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Simple Summary: This review describes the anticancer activities of several marine peptides isolated
from cyanobacteria and their specific effects against neuroblastoma. After a short presentation of
the major cyanobacterial peptides of marine origin, mainly belonging to the cyclic depsipeptide
family, this work has focused on the different mechanisms of action of these peptides (effects on
apoptosis, cell cycle arrest, autophagy, sodium channel blocking as well as antimetastatic activities).
A thorough description of the biological effects of the marine cyanobacterial marine peptides is
developed including data on their half-maximal effective concentration (EC50), growth inhibition
50% (GI50) and lethal concentration 50 (LC50) on various neuroblastoma cell lines. This review ends
with a description of the clinical trials which are underway to evaluate the anticancer effects of
peptides arising from marine cyanobacteria and microalgae. Conclusions envisage the potential role
of such peptides for the development of anti-neuroblastoma medicines and a platform for uncovering
new therapeutic cellular targets.

Abstract: Neuroblastoma is the most prevalent extracranial solid tumor in pediatric patients, origi-
nating from sympathetic nervous system cells. Metastasis can be observed in approximately 70% of
individuals after diagnosis, and the prognosis is poor. The current care methods used, which include
surgical removal as well as radio and chemotherapy, are largely unsuccessful, with high mortality
and relapse rates. Therefore, attempts have been made to incorporate natural compounds as new
alternative treatments. Marine cyanobacteria are a key source of physiologically active metabolites,
which have recently received attention owing to their anticancer potential. This review addresses
cyanobacterial peptides’ anticancer efficacy against neuroblastoma. Numerous prospective studies
have been carried out with marine peptides for pharmaceutical development including in research
for anticancer potential. Marine peptides possess several advantages over proteins or antibodies,
including small size, simple manufacturing, cell membrane crossing capabilities, minimal drug–drug
interactions, minimal changes in blood–brain barrier (BBB) integrity, selective targeting, chemical
and biological diversities, and effects on liver and kidney functions. We discussed the significance
of cyanobacterial peptides in generating cytotoxic effects and their potential to prevent cancer cell
proliferation via apoptosis, the activation of caspases, cell cycle arrest, sodium channel blocking,
autophagy, and anti-metastasis behavior.
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1. Introduction

The most common type of extracranial solid tumor in pediatric patients is neuroblas-
toma (NB), which is derived from the cells of the sympathetic nervous system. It is most
common in the abdomen area, particularly around the adrenal glands, but can also appear in
nerve tissues of the neck, chest, abdomen or pelvis. Neuroblastoma is diagnosed in children
under two with a poor prognosis. In almost 70% of patients, metastasis can be seen after
diagnosis. Conventional treatments for NB include chemotherapy (e.g., Cyclophosphamide
or Dinutuximab), radiotherapy, immunotherapy (e.g., CAR T cell- chimeric antigen receptor
T cell), and surgical tumor resection. Dinutuximab is a chimeric antibody directed against
GD2 present on neuroblastoma cells and used as an immunotherapeutic agent in selected
neuroblastoma patients. Despite the wide range of cancer therapies, current therapies do
not provide optimal results since cancer recurrence and metastasis are prevalent. NB thus
remains a significant problem with a high mortality rate [1,2].

Cancer chemotherapy is undergoing a dramatic transformation as a growing number
of targeted drugs increase the therapeutic efficacy, minimize destructive impacts, and
improve health outcomes. Despite recent advances in chemotherapy, the prognosis of ad-
vanced NB remains poor, and its treatment is associated with adverse side effects (toxicity
and myelosuppression). Surgical procedures are invasive and may result in inadequate
tumor excision, requiring additional chemo- and radiation therapies and stem cell trans-
plantation. Therefore, it is crucial to discover more selective chemicals for cancer treatment
with fewer adverse effects, more robust therapeutic efficacy, and a reduced resistance
index. Increased progress is underway to obtain effective naturally sourced chemicals.
Accordingly, new anticancer medicines with minimal adverse effects are needed for the
effective treatment of NB [3–5].

Natural compounds, mainly from marine organisms (microbes and plants), have been
widely studied as complementary and supportive therapies for cancers aimed at affording
a preventative role in cancer care, reducing the adverse effects of oncologic treatments, and
overcoming cancer drug resistance [6–8].

Marine medicines constitute an essential source of anticancer treatments. Despite the
vast potential of new marine drugs, only a few pharmaceuticals have been used for cancer
treatment to date. Following the initial acceptance of cytarabine in 1969, the FDA approved
several marine-derived compounds as anticancer drugs. The discovery of ulithiacyclamide,
the first maritime antitumor peptide, was followed by other marine anticancer peptides,
such as didemnin B, dolastatin 10, kahalalide F, hemiasterlin, cemadotin, soblidotin, apli-
dine, and others, with subsequent clinical trials [9–12]. Marine cyanobacteria have aroused
considerable interest in marine ecology due to their abundance and ability to provide novel
chemotypes with substantial biological activity.

Nostoc sp. was initially used to cure gout, fistula, and other malignancies in approx-
imately 1500 BC. However, in the 1990s, a more concerted effort was initiated in this
area [13–15]. Numerous prospective studies have been conducted with marine peptides for
pharmaceutical development including anticancer potential. Marine peptides have several
advantages over proteins or antibodies, including their small size, simple manufacturing,
cell-membrane-crossing capabilities, minimal drug–drug interactions, minimal changes in
blood–brain barrier (BBB) integrity, selective targeting, chemical and biological diversities,
and effects on liver and kidney functions [13–15]. Anticancer peptides have short half-lives,
limited bioavailability, poor pharmacokinetic parameters, first-pass metabolism, and sensi-
tivity to proteases. Peptides are classified as apoptosis inducers, cell proliferation and an-
giogenesis blockers, antioxidants, microtubule-destabilizing agents, to name a few [16–20].
Peptides constitute the majority of secondary metabolites of cyanobacteria. Peptides of
several structural types have been identified including linear and cyclic depsipeptides as
well as lipopeptides with various multidimensional anticancer mechanisms [21–23]. Cy-
clopeptides/cyclic peptides have piqued the interest of marine natural product researchers
as a potential way for drug evolution because of their high binding affinity, target selectivity,
low toxicity, effective penetration of tumors, enhanced resistance to exo- and endopepti-
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dase degradation and increased bioavailability in vivo. These properties outperform linear
peptides and other compounds for therapeutic applications [24–28]. Cyclo depsipeptides
possess a more complex structure where consecutive ester bonds replace additional amide
bonds [29]. Aurilides B-C [30], desmethoxymajusculamide C [31], guineamides [32,33],
tiahuramides [34], palmyramide A [35], hoiamide A [36], lyngbyabellins E–I [37] from
Lyngbya majuscula; coibamide A [38], grassypeptolides and ibu-epidemethoxylyngbyastatin
3 [39] from Leptolyngbya sp.; symplocamide A [40], largazole [41] from Symploca sp.; bouil-
lonamide, ulongamide A, apratoxin A [42] from Lyngbya bouillonii are some examples of
cyclic depsipeptides displaying anti-NB effects. Lipopeptides are amphiphilic compounds
with hydrophobic and hydrophilic fatty acid chains and cyclic peptides, respectively [43,44].
Hermitamides [45], jamaicamides [46], malyngamides [47], somocystinamide A [48] from
Lyngbya majuscula; dragonamide [49] and microcolins [50] from Lyngbya polychroa are
anti-NB peptides. A straight chain of amino acids linked by amide bonds forms acyclic or
linear peptides [51]. Gallinamide A from Schizothrix sp. and desacetylmicrocolin B from
Lyngbya cf. polychroa are reported as anti-NB cyanobacterial peptides. These peptides are
active against mouse (Neuro-2a, N-18) and Human (IMR-32, NB7 and SH-SY5Y) cell lines.
Anti-neuroblastoma peptides are summarized in Table 1 [52,53].
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Table 1. Anti-neuroblastoma effects of marine cyanobacterial peptides [53].

Peptides Cyanobacteria Active Derivative Cell Lines Cytotoxic Concentration IC50 Anticancer Mechanisms References

Aurilide B–C

Lyngbya majuscula

cyclic depsipeptide

Neuro-2a

LC50 B: 0.01; C: 0.05 µM PHB1 inhibition; OPA1 proteolysis;
microtubule stabilization [30,54]

Desmethoxymajusculamide C >1.0 µM microtubule depolymerization [31]

Floridamide EC50: 1.89 × 10−5 µM mL−1

↓ cell viability a

[55]

Guineamide B–C B: 15; C:16 µM [32]

Guineamide G LC50: 2.7 µM [33]

Hoiamide A 2.1 µM [36]

Lyngbyabellins E–I LC50 E: 1.2, F: 1.8, G: 4.8, H: 1.4, I: 0.7 µM actin microfilament disruption [37]

Palmyramide A 17.2 µM sodium channel blocking activity [35]

Tiahuramides B–C SH-SY5Y B: 14; C: 6 µM ↓ cell viability a [34]

Apratoxin A
Lyngbya bouillonii/Moorea

bouillonii

Neuro-2a

1 µM Stat3 ↓

[42]Bouillonamide 6 µM

↓ cell viability aUlongamide A 16 µM

Wewakpeptin A–D Lyngbya semiplena A: 0.49; B: 0.20; C: 10.7; D: 1.9 µM [56]

Coibamide A

Leptolyngbya sp.

LC50 < 23 nM
caspase-3,7↑; cyt c release ↑; PARP ↑;

VEGFR2 ↓ and MMP-9 ↓; G1 to S
phase arrest

[38,57,58]

Dolastatin 12 >1 µM

G1 and G2/M phase arrest
[39]Grassypeptolide D and E D: 599; E: 407 nM

Ibu-epidemethoxylyngbyastatin 3 >10 µM

Symplocamide A

Symploca sp.

29 nM antimetastatic (chymotrypsin and
trypsin inhibition) [40]

Largazole
IMR-32 GI50: 16 nM HDACi; MSI ↓; PARP cleavage;

G1 and G2/M phase arrest [41,59,60]
SH-SY5Y 102 nM

Cyclolaxaphycins B and B3
Anabaena torulosa cyclic lipopeptide SH-SY5Y

B: 1.8, B3: 0.8 µM caspase 3 ↑ [61]

Acyclolaxaphycins B and B3 10 µM autophagy (AMPK phosphorylation ↑
and mTOR inhibition) [61]
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Table 1. Cont.

Peptides Cyanobacteria Active Derivative Cell Lines Cytotoxic Concentration IC50 Anticancer Mechanisms References

Hermitamides A–B

Lyngbya majuscula

lipopeptide

Neuro-2a

A: 2.2; B: 5.5 Mm
↓ cell viability a

[45]

Jamaicamides A–C LC50: 15 Mm [46]

Malyngamide C LC50: 3.1 µg mL−1

sodium channel blocking activity [47]Malyngamide J LC50: 4 µg mL−1

Malyngamide K LC50: 0.49 µg mL−1

Somocystinamide A 1.4 µg mL−1
caspase 8 ↑ [62]

Somocystinamide A NB7 810 Nm [48]

Dragonamide C and D

Lyngbyapolychroa IMR-32

GI50 = C: 49; D: 51 Mm

↓ cell viability a

[49]

Microcolin A–B A: 0.31; B: 7.7 nM
[50]

Desacetylmicrocolin B linear peptide 14 nM

Gallinamide A Schizothrix sp. linear peptide Neuro-2a 16.9 µM [52]
Neuroblastoma Cell lines: Neuro-2a, N-18 = mouse; IMR-32, NB7, SH-SY5Y = human; EC50 = half-maximal effective concentration, GI50 = growth inhibition 50%, and LC50 = lethal
concentration 50; a = mechanism is yet to be investigated, ↑ = increases, ↓ = decreases
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This review aims to discuss distinct natural products focusing on anti-NB cyanobacte-
rial peptides.

2. Marine Cyanobacterial Peptides

Cyanobacteria, which are among the oldest aquatic and photosynthetic oxygenic
prokaryotes, are found worldwide. The presence of numerous bioactive secondary metabo-
lites in cyanobacteria from various habitats, especially marine cyanobacteria, has recently
been discovered. Bioactive compounds from aquatic cyanobacteria help them better adapt
to a variety of complex, hypersaline, high-pressure, barren marine habitats by acting as
chemical defenses. These cyanobacterial secondary metabolites exhibit a wide range of bio-
logical activities, including anti-tumor, antibacterial, enzyme inhibition, parasite resistance,
anti-inflammatory, and other biological activities, in addition to having a significant impact
on the growth and reproduction of cyanobacteria [63]. As a result, they received interest
from scholars in various experimental fields, including medicinal chemistry, pharmacology,
and marine chemical ecology [64].

Over 400 new natural compounds from marine cyanobacteria have been identified
over the past decade thanks to the International Cooperative Biodiversity Group (ICGB)
program [65]. Peptides and compounds containing peptides are the main secondary
metabolites among these substances [66]. A total of 126 novel peptide compounds, mostly
from the genera Lyngbya, Oscillatoria, and Symploca, were extracted from marine cyanobac-
teria by the end of 2016. Nevertheless, two new genera, Moorea and Okeania, previously
recognized as the polyphyletic cyanobacterial genus Lyngbya, were identified by genome
sequence analysis [67,68]. A second new genus of Caldora was known as Symploca.

The majority of the cyclic peptides found in marine cyanobacteria are cyclic dep-
sipeptides, which include 76 different molecules [69]. Two linear depsipeptides known as
grassystatins A and B, have been isolated from the key Largo collected marine cyanobac-
terium Okeania lorea (formerly Lyngbya cf. confervoides). Veraguamides K and L, two linear
bromine-containing depsipeptides isolated from the marine cyanobacterium cf. Oscillatoria
margaritifera found in the Coiba Island National Park in Panama, are thought to have the
structural characteristics of marine natural products [70]. The antimalarial bioassay-guided
isolation of the marine cyanobacterium Moorea producens (formerly Lyngbya majuscula)
yielded four lipopeptides: dragonamides A and B, carmabin A, and dragomabin [49].
Through the cytotoxicity-directed isolation of a marine cyanobacterium, the Symploca cf.
hydnoides sample from Cetti Bay (Guam), seven novel cyclic hexadepsipeptides, known as
veraguamides A–G, were discovered [71,72]. HT29 colorectal adenocarcinoma and HeLa
cell lines exhibited moderate-to-mild cytotoxicity in response to these compounds [73].
Lyngbya majuscula has been proven to be a highly prolific species of cyanobacterium since a
significant number of natural products with a wide range of structural characteristics have
been isolated from it. The antimycobacterial cyclodepsipeptides known as pitipeptolides
C–F were discovered from the marine cyanobacterium Lyngbya majuscule in the Piti Bomb
Holes (Guam) [74]. Hoiamide A is an unusual cyclic depsipeptide that was isolated from
the marine cyanobacteria Lyngbya majuscula and Phormidium gracile in Papua New Guinea.
It is composed of an isoleucine moiety that has been modified by acetate and S-adenosyl
methionine, a tri-heterocyclic fragment which contains two α-methylated thiazolines and
one thiazole ring. This peptide can trigger the sodium inflow (EC50 = 2.31 M) and is a
powerful voltage-gated sodium channel inhibitor (IC50 = 92.8 nM) in murine neocortical
neurons [75]. The rapid growth, genetic tractability of cyanobacteria as well as the ease
of culturing make them excellent candidates for sustainable sources for the manufacture
of bioactive peptides. Although cyanobacteria share many of the same characteristics as
microbes, they have received less attention.
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3. Mechanistic Insights
3.1. Apoptosis

Apoptosis is an essential mechanism of cell death induced by cancer therapy. Therefore,
identifying or developing anticancer agents capable of targeting apoptosis regulatory
genes is a prerequisite for the advancement of unique anticancer therapies. As with most
anticancer agents, there are a large number of marine-derived anticancer peptides with
apoptotic activity in cancer cells [76,77]. The discharge of cytochrome-c (cyt c) activates
caspases and triggers apoptosis [78,79]. Cyclolaxaphycins B and B3 increase caspase 3 in
SH-SY5Y lines with IC50 of 1.8 and 0.8 µM, respectively (Figure 1) [61]. Coibamide A
induces apoptosis in Neuro-2a cells (IC50 < 23 nM) through caspase-3,7 activation, cyt-c
release and PARP cleavage. In U87-MG and SF-295 glioma cells, coibamide A triggered
caspase-3/7 activation over a time-period associated with a loss of viability, although
the activation profile for each cell line was different. Despite the fact that the MTT cell
viability experiments showed that U87-MG cells were more sensitive than SF-295 cells
to coibamide A-induced cell death, relatively large doses of coibamide A were required
to cause the late activation of caspase-3/7 in these cells. Over a 96 h exposure period,
researchers collected attached and detached coibamide A-treated cells and examined cell
lysates for the expression of PARP1, a critical downstream target of caspase-dependent
apoptosis, as well as a number of alternative cell death pathways [38,57,58]. Caspase-8 is
one of the critical members of apoptosis initiation. Its silencing increases and facilitates NB
tumorigenesis [80,81]. Somocystinamide A stimulates caspase-8 activation in Neuro-2a and
NB7 cells with IC50 of 1.4 µg mL−1 and 810 nM [48,62].
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Figure 1. Cyanobacterial metabolites disrupt vital cancer-related pathways. Cyclolaxaphycins B and
B3 increase caspase 3 and stimulate apoptosis. Somocystinamide A stimulates caspase-8 activation in
Neuro-2a cells. Ub; ubiquitin protein.

Optic atrophy 1 (OPA1) is a crucial molecule in cancer cell biology and therapeutic
resistance. OPA1 determines the mitochondrial resistance to cytochrome c release and
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delays apoptosis. The induction of OPA1 is required to alter gene expression during
angiogenesis. It has also been identified as an essential regulator of lymphangiogenesis.
Due to its dual role in angiogenesis and lymphangiogenesis, targeting OPA1 not only
inhibits tumor development but also metastatic spread [82]. Prohibitin (PHB) is an oncogene
that promotes the proliferation and differentiation of NB cells. PHB deficiency increased
NB cell differentiation and death and delayed cell cycle progression [83]. Aurilide binds
and inhibits prohibitin 1 (PHB1), promoting the OPA1 proteolytic processing, resulting in
mitochondrial apoptosis [54,84].

Musashi-2 (MSI2) is expressed in NB, and its decreased expression is related to in-
creased apoptosis and decreased proliferation [85]. The inhibition of the histone deacetylase
(HDACi) causes apoptosis induction, PARP cleavage, and G1 or G2/M cell cycle arrest in
NB cells [86]. Largazole inhibits IMR-32 cell proliferation with a GI50 (growth inhibitory
power of the test agent) of 16 nM and SH-SY5Y with an IC50 of 102 nM by decreasing
the MSI2 levels, suppressing the mTOR pathway, and HDACi [41,59,60]. Figure 2 sum-
marizes the structures of therapeutically active marine cyanobacterial peptides against
neuroblastoma cell lines.

3.2. Cell Cycle Arrest

Cell cycle interruption prevents cancer cells from developing into tumor cells and spreading
to other parts of the body [87]. Grassypeptolides D and E, ibu-epidemethoxylyngbyastatin
3, and dolastatin 12 from Leptolyngbya sp. induce G2/M phase arrest in Neuro-2a cancer
cells [39]. Similarly, coibamide A from Leptolyngbya sp. induce G1 to S phase arrest [58].

3.3. Sodium Channel Blocking Activity

The voltage-gated sodium channel (VGSC) is widely expressed in breast, bowel,
prostate cancers, melanoma and NB. Several VGSCs-blocking drugs have been shown in
preclinical models to limit cancer cell proliferation, invasion, tumor development, and
metastasis, indicating that VGSCs may serve as putative molecular targets for cancer
therapy [88,89]. Malyngamides C, J, and K were shown to block VGSCs in Neuro-2a cells
displaying IC50 0.49–4 µg mL−1 [47]. Similar effects were seen in the same cells when
treated with palmyramide A with an IC50 of 17.2 µM [35].

3.4. Antimetastatic Activity

Microfilaments play an essential role in cell migration. The inhibition of actin poly-
merization disrupts microfilaments, reduces the cell motility, and slows the metastatic
spread of neoplastic cells by G2/M phase arrest [90,91]. Microtubules and microtubule-
associated proteins, which play a vital role in cell division, are essential constituents
of the mitotic spindle. Microtubule dynamics is necessary for chromosomal movement
throughout anaphase. A shift in the tubulin-microtubule balance alters the mitotic spindle,
disrupting metaphase-anaphase progression of the cell cycle, resulting in cell death [92,93].
Microtubule-stabilizing compounds stimulate microtubule polymerization and, by binding
to microtubules, target the cytoskeleton and spindle machinery of tumor cells, thus limiting
mitosis [92,94]. Aurilide B-C, a cyclodepsipeptide isolated from Lyngbya majuscula, has
been shown to destabilize microtubules in Neuro-2a cells with an IC50 of 0.01 and 0.05,
µM, respectively [30]. Microtubule-destabilizing agents can also cause apoptosis through
Bcl2 and myeloid cell leukemia-1 (Mcl-1) inhibition. Mcl-1 promotes cell survival by dis-
rupting cytochrome-c release [95,96]. Desmethoxymajusculamide C shows efficacy against
Neuro-2a cancer cells depolymerizing the microtubules [31]. Lyngbyabellins E–I are cyclic
depsipeptides which disrupt actin in Neuro-2a cells with IC50s 0.7–1.8 µM [37].
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cell lines.

STAT3 suppression induces apoptosis and inhibits metastasis in cancer cells. MMP2
and MMP9 are upregulated when the STAT3 pathway is activated, facilitating tumor inva-
sion [97]. Apratoxin A is proposed to inhibit the phosphorylation of the signal transducer
and activator of transcription (STAT) 3, causing metastasis in Neuro-2a cells with an IC50 of
1 µM [42,98].
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Proteases are critical signaling molecules engaged in a variety of key processes such
as apoptosis, metastasis and angiogenesis [99–101]. Serine proteases are highly expressed
in NB [102]. Numerous cyanobacterial peptides have been shown to interfere with serine
protease functions. Symplocamide A has been reported to induce cytotoxicity in Neuro-
2a cells [40,103]. The inhibition of chymotrypsin (IC50 of 0.38 µM) and trypsin (IC50 of
80.2 µM) by this compound further supports its antimetastatic effects [40].

3.5. Antiangiogenic Effect

VEGF and MMPs play an essential role in angiogenesis [104,105]. Angiogenesis is
believed to be a fundamental prerequisite for the development, invasion, and metastasis
of malignant NBs. Anti-angiogenic agents that inhibit neovascularization could represent
a potential therapeutic strategy for NB [106]. The marine peptide coibamide A inhibits
cancer cell migration by lowering the VEGFR2 and MMP-9 expressions [57,58].

3.6. Autophagy

In the early stages of cancer, autophagy functions as a barrier to protect cells against
damaging stimuli and malignant development [107,108]. The activation of mTOR inhibits
autophagy induction and promotes tumor growth and metastasis (Figure 3). Therefore, the
regulation of autophagy with mTOR inhibitors provides an anticancer effect [109]. AMPK
activates the autophagy-initiating kinase Ulk1 and phosphorylates TSC2. TSC2 activation
can inhibit the mTOR complex 1 (mTORC1), thus promoting autophagy [110]. Acyclo-
laxaphycins B and B3 increase AMPK phosphorylation and induce mTOR inhibition in
SH-SY5Y cells with an IC50 of 10 µM [61].
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3.7. Unknown Mechanisms for Anticancer Activity

Several peptides including floridamide [55], guineamides B–C and G [32,33], hermi-
tamides A–B [45], hoiamide A [36], jamaicamides A–C [46], and tiahuramides B–C [34],
isolated from Lyngbya majuscula, bouillonamide [42], ulongamide A [42], isolated from
Lyngbya bouillonii (now called Moorea bouillonii) [111]; wewakpeptin A–D [56] isolated from



Cancers 2023, 15, 2515 11 of 17

Lyngbya semiplena; dragonamides C and D [49], microcolin A–B, and desacetylmicrocolin
B [50] isolated from Lyngbya polychroa all display significant cytotoxicity, though their
specific modes of action have yet to be characterized.

4. Clinical Trial Status

Clinical trials for several anticancer substances derived from marine cyanobacteria and
microalgae are underway [112]. The U.S. Food and Drug Administration (FDA) approved
the use of the marine peptide-derived drug, brentuximab vedotin (marketed as Adcetris),
for the treatment of cancer in 2011 [113]. Enfortumab vedotin, Glembatumumab vedotin,
Tisotumab vedotin, and other derivatives in the form of antibody–drug conjugates are
in Phase III clinical research, while ABBV-085, ASG-15ME, and AGS-67E are in Phase I
of clinical research for various types of malignancies (www.clinicaltrials.gov). Soblidotin
(also known as TZT-1027, auristatin PE), a dolastatin 10 derivative, has demonstrated
potential in the treatment of human colon cancer and has moved into phase II clinical
trials [114]. Dolastatin 10, ET-743, and bryostatin 1 are currently being evaluated in clinical
research [115]. ILX-651 did not show any cardiovascular toxicity, unlike other dolastatins.
Phase I and Phase II of clinical research have been successfully completed, and ILX-651 has
been proven to be safe and highly tolerated [116]. Dolastatins, promising molecules
for solid tumors, have yet to enter Phase III studies [117]. Phase II clinical studies for
Tasidotin, Synthadotin (ILX-651) are also being conducted by Genzyme Corporation and
are generated from a marine bacterium (Cambridge, MA, USA). Phase III clinical studies for
Soblidotin (TZT 1027), a different bacterial peptide of marine origin, are being conducted by
Aska Pharmaceuticals (Tokyo, Japan). These two substances are both promising potential
anticancer strategies [118].

5. Conclusions and Future Prospective

Neuroblastoma is the most common and deadliest childhood disease. Existing thera-
pies are effective, but they have adverse effects, and relapses are common, highlighting the
need for innovative cancer treatments [119]. Cyanobacteria afford an excellent source of
metabolites for anticancer drug discovery. Their inexpensive cultivation has enhanced their
application in therapeutic development. However, limitations to anti-NB peptide research
include a lack of ethnomedicinal basis, technological difficulty in collecting deep-sea marine
species, as well as isolation and purification concerns. Modern technology has enabled the
collection of marine samples and various peptides from aquatic sources. Moreover, as data
in this field are limited, the toxicity and adverse effects of cyanobacterial compounds and
metabolites in normal cells must also be assessed [71,120–122].

The anti-NB actions of marine cyanobacterial peptides include cell growth suppres-
sion, apoptosis induction, cell cycle arrest, sodium channel blockage, antimetastatic activity,
and autophagy. These peptides appear to be a powerful and exciting resource for devel-
oping anti-NB medicines and a platform for uncovering new therapeutic cellular targets.
Insufficient progress has been made, and additional research into the anti-NB mechanisms
of marine peptides is needed to generate novel candidate molecules [123].

Most research on anti-NB activity has been carried out in vitro, limiting the transfer
of the information for clinical efficacy. The absence of in vivo and clinical studies and an
insufficient understanding of the mechanisms of action of marine peptides make them
a promising tool for future research. A short half-life, limited bioavailability, processing
and manufacturing issues, and sensitivity to proteases are all key limitations for the use of
peptides in cancer treatment. D-amino acid substitution, peptide cyclization, encapsula-
tion with nanoparticles, pegylation, and XTEN conjugation can be employed to address
metabolic instability and short circulating half-life. D-amino acid substitution also reduces
immunogenicity [124–126]. Peptides coated with exosomes, liposomes, carbon nanotubes,
and dendrimers have significantly improved BBB permeability and thus solve the problem
of drug delivery to the brain [127–129].

www.clinicaltrials.gov
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The literature discussed above suggests that, given the current state of many cancer-
related disorders, cyanobacterial peptide-based nanoformulated delivery systems imme-
diately need to be commercialized. Commercial nanoformulations or stable and effective
drug formulations based on cyanobacterial peptides and their optimal use in nanomedicine-
based therapies have not yet been investigated in the literature. Without running the risk
of experiencing any negative side effects, it could be interesting to experiment with the
use of diatoms and other cyanobacterial peptides species in commercial nanoformulations
for the treatment of cancer. The anticancer potential for marine cyanobacterial peptides
with nanoformulated medicinal characteristics will be unlocked by research in this field.
Therefore, cyanobacterial peptides have a strong potential to become anti-NB medicines.
Future research on marine peptides could lead to the discovery of new anti-NB therapies.
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