the  aforementioned
methodologies,  there  exist  advanced  markerless
techniques,  including BlazePose  [6],  Openpose  [7]  and
other  similar  approaches,  which  offer  the capability  to
detect  joints  without  the  need  for  physical  markers.
These techniques leverage computer vision algorithms to
accurately identify and track joint positions in real-time.
BlazePose has found valuable applications in the field of
human body movement analysis. For instance, in a study
focused on low back pain physical rehabilitation [8] both
BlazePose  and  OpenPose  algorithms  were  utilized  to
track and analyze body movements during rehabilitation
exercises.  By  leveraging  BlazePose  and  OpenPose,  the
authors were able to estimate human pose and apply a
Gaussian Mixture Model for comprehensive analysis. This
research  demonstrates  the  potential  of  BlazePose  in
accurately assessing and improving movement patterns,
particularly  in  clinical  settings  such  as  physical
rehabilitation.  These  markerless  techniques,  based  on
deep learning models most of the time, offer significant
advantages in joint detection. Additionally, leveraging DL
models  such  as  Spatio-Temporal  Graph  Convolutional
Network  (STGCN)  [9] for  classification  purposes  is  a
promising  direction.  Given  the  predominant  use  of
machine  learning  architectures  in  related  studies,  the
utilization of STGCN, a powerful DL model, is a logical and
advantageous  choice.  The  abundance  of  research  on
STGCN  in  this  domain  provides  valuable  insights  and
demonstrates  its  efficacy.  Therefore,  in  this  paper,  we
propose to employ STGCN for knee osteoarthritis (KOA)
classification  using  normalized  data  extracted  from
Blazepose,  a  markerless  pose  estimation  method.  By
leveraging  Blazepose,  which  enables  efficient  joint
detection,  we aim to  accurately  classify  KOA based on
gait  patterns.  Through  this  integrated  approach,  we
expect  to  improve  accuracy  and  reliability  in  the
classification of KOA.

 The remainder of this article is organized as follows:
Section 2 presents an extensive overview of the materials
and  methods  employed  in  this  study.  This  includes  a
description of the utilized database and the Blazepose-
STGCN  Pipeline,  which  entails  the  application  of
BlazePose  for  keypoint  tracking,  as  well  as  the
implementation of STGCN for classification purposes. In
Section 3, we conduct experiments specifically aimed at

classifying  Knee  Osteoarthritis  (KOA).  The  last  section
concludes the paper and gives some future perspectives.

II. MATERIAL AND METHOD

A. Gait Dataset

In this paper, we used  a publicly accessible dataset
called  "Gait  Dataset  for  Knee  Osteoarthritis  and
Parkinson's  Disease  Analysis  With  Severity  Levels''  [10]
for  our  research.  The  dataset  comprises  96  subjects
which involves 50 KOA, 16 Parkinson's Disease (PD) and
30 Normal/Healthy (NM) subjects. Notably, this dataset
encompasses not only lower body (limbs) movement but
also upper body (arm, posture) movement. The KOA and
PD  data  were  collected  from  different  hospitals,  and
healthy volunteers were also enrolled to analyze the gait
deviations. Expert clinicians evaluated the severity of the
diseases  using the KL  and H&Y scales  for  KOA and PD
respectively,  as  referenced  in  the  works  of   [11]  and
[12]. The dataset consisted of video recordings captured
by  a  single  NIKON  DSLR  d5300  camera  positioned  8
meters  away from the walking mat within the hospital
area. To facilitate tracking, a set of 6 red-colored passive
reflective markers  were attached  to  the  joints  of  each
subject.

The primary objective of this dataset is to examine the
deviations observed in the gait of patients compared to
that of individuals with normal gait. Our particular focus
in this paper is on patients diagnosed with KOA. A brief
description of the dataset is provided in Table I.

TABLE I. BRIEF DESCRIPTION OF THE KOA-PD-NM  DATASET SHOWING SUBJECTS

INVOLVED AND THE RELATED DEMOGRAPHIC DATA

Gait
type

Severity
level

Avg. age
(in

years)

Avg. height
 (in m)

# Subjects by
Gender

Normals Healthy/
Normal

(NM)

45 1.6 30: 17F, 13M

 

 Knee
osteo-

arthritis
(KOA)

Early (EL)

Moderate
(MD)

Severe (SV)

47.1

59.8

62.4

1.54

1.58

1.54

15: 14F, 1M

20: 12F, 8M

 15: 12F, 3M

B. Blazepose-STGCN Pipeline: 3D Keypoint Tracking for 
Knee Osteoarthritis  Classification

   The  proposed  pipeline  for  knee  osteoarthritis
classification from videos is detailed in this section, with
its multiple interconnected steps. Initially, the videos are
processed using the BlazePose technique, which extracts
and tracks body joints to obtain a sequence of 3D skeletal
keypoints with (x,y,z) coordinates. Data normalization is
then  applied  to  ensure  consistency  and  remove  any
biases  or  variations.  This  normalization  step  aids  in
standardizing  the  input  data  across  different  samples,
accounting  for  differences  in  camera  positions  and
subject  sizes.  The  data  is  now  a  sequence  of  graphs,
whose  nodes  are  body  joints,  labeled  with  their  3D
coordinates and other features if needed. These features

https://www.zotero.org/google-docs/?wGn9Z6
https://www.zotero.org/google-docs/?68M8N6
https://www.zotero.org/google-docs/?f9KU6c
https://www.zotero.org/google-docs/?1v4dlu
https://www.zotero.org/google-docs/?rN9e89
https://www.zotero.org/google-docs/?WcMjYj
https://www.zotero.org/google-docs/?UsoubF
https://www.zotero.org/google-docs/?fUjc2W
https://www.zotero.org/google-docs/?CdSOjO


are then fed into the STGCN that generates classification
results  to  differentiate  between  normal  and  abnormal
subjects, specifically detecting cases of KOA from a binary
softmax classifier.

Fig. 1. BlazePose-STGCN Pipeline

1) Skeleton extraction using BlazePose: Markerless 
Joint Detection

In this study, we utilized the advanced technique of
BlazePose for  video analysis.  BlazePose is  a  markerless

joint  detection  method  that  predicts  (x , y , z¿
coordinates for each joint from weakly controlled videos,
unlike traditional methods that require placing markers
on subjects  [3],[10]. One of the remarkable features of
BlazePose is its ability to detect and track 33 joints of the
human body. These points represent crucial anatomical
landmarks  such  as  the  shoulders,  elbows,  wrists,  hips,
knees, ankles, and so on (Fig. 2). By capturing these key
points, BlazePose provides a compact and comprehensive
representation of  the body's  pose and movement.  The
core idea behind BlazePose is to employ a deep neural
network architecture to infer the 2D and 3D locations of
joints  from RGB  images  or  video  frames.  The  network
was trained on vast amounts of labeled data, enabling it
to learn the spatial relationships and appearance patterns
of different joints. This allows for robust and precise joint
detection  even  in  complex  and  dynamic  scenarios  [6].
Furthermore, one of the notable features of BlazePose is
its  real-time performance:  it  runs  at  high  frame rates,
allowing for instant tracking and analysis of all 33 joints.
This  augmentation  in  the  number  of  articulations
significantly  improves  upon  the  previous  work,  which
only utilized six joints [3].

 

Fig. 2. BlazePose: Joint Detection Visualization [6]

Formally,  we focus on tracking  K  body joints during a

walking sequence captured on a video with T frames, for
which BlazePose yields a sequence of 3D coordinates:  

{(x i
t , y i

t , zi
t
) ; i=1. ..K , t=1...T }.  

The  resulting  skeleton  sequence,  as  shown  in  Fig.3,
summarizes the gait of the subject.

  

Fig. 3. Illustrative skeletal gait sequence using BlazePose

2) Data normalization

  In  the  study,  to  ensure  consistent  and  comparable

analysis  of  the  (x , y , z) coordinates  across  different

subjects,  we applied the min-max normalization to  the
data.  It rescales the coordinates to a standardized range,
thus focusing on the relative positions and movements of
the  joints  rather  than  absolute  values.  This  approach
accounts  for  variations  in  physical  characteristics,
ensuring that the relative movements and patterns are
accurately captured during subsequent analysis. 

3) STGCN-KOA:  Spatial-Temporal  Graph
Convolutional  Network  for  Knee  Osteoarthritis
Classification 

    The STGCN [9] is a pioneering action recognition model
that  utilizes  Graph  Convolutional  Networks  (GCN)  on
skeleton data. We are currently adapting this system for
the  classification  of  KOA  pathology.   STGCN  is  a  DL
architecture  specifically  designed  to  handle  spatio-
temporal graphs, making it highly suitable for tasks that
involve  sequential  or  time-dependent  information.  The
network operates on data represented as a graph, where
the nodes are labeled by features.  Fig.  4(a)  provides a
visual representation of this structure, where each node
represents a joint. Intra-skeleton edges are defined based
on  mechanical  connections  between  joints,  while  the
inter-image  edges  connect  the  same  joints  across
consecutive images to indicate their trajectory [9].

● Graph structure construction

  Our  primary  emphasis  is  directed  towards  the
construction of the Spatio-Temporal Graph structure. So
to construct it from a sequence comprising K nodes and T
frames [9], we employ a pose graph G = (V,E). The node

set  V={v t
i
∨i=1. ..K , t=1. ..T }denotes  the  joint

positions, where  v t
i
 represents the  i-th joint at the  t-th

frame [9]. The 4-dimension feature vector of v t
i
  consists

of 3D coordinates of joints and the confidence score. The

edge  set  E includes:  the  intra-skeleton  connections,

which connect the nodes of each frame according to the
human body, where these edges form a spatial edge that

we denote as  {v t
i v t

j
∨( i , j)∈h },  where  h is  a  set  of

human  members  or  body  parts.  Then  the  inter-frame
connections that connect the same joints in consecutive
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frames  form  the  temporal  edges  that  we  denote  as

{v t
i v t+1

i
}.

● Sampling and partitioning Strategies

  Now to understand how the STGCN works, it is essential
to first introduce its sampling and partitioning strategies.
Dealing  with  convolutions  on  2D  images  is
straightforward  using  a  regular  grid  with  a  rectangle
representing the spatial support. However, in the context
of  graphs,  the  topology  is  no  longer  regular  and  the
spatial support (neighborhood) of each processed point is
defined  as  its  adjacent  nodes.  Fig.  4(b)  illustrates  this
concept  for  a  single  frame:  the  surrounded  nodes
represent  the  sampling  area of  the convolutional  filter
applied  to  each  red  point.  In  summary,  the  sampling
strategy employed by STGCN [9] is based on mechanical
dependencies between joints rather than spatial vicinity. 

Fig. 4. (a) Sequence of skeleton graphs, denoting human movement in
space and time. (b) Sampling strategy of a convolution layer for a

single frame. (c) Spatial Configuration Partitioning strategy [9].

Now  the  partitioning  strategy aims  at  grouping  joints
according to characteristics of human movements,  that
may  be  categorized  [9] into  concentric  or  eccentric
movements,  and the points  in  the sampling region are
divided into three subsets:

● The root node (or center joint), highlighted in green in
Fig. 4(c).

● The centripetal group (highlighted in blue in Fig. 4(c)),
consisting of the closest nodes to the center of gravity
of the skeleton (depicted as the black cross).

● The  centrifugal  group  (highlighted  in  yellow  in
Fig.4(c)), which includes the most remote nodes from
the center of gravity.

In  STGCN,  the  center  of  gravity  is  determined  as  the
average coordinate of all skeleton joints in a frame. Using
Spatial  Configuration  Partitioning  [9],  each  joint  is
assigned  a  label  based  on  partitions.  These  partitions
establish  distinct  weights  for  the  model,  facilitating
accurate  spatial  analysis  and  learning.  To  capture  the
temporal  dimension,  STGCN  extends  the  concept  of
graph  convolution  discussed earlier  by considering this
dimension  as  a  sequence  of  consecutively  stacked
skeleton graphs,  as shown in Fig.  4 (a).  This leads to a
collection  of  neighboring  graphs.  Since  each  joint  in  a
graph  must  be  connected  through  an  edge  to  its
corresponding joint in the previous and next neighboring
frames,  STGCN  effectively  applies  spatiotemporal
convolutions to the human pose sequence data.

● Model architecture

 

Fig.  5  illustrates  the  architecture  of  the  STGCN  model
employed  in  this  study.  The  network  consists  of  ten
blocks  of  spatiotemporal  graph  convolution  operators,
also known as STGCN units. The first four blocks have 64
output channels, blocks 5–7 have 128 output channels,
and the remaining blocks have 256 output channels. All
of these  blocks adopt a temporal kernel size of 10, i.e.
the filter takes into account the current time step and the
nine adjacent time steps in the sequence. By convolving
the  filter  over  the  temporal  dimension,  the  model
captures patterns and relationships within this  ten-step
window,  allowing  it  to  analyze  the  temporal  dynamics
and  dependencies  present  in  the  data.  To  prevent
overfitting, the weights update is randomly dropped with
a probability of 0.5.  The stride is set to 1 for all  layers
except the fourth and seventh layers, where it is set to 2
to behave like a pooling layer. The resulting tensor is then
passed  through  a  global  pooling  function,  yielding  a
feature vector with 256 dimensions for each sequence. 

Fig. 5. The architecture of STGCN

Each  STGCN  (Fig.6)  unit  begins  by  extracting  relevant
features from the intra-skeleton set using a GCN layer.
The output of this GCN sub-module has the same size as
the input and serves as a learned representation of the
skeleton. These learned features are then passed as input
to  a  Temporal-GCN  (TCN)  sub-module,  which  captures
inter-frame information using a fixed temporal  window
size. Finally, the combined spatial and temporal feature
vectors are fed into a SoftMax classifier.

Fig. 6. ST-GCN Unit

III. EXPERIMENTATION

A. Implementation details

1)  Frames Extraction and pose estimation

   The videos analyzed  in this study had a maximum of
1000 frames per video, which served as the baseline for
the  data  collection.  The  parameters  for  minimum
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detection confidence and minimum tracking confidence
were both set  to  the default value of  0.5.  The dataset
comprised  a  total  of  80  videos  (30  videos  featuring
individuals without any health issues (NM) and 50 videos
with subjects affected by KOA), which were divided into
training (80%), and testing (20%) sets.

Only  one  person  was  present  in  each  video.  The
parameters are shown in Table  II, and so the input data
have a dimension of C × T × V = 99 000 

TABLE II. TRANSFORMED DATA : PARAMETERS OVERVIEW

Parameter Representation Value

Number of channels C 3

Number of frame per video T 1000

Number of joints V 33

     2)  Working environment

   In this study, the STGCN model was implemented using
PyTorch in an Ubuntu environment. The hardware setup
included an NVIDIA GeForce GTX 1050 GPU with 16 GB
memory  and  an  Intel  Core  i5  9300H  processor.  We
leveraged CUDA, OpenCV, and other essential libraries to
facilitate the training and testing of KOA gait classification
model. 

     3)   Hyperparameters and training details

    The  STGCN network was trained for 120 epochs with a
batch size of 8. A learning rate of 0.01 was chosen and at
epochs 40 and 80,  the learning rate was reduced by a
factor of 10. The SGD optimizer was used with a weight

decay of  10−4. To prevent overfitting, a dropout rate of

0.5 was used. (Table III).

TABLE III. HYPERPARAMETER AND THEIR VALUES

Hyperparameters Value

Optimizer SGD

Epochs 120

Learning rate 0.01

Dropout rate 0.5

Batch size 8

B. Evaluation

1) Performance metrics

  In our context, True Positive (TP) indicates the number
of  patients  correctly  classified  as  KOA,  while  True
Negative (TN) counts the individuals correctly classified as
healthy.  False  Positive  (FP)  counts  healthy  individuals
misclassified as KOA, and False Negative (FN) counts KOA
patients wrongly classified as healthy.

Accuracy (ACC) provides an overall indication of how well
the  classification  model  performs  in  distinguishing
between KOA and healthy cases:

                Accuracy=
TP+TN

TP+TN +FP+FN
      (1)

A high sensitivity (or recall) means there are few disease
omissions:

    Sensitivity=
TP

TP+FN
     (2)

A high specificity means that the model can rule out most
subjects with no disease:

  Specificity=
TN

TN +FP
     (3)

Precision measures the proportion of  people with  KOA
among those classified as such:

 Precision=
TP

TP+FP
     (4)

The F1-Score combines the results of precision and recall:

F1−Score=
2∗( precision∗Recall)

Precision+Recall
    (5) 

2) Discussion and results

  In this section, we present and discuss the performance
achieved in the previous metrics to evaluate the STGCN
model.  Table IV provides a comprehensive overview of
the metrics, while Fig. 7 presents the confusion matrix,
which  offers  valuable  insights  into  the  model's
performance  by  presenting  a  detailed  breakdown  of
predicted and actual class labels. 

TABLE IV. KOA CLASSIFICATION METRICS FOR STCGN

Accuracy Sensitivity Specificity Precision F1-

Score

  NM 0.9495 0.9206 0.9389 0.9129 0.9167

 KOA 0.9255 0.9366 0.9499 0.9443 0.9404

 All 0.9375 0.9286 0.9444 0.9286 0.9286

Based on the obtained results, the proposed method
using the STGCN for KOA classification has demonstrated
promising  performance  with  an  average  accuracy  of
0.9375.  Overall,  the  results  indicate  that  the  STGCN
model  successfully  distinguished  between  healthy  and
unhealthy  knee  conditions.  It  exhibited  high  accuracy,
sensitivity, specificity, precision, and F-scores for both the
NM  and  KOA  classes.  These  findings  suggest  the
suitability  of  the STGCN model  for  the classification of
knee osteoarthritis and normal conditions.



Fig. 7. Confusion Matrix

To improve the evaluation of our model, we conducted a
comparative analysis by comparing the results obtained
from the combination of Blazepose and the STGCN model
with  other  state-of-the-art  approaches.  Specifically,  we
compared our results with those achieved by employing
the  markers  approach  based  on  K-nearest  neighbors
(KNN)  using  the  same  dataset  [3].  In  addition,  we
explored the use of  markerless  techniques,  particularly
Blazepose,  as  an  alternative  solution  to  address  the
challenges associated with marker-based techniques. Our
goal  in  utilizing  Blazepose  was  to  overcome  the
limitations  and  complexities  observed  in  [3] due  to
marker usage. Furthermore, we sought to demonstrate
the  performance  of  Blazepose  in  comparison  to  other
techniques such as OpenPose [13]. Table V presents the
average performance metrics obtained.

TABLE V. PERFORMANCE COMPARISON WITH STATE OF THE ART

Method Dataset Train-
ing

Avg
Accuracy

Avg
Sensitivity

Avg
Specificity

KNN [3] KOA-
PD-
NM

Scratch 0.9179 0.8981 0.8985

WM-
STGCN

[13]

Youtube
videos

Scratch   0.7810 0.8667 0.8750

STGCN
(Ours)

KOA-
PD-
NM

Scratch     0.9375     0.9286     0.9444

Notably,  our  model,  which  leverages  the  Blazepose
framework,  exhibited  superior  performance  in
classification tasks. Achieving an accuracy of 0.9375, our
model  surpassed  that  of  KNN,  which  achieved  an
accuracy of 0.9179. Moreover, across various metrics, our
model consistently demonstrated superior performance
when compared to KNN. The use of STGCN proved to be
highly effective in our study, due to its ability to capture
and analyze both spatial and temporal information. This
unique feature allows for comprehensive detection and
understanding  of  dynamic  patterns.  By  leveraging  this
capability,  our  model  was  able  to  achieve  promising
performance in the classification.

IV. CONCLUSION AND PERSPECTIVES

This  paper  presented  a  novel  approach  for  knee
osteoarthritis  (KOA)  classification  using  videos.  The
proposed method utilized BlazePose for joint extraction
and  the  STGCN  network  for  classification.  The  results
demonstrated that this approach outperformed previous

machine  learning  techniques,  achieving  an  significant
accuracy of 0.9375. The use of BlazePose allowed for the
extraction  of  joints  without  the  need  for  physical
markers,  making  the  process  more  practical,  and  less
intrusive.  By  leveraging  the  STGCN  network,  the
proposed  method  effectively  captured  the  intricate
movement  patterns  associated  with  KOA,  resulting  in
improved classification accuracy. Now there are several
avenues to consider in order to  enhance the proposed
method. First, expanding the dataset and incorporating a
large sample size would provide a more comprehensive
evaluation  and  validation  of  the  classification  model.
Moreover,  it  would  be  valuable  to  include  markerless
videos obtained under less controlled conditions, such as
complex  backgrounds  and  diverse  lighting  conditions.
This  would  enable  the  assessment  of  the  model's
robustness  in  real-world  scenarios.  Additionally,
conducting hyperparameter optimization for the model is
worth  considering.  Fine-tuning  the  model's
hyperparameters  can  potentially  improve  its
performance. This optimization process can help identify
the best configuration for the model and further enhance
its classification capabilities.
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