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Comment on “Excitation Spectrum and Superfluid Gap of an Ultracold Fermi Gas”

Reference [1] measures the acoustic excitation branch of a superfluid gas of paired fermionic atoms and determines,
depending on the interaction strength, whether this branch is concave or convex at low wavenumber q. This is a crucial
step forward because it provides information about the nature of the gas relaxation mechanisms at low temperatures.
It is therefore important to know whether the announced results are definitive or not. This is the purpose of this
Comment.
At zero temperature, as in any d = 3 superfluid with short-range interactions, the gas acoustic branch has the

Taylor expansion ωq = cq[1 + ζq2/k2F + O(q4 ln q)] with ωq the eigenfrequency, c the speed of sound and ζ the
curvature parameter (scaled by the Fermi wavenumber kF). In the collisionless regime, the sign of ζ determines the
damping mechanism of phonons φ at low temperature. If ζ > 0, it is the well studied three-phonon Beliaev-Landau
mechanism. If ζ < 0, it is the yet unobserved four-phonon Landau-Khalatnikov mechanism [2, 3]; knowing that ζ < 0
is crucial for its observation.
We consider here the unitary limit 1/kFa = 0 with a the s-wave scattering length. Interactions are strongest and

no solid theoretical argument can fix the sign of ζ.
Qualitatively, the dispersion relation of fermionic quasiparticles γ (another gas excitation branch) reaches its min-

imum ∆ ≃ 0.44EF at non-zero wavenumber k0 ≃ 0.92kF [4], so the broken-pair continuum has a flat border of value
2∆ up to q = 2k0 (EF = h̄2k2F/2m = kBTF is the Fermi energy); this border repels the acoustic branch, making it gen-
erally concave. However, nothing prevents the branch from remaining convex (as it naturally is when 1/kFa → +∞)
close to q = 0, where the continuum repulsion effect is weakest (the effect prevails everywhere when 1/kFa → −∞).
Quantitatively, ζ = −π2 (2ξB)

1/2 [c1 + (3/2)c2] where Bertsch’s parameter gives the chemical potential µ = ξBEF

and c1,2 quantify gradient corrections to quantum hydrodynamics [5]. Only ξB is well known, ξB ≃ 3/8 [6]. The
expansion in ǫ = 4 − d gives c1 ≃ −0.0624(1 − 2ǫ/3) + O(ǫ2) and c2 = O(ǫ2) [7], so ζ > 0 to subleading order.
Anderson’s RPA, spectrally equivalent to the Gaussian fluctuations approximation of [8], predicts a positive value
ζRPA ≃ 0.0838 [9] (for c1 ≃ −0.021 [7] this gives c2 ≃ 0.0073 ≪ |c1|). The experimental value ζexp = −0.085(8)[1] is
negative.
However, assuming that the RPA is correct, as we will do, actually has no clear incompatibility with the experiment,

because the analysis in [1] suffers from two limitations.
(i) The value ζexp, obtained by cubic fitting of ωq [1], could strongly depend on the fitting interval if too wide. In

the RPA, fitting ωq to the interval 0.22 ≤ q/kF ≤ 1.08 of Figure 1 in [1] gives ζfitRPA ≃ −0.026, which even has the
wrong sign. Since ωRPA

q has an inflection point at q/kF ≃ 0.5 [9] the fit blindly mixes convex and concave parts, which
also explains the erroneous (negative) value of ζRPA in [10].
(ii) The rather high temperature, T/TF ≃ 0.13 [1], could modify the curvature of the acoustic branch by a non-

negligible amount δζφφ via interaction with thermal phonons. Treating the cubic phonon-phonon coupling Hφφ
3

to second order and the quartic coupling Hφφ
4 to first order, then taking the limit kBT/mc2 → 0, [11] obtains

an expression for the thermal shift of ωq. This gives δζφφ ∼ −[π2/(3ξB)
3/2](T/TF)

2, or δζφφ ≃ −0.140 at the
experimental temperature. Since the small parameter used kBT/mc2 ≃ 0.5 is not ≪ 1, we abandon the T → 0 limit
and add corrective curvature factors (1 ± αq2/k2F) to the amplitudes ρq and φq of the superfluid density and phase
quantum fluctuations (α = π2(ξB/2)

1/2[c1 − (3/2)c2] ≃ −0.136 [3]). We find δζφφ ≃ −0.110, still negative enough to
change the curvature sign in the RPA. Furthermore, thermal pair dissociation creates fermionic quasiparticles that
interact with the phonons. Treating to second order Hφγ

3 and to first order Hφγ
4 given in [12] with curvature factors

in ωq, ρq and φq, we find δζφγ ≃ −0.052. This is a rough estimate: [12] uses a simple local-density approximation
whose small parameter (kBT/m∗c

2)1/2 is ≈ 1 here (m∗ ≃ 0.56m [13] is the γ effective mass). Summing the thermal
corrections gives ζthRPA ≃ −0.078 to compare with ζexp = −0.085(8).
To summarize, the experimental work [1], as innovative as it is, may not have accurately measured the coefficient

of q3 of the acoustic branch of the zero-temperature unitary Fermi gas. Further studies seem desirable. We would
like to thank Alice Sinatra for her comments on the text.
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