
HAL Id: hal-04336120
https://hal.science/hal-04336120

Submitted on 11 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Riemannian SPD learning to represent and characterize
fixational oculomotor Parkinsonian abnormalities

Juan Olmos, Antoine Manzanera, Fabio Martínez

To cite this version:
Juan Olmos, Antoine Manzanera, Fabio Martínez. Riemannian SPD learning to represent and
characterize fixational oculomotor Parkinsonian abnormalities. Pattern Recognition Letters, 2023,
�10.1016/j.patrec.2023.09.012�. �hal-04336120�

https://hal.science/hal-04336120
https://hal.archives-ouvertes.fr


Highlights

Riemannian SPD learning to represent and characterize fixational oculomotor Parkinsonian abnormalities

Juan Olmos, Antoine Manzanera, Fabio Martı́nez ∗

• A deep learning strategy that pools convolutional
representations into compact descriptors that then
feed Riemannian layers.

• A novel digital biomarker to quantify Parkinson’s
Disease (PD) from ocular fixation video record-
ings.

• An explainability strategy that highlights relevant
regions over fixational eye video sequences.

• The proposed approach reveals remarkable perfor-
mance on an extra dataset with more controlled
conditions.
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Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, mainly characterized by motor al-
terations. Despite multiple efforts, there is no definitive biomarker to diagnose, quantify, and characterize the disease
early. Recently, abnormal fixational oculomotor patterns have emerged as a promising disease biomarker with high
sensitivity, even at early stages. Nonetheless, the complex patterns and potential correlations with the disease remain
largely unexplored, among others, because of the limitations of standard setups that only analyze coarse measures and
poorly exploit the associated PD alterations. This work introduces a new strategy to represent, analyze and character-
ize fixational patterns from non-invasive video analysis, adjusting a geometric learning strategy. A deep Riemannian
framework is proposed to discover potential oculomotor patterns aimed at withstanding data scarcity and geomet-
rically interpreting the latent space. A convolutional representation is first built, then aggregated onto a symmetric
positive definite matrix (SPD). The latter encodes second-order statistics of deep convolutional features and feeds a
non-linear hierarchical architecture that processes SPD data by maintaining them into their Riemannian manifold.
The complete representation discriminates between Parkinson and Healthy (Control) fixational observations, even at
PD stages 2.5 and 3. Besides, the proposed geometrical representation exhibit capabilities to statistically differentiate
observations among Parkinson’s stages. The developed tool demonstrates coherent results from explainability maps
back-propagated from output probabilities.

Keywords: Keywords:
Oculomotor patterns, Parkinson’s Disease classification, Symmetric Positive Definite pooling, Deep non-Euclidean
learning, Riemannian manifold

1. Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder, affecting more than 10 mil-
lion people globally nowadays [1]. This incurable dis-
ease is today explained by progressive degeneration of
dopamine neurotransmitters, affecting the nervous sys-
tem and producing in consequence alterations in the
patient’s movement [2]. Currently, there is no defini-
tive disease biomarker, and the clinical diagnosis and
prognosis are typically limited to observational analy-
sis and coarse scales to stratify motor disabilities [2, 3].
PD symptoms affect the quality of life and can span
decades, therefore timely treatment and a correct char-
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acterization are essential to slow down motor impair-
ments and disabilities [2]. Additionally, there is a wide
range of motor manifestations and disease phenotypes
to characterize the disease, such as: tremor in hands,
disabilities during gait, and trunk rigidity [4]. Nonethe-
less, such motor impairments have proven to be unsuit-
able for precise quantification of the disease progres-
sion, and they are mostly detected at an advanced stage
of the disease [4].

Recently, some works have highlighted ocular tremor
as a distinctive manifestation in PD patients, with suf-
ficient sensitivity to capture abnormalities, even at the
early stages of the disease [4, 5, 6]. However, most
existing methods capture ocular patterns from sophis-
ticated and intrusive devices that simplify the eye dy-
namics to displacement trajectories, limiting the under-
standing of the disease progression [7]. Consequently,
today there is no clear evidence of such descriptors as a
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A) B) C) Dataset
- 13 PD patients, 13 healthy adults.
- 5 video samples per subject.

Processing
Four 2d slices per video.

Train subset (20 subjects)
800 slices, 20 per eye per patient.

5 K-fold cross-validation

Validation subset (5 subjects)
40 slices, 20 per eye per patient.

Model

(PD probability prediction ) per slice.

Test set (6 PD subjects)
30 video samples per patient.

Figure 1: A) Recording set up of the oculomotor fixation task. B) Video slices representation of eye movements during the fixation task. C)
Flowchart of the study.

support to disease evaluation, diagnosis, and follow-up
in clinical routines.

Nowadays, computer-aided diagnosis systems have
integrated machine learning mechanisms, allowing,
among others, the analysis of motor information to
guide PD classification [8]. These methods typically use
information from sensors to approximate clinical vari-
ables like postural instabilities during gait, voice irregu-
larities, cerebrospinal data, or eye movement tracking
[9, 8]. Also, some alternatives have used markerless
setups with deep learning strategies to recover uncon-
trolled Parkinsonian patterns during locomotion, show-
ing promising results regarding the discrimination be-
tween Control and Parkinson patients [10]. Despite the
recovery of kinematic descriptors correlated with the
disease, such strategies require a vast amount of labeled
data to properly learn discriminative patterns, which is
a limitation in the medical domain [8]. Hence, the de-
sign of new tools to support PD characterization should
consider motor descriptors that learn high pattern vari-
ability over a set of limited observations and allow ex-
ploring unknown motor correlations associated with the
disease. Second-order compact descriptors have shown
a higher discriminative capability [11] by pooling fea-
ture observations into symmetric positive definite (SPD)
matrices. Nevertheless, such descriptors imply particu-
lar non-Euclidean processing constraints since they lie
within a Riemannian manifold [12].

This work presents a novel digital biomarker that en-
codes PD fixational eye patterns by learning a deep Rie-
mannian representation. The proposed method pools
convolutional features into an SPD matrix of second-
order statistics. The proposed markerless strategy uses
spatio-temporal slices computed from video sequences
that record micro-tremor patterns during an ocular fixa-
tion experiment. A projection of this compact descriptor
into SPD layers allow the model to perform Riemannian
learning by preserving the geometry of input SPD data,

and achieving higher discrimination between Parkinso-
nian and Control classes. A preliminary version of this
work appeared in [13]. This extended version performs
a comprehensive analysis of the results, evaluating the
model’s ability to detect Parkinsonian patterns. Further-
more, a study is conducted to assess the model’s ability
to aid disease stratification by evaluating its sensitivity
to distinguish among different stages of PD. The pro-
posed architecture supported the stratification of relative
early stages (2.5 and 3), which do not present advanced
motor symptoms (in stage 2.5), such as impairment of
balance, and only present moderate symptoms (in stage
3) related to postural instability and gait motor abnor-
malities. This work also introduces an interpretability
strategy that recovers explainability maps, highlighting
important spatiotemporal regions that support PD pre-
diction. Furthermore, a new dataset is included to assess
the generalization capability of the proposed approach.

2. Dataset

A retrospective study was conducted with 13 patients
diagnosed with PD (average age of 72.3 ± 7.4) and 13
Control subjects (average age of 72.2 ± 6.1). To in-
clude inter-subject variability, the study incorporates PD
subjects with different disease degree progression. The
modified Hoehn-Yahr rating scale was used to catego-
rize PD patients with the aid of a physical therapist. A
total of five patients were categorized in stage 2.5, six
patients in stage 3, and two in stage 4.

To record oculomotor patterns, the participants were
invited to observe a fixed stimulus in front of them (at
1.5m). The screen was positioned at the same height
as the eyes to avoid extra efforts of subjects. From 1m
ahead and at a lower altitude, we recorded the upper face
of the participants, see Fig. 1.A). Then, over the screen
was projected a white spot disk. Participants received
the instruction to fix their gaze on the white spot during
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Figure 2: Pipeline and network architecture. Top: architecture of the mixed Convolutional / SPD (ConvSPD) model. Bottom: interpretation of
the model using GradCAM maps from the convolutional module and reconstructed explainability video.

the recording. We used a standard optical camera with
a temporal resolution of 60 fps. For each patient, we
cropped recorded sequences to create five video sam-
ples of individual eyes for each patient, where each one
constitutes a fixation period of five seconds, and the spa-
tial resolution was cropped to 210×140 pixels, centering
the first frame to the center of the pupil.

To recover tremor observations from each video clip,
spatio-temporal information was captured in 2D (xθ, t)
video slices (see Fig. 1.B)). For this purpose, each video
is considered as a volume {I(x, y, t)}S x,S y,T

x=1,y=1,t=1, with spa-
tial and temporal dimensions S x × S y and T (number
of frames) respectively. To obtain the slices, we choose
four radial directions θ ∈ {0◦, 45◦, 90◦, 135◦} around the
center and cut the video volume along each direction.
This way, each 2D image slice (xθ, t) records temporal
variations along the xθ axis. The resulting image slices
record subtle eye displacements, capturing potential dif-
ferential oculomotor patterns related to the disease. For
each patient, a total of 40 2D slice samples were col-
lected, where each slice was extracted from video sam-
ples from each eye in the chosen four directions. The
data used in this study is publicly available and can be
accessed through the repository 1, which also provides
details regarding the source codes used for data prepa-
ration.

An extra dataset was captured only for test purposes,
using semi-controlled conditions but from other institu-
tions. We used a chin rest to improve head stabilization

1https://gitlab.com/bivl2ab/research/SPDLearning-PD-
FixationalPatterns

in an updated protocol. A total of 6 PD patients (aver-
age age of 70.16 ± 6.8) were recorded. This dataset has
undergone the same preprocessing as the previous se-
quences, and then slice samples were fed to the trained
architecture. This allows evaluation of the proposed
method’s generalization under different conditions, such
as illumination changes and recording angles. The en-
tire dataset, including the test data, was approved by
an Ethic Committee, and each participant filled out a
written informed consent. To our knowledge, no public
dataset contains more eye movement videos for Parkin-
son’s prediction.

3. Proposed Method

In this work, we analyze fixational oculomotor ab-
normalities from spatio-temporal video slices by first,
learning a deep convolutional representation, whose
patterns are encoded into an SPD embedding, which is
then exploited through a non Euclidean learning frame-
work that preserves Riemannian manifold properties.
The proposed representation is learned from an end-to-
end scheme, taking advantage of convolutional hierar-
chical representation encoded in top layers as second-
order statistics, allowing to discriminate Parkinsonian
fixational patterns from Control subjects. Figure 2 sum-
marizes the proposed method. The repository including
the source code for training the proposed model is avail-
able at 1.

3.1. Deep features encoding
The first part consists in decomposing spatio-

temporal slices into a hierarchical convolutional bank of
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filter responses (see Fig. 2). This Convolutional module
is composed of several layers, hierarchically organized
to progressively expand the time × space receptive field,
as well as the semantic level w.r.t. PD classification. At
the end of this module, we obtain a bank of N feature
maps {F(i)}Ni=1 with dimension W × H.

3.2. Non-linear SPD pooling
In a typical approach, a low-dimensional descriptor

is embedded at the top of the convolutional layers to
carry out class discrimination. Nonetheless, this abrupt
dimension reduction may lose significant feature rela-
tionships that may highlight associated class patterns.
Recently, SPD embeddings have gained attention be-
cause of the capability to recognize patterns and encode
compact descriptors of high dimensional observations
[14]. We decided to endow the proposed network with
an intermediate SPD pooling layer dedicated to captur-
ing second-order statistics in a compact matrix embed-
ding that summarizes relevant information from the fea-
tures bank Xk−1 = {F(i)}Ni=1. We re-organized them in a
matrix Xk−1 ← [vec(F(1)) · · · vec(F(N))]. Then, the
proposed SPDpool layer computes

Xk = fS PDpool(Xk−1) =
1

W × H
X⊤k−1Xk−1

The output is a N × N Gram matrix where Xk(i, j)
records the inner product (correlation) between the i-
th and j-th feature map. This matrix has been used to
estimate statistical discrepancy [15]. The resultant SPD
embedding allows encoding relevant relationships in the
previous CNN module w.r.t the significant Parkinsonian
patterns.

3.3. Riemannian Module Structure
The resultant SPD embeddings form a Riemannian

manifold that must be addressed using non-Euclidean
learning to preserve the geometric structure. To learn
patterns from such SPD representation and discriminate
samples according to supervision labels, we follow the
transformations on the SPD manifold as described by
[12].

Firstly, a bilinear mapping (BiMap) layer is used to
transform SPD matrices into a new bank of more com-
pact (lower dimension) SPD matrices through bilinear
mapping:

Xk = fBiMap(Xk−1) =WkXk−1W⊤
k ,

where, Xk−1 ∈ S dk−1
++ is the input SPD matrix of the pre-

vious layer (k − 1), while Wk ∈ Rdk×dk−1
∗ is the trans-

formation matrix (connection weight) that generates the

new SPD matrix Xk ∈ S dk
++. This layer is used after

applying the SPDpool. Similar to a CNN, the sizes of
the SPD matrices decrease after the BiMap layer, i.e.
dk < dk−1. The connection weights Wk involved in this
layer should be an orthogonal full-rank matrix in order
to generate a consistent output Xk SPD matrix. This im-
plies that the weights matrices lie in the compact Stiefel
manifold S t(dk, dk−1) = {W ∈ Rdk×dk−1 |WW⊤ = Idk }

[12]. Additionally, this constraint aids the optimization
to achieve optimal solutions on S t(dk, dk−1) during the
learning process, avoiding data degeneration problems
[12].

Then, after the BiMap, a eigenvalue rectification
(ReEig) layer is implemented. This regularization is in-
spired by the rectified linear units (ReLU) and their ef-
fectiveness in improving non-linear learning [12]. Par-
ticularly, the ReEig layer is composed of a non-linear
function to improve the training process by rectifying
the eigenvalues of SPD matrices via:

Xk = fReEig(Xk−1) = Uk−1 max(εI,Σk−1)U⊤k−1,

where Uk−1 and Σk−1 come from the eigenvalue de-
composition Xk−1 = Uk−1Σk−1U⊤k−1. Here, ε is a non-
negative rectification threshold. This operation tunes
up the eigenvalues avoiding non-positiveness, preserv-
ing the SPD data structure, and consequently improving
the discriminative performance. The BiMap and ReEig
layers constitute the main layers of the network, with a
BiMap layer always followed by a ReEig layer. We re-
fer as BiRe block to the concatenation of these layers,
see Figure 2.

At the end of the SPD BiRe blocks sequence, the Rie-
mannian information is projected back into Euclidean
space to perform the classification part. For that pur-
pose, the LogEig layer projects the SPD data into a Eu-
clidean space using the Riemannian logarithm map:

Xk = fLog(Xk−1) = Uk−1 log (Σk−1) U⊤k−1.

The resulting matrix Xk is a Euclidean squared matrix
that facilitates the computation of the following output
layers [12]. These layers consist of a Flatten layer, a
fully connected layer, and the final output layer is a sig-
moid operation.

3.4. Learning Scheme
From a binary cross-entropy loss function, a stochas-

tic optimization algorithm using adaptive moment es-
timation (Adam algorithm) is implemented. However,
two issues arise using Euclidean gradients and tradi-
tional backpropagation (BP) within the Riemannian lay-
ers. The first is that the eigenvalue decomposition of Eig
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layers (ReEig and LogEig) is not well posed in the tradi-
tional BP. The second issue concerns the orthogonality
constraint of the connection weights in the BiMap lay-
ers. The updated weight should ensure generating valid
SPD matrices [12]. For the first issue, structured deriva-
tives have been proposed as a solution [16]. Regarding
the learning in BiMap layers, the steepest descent di-
rection within the Stiefel manifold has been calculated
[12, 13]. For that, it is necessary to calculate the tangent
component of S t(dk, dk−1), which is defined as the sub-
traction of the Euclidean gradient ∇L(k)

Wt
k

by the normal

component: ∇̃L(k)
Wt

k
= ∇L(k)

Wt
k
−∇L(k)

Wt
k

(
Wt

k

)⊤
Wt

k. Now, the

tangent component ∇̃L(k)
Wt

k
can be seen as the direction to

update the connection weight Wt
k. Finally, the retraction

operation Γ over S t(dk, dk−1) is used to map this weight
back from the tangent space into S t(dk, dk−1) via:

Wt+1
k = Γ

(
Wt

k − α∇̃L(k)
Wt

k

)
. (1)

The result is an updated weight Wt+1
k using a learn-

ing rate α, and the retraction operation is defined from
the QR decomposition [17]. This way, the Rieman-
nian weights are updated, and the loss can be back-
propagated through the successive convolutional layers.

4. Spatio-temporal explainability maps

In this work, we also seek to discover the underly-
ing characteristics of spatiotemporal regions that may
explain particular disease prediction in order to comple-
ment the analysis. To do so, we implement an inter-
pretability module into the proposed architecture based
on a Gradient-weighted class activation mapping (Grad-
CAM) (see in Fig. 2) [18]. This provides a visual expla-
nation output as a new spatiotemporal slice that informs
about the contribution of each space × time location
w.r.t a particular prediction. More precisely, for an input
2D slice (xθ, t), the model produces a bank of feature
maps in their last convolutional layer {F(k)(ix, it); 1 ≤
k ≤ N, 1 ≤ ix ≤ W, 1 ≤ it ≤ H}, where N,W,H refer to
the number of channels, space samples and time sam-
ples of the considered layer. Then, the output PD pre-
diction probability p is related w.r.t changes at this con-
volutional level, by taking p̃ = max{p, 1 − p} and com-
puting gradients of p̃ with respect to {F(k)(ix, it)}. After
applying a back-propagation from the chain rule includ-
ing Riemannian derivatives, we calculate the global av-

erage of gradients of features from this layer, as follows:

wk =
1

W × H

W∑
ix=1

H∑
it=1

∂p̃
∂F(k)(ix, it)

.

This way, wk is interpreted as a weight that quanti-
fies the global importance of the k-th feature map w.r.t
the model prediction p̃. Then, explainability maps are
weighted and rectified by the ReLu function

FGradCAM = max

0, K∑
k=1

wkF(k)(ix, it)

 .
The resultant maps are valuable to complement predic-
tion assistance, helping to visually identify discrimina-
tive patterns from the video slices. In clinical scenarios,
such tool can be used to support the diagnosis, high-
lighting important regions that suggest Parkinsonian ab-
normalities.

A) B)

C) D)

Figure 3: A) Video slices along the vertical axis (θ = 0◦). B) Corre-
sponding 2D GradCAM explainability maps. C) Explainability maps
over original video slices. D) Video reconstruction by stacking such
maps.

Finally, from the previous explainability maps com-
puted on the space × time slices, we can reconstruct an
explainability video that highlights regions during the
fixation task: Firstly, we calculate S y slices varying the
height of the cutting plane from 0 to S y − 1. For each
slice we calculate a 2D GradCAM map (see Fig. 3.B).
To highlight regions over original slices we overlap each
slice with their correspondent GradCAM map, as shown
in Fig. 3.C). The stacking of the previous maps provides
the explainability video, as illustrated in Fig. 3.D).

5. Experimental Setup

Network Configuration. The architecture of each mod-
ule and training were configured as follows:
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• CNN module: weights were initialized from a pre-
trained CNN architecture [19] with 8 convolutional
blocks. From the 2nd, 4th, 6th and 8th block, this
module outputs 64, 128, 256 and 512 feature maps
of size 53× 75, 27× 38, 14× 19 and 7× 10 respec-
tively.

• SPD pooling layer ( fS PDpool): Several experiments
were run to provide the SPD embedding, computed
either from the 2nd, 4th, 6th or 8th block.

• The Riemannian module: We compared shallow
and deep modules with 3 BiRe blocks (mth-3BiRe
models) and 1 BiRe block (mth-1BiRe models). A
rectification threshold ε = 10−4 was set. In order to
output a PD probability estimation, the final layers
correspond to one LogEig layer, a flatten layer, and
a fully connected layer with a sigmoid function.

Each ConvSPD mth-nBiRe model was trained dur-
ing 50 epochs. The CNN module was trained with a
learning rate of 10−4, while the Riemannian module was
trained with a learning rate of 10−3, using the equation
1.

Validation. A 5-fold cross-validation scheme was set.
Each fold was configured with 21 subjects for training
(840 = 21 × 40 2D samples) and five (200 = 5 × 40 2D
samples) for testing. The test sets contain at least two
patients with PD in these fold splits. The 2D samples
coming from one same patient were exclusively used
for either training or testing during the splitting process.
Each model’s performance was measured using the av-
erage sensitivity, accuracy, and F1-score of the folds.
Additionally, the size of the networks (number of pa-
rameters) and inference time were considered.

6. Evaluation and results

The proposed approach was comprehensively eval-
uated on the discrimination between Parkinsonian and
Control subjects’ fixation recordings. First, an ablation
study was carried out to measure the respective impacts
of depth convolutional and Riemannian BiRe blocks.
The ConvSPD mth-n models based on the mth convolu-
tional layer and using n BiRe blocks were compared, for
m ∈ {2, 4, 6, 8} and n ∈ {1, 3}. Table 1 summarizes the
results from such configurations. The intermediate con-
volutional blocks provide the best results with an accu-
racy of 98.2% (±2.2), 98.6% (±1.4), and 98.6% (±1.6)
for 4th-3BiRe, 6th-1BiRe, and 6th-3BiRe model respec-
tively. In general, all configurations reached scores

above 95%, which shows the capability of deep non Eu-
clidean representations to discriminate Parkinson from
Control subjects by extracting tiny microtremor patterns
from fixational exercises.

At the end of Table 1 are presented the results with
purely convolutional architectures, where a global av-
erage pooling layer replaced the SPDpooling and Rie-
mannian layers. Different convolutional models with
m layers were tested, for m ∈ {2, 4, 6, 8}. The perfor-
mance increases for models that comprise more layers,
achieving an accuracy of 93.2% (±6.8) with the Conv-
2nd model and above 96% for Conv-6th and Conv-8th

models. The number of parameters is presented in the
table for a fair comparison w.r.t ConvSPDmodels of the
same size. This evidences the contribution by the SPD
modules, which provide an accuracy gain of about 0.9-
3.3% compared to convolutional models. Moreover,
the highest gain is obtained for smaller architectures,
as seen comparing the ConvSPD 2nd-1BiRe and Conv-
2nd models. Additionally, the standard deviations of the
Conv-mth models are higher than those of the ConvSPD
models.

In addition, we studied the capability of each model
to differentiate among different disease stages. For this
purpose, we stratified the data into Control, Stage 2.5,
Stage 3, and Stage 4 subsets. Then, we recover the
output probabilities related to the disease class for each
sample from the validation test. This experiment was
run with all ConvSPD models, and the unique model
that produced statistically different distributions among
subsets was the ConvSPD 4th-3BiRe. The proposed
method was designed and trained for binary PD / Con-
trol classification, but retrieving an output PD probabil-
ity that allows analyzing the behavior for samples la-
beled with different PD stages. As it happens, we are
interested in assessing the stratification performance us-
ing the stage labels of the patients. Figure 4 shows the
violin plots of PD output probabilities for each disease
stage (including Control) group produced by the Con-
vSPD 4th-3BiRe net. As expected, clear discrimination
is observed between the control population and the PD
groups. Besides, within PD stages, we observe that
stage 4 sample probabilities were narrowly distributed
around p = 1. Interestingly, there exist statistical differ-
ences among the three-stage considered groups. For this
experiment, all PD patients were correctly predicted,
and only a few sample slices were misclassified (11
slices for one patient at stage 3 and three slices for
another PD patient at stage 2.5). To measure the sta-
tistical difference, we implemented the Kolmogorov-
Smirnov (KS) test that validates the capability of the
proposed approach to separate classes. The KS test is
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Table 1: Classification results (%) for the different mth-nBiRe ConvSPD models. For comparison, the bottom part shows the performance for purely
convolutional networks, Conv-mth meaning keeping only the mth first convolutional layers.

Model Sensitivity Accuracy F1-score Parameters Inference Time
2nd-1BiRe 95.7 ± 7.0 96.5 ± 4.2 96.6 ± 3.7 0.161M 17.13ms
2nd-3BiRe 92.4 ± 9.6 95.5 ± 5.4 95.3 ± 5.1 0.160M 16.64ms
4th-1BiRe 95.8 ± 5.5 97.2 ± 3.1 97.2 ± 2.7 0.695M 36.02ms
4th-3BiRe 97.4 ± 3.8 98.2 ± 2.2 98.2 ± 1.8 0.694M 32.14ms
6th-1BiRe 98.5 ± 2.2 98.6 ± 1.4 98.6 ± 1.5 2.832M 89.63ms
6th-3BiRe 98.0 ± 2.8 98.6 ± 1.6 98.7 ± 1.3 2.827M 75.31ms
8th-1BiRe 97.1 ± 5.8 97.2 ± 3.5 97.4 ± 3.2 11.373M 281.99ms
8th-3BiRe 96.6 ± 6.0 97.3 ± 3.9 97.6 ± 3.5 11.353M 243.13ms
Conv-2nd 92.8 ± 10.8 93.2 ± 6.8 93.7 ± 5.8 0.158M 4.1ms
Conv-4th 95.3 ± 7.0 95.3 ± 4.5 95.7 ± 3.6 0.683M 4.18ms
Conv-6th 94.9 ± 10.7 96.6 ± 6.2 96.7 ± 5.9 2.783M 4.21ms
Conv-8th 95.2 ± 9.0 96.4 ± 5.1 96.6 ± 4.7 11.177M 4.24ms

a non-parametric method that measures the agreement
between two distributions. In such a way, it allows test-
ing the hypothesis that two sample probability distribu-
tions are not significantly different. In such case, the
proposed approach (configuration ConvSPD 4th-3BiRe)
finds significant differences between early stage 2.5 and
3 (p < 0.07), stage 2.5 and 4 (p < 10−3), and between
stage 3 and 4 (p < 10−4). However, this p-value only in-
dicates significant differences of probability distribution
among the stages. It brings insights into the model’s po-
tential to discriminate among classes, but further analy-
sis of the network and its components is necessary.

Figure 4: Distributions of Parkinson probability outputs by the best
binary classifier, for the different stage groups.

We also evaluated the interpretability of the proposed
approach by generating synthetic videos from explain-
ability maps. In order to recover spatiotemporal regions
with major association with output predictions, we com-
puted explainability maps calculating GradCAM maps
of slices samples. Then, a stacked block of explainabil-
ity maps, recovered from a particular patient video, was

used to reconstruct a synthetic video that highlights re-
gions with significant disease correlation. The explain-
ability slices and videos were herein designed as a pos-
sibility to analyze computational decisions, which can
aid the patient analysis during the clinical examination.
Figure 5 summarizes the achieved results on slices and
synthetic videos from output predictions of Parkinso-
nian and control fixational patterns. The explainabil-
ity maps and synthetic videos were also recovered from
the purely convolutional model as a baseline. In Fig-
ure 5.A) is presented the average GradCAM heatmap of
slice samples for different ConvSPD and purely convo-
lutional models. This in order to synthesize the most rel-
evant region in general regarding the output predictions
for each model. Here, the maps obtained using Rie-
mannian representations (ConvSPD models) show evi-
dent importance in the center region, where the response
of fixational abnormalities occurs. In addition, for both
Control and PD, the ConvSPD 4th-3BiRe achieve a bet-
ter ability to focus on such region. Despite this, analysis
from average maps hampers the clarity of abnormali-
ties. In this respect, we analyzed single slices samples
from all individuals. For instance, the last column of
Figure 5.A shows a sample slice of a PD patient and
a healthy subject. In general, we observe a continuous
and regular pattern along the temporal axis for control
samples. In contrast, for PD patients, the maps typically
report attention peaks along the temporal dimension. In
fact, we analyze such particular regions into retrieved
explainability videos, finding that the associated tem-
poral intervals with a major probability of PD have a
notable tremor and abrupt motion of the iris. On the
other hand, Figure 5.B) illustrates the synthetic videos
reconstructed from the recovered explainability maps
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Figure 5: A) Comparison of GradCAM heatmaps over horizontal slices (θ = 0◦) averaged for each class, computed from the last layer of the
convolutional module of the ConvSPD models, and from the last convolutional layer of the Conv models. The last column shows GradCAM map
extracted from 4th-3BiRe model, but for one single PD patient and a Control slice sample. B) Synthetic video reconstruction from explainability
maps.

for both: Riemannian and purely convolutional strate-
gies. The videos recovered from the proposed approach
focus mainly on the region of the iris, which in time,
considers in some cases, the blinking patterns. In con-
trast, the convolutional strategies produce sparse pat-
terns without coherence in many regions responsible for
producing predictions. In that sense, recovered videos
using the proposed method may support observational
analysis of the disease, during a clinical examination.

Finally, concerning the capability of the proposed ap-
proach in terms of generalization and robustness to dif-
ferent conditions, we evaluate the best model on the
extra dataset with a total of 5 patients. The proposed
approach correctly predicted all samples on this extra
dataset, achieving perfect accuracy, F1-score, and sen-
sitivity scores with an average PD probability prediction
(p) of 99.94%. This result reveals the robust capabilities
of the method to discriminate PD patients, even in dif-
ferent conditions and capture setups. It should be noted
that this extra dataset only considers six extra patients,
and the capture setups include head stabilization.

7. Discussion

This paper presented a deep learning-based strategy
to characterize oculomotor fixational patterns, based on
a convolutional representation encoded in a compact
SPD descriptor that operates in a Riemannian manifold.
The proposed approach has revealed stable convergence
and robustness to learn patterns from limited training
data, a common case in medical contexts [13]. The
method achieves 98.2% of accuracy using four convo-
lutional blocks and three Riemannian BiRe structures
(4th-3BiRe model) in a real scenario with 13 PD patients
and 13 Control subjects. From an ablation study, we ob-
served that intermediate layers aid the network to cap-
ture spatio-temporal patterns associated to PD. We also
note that more stacked BiRe blocks only improve mod-
els that use intermediate representations. This might

suggest that the learning of the Riemannian module de-
pends on the quality of the SPD layer encoded statis-
tics. Besides, the proposed method outperforms purely
convolutional models, with a higher level of confidence.
The high standard deviation on purely convolutional
models evidences a lack of robustness of these meth-
ods on different validation sets. Regarding the higher
inference time, it must be said that SPD layers involve
numerical operations that have not been optimized yet
in existing frameworks. Whatever, such times (< 1 sec)
are perfectly acceptable in the routine evaluation of PD
patients.

In a clinical context, an important factor to include
tools in standard analysis protocols is the capability to
explain outputs to support decisions coherently. Be-
yond predictions, the strategies should be interpretable
regarding the link between the model’s inputs and its
decision. In such a sense, an additional contribution of
the proposed strategy is the adaptation of an explain-
ability mechanism to highlight the main spatiotempo-
ral regions of ocular movements that contribute to the
prediction. For this, during the test phase, a stack of
slices was computed from each particular video and
projected to the proposed approach to retrieve explain-
ability maps. From these maps, a synthetic explain-
ability video was reconstructed from slices, returning
a video that highlights the main eye regions associated
with the prediction of the proposed approach. As ex-
pected, the explainability maps from the Riemannian
representation retrieve a more coherent representation
that may support observational analysis to discover ab-
normal oculomotor patterns associated with a particu-
lar PD-diagnosed patient. For instance, for the Con-
trol subjects, the highlighted regions are more regular,
which in synthetic videos translates into a constant fo-
cus in the subject’s iris region. On the contrary, for pa-
tients with the disease, the maps have peaks of high-
lighting in some temporal fragments, which coincides
with ocular tremor movements on original raw videos.
Particularly, we observed this Parkinsonian pattern on

8



slices samples misclassified as control. The explainabil-
ity video volumes highlight skin regions such as the eye
rims and eyebrows. In contrast, although convolutional
schemes bring competitive prediction scores, their re-
trieved Grad-CAM maps are sparse, without significant
attention region around the eye. To our knowledge, this
is the first time that explainability maps have been re-
trieved from SPD Riemannian representation produced
from a convolutional backbone. As a perspective, mea-
suring singularities from explainability maps could pro-
duce a better quantification of oculomotor abnormali-
ties.

Additionally, we evaluated the sensitivity of discrim-
ination across different stages of PD based on output
PD predictions from 2D samples. Here the 4th-3BiRe
model produced statistically different probability distri-
butions among the PD stages. As expected, the distri-
bution of the control subject samples exhibits statisti-
cally different distinctions with all stages of the disease.
Likewise, in advanced stages (stage 4), the model eas-
ily predicts all 2D slice samples closely spread around
higher scores. However, for the early stages (2.5 and
3), the distributions were more sparse and challenging
to distinguish, which can be explained by the unclear
frontiers between the H&Y rating scales. Indeed, some
clinicians suggest that the progression is not linear and
that an increment in the scale does not necessarily im-
ply a higher degree of general motor dysfunction [20].
On the other hand, analyzing the video sequences of
the stage 3 patient whose 11 2D samples were misclas-
sified, we observed a slight loss of sharpness in some
video fragments, which affects the correct encoding of
fixational alterations. Despite this, it was possible for
the binary classification task to correctly classify all the
subjects by averaging the predictions from the samples.
Remarkably, the proposed approach has the ability to
detect early stages samples at levels 2.5 and 3 of the
H&Y rating scale. Particularly, this scale character-
izes patients with non-advanced motor symptoms like
level 2, which can be challenging for physicians to de-
tect and differentiate in clinical evaluations. Similarly,
level 3 is only associated with postural instability but
not necessarily with tremor impairments. Finally, the
model achieves remarkable generalization over head-
stabilized extra data, supporting the hypothesis that PD
quantification is performed based on ocular abnormal-
ities, not head motion [7]. Further evaluations of the
proposed approach should consider larger datasets that
include stratified populations with motor PD impair-
ments. Additionally, patients at earlier and prodromal
stages should also be considered. Also, as perspectives,
longitudinal studies could be used to validate the capa-

bility of the proposed approach to support progression
quantification at each particular patient. In the litera-
ture, a method was proposed to quantify tremor patterns
from 2D eye slices using standard machine learning
techniques and representing features from a pre-trained
bank of filters [21]. In reported results, such an ap-
proach achieved an accuracy of 87.7% using the same
dataset, but following a leave one out cross validation,
representing 10% lower than the proposed method. This
fact may be associated with the general deep feature
representation that is not optimized to capture the as-
sociated ocular abnormalities. In fact, the proposed ap-
proach during the Riemannian learning reaches an opti-
mal representation to discriminate between control and
Parkinsonian patterns.

8. Conclusions

This paper introduced a novel PD digital biomarker
from fixational oculomotor patterns using a mixed deep-
learning strategy. The approach integrates convolu-
tional and Riemannian modules to discriminate between
Parkinson and Control populations, and can retrieve
useful information for medical experts by calculating
explainability maps that emphasize relevant spatiotem-
poral regions from input video sequences. The tool
could effectively aid PD diagnosis, even at H&Y stages
two and three. Future work involves studying the gen-
eralization of the approach in different clinical settings,
assessing training robustness with unbalanced scenar-
ios, and adapting the method to raw volumetric inputs
from complete video sequences.
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