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Viscosity solutions of centralized control problems
in measure spaces

Othmane Jerhaoui*, Averil Prost†, Hasnaa Zidani†.

Abstract

This work focuses on a control problem in the Wasserstein space of probability measures over Rd . Our aim is to link
this control problem to a suitable Hamilton-Jacobi-Bellman (HJB) equation. We explore a notion of viscosity solution
using test functions that are locally Lipschitz and locally semiconvex or semiconcave functions. This regularity allows
to define a notion of viscosity and a Hamiltonian function relying on directional derivatives. Using a generalization of
Ekeland’s principle, we show that the corresponding HJB equation admits a comparison principle, and deduce that the
value function is the unique solution in this viscosity sense. The PDE tools are developed in the general framework of
Measure Differential Equations.
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MSC Classification: 35F21, 35R06, 49Lxx.

1 Introduction

In this paper, we consider a Mayer control problem over the metric space of probability measures equipped with the
Wasserstein distance. This class of problems is particularly suited for modeling physical situations where the state variable
is known only up to a density of probability [Coy21]. It also provides a convenient formalism for problems involving the
motion of populations, encompassing both discrete and continuous formulations ([PT09; Cor16]; see also the survey
[CCH14]).
These problems have been extensively studied in cases where the state variable lies in some finite-dimensional vector
space. An effective approach is to connect the control problem with a Hamilton-Jacobi-Bellman (HJB) partial differential
equation. These equations are typically understood in the sense of viscosity solutions, which is a dedicated weak for-
mulation adapted to the nonlinear nature of HJB equations. This approach originated in the work of Crandall, Ishii, and
Lions [CIL92; Ish85]. The numerical methods developed for the HJB equation can then be employed to solve the original
problem. Our objective with this work is to contribute to the extension of Hamilton-Jacobi techniques into the space of
measures.
Considering probability measures as the state space poses several difficulties. We examine an infinite-dimensional subset
of probability measures endowed with the Monge-Kantorovich distance, also known as the Wasserstein distance, derived
from optimal transport theory. The Wasserstein space is not a Banach space, and defining a partial differential equa-
tion (PDE) within it is not straightforward. Additional technical challenges arise from the lack of local compactness and
convexity of the distance function. Despite these challenges, measures are rich objects that can be viewed as points in a
geodesic space, laws of random variables, or generalizations of densities. Each interpretation brings its own set of tech-
niques from geometry, analysis, or probability theory.
Establishing a differential calculus in the Wasserstein space has been an actively researched problem over the past two
decades. The foundational work by Otto introduced a pseudo-Riemannian calculus [Ott01; Vil09], offering striking refor-
mulations of the porous medium equation as a gradient flow. Simultaneously, gradient flows in the Wasserstein space
were investigated using techniques from general metric spaces [AGS05], leading to the construction of a natural tangent
cone [Gig08].
The emergence of mean-field games [Lio06] emphasized the necessity for proper generalizations of gradients for func-
tions dependent on measures, as well as the need for a second-order calculus. Two parallel approaches were pursued: the
probabilistic school treated measures as laws of random variables and defined a surrogate for the gradient in the Wasser-
stein space by lifting mappings into Hilbert spaces L2

P(E ;Rd ), where (E ,E ,P) represents a "reference" atomless probability
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space. This theory has achieved the existence and uniqueness of classical solutions for its primary problems, namely the
mean-field games system and the master equation [Car13; CCD15; PW18; BY19; CP20].
On the other hand, a geometric approach relied on a "regular" tangent cone. This perspective primarily focused on
mechanical systems arising from the minimization of energy over the space of measures, with the tangent cone emerging
as a natural space for the dynamical systems of the minimizers. The elements of the tangent cone allow for the definition
of sub and superdifferentials, whose intersection reduces to the so-called Wasserstein gradient [GNT08; CQ08; AG08;
GŚ14; MQ18].
These two approaches were reconciled in [CD18] and [GT19], where it is shown that the gradient obtained through the
lifting technique and the Wasserstein gradient coincide under quite general assumptions. Thus, both theories share the
same limitations, as pointed out in [AF14] regarding the challenge of connecting the metric interpretation of an Eikonal
equation with its interpretation using the regular tangent cone. A suitable notion of a tangent cone should describe the
set of available directions in which a particle could move starting from a given point. However, for measures that possess
atoms, the regular tangent cone does not enable the splitting of mass. This results in inconsistency when formulating an
Eikonal equation such as ∂t u+|∇u| = 0, where the gradient term encodes the variation of u along all available directions,
which belong to the general tangent cone introduced in [Gig08]. As the theory of Eikonal-type equations enjoys a rich
corpus of existence, uniqueness, and representation results [GHN15; GŚ15; HK15], such inconsistencies are undesirable.
Let us mention the recent work of [DS23], in which an entropic penalization is used to restrain to the dense set of regular
measures, in which regular and general tangent cone coincide.
In this work, we explore a reformulation of Hamilton-Jacobi equations that takes into account the entire set of directions.
The formal derivation of Hamilton-Jacobi-Bellman equations shows that one can solely rely on the information provided
by directional derivatives of the solution. This has the advantage of completely avoiding the discussion about the exis-
tence of a gradient or any other generalization of linearization. In the Wasserstein space, this line of investigation was
initiated in [JJZ; Jer22], where the underlying space was taken as a compact manifold. The contributions of the present
work are the following: we allow the dynamics to depend on the measure variable, which may have full support in the
non-compact space Rd . We give a formulation of the Hamilton-Jacobi equation that supports a strong comparison prin-
ciple, and we show that in the case of Hamilton-Jacobi-Bellman equation, the unique solution is the value function of
the control problem. In particular, the comparison principle is valid on Hamiltonians that are defined using directional
derivatives along elements of the general tangent cone, and could be used in the context of Eikonal equations.
The paper is organized as follows. The setting of the problem is detailed in Section 2. Section 3 gathers the essential
elements of the theory of the Wasserstein space needed in the subsequent sections. The control problem is studied in
Section 4, where we introduce the value function and discuss its properties. Section 5 focuses on a general Hamilton-
Jacobi equation, providing the definition of a viscosity solution and discussing the comparison principle. Finally, the case
of Hamilton-Jacobi-Bellman equations is addressed in Section 6.

2 Setting of the problem

In this section, we establish the notations, outline the problem under investigation, and specify the assumptions of the
paper.

Notations. Space of measures For any Polish space (Ω,d), P(Ω) will denote the space of Borel probability measures on
Ω. In the sequel, we consider the subset P2(Ω) of measures with finite second moment, i.e., measures such that for some
(thus any) o ∈Ω, there holds

P2(Ω) :=
{
µ ∈P(Ω)

∣∣∣∣ ˆ
x∈Rd

d 2(o, x)dµ(x) <∞
}

.

For any couple (µ,ν) ∈ P2(Ω)2, we denote by Γ(µ,ν) the set of probability measures on Ω×Ω with marginals µ and ν,
further referred to as the set of transport plans. An example of such plans, or couplings, is given by the product measure
µ⊗ν, showing that the set Γ(µ,ν) is never empty. We endow P2(Ω) with a metric, here chosen as the Monge-Kantorovitch
distance with p = 2 - also called 2−Wasserstein distance in the literature - and defined as

dW ,Ω(µ,ν) :=
√

inf
η∈Γ(µ,ν)

ˆ
(x,y)∈(Ω)2

d 2(x, y)dη(x, y).

The set of plans realizing the infimum is denotedΓo(µ,ν). According to Theorem 4.1 in [Vil09], this set is always nonempty.
In the sequel, we will simply denote dW the Wasserstein distance when the state space is clear from the context.
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Throughout this paper, we consider Rd as the underlying space. Its tangent space is defined as TRd =⋃
x∈Rd {x}×Tx Rd ,

where Tx Rd represents the tangent space to Rd at the point x. To maintain a clear distinction between points and veloc-
ities, we refrain from identifying Tx Rd with Rd . Let T > 0 be a fixed final time-horizon. We will use the notation

X :=]0,T [×P2(Rd ), d 2
X ((t ,µ), (s,ν)) := |t − s|2 +d 2

W (µ,ν).

Trajectories in the Wasserstein space Consider a controlled dynamical system of the form

∂sµs + div
(

f (·,µs ,u(s))#µs
)= 0, s ∈ [t ,T ], µt = ν (1)

where ν ∈P2(Rd ) is an initial configuration of the system at a time t ∈ [0,T ]. We denote (µt ,ν,u
s )s∈[t ,T ] the solution of (1),

which is understood in the sense of distributions. Here, the control input u(·) is supposed to be a measurable function,
i.e.

u(·) ∈ L0([t ,T ];U ) := {
v(·) : [t ,T ] 7→U

∣∣ v(·) is Lebesgue-measurable
}

,

where U ⊂Rκ is a set of admissible controls, and f :Rd×P2(Rd )×U 7→ TRd is a given controlled and measure-dependant
dynamic. The study of the dynamical system (1) will be carried out in Section 4.1.

The control problem and the value function Now, consider a terminal cost J : P2(Rd ) →R. The control problem we
address in this paper is in Mayer form, and it consists of the following minimization problem:

Find u ∈ L0([t ,T ];U ) such that J
(
µt ,ν,u

T

)É J(µt ,ν,v
T ) ∀v ∈ L0([t ,T ];U ).

The value function associated to this control problem is defined as

V : [0,T ]×P2(Rd ) →R, V (t ,ν) := inf
{
J

(
µt ,ν,u

T

) ∣∣ u ∈ L0([t ,T ];U )
}

. (2)

The aim of the paper is to characterize the value function as the unique viscosity solution of a suitable Hamilton-Jacobi-
Bellman (HJB) equation of the form

−∂t V (t ,µ)+H
(
µ,DµV (t ,µ)

)= 0, V (T,µ) = J(µ).

The definition of the Hamiltonian H and the meaning of the derivative DµV (t ,µ) will be made precise in Sections 5 & 6.
In these sections, we will also develop the notion of viscosity solution in the Wasserstein space.

Running assumptions Let us precise the main assumptions of the paper. We say that an application m : R+ →R+ is a
modulus of continuity if it is continuous, nondecreasing and if m(0) = 0.

Assumption [A1] (Control set). The set U ⊂Rκ is compact.

Assumption [A2] (Structure of the dynamic). There exists constants
[

f
]
,
∣∣ f

∣∣
0,∞ such that

− f is Lipschitz-continuous in the space and measure variables and locally Lipschitz in the control variable, in the sense
that for all (x, y,µ,ν,u) ∈Rd ×Rd ×P2(Rd )×P2(Rd )×U ,∣∣ f (x,µ,u)− f (y,ν,u)

∣∣É [
f
](|x − y |+dW (µ,ν)

)
.

− there exists a modulus of continuity m f ,u :R+ →R+ such that for all (x,µ,u, v) ∈Rd ×P2(Rd )×U ×U ,∣∣ f (x,µ,u)− f (x,µ, v)
∣∣É (1+|x|)m f ,u(|u − v |).

− For all (µ,u) ∈P2(Rd )×U , there holds
∣∣ f (0,µ,u)

∣∣É ∣∣ f
∣∣
0,∞.

Assumption [A3] (Regularity of the terminal cost). The terminal cost J : P2(Rd ) →R is locally uniformly continuous, i.e.
for each R > 0, there exists a modulus of continuity mJ,R :R+ →R+ such that

∣∣J(µ)−J(ν)
∣∣É mJ,R (dW (µ,ν)) ∀(µ,ν) ∈

(
B(δ0,R)

)2
,
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where B(δ0,R) stands for the ball centered in the Dirac measure δ0 and with radius R.
Under these assumptions, we will aim to demonstrate that the value function is the unique solution to an HJB equation.
In the theory of HJ equations in a Banach space, the Hamiltonian is generally defined as a function on gradients, or more
generally, on the space of linear functions. Here, we will define the Hamiltonian using a metric cotangent bundle T as
a set of local approximations of sufficiently smooth maps, replacing the set of p 7→< ∇φ, p > parametrized by any ∇φ.
This metric cotangent bundle is a subset of continuous and positively homogeneous applications, that may not enjoy the
linear properties of their more traditional counterparts. Indeed, in the context of Hamilton-Jacobi-Bellman equations,
this linearity is not essential for achieving results regarding the uniqueness and characterization of the value function. The
core interpretation of HJB equations lies in imposing growth conditions along the characteristics of the control problem,
and this, in turn, only necessitates one-sided derivatives.
The challenges arising in the Wasserstein space are twofold: firstly, the space lacks local compactness. This issue can
be addressed by employing adapted Ekeland principles, as previously demonstrated in Hilbert spaces in [FGŚ17]. Sec-
ondly, the Wasserstein space exhibits positive curvature, which proves to be unfavorable for stability, contrasting with
the reasoning applicable to negatively curved spaces. The critical aspect here lies in the fact that, broadly speaking, the
directional derivative of a convex map enjoys lower semicontinuity, while concave maps have upper semicontinuous
directional derivatives. This makes Hypothesis 3.4 in [Jer22], which assumes some upper/lower semicontinuity of the
Hamiltonian, unattainable in P2(Rd ).

3 Preliminaries on the Wasserstein space

Consider BRd the Borel σ−algebra of Rd , and let g : Rd 7→R be a Borel-measurable function. The notation # will be used
to denote the push-forward operator on measures, defined for any Borel measure µ as

g #µ(A) :=µ(
g−1(A)

) ∀A ∈BR.

The space P2(Rd ), when endowed with the Wasserstein distance, is a geodesic space. A constant speed geodesic pa-
rameterized over [0,1], or in short a geodesic, is a curve (µt )t∈[0,1] ⊂P2(Rd ) satisfying dW

(
µt ,µs

) É |t − s|d(µ0,µ1) for all
(s, t ) ∈ [0,1]2. We first recall some results on geodesics, and then define directional derivatives along them.

3.1 Representation of geodesics of P2(Rd )

Let µ,ν ∈P2(Rd ), and πx ,πy : (Rd )2 7→Rd be the canonical projections πx ((x, y)) = x and πy ((x, y)) = y . In P2(Rd ), it is
known (see [AGS05, Theorem 7.2.2]) that constant speed geodesics coincide with trajectories of the form

µt = ((1− t )πx + tπy )#η ∀t ∈ [0,1], η= η(x, y) ∈ Γo(µ,ν). (3)

The uniqueness of geodesics in the space Rd also allows for another equivalent representation, by means of probability
measures over the tangent space TRd = ⋃

x∈Rd {x}×Tx Rd . We will denote (x, v) ∈ TRd a generic tangent element, and
πx ,πv the canonical projections. Let P2(TRd )µ be the set of initial velocities

P2(TRd )µ =
{
γ ∈P2(TRd ) | πx #γ=µ

}
.

Define the scalar multiplication · of velocities as t ·γ= (πx , tπv )#γ. To each element γ ∈P2(TRd )µ, we associate a curve
of measures by the exponential map

expµ :P2(TRd )µ 7→P2(Rd ), expµ(t ·γ) := (πx + tπv )#γ.

The sets P2(TRd )µ and Γ(µ,P2(Rd )) =⋃
ν∈P2(Rd )Γ(µ,ν) are in bijection through the map

Ψ : Γ(µ,P2(Rd )) 7→P2(TRd )µ, Ψ(η) = (πx ,πy −πx )#η, Ψ−1(γ) = (πx ,πx +πv )#γ. (4)

The mappingΨ is bicontinuous in the respective Wasserstein topologies.

Remark 1 (Manifold case). Let us stress that Ψ is a bijection owing to the uniqueness of geodesics in Rd . Indeed, if E is a
manifold over which an exponential map exp : T E 7→ E is defined, there can be several initial velocities of geodesics in the
set

{
(x, v) ∈ T E

∣∣ expx (v) = y
}
. The corresponding theory is developed in [Gig09] (see in particular Definition 1.4), and in

[JJZ] for the associated geodesic viscosity and HJB equations in the compact case.
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Any geodesic induced by an optimal transport plan η ∈ Γo(µ,ν) via (3) is equivalently represented using (4) as

expµ(t ·Ψ(η)) = (πx + tπv )#Ψ(η) = (πx + t (πy −πx ))#η=µt .

We define the set of initial velocities of geodesics through the identification (4):

P2(TRd )µ,o :=
{
Ψ(η) | η ∈ Γo(µ,ν), ν ∈P2(Rd )

}
.

Following the notation of [Gig11], we will denote exp−1
µ (ν) the set of initial velocities of geodesics linking µ to ν, i.e.

exp−1
µ (ν) :=

{
γ ∈P2(TRd )µ,o with (πx +πv )#γ= ν

}
. (5)

We may equivalently define exp−1
µ as

exp−1
µ (ν) =

{
γ ∈P2(Rd )µ

∣∣∣∣ expµ(γ) = ν and

ˆ
(x,v)∈TRd

|v |2 dγ(x, v) = d 2
W (µ,ν)

}
.

This set is always nonempty, since Γo(µ,ν) is nonempty (see for instance Theorem 1.7 of [San15]). It is compact in
(P2(TRd ),dW ) as the image of the compact Γo(µ,ν) through the continuous identification (4). We refer to it as the set of
initial velocities of geodesics issued from µ and reaching ν.

3.2 The tangent cone

In the sequel, we denote

T2Rd :=
{

(x, v1, v2)
∣∣∣ x ∈Rd , vi ∈ Tx Rd

}
,

∣∣(x, v1, v2)− (x, v1, v2)
∣∣2 := ∣∣x −x

∣∣2 +
2∑

i=1

∣∣vi − v i
∣∣2 .

Given (ξ1,ξ2) ⊂P2(Rd )µ, we define

Γµ (ξ1,ξ2) :=
{
α ∈P(T2Rd )

∣∣∣ (πx ,πvi )#α= ξi , i ∈ {1,2}
}

.

This particular set of transport plans is only allowing transfer of mass between pairs (x, v) and (y, w) such that x = y . For
each µ ∈P2(Rd ), define the application

Wµ :
(
P2(Rd )µ

)2 →R+, W 2
µ (ξ,ζ) := inf

α∈Γµ(ξ,ζ)

ˆ
(x,v,w)∈T2Rd

|v −w |2 dα(x, v, w). (6)

As per [Gig08, Theorem 4.4], Wµ is a metric over P2(Rd )µ and the infimum is always attained. Moreover, disintegrating
ξ= ξx ⊗µ and ζ= ζx ⊗µ allows to get a representation of Wµ as ([Gig08, Proposition 4.2])

W 2
µ (ξ,ζ) :=

ˆ
x∈Rd

d 2
W (ξx ,ζx )dµ(x). (7)

As an useful particular case, we record that

W 2
µ (ξ,0µ) =

ˆ
(x,v)∈T2Rd

|v |2 dξ(x, v) =: ∥ξ∥2
µ. (8)

We denote Γµ,o(ξ,ζ) the subset of Γµ(ξ,ζ) where the infimum of (6) is realized.

Definition 1 (Tangent cone [Gig08, Definition 4.1]). For each µ ∈P2(Rd ), we define

Tan′
µP2(Rd ) :=

{
α ·ξ

∣∣∣ α ∈R+,ξ ∈ exp−1
µ (σ) for some σ ∈P2(Rd )

}
, TanµP2(Rd ) := Tan′

µP2(Rd )
Wµ

.

The pre-tangent cone Tan′
µ is the set of velocities ξ such that there exists ε> 0 with s 7→ expµ(s ·ξ) being a geodesic between

its endpoints over the time interval [0,ε]. Owing to [Gig08, Proposition 4.30], there exists a well-defined projection

πµ :P2(TRd )µ→ TanµP2(Rd ), πµ(γ) = argmin
γ∈TanµP2(Rd )

Wµ(γ,γ). (9)
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Note that by picking some α ∈ Γµ,o(ξ,ζ), we directly have

d 2
W ,TRd (ξ,ζ) É

ˆ
((x,v),(y,w))∈(TRd )2

∣∣x − y
∣∣2 +|v −w |2 d [(πx ,πv ), (πx ,πw )]#α((x, v), (y, w)) =W 2

µ (ξ,ζ). (10)

Moreover, each transport plan α ∈ Γ(t · ξ, t · ζ) induces a transport plan between expµ(t · ξ) and expµ(t · ζ) by β := (πx +
tπv ,πx + tπw )#α. Consequently

d 2
W

(
expµ(t ·ξ),expµ(t ·ζ)

)
ÉW 2

µ (t ·ξ, t ·ζ) = t 2Wµ(ξ,ζ). (11)

Let (µ,ν) ∈ (P2(Rd ))2. Following [Pic19, Definition 4.1], we define an application W(µ,ν) :P(TRd )µ×P(TRd )ν→R+ by

W 2
(µ,ν)(ξ,ζ) := inf

{ˆ
(x,v)∈TRd ,(y,w)∈TRd

|v −w |2 dω(x, v, y, w)

∣∣∣∣∣ ω ∈ Γ(ξ,ζ), π(x,y)#ω ∈ Γo(µ,ν)

}
. (12)

The map W(µ,ν) computes the difference between ξ and ζ by taking only paths whose projection on the base space is a
geodesic. It is coherent with the tangent cone structure, since W(µ,µ)(ξ,ζ) = Wµ(ξ,ζ) for all ξ,ζ ∈P(TRd )µ. However, the
application W(µ,ν) does not satisfy the triangular inequality (see [Pic19, Remark 4]).

3.3 The metric cotangent bundle

Definition 2 (Directionally differentiable map). We say that an application ϕ : P2(Rd ) →R is directionally differentiable
at µ ∈P2(Rd ) if for all ξ ∈ TanµP2(Rd ), the limit

lim
t↘0

ϕ(expµ(t ·ξ))−ϕ(µ)

t
=: Dµϕ(ξ) (13)

exists. The application Dµϕ : TanµP2(Rd ) →R is called the differential at µ of ϕ.

Notice that in (13), we do not assume the limit to be uniform in ξ ∈ TanµP2(Rd ). It is immediate that Dµϕ is positively
homogeneous, i.e. Dµϕ(α ·ξ) = αDµϕ(ξ) for any α Ê 0. Moreover, assume that ϕ is Lipschitz with constant

[
ϕ

]
in some

ball centered in µ. Then using (11),

∣∣∣Dµϕ(ξ)−Dµϕ(ξ)
∣∣∣É [

ϕ
]

lim
t↘0

dW (expµ(t ·ξ),expµ(t ·ξ))

t
É [

ϕ
]

lim
t↘0

tWµ

(
ξ,ξ

)
t

= [
ϕ

]
Wµ(ξ,ξ). (14)

Hence Dµϕ is Lipschitz in
(
TanµP2(Rd ),Wµ

)
. The above leads us to the following definition.

Definition 3 (Metric cotangent bundle). Let

Tµ :=
{

p : TanµP2(Rd ) →R
∣∣∣ p is Lipschitz in Wµ and positively homogeneous

}
, T := ⋃

µ∈P2(Rd )

{µ}×Tµ . (15)

The sets Tµ are stable by the pointwise operations (p + q)(ξ) := p(ξ)+ q(ξ) and (αp)(ξ) := αp(ξ). We endow T with the
application

∥ ·∥ :T→R+, (µ, p) 7→ ∥p∥µ := sup
ξ∈TanµP2(Rd ),∥ξ∥µ=1

∣∣p(ξ)
∣∣ . (16)

The application ∥ · ∥µ induces a norm on Tµ, and we recover
∣∣p(ξ)

∣∣ É ∥p∥µ∥ξ∥µ. The metric cotangent bundle contains
all the infinitesimal approximations of "sufficiently smooth maps", generalizing the set of linear applications. A partial
differential equation in the space of measures involves elements of T, and we will naturally define the Hamiltonian as a
function of T into R.

4 The control problem

4.1 Trajectories

The celebrated results of [AGS05] indicate that absolutely continuous curves in the Wasserstein space coincide with the
solutions of the continuity equation in the sense of distributions. The recent work of [BF21; BF23] raised the theory of
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continuity equations and continuity inclusions in P2(Rd ) to a level comparable to that of the Caratheodory differential
inclusions in Rd . Let us mention that the study of dynamical systems driven by measure-valued, discontinuous dynam-
ics is drawing attention (see the Measure Differential Equations (MDE) of [CMP18; Pic19]), although it is known that in
the Lipschitz setting, solutions of MDEs and continuity equations coincide ([CMP18, Theorem 1]). In this section, we
first reformulate the controlled dynamical system (1) in order to apply the results of [BF23], gather some estimates and
properties needed in the sequel, and study the properties of the value function.

4.1.1 Existence, representation and regularity

Denote P(U ) the set of probability measures over the compact U , which is itself a compact set when endowed with the
squared Wasserstein distance. Let L0([t ,T ];P(U )) be the space of Lebesgue-measurable curves ω : [t ,T ] →P(U ). Define

F :P2(Rd )×P(U ) → C(Rd ;TRd ), (µ,ω) 7→ Fω[µ] :=
ˆ

u∈U
f (·,µ,u)dω(u).

Under [A2], routine computations show that for all µ ∈P2(Rd ), all ω,ϖ ∈P(U ) and x ∈Rd , there holds

∣∣Fω[µ](x)−Fϖ[µ](x)
∣∣É [

f
]

(1+|x|)
√

inf
α∈Γ(ω,ϖ)

ˆ
(u,v)∈U 2

m2
f ,u(|u − v |)dα(u, v).

As m f ,u is continuous and U compact, the Wasserstein distance with cost m f ,u is continuous with respect to dW ,U . Con-

sequently, the application ω 7→ Fω[µ] is continuous from
(
P(U ),dW ,U

)
to C

(
Rd ;TRd

)
endowed with the topology of

convergence over compact sets. Therefore, [t ,T ] ∋ s 7→ Fω(s)[µ] is Lebesgue-measurable for each ω ∈ L0([t ,T ];P(U )). For
some fixed ν ∈P2(Rd ), consider the associated continuity equation

∂sµs + div
(
Fω(s)[µs ]#µs

)= 0 s ∈ [t ,T ], µt = ν. (17)

Combining Theorems 2.18, Proposition 2.22 and Theorem 4.2 of [BF23], we get the following.

THEOREM 1 (EXISTENCE, UNIQUENESS AND REPRESENTATION OF THE SOLUTION). Assume [A1] and [A2]. For each ω ∈
L0([t ,T ];P(U )), there exists an unique trajectory

(
µt ,ν,ω

s
)

s∈[t ,T ] ∈ AC
(
[t ,T ];P2(Rd )

)
solution of (17) in the sense of distri-

butions. Moreover s 7→ Fω(s)[µ
t ,ν,ω
s ] is Lebesgue-measurable, there exist constants m = m f ,T and M = Mν, f ,T such that

dW (µt ,ν,ω
s ,δ0) É m (1+dW (ν,δ0)) , dW (µt ,ν,ω

s ,µt ,ν,ω
τ ) É M |τ− s| ∀t É s,τÉ T,

and the solution is given by the pushforward µt ,ν,ω
s =Φt

s #ν, whereΦt
s :Rd →Rd is the well-defined flow of

d

d s
Φt

s (x) = Fω(s)[µ
t ,ν,ω
s ](Φt

s (x)), Φt
t (x) = x. (18)

Choosing ω(s) = δu(s) for some u ∈ L0([t ,T ];U ), Theorem 1 brings well-posedness of the controlled system (1). The push-
forward representation allows to obtain various estimates directly from the underlying dynamical system. In particular, a
Grönwall estimate yields that∣∣Φ0,x

s (x)−x
∣∣É s

([
f
] |x|+ ∣∣ f

∣∣
0,∞

)
e[ f ]s , and dW (µt ,ν,ω

t+s ,ν) É s
([

f
]

dW (ν,δ0)+ ∣∣ f
∣∣
0,∞

)
e[ f ]s (19)

for all ω ∈ L0([t ,T ];P(U )), ν ∈P2(Rd ), x ∈Rd and 0 É t , s, t + s É T (see Appendix D).
Define the reachable sets from (t ,ν) at time T by the flow of (17) as

Rt ,ν
T := {

µt ,ν,ω
T

∣∣ ω ∈ L0([t ,T ];P(U ))
}

. (20)

Lemma 1 (Lipschitz-continuity of the reachable sets). Assume [A1] and [A2]. There exists a constant [R] depending only
on f and T such that

max

 sup
µ∈Rt ,ν

T

inf
µ∈Rt ,ν

T

dW (µ,µ), sup
µ∈Rt ,ν

T

inf
µ∈Rt ,ν

T

dW (µ,µ)

É [R]dW (ν,ν) ∀t ∈ [0,T ], ν,ν ∈P2(Rd ).

Demonstration. Using chained Grönwall estimates (see Appendix D), we have that two solutions s 7→µt ,ν,ω
s and s 7→µt ,ν,ω

s
associated to the same control ω ∈ L0([t ,T ];P(U )) satisfy

dW
(
µt ,ν,ω

T ,µt ,ν,ω
T

)
É exp

([
f
]

(T − t )
(
e[ f ](T−t ) +1

))
dW (ν,ν).

The claim follows by approximating each µ=µt ,ν,ω
T ∈Rt ,ν

T by µt ,ν,ω
T , and defining [R] := exp

([
f
]

T
(
exp(

[
f
]

T )+1
))

.
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4.1.2 Convex relaxation of the dynamic

Let coF :P2(Rd ) â C(Rd ;TRd ) be given by

coF [µ] := {
Fω[µ]

∣∣ ω ∈P(U )
}= {ˆ

u∈U
f (·,µ,u)dω(u)

∣∣∣∣ ω ∈P(U )

}
. (21)

For each µ, the set coF [µ] ⊂ C(Rd ;TRd ) is closed in the topology of uniform convergence on compact sets; indeed, as
this topology is metrizable, it suffices to show that (bn)n ⊂ coF [µ] and bn →n b uniformly over the compacts implies
b ∈ coF [µ]. As P(U ) is compact ([AGS05, Proposition 7.1.5]), some subsequence of ωn converges to a measure ω ∈P(U ),
and [A2] yields that for each R > 0,

sup
x∈Rd ,|x|ÉR

∣∣∣∣ˆ
u∈U

f (x,µ,u)d [ωn −ω](u)

∣∣∣∣É (1+R) inf
α∈Γ(ωn ,ω)

ˆ
(u,v)∈U 2

m f ,u (|u − v |)dα(u, v) −→
n→∞ 0.

By uniqueness of the limit, b(x) = ´u∈U f (x,µ,u)dω(u), and b ∈ coF [µ].

Remark 2 (Link with the closed convex envelope of [BF23]). In our case, coF [µ] is equal to the closure of M in the topology
of uniform convergence over compact sets, where

M := ⋃
N∈N

{
N∑

i=1
αi f (·,µ,ui )

∣∣∣∣∣ N∑
i=1

αi = 1,αi Ê 0,ui ∈U

}
.

Indeed, we trivially have M ⊂ coF through the representation ω := ∑N
i=1αiδui . On the other hand, let b = Fω[µ] ∈ coF for

some ω ⊂P(U ). For each n ∈N, cover the compact U by a finite measurable partition
(
U n

i

)
i∈�1,Nn� of diameter inferior to

1/n, and pick un
i ∈U n

i . Owing to [A2], there holds for each R > 0∥∥∥∥∥
ˆ

u∈U
f (·,µ,u)dω(u)−

Nn∑
i=1

ω(U n
i ) f (·,µ,un

i )

∥∥∥∥∥
C
É sup

x∈Rd ,|x|ÉR

ˆ
u∈U

∣∣ f (x,µ,u)− f (x,µ,un
i )

∣∣dω(u)

É (1+R)

ˆ
u∈U

m f ,u
(∣∣u −un

i

∣∣)dω(u) É (1+R)m f ,u

(
1

n

)
,

and b is the uniform limit over the each compact of the sequence
(∑Nn

i=1ω(U n
i ) f (·,µ,un

i )
)

n
⊂M. Thus b ∈M, and equality

holds.

Using a selection argument, the set of solutions
{
(µt ,ν,ω

s )s∈[t ,T ]
∣∣ ω ∈ L0([t ,T ];P(U ))

}
coincides with the set of solutions of

the continuity inclusion
∂sµs ∈−div

(
coF [µs ]#µs

)
s ∈ [t ,T ], µt = ν.

Consequently, we have the following.

THEOREM 2 (RELAXATION ( THEOREMS 4.5 AND 4.6 OF [BF23])). Assume [A1] and [A2], and let ν ∈P2(Rd ). The set{
(µt ,ν,ω

s )s∈[t ,T ]
∣∣ ω ∈ L0([t ,T ];P(U ))

}⊂ AC([t ,T ];P2(Rd ))

is compact in the topology of the uniform convergence, and is the closure in this topology of the set of trajectories of (1),
namely {

(µt ,ν,u
s )s∈[t ,T ]

∣∣ u ∈ L0([t ,T ];U )
}

.

4.1.3 Linearization of the trajectory

The following technical Lemma allows us to elude the lack of differentiability of a solution of the dynamical system (17),
by approximating the said curve only along some sequence.

Lemma 2 (Right linear approximation). Assume [A1] and [A2]. Let s > 0, (µs )s∈[0,s] be the solution of (17) for some control
ω ∈ L0([0, s];P(U )). Then there exists b ∈ coF [µ0] and a sequence (sn) ↘ 0 such that

lim
n→∞

dW
(
µsn ,msn #µ0

)
sn

= 0, where ms :Rd 7→Rd is given by ms (x) := x + sb(x).

8



Demonstration. Let (sn)n ↘ 0, and define bn :Rd 7→ TRd by

bn(x) := 1

sn

ˆ sn

s=0
Fω(s)[µ0](x)d s = Fωn [µ0](x), where ωn := 1

sn

ˆ sn

s=0
ω(s)d s ∈P(U ).

Since U is compact, so is P(U ) (see [Vil09], Remark 6.19). Then, along a (non relabeled) subsequence, ωn converges
to some ω ∈P(U ) for any Monge-Kantorovitch distance, and in particular for the Wasserstein distance over P(U ). Let
b ∈ coF (µ0) be given by b = Fω[µ0]. For each n ∈N, let ηn ∈ Γ(ωn ,ω) such that

dW ,m f ,u (ωn ,ω) := inf
η∈Γ(ωn ,ω)

ˆ
(u,v)∈U 2

m f ,u(|u − v |)dα(x, v) Ê
ˆ

(u,v)∈U 2
m f ,u(|u − v |)dηn(x, v)− 1

n
.

Using [A2], we have that

|bn(x)−b(x)| É
ˆ

(u,v)∈U 2

∣∣ f (x,µ0,u)− f (x,µ0, v)
∣∣dηn(u, v) É (1+|x|)

[
dW ,m f ,u (ωn ,ω)+ 1

n

]
,

and we conclude to the local uniform convergence of bn towards b. We know from Theorem 1 that µs =Φ0,ω
s #µ0, where

the semigroupΦ0,ω
s is defined in (18). Let ms :Rd 7→Rd be given by ms (x) = x + sb(x). Along the sequence (sn)n , we have

that ∣∣Φ0,ω
sn

(x)−msn (x)
∣∣= ∣∣∣∣ˆ sn

s=0
Fω(s)[µs ]

(
Φ0,ω

s (x)
)

d s − snb(x)

∣∣∣∣
É
ˆ sn

s=0

∣∣Fω(s)[µs ]
(
Φ0,ω

s (x)
)−Fω(s)[µ0] (x)

∣∣d s + sn
∣∣Fωn [µ0](x)−Fω[µ0](x)

∣∣
É [

f
]ˆ sn

s=0
dW (µs ,µ0)+ ∣∣Φ0,ω

s (x)−x
∣∣d s + sn

[
f
]

(1+|x|)
(
dW ,m f ,u (ωn ,ω)+ 1

n

)
.

By (19), we have dW (µs ,µ0) É se[ f ]s
([

f
]

dW (µ0,δ0)+ ∣∣ f
∣∣
0,∞

)
. Plugging this into the above, we get after simplification

dW
(
µsn ,msn #µ0

)
sn

É 2
[

f
][

sne[ f ]sn
([

f
]

dW (µ0,δ0)+ ∣∣ f
∣∣
0,∞

)
+dW ,m f ,u (ωn ,ω)+ 1

n

]
−→

n→∞ 0.

Hence the result.

4.2 Properties of the value function

Recall that the value function is defined as

V : [0,T ]×P2(Rd ) →R, V (t ,ν) := inf
{
J(µt ,ν,u

T )
∣∣ u ∈ L0([t ,T ];U )

}
.

From Theorem 2 and the assumption [A3] of local uniform continuity ofJ, we obtain that the set of solutions of the relaxed
system (17) may be substituted to the set of solutions of the original problem (1) without changing the value function, that
is,

V (t ,ν) = inf
{
J(µt ,ν,ω

T )
∣∣ ω ∈ L0([t ,T ];P(U ))

}= inf
µ∈Rt ,ν

T

J(µ),

where the reachable set Rt ,ν
T is defined in (20). Notice that this equality would stand as well with a running cost, since the

relaxation result concerns the whole trajectories and not only the reachable sets. In this deterministic setting, we retrieve
the classical Dynamic Programming Principle (DPP): for each 0 < h É T − t ,

V (t ,ν) = inf
µ∈Rt ,ν

t+h

V (t +h,µ). (22)

Lemma 3 (Local uniform continuity of the value function). Under the assumptions [A1], [A2] and [A3], the function V is
locally uniformly continuous in time and space, i.e. for all R > 0, there exists a modulus mV ,R :R+ →R+ such that

∣∣V (s,ν)−V (t ,µ)
∣∣É mV ,R

(|t − s|+dW (µ,ν)
) ∀(t , s) ∈ [0,T ]2, (µ,ν) ∈

(
B(δ0,R)

)2
.
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Demonstration. Let R > 0, and denote RT := R+T exp
[

f
]

T
([

f
]

R + ∣∣ f
∣∣
0,∞

)
a radius large enough so that R0,ν

T ⊂B(δ0,RT )

for all ν ∈B(δ0,R). Let mJ,RT be a local modulus of continuity of J in the ball B(δ0,RT ). According to the [R]−Lipschitz

continuity of the reachable sets given by Lemma 1, we have for all t ∈ [0,T ] and ν,ν ∈B(δ0,R) that

V (t ,ν)−V (t ,ν) É sup
µ∈Rt ,ν

T

inf
µ∈Rt ,ν

T

J(µ)−J(µ) É sup
µ∈Rt ,ν

T

inf
µ∈Rt ,ν

T

mJ,RT

(
dW (µ,µ)

)É mJ,RT ([R]dW (ν,ν)).

On the other hand, let 0 É t É s É T and ν ∈B(δ0,R). The DPP (22) and the Grönwall estimate (19) give us

V (t ,ν)−V (s,ν) = inf
µ∈Rt ,ν

s

V (s,µ)−V (s,ν) É inf
µ∈Rt ,ν

s

mJ,RT

(
[R]dW (µ,ν)

)É mJ,RT

(
[R] |s − t |exp

([
f
]

T
)([

f
]

R + ∣∣ f
∣∣
0,∞

))
,

V (s,ν)−V (t ,ν) = sup
µ∈Rt ,ν

s

V (s,µ)−V (s,ν) É sup
µ∈Rt ,ν

s

mJ,RT

(
[R]dW (µ,ν)

)É mJ,RT

(
[R] |s − t |exp

([
f
]

T
)([

f
]

R + ∣∣ f
∣∣
0,∞

))
.

Hence V is locally uniformly continuous with a modulus depending only on J, f and T .

5 The Hamilton-Jacobi equation

In this section, we are interested into the following generic Hamilton-Jacobi equation

−∂t u(t ,µ)+H
(
µ,Dµu(t ,µ)

)= 0, u(T,µ) = J(µ). (23)

Regularity assumptions on the Hamiltonian H :T→R will be precised further.

5.1 Notion of viscosity solutions

Recall that X :=]0,T [×P2(Rd ) and d 2
X ((t ,µ), (s,ν)) := |s − t |2 + d 2

W (µ,ν). In this section, we precise the definition of a
viscosity solution of (23). To this aim, we will use a class of test functions, that will be more regular than the viscosity
solution in order to bear the derivatives. The time variable and the measure variable of the test functions do not play
symmetric roles, as weaker regularity on the measure dimension will be compensated by stronger assumptions on the
time dimension.

5.1.1 Regularity in the measure variable

Definition 4 (Locally semiconcave/convex maps). An application u : P2(Rd ) →R is locally semiconcave in P2(Rd ) if for
all R > 0, there exists λR ∈R such that for all µ,ν ∈B(δ0,R) and η= η(x, y) ∈ Γo(µ,ν), there holds

u
(
((1−h)πx +hπy )#η

)Ê (1−h)u(µ)+hu(ν)− λR

2
h(1−h)d 2

W
(
µ,ν

) ∀h ∈ [0,1].

An application u :P2(Rd ) →R is semiconvex if −u is semiconcave.

Locally semiconcave/convex maps are directionally differentiable at all points. As an important example, the squared
Wasserstein distance is directionally differentiable (see [Gig08, §4.2]) and for any σ ∈P2(Rd ) and ξ ∈P2(TRd )µ,

Dµd 2
W (·,σ)(ξ) = inf

η∈exp−1
µ (σ)

inf
α∈Γµ(ξ,η)

−2

ˆ
(x,v,w)∈T2Rd

〈v, w〉dα(x, v, w). (24)

Moreover, given σ ∈P2(Rd ), we may compute ∥Dµd 2
W (·,σ)∥µ as defined in (16). Indeed,

∣∣Dµd 2
W (·,σ)(ξ)

∣∣= ∣∣∣∣∣ inf
α∈Γµ(ξ,exp−1

µ (σ))

ˆ
(x,v,w)

−2〈v, w〉dα(x, v, w)

∣∣∣∣∣É 2 sup
α∈Γo (ξ,exp−1

µ (σ))

ˆ
(x,v,w)

|v | |w |dα(x, v, w)

É 2

(ˆ
(x,v)∈TRd

|v |2 dξ(x, v)

)1/2

sup
η∈exp−1

µ (σ)

(ˆ
(x,w)∈TRd

|w |2 dη(x, w)

)1/2

= 2∥ξ∥µdW (µ,σ).
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Hence ∥Dµd 2
W (·,σ)∥µ É 2dW (µ,σ). On the other hand, if σ ̸=µ, letting ξ ∈ exp−1

µ (σ),

∥Dµd 2
W (·,σ)∥µ Ê

∣∣∣∣∣Dµd 2
W (·,σ)(ξ)

∥ξ∥µ

∣∣∣∣∣= 1

dW (µ,σ)

∣∣∣∣∣ lim
h↘0

(1−h)2d 2
W (µ,σ)−d 2

W (µ,σ)

h

∣∣∣∣∣= 2dW (µ,σ), (25)

showing equality.

Remark 3 (Composition rule). Let ϕ ∈ C2
(
R+;R+)

be nondecreasing, and consider the composition ψ : µ 7→ϕ(d 2
W (δ0,µ)).

Denote λR a local constant of semiconcavity ofϕ over [0,3R], and
[
ϕR

]
a local constant of Lipschitz-continuity ofϕ over the

same domain. Then ψ is semiconcave with modulus RλR + [
ϕR

]
(see [CS04, Proposition 2.1.12]).

In addition to the above, we ask for the following consistency with the tangent cone.

Definition 5 (Geometrically consistent application). We say that an application u : P2(Rd ) → R is consistent with the
geometric structure if it is directionally differentiable and if

∀µ ∈P2(Rd ), ∀ξ ∈P2(TRd )µ, Dµu(ξ) = Dµu(πµξ).

The fact that the squared Wasserstein distance is geometrically consistent is given by [JJZ, Theorem 3.8].

5.1.2 Regularity in the time variable

Definition 6 (Locally Lipschitz time derivative). We say that ϕ : X → R has locally Lipschitz time derivative if for all µ ∈
P2(Rd ), ϕ(·,µ) ∈ C1 (]0,T [;R), and if the application (t ,µ) 7→ ∂tϕ(t ,µ) is locally Lipschitz in (X ,dX ).

Lemma 4 (Partial derivatives). Letϕ : X →R satisfy Definition 6. Let (t ,µ) ∈ X such thatϕ(t , ·) is directionally differentiable
at µ, and ξ ∈ TanµP2(Rd ). Then

lim
h↘0

ϕ(t +h,expµ(h ·ξ))−ϕ(t ,µ)

h
= ∂tϕ(t ,µ)+Dµϕ(t ,µ)(ξ).

Demonstration. Let C be a Lipschitz constant for ∂sϕ in the ball B
(
(t ,µ),

√
1+∥ξ∥2

µ

)
. Then for all 0 < h É 1,

ϕ(t +h,expµ(h ·ξ))−ϕ(t ,µ)

h
=
ϕ(t +h,expµ(h ·ξ))−ϕ(t ,expµ(h ·ξ))

h
+
ϕ(t ,expµ(h ·ξ))−ϕ(t ,µ)

h

= 1

h

ˆ t+h

r=t
∂rϕ(r,expµ(h ·ξ))dr +

ϕ(t ,expµ(h ·ξ))−ϕ(t ,µ)

h

∈ ∂tϕ(t ,µ)± C

h

ˆ t+h

r=t
|r − t |+dW (expµ(h ·ξ),µ)dr +

ϕ(t ,expµ(h ·ξ))−ϕ(t ,µ)

h

⊂ ∂tϕ(t ,µ)±C h
(
1+∥ξ∥µ

)+ ϕ(t ,expµ(h ·ξ))−ϕ(t ,µ)

h
.

Letting h ↘ 0 and using the directional differentiability of ϕ(t , ·) at µ, we obtain the result.

5.1.3 Locally uniform upper semicontinuity

Due to the lack of local compactness of P2(Rd ), we consider a stronger definition than upper semicontinuity.

Definition 7 (Locally uniformly upper semicontinuous). Let (Y ,d) be a complete metric space. A locally bounded applica-
tion u : Y →R is said to be locally uniformly upper semicontinuous (luusc) if for any decreasing family of closed bounded
sets (Bn)n∈N such that B :=⋂

n∈N Bn ̸= ; and limn→∞ supx∈Bn
infy∈B dY (x, y) → 0, there holds

lim
n→∞ sup

y∈Bn

u(y) É sup
x∈B

u(x). (26)

Similarly, we say that u is locally uniformly lower semicontinuous (lulsc) if −u is luusc.

Remark 4 (Link with other notions of upper semicontinuity). We gather here some properties, whose proofs are postponed
to Appendix A.
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− Definition 7 is strictly weaker than continuity.

− In general, Definition 7 is strictly stronger than upper semicontinuity. However both definitions whenever Y is locally
compact.

− Let S be the set of nonempty closed and bounded subsets of Y . Then Definition 7 is equivalent to the upper semicon-
tinuity of the set function U : B 7→ supx∈B u(x) in the Hausdorff topology. This definition makes sense in connection
with the (min,+) interpretation of Hamilton-Jacobi equations, as it exactly says that the Maslov measure of density u
is upper semicontinuous (see [KM97; DMD99]).

− The applications that are simultaneously luusc and lulsc are exactly the locally uniformly continuous applications.

− In Y =P2(Rd ), there is no comparison with upper semicontinuity in the narrow topology (see counterexamples in
Appendix A).

5.1.4 Definition of viscosity solutions

Gathering the above definitions, we arrive at the following.

Definition 8 (Test functions). We define

T+ :=
{
ϕ : ]0,T [×P2(Rd ) →R

∣∣∣∣ ϕ and ∂tϕ are locally Lipschitz, and ∀s ∈ [0,T ],
ϕ(s, ·) is locally semiconcave and geometrically consistent

}
.

Similarly, we denote T− := {−ϕ ∣∣ ϕ ∈T+
}
, that is,

T− :=
{
ϕ : ]0,T [×P2(Rd ) →R

∣∣∣∣ ϕ and ∂tϕ are locally Lipschitz, and ∀s ∈ [0,T ],
ϕ(s, ·) is locally semiconvex and geometrically consistent

}
.

Distinguised members of T± are the applications of the form ϕ(t ,µ) = ψ(t )±αd 2
W (µ,σ), where ψ ∈ C2(]0,T [;R), α Ê 0

and σ ∈ P2(Rd ) is fixed. Once given T±, the definition of viscosity solutions is a natural generalization of the finite-
dimensional case.

Definition 9 (Viscosity solutions). We say that u : [0,T ]×P2(Rd ) →R is a viscosity

− subsolution if it is locally uniformly upper semicontinuous, if u(T, ·) É J, and if for anyϕ ∈T+ such that u−ϕ reaches
a maximum at (t ,µ) ∈ X = ]0,T [×P2(Rd ), there holds

−∂tϕ(t ,µ)+H
(
µ,Dµϕ(t ,µ)

)É 0. (27)

− supersolution if it is locally uniformly lower semicontinuous, if u(T, ·) Ê J, and if for any ψ ∈ T− such that u −ψ
reaches a minimum at (t ,µ) ∈ X , there holds

−∂tψ(t ,µ)+H
(
µ,Dµψ(t ,µ)

)Ê 0. (28)

− solution if it is both a sub and a supersolution.

5.2 Comparison principle

The comparison principles, or maximum principles in the literature of elliptic equations, are used in the viscosity theory
to provide uniqueness of the viscosity solutions. They draw their name from the corresponding results used over the vis-
cous approximations of the PDE, and evolved jointly with the growing scope of HJB equations. When adressing equations
in non-locally compact spaces, it is now common to rely on variations over Ekeland’s variational principle [Eke74]: see
[LY95; AF14; GŚ15]. This is not the only strategy in use in the literature: one could also modify the definition in order to
stay over compact sets, as in [FK09] or [WZ19] in the pathwise setting.
The perturbed optimization principle will bring, as announced, perturbations. To cope with these additional terms,
[MQ18; JMQ20] consider an "enlarged" set of semidifferentials, and a strengthened notion of viscosity solutions. We
take another point of view by using the Borwein-Preiss principle, also called smooth Ekeland principle, that allows to
choose the perturbation in a way that they can be embedded into the test functions. To ease the reading, we factorize the
application of this theorem in the following Lemma.
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Lemma 5 (Perturbed optimization). Denote Y = X
2 = [0,T ]×P2(Rd )× [0,T ]×P2(Rd ), endowed with the distance

d 2
Y ((t ,µ, s,ν), (t ,µ, s,ν)) := ∣∣t − t

∣∣2 +d 2
W (µ,µ)+ ∣∣s − s

∣∣2 +d 2
W (ν,ν).

LetΦ : Y →R∪{−∞} be upper semicontinuous, proper and upper bounded, z0 ∈ Y be fixed such that A := supΦ−Φ(z0) <∞,
and assume that there exists R > 0 such that {

z ∈ Y
∣∣Φ(z) ÊΦ(z0)

}⊂B(z0,R). (29)

Hence for each n ∈N∗, there exists zn ∈ Y and a perturbation pn : Y →R+ such that

1. the perturbed mapΦ−pn reaches a global strict maximum in zn ,

2. The map (t ,µ) 7→ pn(t ,µ, sn ,νn) belongs to T+, and (s,ν) 7→ −pn(tn ,µn , s,ν) belongs to T−,

3. There exists an application ωT,R,A :N→R+ such that∑
r∈{t ,s}

∣∣∂r pn(zn)
∣∣+ ∑

σ∈{µ,ν}
(1+dW (σ,δ0))∥Dσpn(zn)∥σ ÉωT,R,A(n) −→

n→∞ 0,

4. There holds supΦÉΦ(zn)+CR,A(n), where CR,A is decreasing towards 0 when n →∞.

The proof of Lemma 5 is delayed to Appendix B.

Assumption [A4] (Structure of the Hamiltonian). There exists a constant [H ] such that for any µ,ν ∈P2(Rd ), any a > 0 and
p, q ∈Tµ, ∣∣H

(
µ, p +q

)−H
(
µ, p

)∣∣É [H ]
(
1+dW (µ,δ0)

)∥q∥µ,

H
(
µ,−aDµd 2

W (·,ν)
)−H

(
ν, aDνd 2

W (µ, ·))É 2a [H ]d 2
W (µ,ν).

(30)

(31)

The condition (30) is classical, and traduces a locally Lipschitz behavior of the Hamiltonian. The condition (31) could be
interpreted as a one-sided Lipschitz control on the variation with respect to the first argument only.

THEOREM 3 (COMPARISON PRINCIPLE). Assume [A4]. Let u : [0,T ]×P2(Rd ) →R be a subsolution of (23) and v : [0,T ]×
P2(Rd ) →R be a supersolution of (23), which are such that u(T,µ) É v(T,µ) for all µ ∈P2(Rd ). Then

u(t ,µ) É v(t ,µ) ∀(t ,µ) ∈]0,T ]×P2(Rd ). (32)

This proof builds on the ideas of [FGŚ17, Theorem 3.50, p. 206] developed in Hilbert spaces. The structure is the following:
assume by contradiction that the inequality (32) is not satisfied. Thus we have an information on the sign of the maximum
(t ,µ, s,ν) 7→ u(t ,µ)− v(s,ν) on the diagonal t = s, µ = ν. As in the classical proof, this maximum over the diagonal is

approximated by the maximum over the doubled space X
2

of a perturbation of u ⊖ v that penalizes the distance to the

diagonal. At the point of maximum, freezing two of the four variables of X
2

allows to apply the definition of viscosity sub
and supersolution, giving two inequalities whose combination will eventually lead to a contradiction.
The proof below has several specificities with respect to the canonical arguments (see [CIL92, Section 3]). In the argu-
ment adapted to Rd , the points of maximum over the doubled space exist, and admit cluster points on the diagonal. In
X = [0,T ]×P2(Rd ), balls are not compact, and there is no reason for the maxima to be attained. This is circumvented
by the use of variational principle in the vein of Ekeland’s principle. Secondly, the so-constructed sequence of "almost
maxima" do not necessarily contain converging subsequences. This is where the stronger form of upper semicontinuity
of Definition 7 replaces the standard extraction, by working with limits over sets that decrease towards the diagonal. As
opposite to the Hilbertian setting, we are not able to use a linear perturbation into the Ekeland principle, and we have
to manipulate series of squared distances in order to get sufficient smoothness to embed the perturbation into test func-
tions.

Demonstration. Denote again X = ]0,T [×P2(Rd ). By abuse of notation, let X 2 :=]0,T [×P2(Rd )×]0,T [×P2(Rd ) and

d 2
X ((t ,µ), (t ,µ)) := ∣∣t − t

∣∣2 +d 2
W (µ,µ), d 2

X 2 ((t ,µ, s,ν), (t ,µ, s,ν)) := d 2
X ((t ,µ), (t ,µ))+d 2

X ((s,ν), (s,ν)).

Assume by contradiction that

Γ := min
(
1,sup

{
u(t ,µ)− v(t ,µ)

∣∣∣ (t ,µ) ∈ X
})

> 0. (33)
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Penalizations As u and −v are locally uniformly upper semicontinuous, we may build an application g : R+ → R+
controlling the growth of both u and −v , i.e. such that

max
(
u(t ,µ),−v(t ,µ)

)É g
(
dW (µ,δ0)

) ∀µ ∈P2(Rd ). (34)

Up to regularization, we may assume that g is increasing, of class C2 and with g ′(·) Ê 1. Denote

h :R2 →R, h(t ,r ) := g 2 (
(1+ r )e−4[H ]t )+ 1

t
.

As the composition µ 7→ h(t ,d 2
W (δ0,µ)) grows strictly faster than u and −v by (34), for any ι> 0,

max
[
u(t ,µ),−v(t ,µ)

]− ιh(t ,d 2
W (δ0,µ)) É sup

r∈R+
g (r )− ιg 2 (

(1+ r 2)e−4[H ]T )=: Vg − ιhW<∞. (35)

Since g Ê 1 and g ′ Ê 1, there holds

∂t h(t ,r ) =−8[H ] (1+ r )e−4[H ]t (g g ′)
(
(1+ r )e−4[H ]t )− 1

t 2 É−8[H ]e−4[H ]T . (36)

Moreover, for any t > 0 and r ∈R+,

2[H ] (1+ r )∂r h(t ,r ) = 4[H ] (1+ r ) g
(
(1+ r )e−4[H ]t )∂r g

(
(1+ r )e−4[H ]t )e−4[H ]t =−1

2
∂t h(t ,r )− 1

2t 2 É−1

2
∂t h(t ,r ). (37)

As g is C2, the map h has locally Lipschitz time derivatives in X =]0,T [×P2(Rd ). Moreover, owing to Remark 3, the
composition µ 7→ h(t ,d 2

W (δ0,µ)) is locally semiconcave for all t , and locally Lipschitz. Therefore (t ,µ) 7→ ±h(t ,d 2
W (µ,δ0))

belongs to T±.
We consider

Γι := lim
r→0

sup
{

u(t ,µ)− v(s,ν)− ι(h(t ,d 2
W (µ,δ0))+h(s,d 2

W (ν,δ0))
) ∣∣∣ (t ,µ, s,ν) ∈ X

2
, dX ((t ,µ), (s,ν)) É r

}
,

Γιε :=sup

{
u(t ,µ)− v(s,ν)− ι(h(t ,d 2

W (µ,δ0))+h(s,d 2
W (ν,δ0))

)− d 2
X ((t ,µ), (s,ν))

ε

∣∣∣∣∣ (t ,µ, s,ν) ∈ X
2
}

.

(38)

(39)

Then one has
Γιε ↘

ε↘0
Γι for all ι> 0, and Γι ↗

ι↘0
Γ0 Ê Γ. (40)

Here Γ0 may be equal to +∞. The arguments of (40) are easy but tedious, and devolved in Appendix C to lighten the
presentation.

The perturbed maximization LetΦιε : X
2 → {−∞}∪R be given by

Φιε(t ,µ, s,ν) := u(t ,µ)− v(s,ν)− ι(h(t ,d 2
W (µ,δ0))+h(s,d 2

W (ν,δ0))
)− d 2

X ((t ,µ), (s,ν))

ε
.

Let z0 := (T,δ0,T,δ0). For each fixed ι,ε, the application Φιε is upper semicontinuous, proper and - using (35) - upper

bounded in the complete metric space
(

X
2

,dX 2

)
. Moreover, ifΦιε(z) ÊΦιε(z0), then

ι

2

(
h

(
t ,d 2

W (µ,δ0)
)+h

(
s,d 2

W (ν,δ0)
))É Vu − ι

2
hW+V−v − ι

2
hW+0− (u(T,δ0)− v(T,δ0)−2ιh(T,0)−0) , (41)

and there exists Rι > 0 such that dX 2 (z, z0) É Rι. Notice that

supΦιε−Φιε(z0) É Vu − ιhW+V−v − ιhW− (u(T,δ0)− v(T,δ0)−2ιh(T,0)) =: Aι

does not depend on ε.

Hence we may apply Lemma 5: for each n ∈N∗, there exist zιεn ∈ X
2

and a perturbation pιεn : X
2 →R+ such that Φιε−

pιεn reaches a maximum at zιεn , the partial functions (t ,µ) 7→ pιεn(t ,µ, sιεn ,νιεn) and (s,ν) 7→ −pιεn(tιεn ,µιεn , s,ν) belong
respectively to T+,T−, and there exist maps ωι,Cι :N∗ →R+ satisfying∑

r∈{s,t }

∣∣∂r pιεn(zιεn)
∣∣+ ∑

σ∈{µ,ν}
(1+dW (σιεn ,δ0))∥Dσpιεn(zιεn)∥σιεn Éωι(n) −→

n→∞ 0,

Γιε−Φιε(zιεn) = supΦιε−Φιε(zιεn) ÉCι(n) −→
n→∞ 0.

(42)
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Notice that

Γιε+
d 2

X ((tιεn ,µιεn), (sιεn ,νιεn))

2ε
ÉΦιε(zιεn)+Cι(n)+ d 2

X ((tιεn ,µιεn), (sιεn ,νιεn))

2ε
É Γι ε2 +Cι(n)

so that for each fixed ι, there holds by (40)

d 2
X ((tιεn ,µιεn), (sιεn ,νιεn))

ε
É 2

(
Γι ε2

−Γιε+Cι(n)
)

−→
ε→0,n→∞ 0. (43)

Staying away from T Let us show that for sufficiently small ι and large n, the points tιεn , sιεn belong to ]0,T [. Since
h(0,r ) =+∞ for all r Ê 0, the construction of zιεn implies tιεn , sιεn > 0. On the other hand, recalling (40), let ι0 > 0 be small
enough so that Γι Ê Γ/2 for all 0 < ιÉ ι0. Hence, as ε 7→ Γιε is nonincreasing,

u(tιεn ,µιεn)− v(sιεn ,νιεn) ÊΦιε(zιεn) Ê Γιε−Cι(n) Ê Γι−Cι(n) Ê Γ
2
−Cι(n)

and there exists nι ∈N∗ large enough such that u(tιεn ,µιεn)− v(sιεn ,νιεn) Ê Γ
4 for all n Ê nι.

Then for each 0 < ι É ι0, ε > 0 sufficiently small and n sufficiently large, tιεn , sιεn < T simultaneously. Indeed, recall
from (41) that µιεn ,νιεn ∈B(δ0,Rι) for all ε,n. If there exists a sequence (εm ,nm) →m (0,∞) such that nm Ê nι and T ∈
{tιεm nm , sιεm nm } for all m, then using (43),

Γ

4
É lim

m→∞
u(tιεm nm ,µιεm nm )− v(tιεm nm ,νιεm nm )

É lim
r↘0

sup
{

u(t ,µ)− v(s,ν)
∣∣∣ d 2

X ((t ,µ), (s,ν)) É r, µ,ν ∈B(δ0,Rι), (t , s) ∈ [T − r,T ]2
}

É sup
{

u(t ,µ)− v(s,ν)
∣∣∣ t = s = T, µ= ν ∈B(δ0,Rι)

}
= sup
µ∈B(δ0,Rι)

u(T,µ)− v(T,µ).

The last inequality holds since (t ,µ, s,ν) 7→ u(t ,ν)− v(s,ν) is locally uniformly upper semicontinuous (see Definition 7).
But this contradicts the assumption that u(T, ·)− v(T, ·) É 0.

Application of the definition of semisolutions Define ϕιεn ,ψιεn : X = ]0,T [×P2(Rd ) →R as

ϕιεn(t ,µ) := v(sιεn ,νιεn)+ ι(h(t ,d 2
W (µ,δ0))+h(sιεn ,d 2

W (νιεn ,δ0))
)+ d 2

X ((t ,µ), (sιεn ,νιεn))

ε
+pιεn(t ,µ, sιεn ,νιεn),

ψιεn(s,ν) := u(tιεn ,µιεn)− ι(h(tιεn ,d 2
W (µιεn ,δ0))+h(s,d 2

W (ν,δ0))
)− d 2

X ((tιεn ,µιεn), (s,ν))

ε
−pιεn(tιεn ,µιεn , s,ν).

By construction, ϕιεn ∈T+ and ψιεn ∈T−. Recalling that u −ϕιεn reaches a maximum at (tιεn ,µιεn) ∈ X , we have

− ι∂t h(tιεn ,d 2
W (µιεn ,δ0))− 2(tιεn − sιεn)

ε
−∂t pιεn(zιεn)

+H

(
µιεn , ι∂r h(tιεn ,d 2

W (µιεn ,δ0))Dµd 2
W (µιεn ,δ0)+ Dµd 2

W (µιεn ,νιεn)

ε
+Dµpιεn(zιεn)

)
É 0.

(44)

Let momentaneously cιεn := [H ]
(
1+dW (µιεn ,δ0)

)
. Using the Lipschitz assumption (30) and the estimate (25) on the

differential of the squared distance, since ∂r h Ê 0,

H

(
µιεn , ι∂r h(tιεn ,d 2

W (µιεn ,δ0))Dµd 2
W (µιεn ,δ0)+ Dµd 2

W (µιεn ,νιεn)

ε
+Dµpιεn(zιεn)

)

Ê H

(
µιεn ,

Dµd 2
W (µιεn ,νιεn)

ε

)
− cιεn

(
ι∂r h(tιεn ,d 2

W (µιεn ,δ0))∥Dµd 2
W (µιεn ,δ0)∥µιεn +∥Dµpιεn(zιεn)∥µιεn

)
Ê H

(
µιεn ,

Dµd 2
W (µιεn ,νιεn)

ε

)
− cιεn

(
2ιdW (µιεn ,δ0)∂r h(tιεn ,d 2

W (µιεn ,δ0))+∥Dµpιεn(zιεn)∥µιεn

)
.

(45)

(46)

(47)

Recalling that the partial derivatives of h satisfy (37), we get that

2[H ]
(
1+dW (µιεn ,δ0)

)
dW (µιεn ,δ0)∂r h(tιεn ,d 2

W (µιεn ,δ0)) É−1

2
∂t h

(
tιεn ,d 2

W (µιεn ,δ0)
)

. (48)
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On the other hand, v −ψιεn admits a minimum in (sιεn ,νιεn) ∈ X . Applying the definition of supersolution and repeating
the argument of (47) and (42), we get

ι∂s h
(
sιεn ,d 2

W (νιεn ,δ0)
)+ 2(sιεn − tιεn)

ε
+∂s pιεn(zιεn)− ι

2
∂s h

(
sιεn ,d 2

W (νιεn ,δ0)
)

+ [H ] (1+dW (νιεn ,δ0))∥Dνpιεn(zιεn)∥νιεn +H

(
νιεn ,−Dνd 2

W (µιεn ,νιεn)

ε

)
Ê 0.

(49)

Taking the difference between (49) and the inequality resulting from plugging (47) and (42) into (44), we get after simpli-
fication

− ι

2

[
∂s h

(
sιεn ,d 2

W (νιεn ,δ0)
)+∂t h(tιεn ,d 2

W (µιεn ,δ0))
]É H

(
νιεn ,−Dνd 2

W (µιεn ,νιεn)

ε

)
−H

(
µιεn ,

Dµd 2
W (µιεn ,νιεn)

ε

)
+∂s pιεn(zιεn)+∂t pιεn(zιεn)+ [H ] (1+dW (νιεn ,δ0))∥Dνpιεn(zιεn)∥νιεn + [H ]

(
1+dW (µιεn ,δ0)

)∥Dµpιεn(zιεn)∥µιεn .

(50)

(51)

Estimates and conclusion Recall from (36) that − 1
2∂t h(t ,r ) Ê 4[H ]e−4[H ]T > 0 for all t > 0 and r ∈ R+. Using the as-

sumption (31) on H , we get

H

(
νιεn ,−Dνd 2

W (µιεn ,νιεn)

ε

)
−H

(
µιεn ,

Dµd 2
W (µιεn ,νιεn)

ε

)
É 2[H ]

d 2
W (µιεn ,νιεn)

ε
.

Using (42) to estimate (51), we arrive at

4ι [H ]e−4[H ]T É 2[H ]
d 2
W (µιεn ,νιεn)

ε
+ωι(n). (52)

Hence keeping ι fixed, letting ε→ 0 and n →∞, we get from (43) that 4ι [H ]e−4[H ]T É 0, which is absurd. Thus ΓÉ 0.

6 The case of Hamilton-Jacobi-Bellman equations

We now return to the case of control problems. Consider the dynamic coF defined in (21), and let

H :T→R, H
(
µ, p

)
:= sup

f ∈coF [µ]
−p

(
πµ( f #µ)

)
. (53)

The Hamilton-Jacobi-Bellman equation associated to (53) then writes
−∂t u(t ,µ)+ sup

f ∈coF [µ]
−Dµu(t ,µ)

(
πµ( f #µ)

)= 0 (t ,µ) ∈ X =]0,T [×P2(Rd ),

u(T,µ) = J(µ) µ ∈P2(Rd ).

(54a)

(54b)

In the sequel, we verify that the control Hamiltonian (53) satisfies the assumptions of the comparison principle, and we
then show that the value function is a solution of (54).

6.1 Properties of the control Hamiltonian

Let G :P2(Rd ) âP2(TRd ) the probability vector field (in the spirit of [Pic19, Definition 2.1]) given by

G[µ] := {
b#µ

∣∣ b ∈ coF [µ]
}

.

Under [A2], this PVF is Lipschitz-continuous in the Hausdorff sense with respect to the application W(µ,ν) defined in (12),
with constant 2

[
f
]
. Indeed, given µ0,µ1 ∈ P2(Rd ) and b0 ∈ coF [µ0] defined by b0(x) = ´u∈U f (x,µ0,u)dω(u), define

b1 := ´u∈U f (x,µ1,u)dω(u). Denote η ∈ Γo(µ,ν). Then

W 2
(µ0,µ1)(b0#µ0,b1#µ1) É

ˆ
(x,y)∈(Rd )2

ˆ
u∈U

∣∣ f (x,µ0,u)− f (y,µ1,u)
∣∣2 dω(u)dη(x, y) É 4

[
f
]2 d 2

W (µ0,µ1).
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Remark 5 (Why using G). Our motivation in using a general probability vector field is to recover the connection between
the metric slope and the directional derivatives. Indeed, in [AF14, Section 4.3], it is explicit that the regular tangent cone
does not provide enough directions, in the sense that there exists measures µ,ν such that

sup
f ∈TanµP2(Rd )

Dµd 2
W (·,ν)( f #µ) < sup

ξ∈TanµP2(Rd )
Dµd 2

W (·,ν)(ξ) = ∣∣Dµd 2
W (·,ν)

∣∣ .

Here the last term is the metric slope. The strict inequality comes from the strong convexity of the squared distance of Rd ,
which makes it sometimes more optimal to split mass than not to, as in the exampleµ= δ0 and ν= 1

2δ−1+ 1
2δ1 in dimension

one. Hence, although we restrain to Tanµ by using the theory of continuity equations to formulate the control problem, our
HJB tools are formulated in the general case.

Lemma 6 (Locally Lipschitz behavior of H). Assume [A2]. There exists a constant [H ] such that∣∣H(µ, p +q)−H(µ, p)
∣∣É [H ]

(
1+dW (µ,δ0)

)∥q∥µ ∀µ ∈P2(Rd ), p, q ∈Tµ .

Demonstration. Using that
∣∣supa∈A f (a)− supb∈A g (b)

∣∣É supa∈A

∣∣ f (a)− g (a)
∣∣, one gets∣∣H

(
µ, p +q

)−H
(
µ, p

)∣∣É sup
ξ∈G[µ]

∣∣−p(πµξ)−q(πµξ)+p(πµξ)
∣∣É ∥q∥µ sup

ξ∈G[µ]
∥πµξ∥µ.

Using the non-expansivity of the projection (see [Gig08, Corollary 4.37]),

sup
ξ∈G[µ]

∥πµξ∥µ = sup
f ∈coF [µ]

∥πµ( f #µ)∥µ É sup
f ∈coF [µ]

∥ f #µ∥µ = sup
f ∈coF [µ]

(ˆ
x∈Rd

∣∣ f (x)
∣∣2 dµ(x)

)1/2

É
(∣∣ f

∣∣
0,∞+ [

f
]

d 2
W (µ,δ0)

)1/2 É
√∣∣ f

∣∣
0,∞+ [

f
](

1+dW (µ,δ0)
)

.

We may then take [H ] :=
√∣∣ f

∣∣
0,∞+ [

f
]
.

Lemma 7 (Behavior on the squared distance). Assume [A2]. There exists a constant CH such that

H
(
µ,−aDµd 2

W (·,ν)
)−H

(
ν, aDνd 2

W (µ, ·))É 2aCH d 2
W (µ,ν) ∀a Ê 0, (µ,ν) ∈P2(Rd )2.

Demonstration. As H is positively homogeneous, we may take a = 1. Let ξ ∈ G[µ] and ζ ∈ G[ν]. Using the bijection
between exp−1

µ (ν) and Γo(µ,ν), the directional derivative of the squared Wasserstein distance (24) writes

Dµd 2
W (·,ν)(πµξ) = Dµd 2

W (·,ν)(ξ) = inf
η∈Γo (µ,ν)

inf
α∈Γ(ξ,ν),(πx ,πy )#α=η

ˆ
(x,v,y)

〈v,−2(y −x)〉dα,

Dνd 2
W (ν, ·)(πµζ) = Dνd 2

W (µ, ·)(ζ) = inf
η∈Γo (µ,ν)

inf
β∈Γ(ζ,µ),(πy ,πx )#β=η

ˆ
(x,v,y)

〈v,−2(y −x)〉dβ.

By disintegration, for each η ∈ Γo(µ,ν) and
(
α,β

) ∈ Γ(ξ,ν)×Γ(ζ,µ) such that (πx ,πy )#α = (πy ,πx )#β = η, there exists at
least one plan ω=ω(x, v, y, w) ∈ Γ(ξ,ζ) ⊂P

(
(TRd )2

)
such that (πx ,πv ,πy ) =α and (πy ,πw ,πx )#ω=β. Then

Dµd 2
W (·,ν)(πµξ)+Dνd 2

W (µ, ·)(πνζ) = inf
η∈Γo (µ,ν)

inf
ω∈Γ(ξ,ζ), (πx ,πy )#ω=η

ˆ
(x,v,y,w)

〈v,−2(y −x)〉+〈w,−2(x − y)〉dω

= inf
η∈Γo (µ,ν)

inf
ω∈Γ(ξ,ζ), (πx ,πy )#ω=η

2

ˆ
(x,v,y,w)

〈v −w, x − y〉dω

É inf
η∈Γo (µ,ν)

inf
ω∈Γ(ξ,ζ), (πx ,πy )#ω=η

2

√ˆ
(x,v,y,w)

|v −w |2 dω

ˆ
(x,y)

∣∣x − y
∣∣2 dη

= 2W(µ,ν)(ξ,ζ)dW (µ,ν).

Hence
H(µ,−Dµd 2

W (·,ν))−H(ν,Dνd 2
W (µ, ·)) = sup

ξ∈G[µ]
Dµd 2

W (·,ν)(πµξ)− sup
ζ∈G[ν]

−Dνd 2
W (µ, ·)(πνζ)

= sup
ξ∈G[µ]

inf
ζ∈G[ν]

Dµd 2
W (·,ν)(ξ)+Dνd 2

W (µ, ·)(ζ)

É 2dW (µ,ν) sup
ξ∈G[µ]

inf
ζ∈G[ν]

W(µ,ν)(ξ,ζ)

É 4
[

f
]

d 2
W (µ,ν)

by the Lipschitz-continuity in W(µ,ν) of G . Taking CH = 2
[

f
]

proves the claim.
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6.2 Characterization of the solution

THEOREM 4 (COMPLETE CHARACTERIZATION OF (54)). Assume [A1], [A2] and [A3]. The value function is the unique vis-
cosity solution in the sense of Definition 9 of the Hamilton-Jacobi-Bellman equation (54).

Demonstration. Let us show that it is a viscosity solution of (54). By Lemma 3, V is locally uniformly continuous, hence
simultaneously luusc and lulsc. By definition, V (T, ·) = J, so that we only have to verify inequalities (27) and (28).

Subsolution inequality Letϕ ∈T+ such that V −ϕ reaches a maximum at (t ,µ) ∈ X , and
[
ϕ

]
a local Lipschitz constant in

a ball of radius max(MT,
[

f
]

(
∣∣ f

∣∣
0,∞+dW (ν,δ0))), where M is the constant of Theorem 1. For eachϖ ∈P(U ), the constant

measure ω ∈ L0([t ,T ];P(U )) given by ω(s) ≡ϖ generates a smooth solution (µt ,ν,ω
s )s∈[t ,T ], in the sense that

lim
s↘t

dW
(
µt ,ν,ω

s , (i d + (s − t )Fϖ[ν])#ν
)

s
= 0.

This is easily seen by recalling that µt ,ν,ω
s is then the pushforward of ν by the flow of an autonomous ODE associated to a

globally Lipschitz dynamic. Consequently, along the curve h 7→ µ̂t ,ν,ω
t+h

:= (i d +hFϖ)#ν, the DPP (22) gives

ϕ(t +h, µ̂t ,ν,ω
t+h )−ϕ(t ,ν)

h
Ê
ϕ(t +h, µ̂t ,ν,ω

t+h )−ϕ(t +h,µt ,ν,ω
t+h )

h
+

V (t +h, µ̂t ,ν,ω
t+h )−V (t ,µ)

h
Ê−[

ϕ
] dW

(
µt ,ν,ω

t+h , µ̂t ,ν,ω
t+h

)
h

+0.

Multiplicating by −1 and using the chain rule of Lemma 4 to take the limit in h ↘ 0, we obtain

−∂tϕ(t ,ν)−Dνϕ(t ,ν)(Fϖ[ν]#ν) É 0.

As ϕ(t , ·) is chosen geometrically consistent, we have Dνϕ(t ,ν)(Fϖ[ν]#ν) = Dνϕ(t ,ν)(πµFϖ[ν]#ν). As this is valid for all
b = Fωt [ν] ∈ coF [ν], we may take the supremum to recover the inequality (27), so that V is a subsolution.

Supersolution inequality Let ψ ∈ T− such that V −ψ reaches a minimum in (t ,ν) ∈ X . Since under [A2], the set of
solutions issued from (t ,µ) is compact in the topology of uniform convergence (see [BF23, Theorem 4.5]), we may find
ω ∈ L0([t ,T ];P(U )) such that V (t ,ν) =V (t+h,µt ,ν,ω

t+h ) for all h ∈ [0,T−t ]. Let
[
ψ

]
be a local Lipschitz constant ofψ as above.

Applying Lemma 2, there exist (hn)n ↘ 0 and b ∈ coF [ν] such that dW
(
µt ,ν,ω

hn
, µ̂hn

)
= o(hn), where µ̂hn

:= (i d +hnb)#ν.

Then

−[
ψ

] dW
(
µt ,ν,ω

hn
, µ̂hn

)
hn

+ ψ
(
t +hn , µ̂hn

)−ψ(t ,ν)

hn
É
ψ

(
t +hn ,µt ,ν,ω

hn

)
−ψ(t ,ν)

hn
É

V
(
t +hn ,µt ,ν,ω

hn

)
−V (t ,ν)

hn
= 0.

Taking the limit in n →∞ and using again the chain rule of Lemma 4, we get ∂tψ(t ,ν)+Dνψ (b) É 0. Multiplicating by −1
and taking the supremum over b ∈ coF [ν], we obtain

−∂tψ(t ,ν)+ sup
b∈coF [ν]

−Dνψ(b) =−∂tψ(t ,ν)+ sup
b∈coF [ν]

−Dνψ(πµb) =−∂tψ(t ,ν)+H
(
ν,Dνψ(t ,ν)

)Ê 0.

To conclude, assume that there exists another viscosity solution W : [0,T ]×P2(Rd ) →R of (54). By Lemmata 6 and 7, the
control Hamiltonian defined in (53) satisfies the assumption [A4]. Applying Theorem 3 to the couples (V ,W ) and (W,V ),
we have V Ê W and W Ê V pointwise over ]0,T ]×P2(Rd ), so that they coincide. As both are continuous, the equality
extends to t = 0, and the solution is unique.

Appendices

Appendix A Details on locally uniform upper semicontinuity

Recall that a locally bounded map u : Y → R of a complete metric space (Y ,dY ) is luusc if for any decreasing family of
closed sets (Bn)n such that B =∩nBn ̸= ; and supx∈Bn

infy∈B dY (x, y) →n 0, there holds

lim
n→∞ sup

y∈Bn

u(y) É sup
x∈B

u(x). (55)

It turns out that we have the following.
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Lemma 8 (Link with other notions of upper semicontinuity). The following holds.

1. The condition (55) is strictly weaker than continuity.

2. Let S be the set of nonempty closed and bounded subsets of Y . Then (55) is equivalent to the upper semicontinuity of
the set function U : B 7→ supx∈B u(x) in the Hausdorff topology.

3. The applications that are luusc and lulsc are exactly the locally uniformly continuous applications.

4. In general, the condition (55) is strictly stronger than upper semicontinuity. However both definitions coincide in
locally compact spaces.

5. In Y =P2(Rd ), there is no comparison with upper semicontinuity in the narrow topology.

Demonstration. Point 1 is easily seen with the luusc map u := 1I{o}, where o ∈ Y is some fixed point.
Consider the notations of Point 2. If U is locally upper semicontinuous, then (55) directly stands. On the other hand,
assume that u is luusc. Consider a sequence of nonempty closed sets An ⊂ Y that converge in the Hausdorff distance,
that is, there exists A ⊂S such that

dH ,Y (An , A) := max

(
sup
x∈An

inf
y∈A

dY (x, y),sup
y∈A

inf
x∈An

dY (x, y)

)
−→

n→∞ 0.

As A is bounded, the sequence (An)n is contained in some bounded set. Consider Bn :=⋃
mÊn An . Then (Bn)n is a family

of closed nonempty sets, uniformly bounded, with nonempty intersection equal to A and such that

dH ,Y (Bn , A) = sup
x∈Bn

inf
y∈A

dY (x, y) = sup
mÊn

sup
x∈An

inf
y∈A

dY (x, y) = sup
mÊn

dH ,Y (An , A) −→
n→∞ 0.

Hence
lim

n→∞U (An) = lim
n→∞ sup

mÊn
sup

y∈Am

u(y) É lim
n→∞ sup

y∈Bn

u(y) É sup
x∈A

u(x) =U (A),

and U is locally upper semicontinuous, proving 2.
We turn to Point 3. If u is locally uniformly continuous, let mu : R+ → R+ be a local modulus of continuity in a ball
containing all the Bn . If (yn)n is a maximizing sequence with yn ∈ Bn , there exists xn ∈ B such that dY (yn , xn) É εn →n 0,
and

lim
n→∞ sup

y∈Bn

u(y) = lim
n→∞u(yn) É lim

n→∞u(xn)+m
(
dY (yn , xn)

)É sup
x∈B

u(x)+0.

Thus u satisfies (55). On the other hand, if a locally bounded map u is both luusc and lulsc, then (x, y) 7→ s(u(x)−u(y)) is
luusc for s ∈ {−1,1}. The definition of luusc implies then that for some fixed o ∈ Y and all R > 0,

lim
r→0

sup
{∣∣u(x)−u(y)

∣∣ ∣∣∣ x, y ∈B(o,R), d(x, y) É r
}
É max

s∈{−1,1}
lim

n→∞ sup
(x,y)B(o,R)2

d(x,y)É1/n

s(u(x)−u(y)) É 0.

Any continuous modulus superior to r 7→ sup
{∣∣u(x)−u(y)

∣∣ ∣∣∣ x, y ∈B(o,R), d(x, y) É r
}

furnishes a local modulus of con-

tinuity.
Points 4 and 5 will use similar counterexamples. Notice first that taking Bn =B(x,1/n) in (55) for each x ∈ Rd , we see
that luusc always imply usc. On the other hand, if Y is locally compact, let u : Y →R be upper semicontinuous. Then any
maximizing sequence (yn)n with yn ∈ Bn contains a converging subsequence, whose limit belongs to B = B owing to the
uniform approximation of B by Bn , and (55) is satisfied.
Stays to exhibit an usc map that is not luusc. By now, we take Y =P2(Rd ), and we define

Gr :=
{
µα :=

(
1− 1

α2

)
δ0 + 1

α2 δ(α,0,··· ,0)

∣∣∣∣ αÊ r

}
, and H :=

{
νβ :=

(
1− 1

β

)
µβ+

1

β
δ(0,1,0,··· ,0)

∣∣∣∣ βÊ 1

}
.

We have that for all r Ê 1, the sets Gr , H are nonempty, disjoint and included in B(δ0,1). Moreover, Gr and H are closed in
P2(Rd ) for each r Ê 1: indeed, let (µαi )i ⊂Gr be a Cauchy sequence. If (αi )i is unbounded, then (µαi )i should converge
to its narrow limit δ0: but this is absurd since dW (µα,δ0) = 1 for all α> 0. Thus (αi )i is bounded by some constant C > 0,
and some (non relabeled) subsequence converges towards some αÊ r . Computing

dW
(
µαn ,µα

)=√
2

(
1− αn ∧α

αn ∨α
)
,
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we see that µαi →i µα ∈ Gr . Let us note that here, we proved that the sets
{
µα

∣∣ α ∈ [r,C ]
}

are compact in P2(Rd ). By a
similar argument, the set H is closed as well.
Consider u : P2(Rd ) →R given by u(µ) = 1IG1 . As the indicator of a closed set, u is upper semicontinuous. We claim that
it is not locally uniformly upper semicontinuous: indeed, define

Bn :=
{
µ ∈B(δ0,1)

∣∣∣∣ ∣∣BaryRd

(
µ
)∣∣ :=

∣∣∣∣ˆ
x∈Rd

xdµ(x)

∣∣∣∣É 1

n

}
.

It is easily verified that µ 7→ ∣∣BaryRd

(
µ
)∣∣ is continuous, so that (Bn)n is a globally bounded decreasing sequence of closed

sets, whose intersection B = ∣∣BaryRd (·)∣∣−1 ({0})∩B(δ0,1) is nonempty, and such that

sup
µ∈Bn

inf
ν∈B

dW (µ,ν) É sup
µ∈Bn

dW

(
µ,

(
np

1+n2

(
i d −BaryRd

(
µ
)))

#µ

)

É sup
µ∈Bn

√(
1− np

1+n2

)2

d 2
W (µ,δ0)+ n2

1+n2

∣∣BaryRd

(
µ
)∣∣2

É
√(

1− np
1+n2

)2

+ 1

1+n2 −→
n→∞ 0.

As
∣∣BaryRd

(
µα

)∣∣= 1/α, for any n, the intersection Bn ∩G1 is nonempty. However B ∩G1 =;, so that

lim
n→∞ sup

µ∈Bn

u(µ) Ê lim
n→∞u(µn) = 1, sup

x∈B
u(µ) = 0.

Hence u is not luusc, proving Point 4.
We finally turn to Point 5. Let us build an application that is bounded and narrowly upper semicontinuous, but not locally
uniformly upper semicontinuous. The strategy is similar to that of Point 4, with the additional requirement to work with
narrowly closed sets. Let us show that the narrow closure of G1 is G1 ∪ {δ0}: indeed, (µαi )i ⊂G1 be a narrowly converging
sequence. If (αi )i is unbounded, the narrow limit is δ0. If (αi )i is bounded, then we showed in Point 4 that

{
µα

∣∣ α ∈ [1,C ]
}

is compact in P2(Rd ), thus narrowly compact, and the narrow limit stays in G1.
Consider the bounded and narrowly upper semicontinuous function u := 1I{δ0}∪G1 . To show that u is not luusc, we consider
the family of sets

Bn := H ∪Gn .

We immediately have that (Bn)n is a decreasing family of nonempty closed sets, whose intersection is H , and all contained
in the Wasserstein unit ball centered in δ0. Moreover,

sup
µ∈Bn

inf
ν∈B

dW (µn ,ν) = sup
αÊn

inf
ν∈H

dW (µα,ν) É sup
αÊn

dW

(
µα,

(
1− 1

α

)
µα+ 1

α
δ(0,1,0,··· ,0)

)
É sup
αÊn

1

α
= 1

n
−→

n→∞ 0.

For each n, we have Bn ∩ [{δ0}∪G1] =Gn ̸= ;. However, H ∩ [δ0 ∪G1] =;. Then

lim
n→∞ sup

µ∈Bn

u(µ) = 1 but sup
µ∈H

u(µ) = 0.

Hence u is not locally uniformly upper semicontinuous. The application µ 7→ d 2
W (µ,δ0) furnishes an example of map that

is luusc, since locally uniformly continuous, but not narrowly upper semicontinuous. Consequently, there is no hierarchy
between narrow upper semicontinuity and Definition 7.

Appendix B Perturbed optimization

Lemma 9 (Perturbed optimization). Denote Y = X
2 = [0,T ]×P2(Rd )× [0,T ]×P2(Rd ), endowed with the distance

d 2
Y ((t ,µ, s,ν), (t ,µ, s,ν)) := ∣∣t − t

∣∣2 +d 2
W (µ,µ)+ ∣∣s − s

∣∣2 +d 2
W (ν,ν).

LetΦ : Y →R∪{−∞} be upper semicontinuous, proper and upper bounded, z0 ∈ Y be fixed such that A := supΦ−Φ(z0) <∞,
and assume that there exists R > 0 such that {

z ∈ Y
∣∣Φ(y) ÊΦ(z0)

}⊂B(z0,R). (56)

Hence for each n ∈N∗, there exists zn ∈ Y and a perturbation pn : Y →R+ such that
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1. the perturbed mapΦ−pn reaches a global strict maximum in zn ,

2. There exists an application ωT,R,A :N→R+ such that∑
r∈{t ,s}

∣∣∂r pn(zn)
∣∣+ ∑

σ∈{µ,ν}
(1+dW (σ,δ0))∥Dσpn(zn)∥σ ÉωT,R,A(n) −→

n→∞ 0,

3. The map (t ,µ) 7→ pn(t ,µ, sn ,νn) belongs to T+, and (s,ν) 7→ −pn(tn ,µn , s,ν) belongs to T−,

4. There holds supΦÉΦ(zn)+CR,A(n), where CR,A is decreasing towards 0 when n →∞.

Demonstration. The metric space (Y ,dY ) is complete, andΦ satisfies all the assumptions of the Ekeland-Borwein-Preiss-
Zhu theorem [BZ05, Theorem 2.5.2]. We consider the gauge-type function d 2

Y , and the choice of ponderation

αn,m := 1

n2m+1 , so that αn,0 = 1

2n
and

∑
m∈N

αn,m = 1

n
.

Applying Ekeland-Borwein-Preiss-Zhu, we get the existence of some zn ∈ Y and a sequence (zn,m)m∈N ⊂ Y such that

d 2
Y (z0, zn) É A

α0
, d 2

Y

(
zn,m , zn

)É A

2mα0
∀m ∈N,

Φ(zn) ÊΦ(z0)+ ∑
m∈N

αn,md 2
Y (z0, zn,m),

Φ(zn)− ∑
m∈N

αn,md 2
Y (zn , zn,m) >Φ(z)− ∑

m∈N
αn,md 2

Y (z, zn,m) ∀z ̸= zn .

(57a)

(57b)

(57c)

Define pn : z 7→∑
m∈Nαn,md 2

Y (z, zn,m) Ê 0. Then using (57a),

pn(z) É ∑
m∈N

αn,md 2
Y (z, zn,m) É 2

∑
m∈N

αn,m
(
d 2

Y (z, zn)+d 2
Y (zn , zn,m)

)
É 2

d 2
Y (z, zn)

n
+ A

nα0

∑
m=0

4−m = 2
d 2

Y (z, zn)

n
+ 8A

3
<∞.

Hence the application pn is well-defined from Y to R+. By (57c),Φ−pn reaches a global strict maximum in zn .

We turn to Points 2 and 3. The application pn(·,µ, s,ν) is of the form c +∑
m∈N 2−m−1 |·−tn,m |2

n , over a bounded interval, so
uniformly convergent. By direct computation, its derivative is Lipschitz in [0,T ] with constant 2/n, and

∣∣∂t pn(t ,µn , sn ,νn)
∣∣É 1

n

∑
m∈N

2−m ∣∣t − tn,m
∣∣É 2T

n
∀t ∈ [0,T ]. (58)

As (t ,µ) 7→ pn(t ,µ, sn ,νn) writes as a sum of time and measure contributions, its derivative with respect to t is Lipschitz in
the whole domain X . Moreover, by (57b), zn ∈ {

ΦÊΦ(z0)
}
. As µn,m →m µn , the sequence (µn,m)m stays in a bounded set

ofP2(Rd ), and the partial function pn(t , ·, s,ν) is uniformly convergent for each n. Using the semiconcavity of d 2
W (·,µn,m)

(see [AGS05, Theorem 7.3.2]), there holds for any (σ,ξ) ∈ TanP2(Rd ) and h ∈ [0,1] that

pn
(
tn ,expσ(h ·ξ), sn ,νn

)Ê c + ∑
m∈N

αn,m
[
(1−h)d 2

W (σ,µn,m)+hd 2
W (expσ(ξ),µn,m)−h(1−h)d 2

W (σ,expσ(ξ))
]

= c + (1−h)pn (tn ,σ, sn ,νn)+hpn
(
tn ,expσ(ξ), sn ,νn

)− h(1−h)

n
d 2
W (σ,expσ(ξ)).

Thus pn(tn , ·, sn ,νn) is locally semiconcave. As its directional derivative is a combination of that of squared distances, it is
geometrically consistent in the sense of Definition 5. To prove that (t ,µ) 7→ pn(t ,µ, sn ,νn) ∈T+, there only stays to show
the local Lipschitzianity in the measure variable. By direct computation, for any S > 0 and µ,σ ∈B(δ0,S), one has∣∣pn(tn ,µ, sn ,νn)−pn(tn ,σ, sn ,νn)

∣∣É dW
(
µ,σ

) ∑
m∈N

αn,m
(
dW (µ,µn,m)+dW (σ,µn,m)

)
É dW

(
µ,σ

) ∑
m∈N

2αn,m
(
S +dW (δ0,µn)+dW (µn ,µn,m)

)
É dW

(
µ,σ

) S +p
2n A

n

∑
m∈N

1+2−m/2

2m .
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Here we used (57a). Let R > 0 be given by the assumption (56) such that dY
(
zn , z0

)É R independantly of n. By the above,
there holds (

1+dW (µn ,δ0)
)∥Dµpn(zn)∥µn É (1+R)

R +p
2n A

n

∑
m∈N

1+2−m/2

2m . (59)

Gathering (58) and (59), we obtain the application ωT,R,A that decreases in n−1/2. The reasoning over pn(t ,µ, ·,ν) and
pn(t ,µ, s, ·) is symmetric.
Finally, notice that the supremum of Φ over Y is the same as the supremum of Φ over B(z0,R). In consequence, (57c)
gives

supΦÉΦ(zn)+ sup
z∈B(z0,R)

∑
m∈N

αn,m
[
d 2

Y (z, zn,m)−d 2
Y (zn , zn,m)

]
ÉΦ(zn)+ sup

z∈B(z0,R)

∑
m∈N

αn,m
[
dY (z, zn,m)+dY (zn , zn,m)

]
dY (z, zn)

ÉΦ(zn)+ ∑
m∈N

αn,m
[
2R +2dY (zn , zn,m)

]
2R ÉΦ(zn)+ ∑

m∈N

1

2m+1n

[
2R +2

√
n A

2m+1

]
2R.

Hence Point 4 by choosing CR,A : n 7→ 4R2

n + 2R
p

Ap
n

(
2
p

2−1
) .

Appendix C Monotonicities

Lemma 10 (Monotonicities). Assume (33), and that u,−v are bounded from above. Let Γ, Γι and Γιε be defined as in (33),
(38) and (39). Then

Γιε ↘
ε↘0

Γι for all ι> 0, and Γι ↗
ι↘0

Γ0 Ê Γ.

Demonstration. Define the additional variables

Γr := min
(
1,sup

{
u(t ,µ)− v(s,ν)

∣∣∣ (
t ,µ, s,ν

) ∈ X
2

, dX ((t ,µ), (s,ν)) É r
})

Γιr := sup
{

u(t ,µ)− v(s,ν)− ι(h(t ,d 2
W (µ,δ0))+h(s,d 2

W (ν,δ0))
) ∣∣∣ (t ,µ, s,ν) ∈ X

2
, dX ((t ,µ), (s,ν)) É r

}
,

so that Γ = limr→0Γr and Γι = limr→0Γιr . For each fixed ι > 0, using the growth of h, the variables Γιr and Γιε are upper
bounded. Restricting ι,ε and r to ]0,1], (33) gives us that each term is lower bounded. Moreover, we have the monotonic-
ities

Γr ↘r , Γι↗ι, Γιr ↘r , Γιε↘ε .

In consequence, the limits limr Γr , limr Γιr and limεΓιε are finite, and limιΓι exists in R∪ {+∞}.
Assume that Γ0 := limι↘0Γι < Γ. Then there exists r0 and α> 0 sufficiently small so that Γι É Γιr É Γ−αÉ Γr −α for all 0 <
r É r0 and ι. Consequently, for some α

2 −optimal point zα = (tα,µα, sα,να) for the definition of Γr , we have (independantly
of ι)

u(tα,µα)− v(sα,να)− ι(h(tα,d 2
W (µα,δ0))+h(sα,d 2

W (να,δ0))
)É u(tα,µα)− v(sα,να)− α

2
∀ι.

Letting ι↘ 0, we obtain a contradition. Hence Γ0 Ê Γ.
Assume now that for some fixed ι, Γι0 := limε↘0Γιε < Γι. Then for sufficiently small ε, there exists α > 0 such that Γιε É
Γι−αÉ Γιr −α for all r . For each r , denote zαr some α

2 −optimal point for the definition ofΓιr , with dX (tαr ,µαr , sαr ,ναr ) É r
by construction. There holds

u(tαr ,µαr )− v(sαr ,ναr )− ι(h(tαr ,d 2
W (µαr ,δ0))+h(sαr ,d 2

W (ναr ,δ0))
)− d 2

X ((tαr ,µαr ), (sαr ,ναr ))

ε

É u(tαr ,µαr )− v(sαr ,ναr )− ι(h(tαr ,d 2
W (µαr ,δ0))+h(sαr ,d 2

W (ναr ,δ0))
)− α

2
.

Hence
α

2
É d 2

X ((tαr ,µαr ), (sαr ,ναr ))

ε
É r 2

ε
,

and letting r ↘ 0, we obtain the desired contradiction.
Finally, assume that for some fixed ι, Γι0 := limε↘0Γιε > Γι. Then for sufficiently small r , there exists α > 0 such that
Γιε Ê Γι0 Ê Γιr +αÊ Γι for all ε> 0. For each ε> 0, let zεα ∈ X 2 be α

2 −optimal for the definition of Γιε. Hence

u(tεα,µεα)− v(sεα,νεα)− ι(h(tεα,d 2
W (µεα,δ0))+h(sεα,d 2

W (νεα,δ0))
)− d 2

X ((tεα,µεα), (sεα,νεα))

ε
Ê Γιε− α

2
Ê Γι+ α

2
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implies
d 2

X ((tεα,µεα), (sεα,νεα))

ε
É VuW+V−vW+0−Γι+ α

2
,

and for sufficiently small ε, we have dX ((tεα,µεα), (sεα,νεα)) < r . For this choice of parameters, we get

u(tεα,µεα)− v(sεα,νεα)− ι(h(tεα,d 2
W (µεα,δ0))+h(sεα,d 2

W (νεα,δ0))
)− d 2

X1
((tεα,µεα), (sεα,νεα))

ε

Ê u(tεα,µεα)− v(sεα,νεα)− ι(h(tεα,d 2
W (µεα,δ0))+h(sεα,d 2

W (νεα,δ0))
)+ α

2
,

a flagrant contradiction.

Appendix D Grönwall estimates

Lemma 11 (Grönwall estimates). Assume [A1] and [A2]. Let (µt ,ν,ω
s )s∈[t ,T ] denote the solution of (17) issued from (t ,ν) ∈

[0,T ] ×P2(Rd ) and driven by the control ω ∈ L0([t ,T ];P(U )). Let 0 É t É s É s É T , (ν,ν) ∈ (
P2(Rd )

)2
and

(
ω,ω

) ∈(
L0([t ,T ];P(U ))

)2
. Then

dW
(
µt ,ν,ω

s ,µt ,ν,ω
s

)
É (s − s)

([
f
]

(s − t )
([

f
]

dW (δ0,ν)+ ∣∣ f
∣∣
0,∞

)
e(s−t )[ f ] + [

f
]

dW (δ0,ν)+ ∣∣ f
∣∣
0,∞

)
e(s−s)[ f ]

+e[ f ](s−t )
(
1+e[ f ](s−t )

) (
dW (ν,ν)+Et ,s,ν,ω,ω

)
,

where

Et ,s,ν,ω,ω :=
(
1+ (s − t )

(∣∣ f
∣∣
0,∞+ [

f
]

dW
(
δ0,ν

))
e(s−t )[ f ]

)ˆ s

r=t
dW ,m f ,u (ω(r ),ω(r ))dr,

and

d 2
W ,m f ,u

(ϖ,ϖ) := inf
α∈Γ(ϖ,ϖ)

ˆ
(u,v)∈U 2

m2
f ,u(|u − v |)dα(u, v).

As particular cases, we record that

dW (µt ,ν,ω
t+h ,ν) É h

([
f
]

dW (δ0,ν)+ ∣∣ f
∣∣
0,∞

)
eh[ f ] and dW

(
µt ,ν,ω

T ,µt ,ν,ω
T

)
É e[ f ](T−t )

(
1+e[ f ](T−t )

)
dW (ν,ν).

Demonstration. Assume w.l.o.g that s Ê s. Denote
(
Φt ,ν,ω
τ

)
τ∈[t ,s] and

(
Φt ,ν,ω
τ

)
τ∈[t ,s]

the respective fluxes of the ODEs

ẏτ = Fω(τ)[µ
t ,ν,ω
τ ](yτ), ẏτ = Fω(τ)[µ

t ,ν,ω
τ ](yτ).

On the one hand, for t É r É τÉ s,

∣∣Φt ,ν,ω
τ (x)−Φt ,ν,ω

r (x)
∣∣É ˆ τ

θ=r

ˆ
u∈U

∣∣∣ f
(
Φt ,ν,ω
θ

(x),µt ,ν,ω
θ

,u
)∣∣∣dω(θ)(u)dθ

É
ˆ τ

θ=r

ˆ
u∈U

∣∣∣ f
(
Φt ,ν,ω
θ

(x),µt ,ν,ω
θ

,u
)
− f

(
Φt ,ν,ω

r (x),µt ,ν,ω
θ

,u
)∣∣∣+ ∣∣∣ f

(
Φt ,ν,ω

r (x),µt ,ν,ω
θ

,u
)∣∣∣dω(θ)(u)dθ

É
ˆ τ

θ=r

[[
f
]∣∣∣Φt ,ν,ω

θ
(x)−Φt ,ν,ω

r (x)
∣∣∣+ [

f
]∣∣Φt ,ν,ω

r (x)
∣∣+ ∣∣ f

∣∣
0,∞

]
dθ,

so that a Grönwall lemma yields∣∣Φt ,ν,ω
τ (x)−Φt ,ν,ω

r (x)
∣∣É (τ− r )

([
f
]∣∣Φt ,ν,ω

r (x)
∣∣+ ∣∣ f

∣∣
0,∞

)
exp

(
(τ− r )

[
f
])

. (60)

In particular,∣∣Φt ,ν,ω
τ (x)−Φt ,ν,ω

r (x)
∣∣É (τ− r )

([
f
]∣∣Φt ,ν,ω

r (x)−x
∣∣+ [

f
] |x|+ ∣∣ f

∣∣
0,∞

)
exp

(
(τ− r )

[
f
])

É (τ− r )
([

f
]

(r − t )
([

f
] |x|+ ∣∣ f

∣∣
0,∞

)
exp

(
(r − t )

[
f
])+ [

f
] |x|+ ∣∣ f

∣∣
0,∞

)
exp

(
(τ− r )

[
f
])

.

23



Taking the square of each side and integrating with respect to ν, we get

dW (µt ,ν,ω
τ ,µt ,ν,ω

r ) É
√ˆ

x∈Rd

∣∣Φt ,ν,ω
τ (x)−Φt ,ν,ω

r (x)
∣∣2

dν(x)

É (τ− r )
([

f
]

(r − t )
([

f
]

dW (δ0,ν)+ ∣∣ f
∣∣
0,∞

)
exp

(
(r − t )

[
f
])+ [

f
]

dW (δ0,ν)+ ∣∣ f
∣∣
0,∞

)
exp

(
(τ− r )

[
f
])

.

(61)

On the other hand, for τ ∈ [t , s],∣∣∣Φt ,ν,ω
τ (x)−Φt ,ν,ω

τ (y)
∣∣∣

É ∣∣x − y
∣∣+ˆ τ

r=t

∣∣∣∣ˆ
u∈U

f
(
Φt ,ν,ω

r (x),µt ,ν,ω
r ,u

)
dω(r )(u)−

ˆ
v∈U

f
(
Φt ,ν,ω

r (y),µt ,ν,ω
r , v

)
dω(r )(v)

∣∣∣∣dr

É ∣∣x − y
∣∣+ˆ τ

r=t

∣∣∣∣ˆ
u∈U

[
f
(
Φt ,ν,ω

r (x),µt ,ν,ω
r ,u

)− f
(
Φt ,ν,ω

r (y),µt ,ν,ω
r ,u

)]
dω(r )(u)

∣∣∣∣dr

+
ˆ τ

r=t

(
1+

∣∣∣Φt ,ν,ω
r (x)

∣∣∣)dW ,m f ,u

(
ω(r ),ω(r )

)
dr

É ∣∣x − y
∣∣+ [

f
]ˆ τ

r=t

∣∣∣Φt ,ν,ω
r (x)−Φt ,ν,ω

r (y)
∣∣∣+dW

(
µt ,ν,ω

r ,µt ,ν,ω
r

)
dr

+
(
1+ (τ− t )

(∣∣ f
∣∣
0,∞+ [

f
]∣∣y

∣∣)e(τ−t )[ f ]
)ˆ τ

r=t
dW ,m f ,u

(
ω(r ),ω(r )

)
dr.

Applying a second Grönwall lemma,∣∣∣Φt ,ν,ω
τ (x)−Φt ,ν,ω

τ (y)
∣∣∣É (∣∣x − y

∣∣+ˆ τ

r=t

[
f
]

dW
(
µt ,ν,ω

r ,µt ,ν,ω
r

)
dr +Et ,τ,y,ω,ω

)
exp

([
f
]

(τ− t )
)

,

where Et ,τ,y,ω,ω :=
(
1+ (τ− t )

(∣∣ f
∣∣
0,∞+ [

f
]∣∣y

∣∣)e(τ−t )[ f ]
)´ τ

r=t dW ,m f ,u

(
ω(r ),ω(r )

)
dr . Now, let η ∈ Γo(ν,ν). The plan

ηs :=
(
Φt ,ν,ω

s
,Φt ,ν,ω

s

)
#η

belongs to Γ(µt ,ν,ω
s

,µt ,ν,ω
s

), so that

dW (µt ,ν,ω
s

,µt ,ν,ω
s

) É
√ˆ

(x,y)∈(Rd )2

∣∣∣Φt ,ν,ω
s

(x)−Φt ,ν,ω
s

(y)
∣∣∣2

dη(x, y)

É exp
([

f
]

(s − t )
)√√√√ˆ

(x,y)∈(Rd )2

(∣∣x − y
∣∣+ˆ s

r=t

[
f
]

dW
(
µt ,ν,ω

r ,µt ,ν,ω
r

)
dr +Et ,s,y,ω,ω

)2

dη(x, y)

É exp
([

f
]

(s − t )
)(

dW (ν,ν)+
ˆ s

r=t

[
f
]

dW
(
µt ,ν,ω

r ,µt ,ν,ω
r

)
dr +

√ˆ
y∈Rd

E 2
t ,s,y,ω,ω

dν(y)

)
.

As √ˆ
y∈Rd

E 2
t ,s,y,ω,ω

dν(y) =
√√√√ˆ

y∈Rd

(
1+ (s − t )

(∣∣ f
∣∣
0,∞+ [

f
]∣∣y

∣∣)e(s−t )[ f ]
)2

(ˆ τ

r=t
dW ,m f ,u

(
ω(r ),ω(r )

)
dr

)2

dν(y)

É
(
1+ (s − t )

(∣∣ f
∣∣
0,∞+ [

f
]

dW
(
δ0,ν

))
e(s−t )[ f ]

)ˆ τ

r=t
dW ,m f ,u

(
ω(r ),ω(r )

)
dr =: Et ,s,ν,ω,ω <∞,

we are ready to apply our third Grönwall lemma to get

dW (µt ,ν,ω
s

,µt ,ν,ω
s

) É exp
([

f
]

(s − t )
)(

dW (ν,ν)+Et ,s,ν,ω,ω
)

exp
(
exp

([
f
]

(s − t )
)[

f
]

(s − t )
)

. (62)

Combining (61) and (62), we get

dW (µt ,ν,ω
s ,µt ,ν,ω

s
) É dW (µt ,ν,ω

s ,µt ,ν,ω
s

)+dW (µt ,ν,ω
s

,µt ,ν,ω
s

)

É (s − s)
([

f
]

(s − t )
([

f
]

dW (δ0,ν)+ ∣∣ f
∣∣
0,∞

)
e(s−t )[ f ] + [

f
]

dW (δ0,ν)+ ∣∣ f
∣∣
0,∞

)
e(s−s)[ f ]

+e[ f ](s−t ) (dW (ν,ν)+Et ,s,ν,ω,ω
)

e[ f ](s−t )e[ f ](s−t )
,

the desired result.
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