Supporting Information

Characterization of Modified Methylaluminoxane by Ion Mobility Spectrometry Mass Spectrometry and Ultra-High Resolution Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry

Ahmad Naim,^{b,c} Marie Hubert-Roux,^{b,c} Virginie Cirriez,^d Alexandre Welle,^d Aurelien Vantomme,^d Evgueni Kirillov,^e Jean-François Carpentier,^e Pierre Giusti,^{*a,c} and Carlos Afonso,^{*b,c}

^aTotalEnergies Research and Technologies Gonfreville BP 27, 76700 Harfleur, France.

^bNormandy University, INSA Rouen, UMR 6014 University of Rouen, Chimie Organique et Bioorganique -Réactivité et Analyse (COBRA), 76821 Mont Saint Aignan, France.

°TotalEnergies RC - CNRS Joint Laboratory C2MC: Complex Matrices Molecular Characterization, University of Pau, University of Rouen, CNRS, 64053 Pau, France.

^dTotalEnergies Research and Technologies Feluy, Zone Industrielle C B-7181 Feluy, Belgium.

^eUniv Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, 35000 Rennes, France.

*Corresponding author: Prof. Carlos Afonso, Email: carlos.afonso@univ-rouen.fr Dr. Pierre Giusti, Email: pierre.giusti@totalenergies.com

Figure S1. piASAP TWIMS-Q-TOF mass spectrum of MMAO-12 in the range of m/z 50–980 measured at sampling cone of 20 V. The zoomed areas showcase distribution of piASAP TWIMS-Q-TOF mass spectrum of MMAO-12 in mass range (m/z 340–540).

Figure S2. Comparison of piASAP TWIMS-Q-TOF and FTICR mass spectra between m/z 300-750. (a) MMAO-12 clusters in piASAP FTICR mass spectrum of MMAO-12 in mass range (m/z 300-750). (b) piASAP TWIMS-Q-TOF mass spectrum of MMAO-12 between m/z 300-750 measured at sampling cone of 20 V.

Figure S3. Comparison of mass accurate between TWIMS-Q-TOF and FTICR of Al_9O_y (y= 7, 8, 9, 10, 11, and 12) clusters in the range m/z 534-547.

Figure S4. Distribution of most intense Al classes observed in piASAP FTICR mass spectrum of MMAO between m/2 240 and 831.

Figure S5. Relative intensity of Aluminum classes of MMAO analyzed by piASAP FT-ICR. N.B. The experiments were replicated three times at the same conditions at different APCI temperatures (exp.1: 350°C, exp. 2: 300 °C, and exp. 3: 420 °C).

Figure S6. Relative intensity of oxygen classes of MMAO analyzed by piASAP FT-ICR. N.B. The experiments were replicated three times at the same conditions at different APCI temperatures (exp.1 : 350° C, exp. 2 : 300° C, and exp. 3 : 420° C).

Figure S7. Plot of modified Kendrick mass defect vs nominal Kendrick mass for MMAO ions of nominal mass from 300 to 800 Da in the piASAP FT-ICR mass spectrum of MMAO. Ten homologous series of MMAO ions were identified (Groups 1-10). N.B. The relative intensity of the ions was filtered to be greater or equal to 0.2 %.

Group 1				Group 2 (Group 1·H ₂ O)			
MAO ion number	m/z	Formula (error in ppm)	CCS (Ų)	MAO ion number	m/z	Formula (error in ppm)	CCS (Ų)
1	312.97605	C ₃ H ₁₄ Al ₅ O ₈ (-0.13)	174.6 ± 0.1				
2	370.97594	$C_4H_{17}Al_6O_9(0)$	188.0 ± 0.2	2′	388.98647	$C_4H_{17}Al_6O_9$ · $H_2O(0.08)$	189.3 ± 0.2
3	428.97581	C ₅ H ₂₀ Al ₇ O ₁₀ (0.15)	201.6 ± 0.5	3′	446.98640	$C_5H_{20}Al_7O_{10}$ ·H ₂ O (0.06)	204.7 ± 0.4
4	486.97544	$C_6H_{23}Al_8O_{11}(0.74)$	215.5 ± 0.3	4′	504.98625	$C_6H_{23}Al_8O_{11}$ ·H ₂ O (0.22)	217.8 ± 0.5
5	544.97531	$C_{7}H_{26}Al_{9}O_{12}(0.75)$	229.8 ± 0.4	5′	562.98632	$C_7H_{26}Al_9O_{12}$ ·H ₂ O (-0.05)	231.4 ± 0.2
6	602.97527	C ₈ H ₂₉ Al ₁₀ O ₁₃ (0.64)	244.0 ± 0.3	6'	620.98611	$C_8H_{29}Al_{10}O_{13}$ · $H_2O(0.18)$	245.0 ± 0.3
7	660.97521	C ₉ H ₃₂ Al ₁₁ O ₁₄ (0.57)	256.4 ± 0.4	7′	678.98609	C ₉ H ₃₂ Al ₁₁ O ₁₄ ·H ₂ O (0.08)	257.7 ± 0.3
8	718.97501	$C_{10}H_{35}Al_{12}O_{15}(0.70)$	270.5 ± 0.5	8′	736.98614	C ₁₀ H ₃₅ Al ₁₂ O ₁₅ ·H ₂ O (-0.09)	271.0 ± 0.7
9	776.97505	$C_{11}H_{38}Al_{13}O_{16}(0.49)$	281.5 ± 0.9	9′	794.98602	$C_{11}H_{38}Al_{13}O_{16}H_2O(-0.02)$	282.3 ± 0.9
10	834.97497	$C_{12}H_{41}Al_{14}O_{17}(0.48)$	292.1 ± 0.9				

Table S1. List of Group 1 and 2 (1. H_2O) MMAO oligomers. N.B. The presented CCS (Å²) obtained from the average CCS of each ion at different sampling cone voltages (10V, 20V and 40V).

Group 3				Group 4 (Group 3·H₂O)			
MAO ion number	m/z	Formula (error in ppm)	CCS (Å ²)	MAO ion number	m/z	Formula (error in ppm)	CCS (Ų)
11	310.99679	C ₄ H ₁₆ Al ₅ O ₇ (-0.13)	176.5 ± 0.1	11′	329.00728	$C_4H_{16}Al_5O_7 \cdot H_2O(0.10)$	179.1 ± 0.1
12	368.99663	C ₅ H ₁₉ Al ₆ O ₈ (0.13)	190.5 ± 0.3	12′	387.00718	$C_5H_{19}Al_6O_8 \cdot H_2O(0.16)$	191.5 ± 0.3
13	426.99650	C ₆ H ₂₂ Al ₇ O ₉ (0.25)	204.3 ± 0.4	13′	445.00698	$C_{6}H_{22}Al_{7}O_{9}$ · $H_{2}O(0.42)$	207.0 ± 0.2
14	484.99630	$C_7H_{25}Al_8O_{10}(0.48)$	218.4 ± 0.3	14′	503.00679	$C_7H_{25}Al_8O_{10}$ ·H ₂ O (0.62)	220.8 ± 0.3
15	542.99597	C ₈ H ₂₈ Al ₉ O ₁₁ (0.90)	232.5 ± 0.4	15′	561.00667	$C_8H_{28}Al_9O_{11}$ ·H ₂ O (0.64)	234.2 ± 0.2
16	600.99599	$C_9H_{31}Al_{10}O_{12}(0.67)$	246.2 ± 0	16′	619.00664	$C_{9}H_{31}Al_{10}O_{12}$ · $H_{2}O(0.51)$	247.5 ± 0.1
17	658.99582	$C_{10}H_{34}Al_{11}O_{13}(0.75)$	258.6 ± 0.2	17′	677.00654	$C_{10}H_{34}Al_{11}O_{13}$ · $H_2O(0.50)$	260.2 ± 0.1
18	716.99583	$C_{11}H_{37}Al_{12}O_{14}(0.58)$	271.0 ± 0.1	18′	735.00631	$C_{11}H_{37}Al_{12}O_{14}H_2O(0.68)$	272.3 ± 0.2
19	774.99569	$C_{12}H_{40}Al_{13}O_{15}(0.63)$	282.4 ± 0.4	19′	793.00623	$C_{12}H_{40}Al_{13}O_{15} \cdot H_2O(0.64)$	284.1 ± 0.6
20	832.99557	C ₁₃ H ₄₃ Al ₁₄ O ₁₆ (0.64)	294.4 ± 0.4	20'			

Table S2. List of Group 3 and 4 (3. H_2O) MMAO oligomers. N.B. The presented CCS (Å²) obtained from the average CCS of each ion at different sampling cone voltages (10V, 20V and 40V).

Table S3. List of Group 5 and 6 (5. H_2O) MMAO oligomers. N.B. The presented CCS (Å ²) obtained from the average CCS of each ion at different sampling cone voltages (10V, 20V and 40V).							
Group 5			Group 6 (Group 5⋅H₂O)				
m/z	Formula (error in ppm)	CCS (Ų)	m/z	Formula (error in ppm)	CCS (Ų)		
193.01794	C ₃ H ₁₂ Al ₃ O ₄ (-1.65)	146.4 ± 0.0					
251.01775	C ₄ H ₁₅ Al ₄ O ₅ (-0.76)	165.3 ± 0.9					
309.01755	C ₅ H ₁₈ Al ₅ O ₆ (-0.20)	179.8 ± 0.4	327.02806	$C_5H_{18}Al_5O_6$ · $H_2O(-0.03)$	182.5 ± 0		
367.01732	C ₆ H ₂₁ Al ₆ O ₇ (0.26)	194.3 ± 0.1	385.02794	$C_6H_{21}Al_6O_7 \cdot H_2O(0.10)$	194.5 ± 0.1		
425.01717	C ₇ H ₂₄ Al ₇ O ₈ (0.40)	207.6 ± 0.3	443.02791	$C_7H_{24}Al_7O_8 \cdot H_2O(-0.01)$	211.0 ± 0.2		
483.01690	C ₈ H ₂₇ Al ₈ O ₉ (0.76)	221.2 ± 0.1	501.02781	$C_8H_{27}Al_8O_9$ · $H_2O(0.04)$	224.6 ± 0.2		
541.01684	C ₉ H ₃₀ Al ₉ O ₁₀ (0.67)	233.9 ± 0.1	559.02764	$C_9H_{30}Al_9O_{10}$ · $H_2O(0.21)$	236.3 ± 0.4		
599.01677	$C_{10}H_{33}Al_{10}O_{11}(0.59)$	247.9 ± 0.2	617.02759	$C_{10}H_{33}Al_{10}O_{11}\cdot H_2O(0.15)$	249.1 ± 1.8		
657.01653	$C_{11}H_{36}Al_{11}O_{12}(0.80)$	261.0 ± 0.2	675.02756	$C_{11}H_{36}Al_{11}O_{12}$ ·H ₂ O (0.08)	261.6 ± 0.6		
715.01660	$C_{12}H_{39}Al_{12}O_{13}(0.54)$	271.4 ± 0.2	733.02756	$C_{12}H_{39}Al_{12}O_{13}$ · $H_2O(-0.02)$	273.3 ± 0.6		
773.01640	$C_{13}H_{42}Al_{13}O_{14}(0.66)$	284.1 ± 0.6	791.02752	$C_{13}H_{42}Al_{13}O_{14}$ ·H ₂ O (-0.06)	285.1 ± 1.2		
831.01633	$C_{14}H_{45}Al_{14}O_{15}(0.62)$	295.0 ± 0.4					

Table S4. List of Group 7 and 8 (7. H_2O) MMAO oligomers. N.B. The presented CCS (Å²) obtained from the average CCS of each ion at different sampling cone voltages (10V, 20V and 40V). (a) The isotopic peaks of group 8 family patterns was either overlapped or not detected.

	Group 7		Group 8 (Group 7⋅H₂O)			
m/z	Formula (error in ppm)	CCS (Ų)	m/z	Formula (error in ppm)	CCS (Å ²)	
365.03791	C ₇ H ₂₃ Al ₆ O ₆ (0.64)	194.8 ± 0.1	383.04867	$C_7H_{23}Al_6O_6 \cdot H_2O(0.10)$		
423.03796	C ₈ H ₂₆ Al ₇ O ₇ (0.26)	209.2 ± 0.1	441.04860	$C_8H_{26}Al_7O_7 \cdot H_2O(0.08)$		
481.03783	C ₉ H ₂₉ Al ₈ O ₈ (0.37)	222.2 ± 0.2	499.04859	$C_9H_{29}Al_8O_8$ · $H_2O(-0.05)$		
539.03768	$C_{10}H_{32}Al_9O_9(0.47)$	236.9 ± 0.4	557.04846	$C_{10}H_{32}Al_9O_9 \cdot H_2O(0.06)$		
597.03755	$C_{11}H_{35}Al_{10}O_{10}(0.52)$	248.2 ± 0.4	615.04850	$C_{11}H_{35}Al_{10}O_{10}$ · $H_2O(-0.12)$	(a)	
655.03739	$C_{12}H_{38}Al_{11}O_{11}(0.61)$	261.3 ± 0.0	673.04845	$C_{12}H_{38}Al_{11}O_{11}$ · $H_2O(-0.15)$		
713.03729	$C_{13}H_{41}Al_{12}O_{12}(0.59)$	271.9 ± 1.0	731.04830	$C_{13}H_{41}Al_{12}O_{12}$ · $H_2O(-0.02)$		
771.03737	$C_{14}H_{44}Al_{13}O_{13}(0.36)$	284.0 ± 1.7	789.04816	$C_{14}H_{44}Al_{13}O_{13}$ · $H_2O(0.06)$		
829.03714	$C_{15}H_{47}Al_{14}O_{14}(0.52)$	295.6 ± 1.0				

Table S5. List of Group 9 and 10 (9. H_2O) MMAO oligomers. The presented CCS (Å²) are obtained from the average CCS of each ion at different sampling cone voltages (10 V, 20 V and 40 V). (a) The isotopic peaks of group 10 family patterns was either overlapped or not detected.

	Group 9		Group 10 (Group 9·H ₂ O)			
m/z	Formula (error in ppm)	CCS (Å ²)	m/z	Formula (error in ppm)	CCS (Å ²)	
421.05863	C ₉ H ₂₈ Al ₇ O ₆ (0.42)	209.2 ± 0.2	439.06945	$C_9H_{28}Al_7O_6 \cdot H_2O(-0.18)$		
479.05850	C ₁₀ H ₃₁ Al ₈ O ₇ (0.51)	222.4 ± 0.2	497.06925	$C_{10}H_{31}Al_8O_7 \cdot H_2O(0.11)$		
537.05842	$C_{11}H_{34}Al_9O_8(0.45)$	237.2 ± 0.4	555.06930	$C_{11}H_{34}Al_9O_8 \cdot H_2O(-0.13)$		
595.05829	$C_{12}H_{37}Al_{10}O_9(0.51)$	250.0 ± 0.3	613.06920	$C_{12}H_{37}Al_{10}O_9 \cdot H_2O(-0.07)$	(a)	
653.05816	$C_{13}H_{40}Al_{11}O_{10}(0.55)$	261.5 ± 0.4	671.06927	$C_{13}H_{40}Al_{11}O_{10}$ · $H_2O(-0.27)$		
711.05799	$C_{14}H_{43}Al_{12}O_{11}(0.65)$	273.1 ± 0.2	729.06891	$C_{14}H_{43}Al_{12}O_{11} \cdot H_2O(0.15)$		

Equations for calculation CCS of MMAO clusters¹:

$$\Omega' = \frac{\sqrt{\mu}}{z} \Omega \tag{Equation 1}$$

 Ω' is the reduced collision cross section z is the charge of the ion μ is the reduced mass Ω is the collision cross section

$$\Omega' = At_D^B \tag{Equation 2}$$

 Ω' is the reduced collision cross section

A is a correction factor for temperature and pressure

B is the compensation for the non-linear effect of the TWIMS device

 t_{D} is the drift time of the ion

(1) Smith, D. P.; Knapman, T. W.; Campuzano, I.; Malham, R. W.; Berryman, J. T.; Radford, S. E.; Ashcroft, A. E. Deciphering Drift Time Measurements from Travelling Wave Ion Mobility Spectrometry-Mass Spectrometry Studies. *Eur. J. Mass Spectrom.* **2009**, *15* (2), 113–130. https://doi.org/10.1255/ejms.947.