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Background: Dysbiotic vaginal microbiota have been implicated as contributors to persistent HPV-mediated cer-
vical carcinogenesis and genital inflammation with mechanisms unknown. Given that cancer is a metabolic dis-
ease, metabolic profiling of the cervicovaginal microenvironment has the potential to reveal the functional
interplay between the host and microbes in HPV persistence and progression to cancer.
Methods:Our study design includedHPV-negative/positive controls, womenwith low-grade and high-grade cer-
vical dysplasia, or cervical cancer (n = 78). Metabolic fingerprints were profiled using liquid chromatography-
mass spectrometry. Vaginalmicrobiota and genital inflammationwere analysedusing 16S rRNAgene sequencing
and immunoassays, respectively. We used an integrative bioinformatic pipeline to reveal host and microbe con-
tributions to the metabolome and to comprehensively assess the link between HPV, microbiota, inflammation
and cervical disease.
Findings: Metabolic analysis yielded 475 metabolites with known identities. Unique metabolic fingerprints dis-
criminated patient groups from healthy controls. Three-hydroxybutyrate, eicosenoate, and oleate/vaccenate dis-
criminated (with excellent capacity) between cancer patients versus the healthy participants. Sphingolipids,
plasmalogens, and linoleate positively correlated with genital inflammation. Non-Lactobacillus dominant com-
munities, particularly in high-grade dysplasia, perturbed amino acid and nucleotide metabolisms. Adenosine
and cytosine correlated positively with Lactobacillus abundance and negatively with genital inflammation.
Glycochenodeoxycholate and carnitine metabolisms connected non-Lactobacillus dominance to genital inflam-
mation.
Interpretation: Cervicovaginal metabolic profiles were driven by cancer followed by genital inflammation, HPV
infection, and vaginal microbiota. This study provides evidence for metabolite-driven complex host-microbe in-
teractions as hallmarks of cervical cancer with future translational potential.
Fund: Flinn Foundation (#1974), Banner Foundation Obstetrics/Gynecology, and NIH NCI (P30-CA023074).
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Persistent human papillomavirus (HPV) infection, the most com-
mon sexually transmitted disease, is the etiologic agent for the develop-
ment of precancerous cervical dysplasia and cervical cancer [1,2]. Even
though screening and HPV vaccination have significantly reduced the
number of cases in developed countries, cervical cancer is still the fourth
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most commonly diagnosed cancer globally among females [3]. After
HPV infection, carcinogenesis does not progress uniformly; precancer-
ous dysplasiamay regresswithout treatment for reasons that are uncer-
tain [4]. Regardless, persistent HPV infection initiates a chain of
reactions that suppresses the cell-mediated immune response and hin-
ders clearance of the infection and destruction of abnormal cells [5]. Ad-
ditionally, in spite of the rapidly accumulating data on host immune
responses and vaginal microbiome in patients across cervical carcino-
genesis [6–11], our understanding of the molecular and metabolic
changes in the cervicovaginal microenvironment relevant to
microbiome has only recently begun to be elucidated [12,13].
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Research in context

Evidence before this study

Cervical cancer is a common gynaecological malignancy in
women caused by persistent oncogenic HPV infection. Recent
studies have demonstrated that dysbiotic microbiota is involved
in HPV persistence, progression of cervical neoplasia, and genital
inflammation.Metabolomic studies of the cervicovaginalmicroen-
vironment in bacterial vaginosis and pre-term birth suggest that
vaginal microbiota drastically alter the metabolome. However,
metabolic interactions between host and microbial communities
in cervical carcinogenesis remain to be elucidated.

Added value of this study

In the present study,we identifiedmetabolic signatures that effec-
tively distinguish-HPV infected individuals, women with cervical
dysplasia and cancer from HPV-negative women. Membrane
lipids distinguished the cancer group from the HPV negative
group and were highly associated with genital inflammation. In
low-grade and principally high-grade dysplasia groups, we ob-
served polymicrobial communities perturb amino acid and nucleo-
tide metabolism in a similar manner to bacterial vaginosis. Our
integrative and comprehensive bioinformatic approach pinpointed
the microbial or host origin of specific amino acid metabolites and
nucleotides. In addition, a novel aspect of our multi-omic analyses
was to reveal the level to which specific metabolites were associ-
ated with Lactobacillus abundance as well as genital inflamma-
tion. An increase in the Lactobacillus abundance was positively
associated with the levels of anti-inflammatory nucleotides. Col-
lectively, we revealed that features of the cervicovaginal microen-
vironment (HPV, genital inflammation and vaginal microbiota)
profoundly impact cervicovaginal metabolomes.

Implications of all the available evidence

This first report on cervicovaginal metabolomes in HPV-mediated
cervical dysplasia and cancer demonstrate the predictive value
of metabolic fingerprinting in abnormal cell metabolism. Observed
perturbations in lipids, an emerging hallmark of cancer, link inflam-
mation and cervical cancer. Additionally, we identified specific
metabolites that were associated with Lactobacillus abundance
and genital inflammation independently from the cancer. Amino
acid and nucleotide metabolism connect vaginal dysbiosis to cer-
vical dysplasia. The cervicovaginal metabolome can be a useful
target for future diagnosis, prevention strategies and therapeutic
intervention to positively impact women's health outcomes.
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The advances in the metabolomics field during the last decade have
proven that cancer is ametabolic disease [14] and led to the rediscovery
of themetabolome as an emerging target for cancer detection and ther-
apies. Early studies have shown that cervical cancer patients harbour a
unique collection of molecules ranging from amino acids to nucleic
acids in the serum [15], tumour tissues [16], and faeces [17]. Moreover,
research on cancer sniffing dogs indicated that there are cancer-specific
volatile organic compounds being released in cervical cancer [18]. In
comparison to serum or faeces, metabolomes of the cervicovaginal mi-
croenvironment have the added benefit of reflecting themetabolic pro-
cesses occurring in the mucosal environment instead of metabolic
outcomes of the entire body or other systems. However, to the best of
our knowledge,metabolomes of the localmicroenvironment in patients
with HPV, cervical dysplasia, or invasive cervical carcinoma (ICC), have
not been previously reported.
Cervicovaginalmetabolomes throughout cervical carcinogenesis can
be influenced by several factors that are host-, microbiome-, and
environment-associated. For example, HPV suppresses cytokine pro-
duction [19], which alters themicrobial dynamics in the cervical micro-
environment. Our group and others have shown a strong association
between genital immune mediators and a decrease in Lactobacillus
abundance in cervical carcinogenesis [6,8]. Shifts in cervicovaginal mi-
crobial communities due to dysbiosis or environmental factors can
alter the cervicovaginal metabolome. For instance, a shift from health-
associated Lactobacillus-dominatedmicrobiota towards complex anaer-
obic and microaerophilic communities in bacterial vaginosis (BV) is
highly correlated with an increase in amino acid catabolites and poly-
amines [12,13]. A similar metabolic shift was also observed in smokers
in comparison to non-smokers in connection to imbalances in the vag-
inal microbiota [20]. Additionally, alterations in cell physiology caused
by HPV infection and neoplastic disease could transform the dynamics
of the cervicovaginal microenvironment. For example, cancer cells
with a drastically increased glucose demand ferment glucose into lac-
tate instead of carbon dioxide, in contrast to healthy differentiated
cells [21]. As such, secretions from cancer cells, as well as microbial fer-
mentation products, could ultimately modulate the microenvironment
and affect both host andmicrobialmetabolism. In the context of HPV in-
fection and cervical carcinogenesis, thesemetabolic shifts in the cervical
microenvironmentwarrant further investigation.Wehypothesized that
cervicovaginal metabolic profiling would reveal HPV, inflammation,
host and microbe driven metabolic signatures across cervical
carcinogenesis.

Herein, we characterized differences in cervicovaginal metabolomes
in HPV-negative and HPV-positive individuals, women with low-grade
and high-grade cervical dysplasia, and newly diagnosed ICC using a
global metabolomics approach. We report unique differences in meta-
bolic profiles of participants with HPV infection, cervical dysplasia and
ICC that discriminated these patient groups from healthy HPV-
negative controls. The magnitude of the differences observed among
the patient groups was on the metabolic super pathway level rather
than on the individual metabolite level. However, we identified 3-
hydroxybutyrate, eicosenoate, and oleate/vaccenate as key metabolites
that robustly discriminated patients with ICC from healthy HPV-
negative individuals, and many amino acid metabolism products such
as glutamine, pyroglutamine, and N-acetyltaurine as discriminators of
healthy HPV-negative individuals from participants that were HPV-
positive or with cervical dysplasia.

We also interrogated the host- and microbiota-associated factors
that shape the local microenvironment and found that genital inflam-
mation and vaginal microbiota composition are strong drivers of the
cervicovaginal metabolomes. Our comprehensive bioinformatic analy-
sis of microbial contributions to the cervicovaginal metabolome
pinpointed the metabolic effects of certain BV-associated microorgan-
isms including Sneathia, Streptococcus, Prevotella, and Gardnerella on ca-
tabolism of amino acids, which differentiated high-grade cervical
dysplasia from ICC. Genital inflammation, mainly in the ICC group was
highly associated with various groups of lipids. Nucleotides with anti-
inflammatory properties positively correlated with Lactobacillus abun-
dance and negatively correlated with genital inflammation. Overall,
our results provide metabolic insights into complex virus-host-
microbiome interactions in the context of a common gynaecologic ma-
lignancy, cervical cancer that are essential for the development of future
metabolome targeted diagnostics and therapies.

2. Materials and methods

2.1. Study subjects

We recruited 78 premenopausal, non-pregnant women and
grouped as follows: healthy HPV-negative [Ctrl HPV (−), n = 18] and
HPV-positive participants [Ctrl HPV (+), n = 11] as controls,
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participants with low-grade squamous intraepithelial lesions (LSIL, n=
12), high-grade squamous intraepithelial lesions (HSIL, n = 27) and
newly diagnosed invasive cervical carcinoma (ICC, n=10) at three clin-
ical sites in Phoenix, AZ: St. Joseph's Hospital and Medical Center, Uni-
versity of Arizona Cancer Center and Maricopa Integrated Health
System. Our study was approved by the Institutional Review Boards of
each participating site and written informed consent was attained
from each study participant. The inclusion criteria and participant clas-
sification for each of the groups were described previously [6]. Briefly,
women that were pregnant, post-menopausal, or currently menstruat-
ing,women thatwere on antibiotics and antifungalswithin theprevious
three months of the study and women with the following conditions:
vaginal infection, bacterial vaginosis, vulvar infection, urinary tract in-
fection or sexually transmitted infections including chlamydia,
gonorrhoea, trichomoniasis, and genital herpes, women with type I or
II diabetes, or that were HIV positive, women with unusual or foul-
smelling vaginal discharge, and women who use douching substances,
within the previous three weeks of the study, were also excluded
from the study. Sexual intercourse or vaginal lubricant use within 48 h
of the sample collection also excluded women from participation.
Physician's pelvic exam, medical records and surveys were used to ver-
ify exclusion criteria.

2.2. Sample collection and processing

Cervicovaginal lavages (CVL) and vaginal swabswere collected from
study participants. Vaginal pH measurements, HPV genotyping, and
microbiome analysis from vaginal swabs were described previously
[6]. Briefly, CVLs were collected by the clinicians using 10 mL of sterile
0.9% saline solution (Teknova, Hollister, CA), immediately placed on
ice and frozen at −80 °C. The CVLs were thawed on ice and clarified
by centrifugation (700 ×g for 10 min at 4 °C) prior to aliquoting and al-
iquots were sent to Metabolon, Inc. (Durham, NC) for global metabolo-
mics identification and quantification. Sampleswere randomized across
the extraction and instrumentation platforms. Briefly, upon receipt,
samples were inventoried, and each sample identifier was accessioned
into the Metabolon LIMS system and assigned a unique identifier. Sam-
ple preparation was achieved using the MicroLab STAR® system from
Hamilton company. Aliquots of 100 μL were mixed with ethanol and
vigorously shaken for 2min (GlenMills GenoGrinder 200) to precipitate
the proteins and dissociate the small molecules bound to proteins. The
metabolome extract was divided into five aliquots and four of them
were analysed. Samples were placed briefly on a TurboVap® (Zymark)
to remove organic solvent. The extractswere stored overnight under ni-
trogen before preparation for analysis. The sample's extract was dried
then reconstituted in solvents compatible to each of the four methods
described below.

2.3. Metabolome analysis

All methods utilized a Waters ACQUITY ultra-performance liquid
chromatography (UPLC) and a Thermo Scientific Q-Exactive high reso-
lution/accurate mass spectrometer interfaced with a heated
electrospray ionization (HESI-II) source and Orbitrap mass analyser op-
erated at 35,000 mass resolution. Two of the aliquots were analysed
with two separate reverse phase UPLC/MS/MS methods with positive
ion mode electrospray ionization (ESI) optimized for hydrophilic com-
pounds. In thismethod, the extract was gradually eluted from a C18 col-
umn (Waters UPLC BEH C18–2.1 × 100 mm, 1.7 μm) using water and
methanol containing 0.05% perfluoropentanoic acid (PFPA) and 0.1%
formic acid (FA). The second extracts were evaluated for more hydro-
phobic compounds by eluting the sample with methanol, acetonitrile,
water, 0.05 PFPA, and 0.1% FA. The third aliquots were analysed using
basic negative ion conditions by conditioning the sample with 6.5 mM
ammonium bicarbonate at pH 8.0 and eluting with methanol and
water through a dedicated separate C18 column. The last aliquots
were analysed using a negative ionization following elution from
HILIC column (Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 μm) using
a gradient consisting of water and acetonitrile with 10 mM ammonium
formate, pH 10.8. Those four analytical methods were optimized ac-
cording to thepolarity or hydrophilicity of the compounds. TheMSanal-
ysis alternated between MS and data-dependent MSn scans using
dynamic exclusion. The scan range varied slightly between methods
but covered 70–100 m/z.

Variability and performance of extraction and instrumentation were
validated by the utilization of recovery and internal standards. A pooled
composite sample consisting of a small volume of each experimental
sample served as a technical replicate and extracted water samples
served as process blanks. Those control samples were spaced evenly
among the injections to monitor instrument stability.

2.4. Metabolome data collection

Data extraction was performed using Metabolon's Laboratory Infor-
mation Management System (LIMS). Compounds were identified by
comparison to library entries, which contain over 5000 commercially
available purified standard or mass spectral entries of recurrent un-
knownentries.Mass-spectrometry based levels ofmetaboliteswere cal-
culated based on area-under-the-curve of the peaks, that allows for
quantitative analysis between the groups but not for the absolute quan-
tification. Additionally, each biochemical's ionization coefficient de-
pends on the environment. Hence, the threshold of detection is
experiment, matrix, and compound dependent. However, average de-
tection limits of the compounds were in the nanomolar range, and for
some compounds, the detection limits were in the picomolar range.
The threshold of detection is compound specific and determined by
Metabolon's algorithm.

2.5. Statistical analysis

Welch's two-sided two-sample t-test was used to perform a
pairwise comparison of themeans of themetabolites among the groups
[Ctrl HPV (−), Ctrl HPV (+), LSIL, HSIL, and ICC]. The p values below
0.05 were corrected using false discovery rate (FDR) method and q
values were reported. The fold changes observed among the groups
were visualized using Cytoscape network analysis [22]. A trend analysis
was performed to visualize the differences observed in number of me-
tabolites between the groups. The metabolites that distinguished the
patients in the ICC group from Ctrl HPV (−) group and Ctrl HPV (+)
group from LSIL and HSIL groupswere identified using Receiver Operat-
ing Characteristics (ROC) analysis and the strength of the discriminators
were measured with the Area Under the Curve (AUC) values. AUC
values above 0.8 were considered as good and above 0.9 were consid-
ered as excellent discriminators. To measure the strength and direction
of the linear associations between the metabolites and other sample
data including the inflammation scores, vaginal pH, and Lactobacillus
dominance, Spearman's rank correlation coefficients were calculated,
unadjusted and bootstrapped p values were reported. Based on the
sample size (all samples (n = 78) versus without the ICC samples (n
= 68)), Spearman's rho (ρ) critical value of 0.223 and 0.239 were
selected.

The dissimilarities in the metabolome dataset among the groups
were analysed using principal component analysis (PCA). Multivariate
analysis of variance (MANOVA) analysis was performed to determine
the composite differences for the first two components among the clus-
ters based on participant characteristics, Lactobacillus dominance, and
genital inflammation. Additionally, the distances among the groups on
PC1 and PC2 axes were calculated using Mann-Whitney's U test. Using
R software and ggplot2 library [23], we overlaid shaded ellipses on clus-
ters to reflect 95% confidence intervals from the centroids of the clus-
ters. A hierarchical clustering analysis (HCA) was performed based on
Euclidean distances observed among the metabolomes. The differences
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in the patient clusters identified by HCA were tested using the chi-
square test and p values were reported. The participant demographics,
features of the cervicovaginal environment, genital inflammation and
pH of the patient clusters were compared using Mann-Whitney's U
test and p values were reported. PCA and HCA were performed using
metabolome composition of 475 metabolites that were identified by
Metabolon Inc.

2.6. Bioinformatic analysis to integrate metabolomes with microbiomes

Quantitative Insights into Microbial Ecology (QIIME) v1.9 pipeline
[24] was used for preparing 16S rRNA gene sequences for metagenome
predictions. Operational Taxonomic Units (OTUs) with 97% sequence
similarity were picked using a closed OTU picking method with Uclust
[25] against the Greengenes database [26]. OTUs that were normalized
based on gene copy numbers using QIIME v1.9 [24] were used for pre-
diction of the metagenomes using the Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States (PICRUSt) [27].
Relative contribution of the human and microbial genomes to the ex-
pression of metabolites detected were calculated using Annotation of
Metabolite Origins via Networks (AMON) [28]. Briefly, using the
cervicovaginal metabolome datasets, host genome and microbial ge-
nomes downloaded from the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) database (https://www.genome.jp/kegg/), and PICRUSt
predicted metagenomes, we revealed microbial and host contribution
to the metabolites. Homo sapiens (has) was used for the host genome
and Sneathia amnii (sns), Prevotella denticola (dns),Gardnerella vaginalis
ATCC 1409 (gdv), Atopobium parvulum (apv), Streptococcus sanguinis
(sng), Lactobacillus crispatus (lcr) were used for the microbial genomes
to represent the six most abundant bacteria observed in our dataset.
Model-based Integration of Metabolite Observations and Species Abun-
dances (MIMOSA) [29] was used to reveal the potential contribution of
microbial taxa to the expression of metabolites that distinguish groups.
For theMIMOSAanalysis, PICRUSt-predictedmetagenomes and theme-
tabolomedatasetswere used.MIMOSAutilizes a predicted relativemet-
abolic turnover (PRMT) model to estimate gene abundances from
PICRUSt-predicted metagenome data to produce community-wide
metabolic potential (CMP) scores for each metabolite and sample
using metabolites observed, predicted metagenomes and datasets
fromKEGG database including genomes, reactions, and pathways. Com-
paring CMP scores tometabolite variations, themetabolites were classi-
fied as well predicted by certain taxa or anti-predicted. For the
visualization of the dataset, only well-predicted metabolites with false
discovery rate b 0.1 were presented.

2.7. Data and software availability

16S rRNA gene sequences were deposited in the National Center for
Biotechnology Information (NCBI) database on BioProject accession
number: PRJNA518153 and under Sequence Read Archive (SRA) acces-
sion IDs SAMN10855179 to SAMN10855255. De-identified metabolo-
mics data is available in Supplementary files.

3. Results

3.1. Cervicovaginal metabolite diversity was reduced in Ctrl HPV (+) and
cervical dysplasia groups whereas diversity was increased in cervical can-
cer patients compared to Ctrl HPV (−) controls

We characterized cervicovaginal metabolomes in premenopausal
non-pregnant healthy HPV-negative individuals [Ctrl HPV (−)] (n =
18), healthy HPV-positive individuals [Ctrl HPV (+)] (n = 11),
women with low-grade squamous intraepithelial lesions (LSIL) (n =
12), high-grade squamous intraepithelial lesions (HSIL) (n = 27), and
newly diagnosed ICC (n = 10) using a global metabolomics approach.
The patient characteristics and demographic information are
summarized in Supplementary Table 1. Participants were assigned to
the patient groups based on histology of colposcopy-directed biopsy
samples that were evaluated by a pathologist. If histologywas not avail-
able, cytology results were evaluated. As described in our previous pub-
lication [6], a two-tiered system of cervical intraepithelial neoplasia
(CIN) was used: CIN1 and CIN2/3 were categorized as LSIL and HSIL, re-
spectively. Our participant group consisted of 37 Hispanic and 41 non-
Hispanic women and there was no significant difference in race/ethnic-
ity among the patient groups (Fisher's exact test, p = .15). Sixty-eight
percent of the participants had body mass index (BMI) N25, however
BMI did not significantly differ among the groups (ANOVA, p = .47).
The mean age across the groups was 38 ± 8 years and age distribution
among the groups was not significantly different (ANOVA, p = .46).
Vaginal pH was significantly different among the groups, pH 4.9 ± 0.6
for Ctrl HPV (−), pH 5.7 ± 1.09 for Ctrl HPV (+), pH 5.2 ± 0.6 for
LSIL, pH 5.8 ± 0.9 for HSIL and pH 6.6 ± 0.9 for ICC (mean ± standard
deviation, 5.6 ± 0.9) (ANOVA, p = .003). Predominant HPV genotypes
in our study, determined with Linear Array HPV Genotyping Tests
(Roche) on DNA extracts from vaginal swabs, were HPV 16 (n = 43),
HPV 31 (n = 13), and HPV 45 (n = 13). Fifty seven out of 60 HPV
(+) participants [Ctrl HPV (+), LSIL, HSIL, and ICC] were positive for
multiple HPV genotypes.

Our metabolome dataset was composed of 475 compounds of
known identity from eight different metabolic pathways; 127 lipid,
147 amino acid, 34 nucleotide, 82 xenobiotic, 17 cofactor and vitamin,
10 energy, 24 carbohydrate, 32 peptide, and 2 partially-characterized
molecules. Principal component analysis (PCA) of cervicovaginal la-
vages (CVLs) illustrated that global metabolomic profiles of ICC patients
compared to other patient groupswere distinct on principal component
1 (PC1) and PC2, which explained 46.57% of variation in the dataset
(Fig. 1A; MANOVA, Wilk's Lambda test, p = .006; Mann-Whitney U
test, p = .0009 and p = .0225, for PC1 and PC2, respectively). Due to
the complex nature of the cervicovaginal lavages, the unexplained var-
iation (53.43%) can be accounted for by the heterogeneity in participant
genetic background, diet, lifestyle, etc. However, other collected partic-
ipant metadata, for example, age, ethnicity, and BMI did not have a sta-
tistically significant effect on clustering (MANOVA p ≥ .05, Wilk's
Lambda test, Supplementary Fig. 1). Samples from the HSIL group also
formed a cluster that was significantly distinct from the Ctrl HPV (−)
group samples, but only on PC1 (Mann-Whitney U test, p = .046). As
shown in Fig. 1B, differences in the metabolic profiles were driven by
the number of different metabolites observed in the groups (Mann-
Whitney U test, p= .001). ICC patients had a significantly greater num-
ber of metabolites (378 ± 36) than the Ctrl HPV (+) (326 ± 33, p =
.037), LSIL (324±45, p=.022), andHSIL (316±43, p=.0009) groups,
but not the Ctrl HPV (−) group (348 ± 36, p= .363). Overall, Ctrl HPV
(+), LSIL, and HSIL groups had a lower number of metabolites in the
CVLs compared to Ctrl HPV (−) group; however, this finding did not
reach significance possibly due to the limited number of samples per
group. However, when we performed a trend analysis, we found that
due to a reduction in the number of metabolites present in samples
from HPV positive participants with and without cervical dysplasia
[Ctrl HPV (+), LSIL, and HSIL], and an increase in the number of metab-
olites in ICC, the trend was significantly non-linear (p = .0004). Based
on curve analysis, we found that the metabolite diversity trend was
polynomial (p = .01).

In order to evaluate similarities and dissimilarities in the datasets,
we compared the number of shared and unique metabolites among
the groups. Patient groups shared 86% of the identified metabolites
(426/475), and the ICC grouphad the greatest number of uniquemetab-
olites (n = 12) (Fig. 1C). The unique metabolites from ICC belonged to
lipid and xenobiotic super-pathways, especially from xenobiotic/drug
metabolism (See Supplementary Table 2). When we visualized signifi-
cantly enriched or depleted metabolites on Cytoscape networks and
performed pairwise comparisons, we observed a significant enrichment
of metabolites in lipid, xenobiotics, and carbohydrate super-pathways

https://www.genome.jp/kegg/
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in the ICC group compared to Ctrl HPV (−), Ctrl HPV (+), LSIL, and HSIL
groups. Additionally, the ICC group had an enrichment of amino acid
metabolites in comparison to other groups that were HPV positive
with and without cervical dysplasia [Ctrl HPV (+), LSIL, and HSIL]
(Fig. 1D). Compared to the Ctrl HPV (−) group, Ctrl HPV (+), LSIL,
and HSIL groups showed a depletion in metabolites mainly in the
amino acid super-pathway. Interestingly, the sub-pathways under the
amino acid super-pathway and the level of depletion was different for
Ctrl HPV (+), LSIL, and HSIL groups when compared to the Ctrl HPV
(−) group. For example, Ctrl HPV (+) participants had metabolites
mainly depleted in lysine, polyamine, and phenylalanine metabolism,
while LSIL participants had metabolites depleted in histidine and the
urea cycle. The HSIL group had depletions in many amino acid metabo-
lites; however, the depletions were at a lower magnitude. Additionally,
all the dipeptide metabolites were depleted in the HSIL group, which
might explain the differences observed on PCA (Fig. 1A). This compara-
tive analysis revealed that HPV infection, cervical dysplasia, and ICC had
a divergent impact on cervicovaginal metabolomes.

3.2. HPV infection depleted metabolites in specific amino acid and nucleo-
tide super pathways and ICC enriched metabolites from multiple lipid
pathways

In order to explore the potential effect of HPV infection on the
cervicovaginal metabolome, we performed receiver operating charac-
teristics (ROC) analysis using samples from Ctrl HPV (−) and Ctrl HPV
(+) individuals. The analysis did not reveal metabolites that discrimi-
nate Ctrl HPV (+) samples from the Ctrl HPV (−) samples (AUC b

0.8). However, when Ctrl HPV (−) samples were compared to Ctrl
HPV (+) samples, we observed three amino acids (N-acetyltaurine,
N6-acetyllysine, C-glycosyltryptophan), two nucleotides (guanine and
urate), phosphate and deoxycarnitine had discriminatory ability with
AUC values N0.8 as shown in Fig. 2A, suggesting a significant depletion
of these metabolites in the Ctrl HPV (+) group. Indeed, the concentra-
tions of these metabolites were significantly lower in the Ctrl HPV (+)
group compared to Ctrl HPV (−) and ICC groups (Supplementary
Table 3). When we performed ROC analysis to identify metabolites
that discriminate Ctrl HPV (−) from LSIL, we found three amino acid
metabolism products (pentose acid, 1-methyl-4-imidazoleacetate,
pyroglutamine), one nucleotide product (1-methylhypoxanthine), and
a xenobiotic (tartrate) as discriminators, as shown in Fig. 2B. Interest-
ingly, the discriminators of Ctrl HPV (−) from HSIL were not the same
metabolites as identified for LSIL. Only a phospholipid
(phosphoethanolamine) and amino acid (glutamine) had N0.8 AUC
(Fig. 2C). In summary, HPV infection and cervical dysplasia led to deple-
tion of metabolites from certain amino acid and nucleotide metabo-
lisms. These amino acid and nucleotide metabolites distinguished Ctrl
HPV (−) group from the Ctrl HPV (+) and cervical dysplasia (LSIL
and HSIL) groups.

Since PCA analysis showed distinct metabolomes of ICC patients
compared to the other groups, we next investigated the signatures of
ICC using ROC analysis. As illustrated in Fig. 2D, 50metabolites were ei-
ther equal to or greater than AUC value of 0.80 indicating ICC signifi-
cantly changes the expression of metabolomes in the cervicovaginal
microenvironment and these metabolites can accurately distinguish
participants with ICC from the Ctrl HPV (−). When ICC was compared
to Ctrl HPV (+), most of the metabolites were similar to those that dis-
criminated ICC from Ctrl HPV (−). Interestingly, many of the metabo-
lites discriminated ICC group from the Ctrl HPV (−) group belonged
to the lipid super-pathway (Fig. 2D). These metabolites were mainly
long chain fatty acids, ketone bodies, steroids, ceramides, and
plasmalogens. Among the detected molecules as discriminators of ICC,
oleate/vaccinate, eicosenoate, and 3-hydroxybutyrate had AUC values
N0.9, which providedmore accurate discriminator and better predictive
estimates than any other metabolite that was detected. As visualized in
Fig. 2D, the abundance of these metabolites in the ICC group was not
only significantly greater than the Ctrl HPV (−) and Ctrl HPV (+)
groups, but also from the LSIL and HSIL groups (q b 0.05).Whenwe cal-
culated the AUC based on ICC compared to HSIL group, 71 metabolites
had AUC N0.80 that distinguished ICC from HSIL. Similar to ICC and
HPV comparisons, the majority of the metabolites were long chain sat-
urated fatty acids, ketone bodies, plasmalogens, ceramides, and
sphingomyelins (See Supplementary Table 3 and Supplementary
Table 4). Overall, ROC analysis showed that ICC patients harbour ele-
vated levels of lipid metabolites from different subclasses that can accu-
rately distinguish them from all the other groups. Furthermore, those
signature molecules did not show any gradation among the Ctrl HPV
(+) and dysplasia groups when compared to Ctrl HPV (−) group (See
Supplementary Table 3).

3.3. Microbially produced metabolites explained the dynamic shifts ob-
served in the peptide and amino acid metabolisms

Microorganisms colonizing the cervicovaginal microenvironment
produce a broad range of metabolites that are important for
cervicovaginal health. Therefore, we investigated whether differences
in the vaginal microbiota, in connection to the severity of cervical neo-
plasm, explain variations observed in the metabolome dataset. When
we colour coded samples on PCA plots based on microbiota composi-
tion, metabolomes from patients with Lactobacillus-dominated (LD)
vaginal microbiota formed a cluster significantly different than the
metabolomes from patients with non-Lactobacillus dominance (NLD)
(Fig. 3A). In accordancewith the Lactobacillusdominance, vaginal pH re-
vealed a similar clustering pattern on PCA (MANOVA, Wilk's Lambda
test, p b .001, Supplementary Fig. 2). Grouping based on Lactobacillus
dominance showed significance when PC1 and PC2 were analysed to-
gether (MANOVA, Wilk's Lambda test, p b .001). The difference was
more apparent on PC2 (Mann-Whitney U test, p = .002), which ex-
plained 17% of the variation in the dataset. This observation provided
further proof that vaginal microbiomes significantly modulate
cervicovaginal metabolomes.

Considering that metabolomes of patients with LD microbiomes di-
verged frommetabolomes of patientswithNLDmicrobiomes,we exam-
ined their impact on metabolic super-pathways. Fig. 3B shows
metabolic networks visualizing NLD vs LD metabolomes using
Cytoscape. Many metabolites from lipid, amino acid, and nucleotide
pathways were significantly enriched in the NLD metabolomes com-
pared to LD. Additionally, all metabolites from dipeptide metabolism
were significantly depleted, similar to our observation in the HSIL
group compared to Ctrl HPV (−) group (Fig. 1D).

We also evaluated the origins of the cervicovaginal metabolites
using Annotation of Metabolite Origins via Networks (AMON) software
[28]. Based on PICRUSt metagenome predictions and quantified metab-
olites in our dataset that have Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) identifiers, 48% of the identified metabolites were
predicted to be produced by the cervicovaginal microorganisms,
which is slightly less than the metabolites that can be produced by the
human metabolism (54.4%) (Fig. 3C). We found that 39.1% of the me-
tabolites could not be explained by the host or the vaginal microbiota.
We did not observe any differences in number of only microbially-
produced metabolites among Ctrl HPV (−), Ctrl HPV (+), LSIL, HSIL,
and ICC groups, since this analysis strictly depends on presence or ab-
sence of microbial phylotypes rather than their abundances.We also in-
vestigated the individual contribution of the most abundant microbial
genera detected in our dataset: Lactobacillus, Prevotella, Sneathia,
Atopobium, Streptococcus, and Gardnerella [6]. Microbial genomes
downloaded from KEGG showed that Prevotella was the genus capable
of producing most of the metabolites in our dataset (Fig. 3D) (n = 60;
23% of metabolites detected and exist in the KEGG database) and
Gardnerellawas the genus capable of producing the least number ofme-
tabolites (n=38; 14% ofmetabolites detected and exist in theKEGGda-
tabase) compared to the other genera tested. Themetabolites predicted
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to be produced by themost abundant bacteriaweremainly amino acids,
nucleic acids, or their metabolic end-products (Fig. 3D). Microbial con-
tribution analysis did not explain the differences observed in lipid me-
tabolism when LD and NLD groups were compared. Samples that
belong to the NLD group are composed of mainly cervical dysplasia
and ICC patients, hence enrichments in the lipid metabolism in NLD
could be coincidental.

In order to mechanistically associate cervicovaginal metabolites
in our dataset to microbiome composition, we performed Model
Based Integration of Metabolite Observations and Species Abundances
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(MIMOSA) [29] analysis instead of correlation analysiswhich could lead
tomisinterpretation of themicrobe-metabolite interactions. Correlation
analysis between microbial taxa and host-associated metabolomes
were found to lead to a poor explanation of the interactions and inaccu-
rate interpretations [30]. Based on MIMOSA analyses, illustrated in
Fig. 3E, of 127 metabolites that were predicted to be produced by the
microbiota, 36 of themwere significantly consistent with themetabolic
potential (FDR b 0.1). As expected, mainly amino acids and amino acid
degradation products, such as polyamines, were well-predicted to be
modulated by the microorganisms. This model revealed that amino
acids and their degradation products were well-predicted, and there
were shifts in the products that can be produced by BV-associated
microorganisms in comparison to Lactobacillus species. Lactobacillus
species were the sole predictors of a secondary bile acid
(glycochenodeoxycholate), amino acid (L-proline), and an amino acid
product (glutathione disulphide),molecules that exert beneficial effects
on the host based on metabolite fluxes. On the other hand, BV-
associated bacteria explained the metabolism of specific metabolites.
Atopobium contributed to the metabolism of L-threonine, adenosine,
imidazole-4 acetate, glutathione disulphide, orthophosphate, L-lysine,
4-acetamidobutanoate, methylmalonate, and succinate. Gardnerella
was the main contributor to the hippurate metabolism. NAD+ flux
wasmainly explained by the presence of Sneathia in our data set. Strep-
tococcus contributed to 2,3-dihydroxy-3-methylbutanoate, a secondary
metabolite in leucine, isoleucine, and valine metabolism, alpha-
isopropylmalate, and cytosine. Interestingly, non-abundant genera in-
cluding Dialister, Roseomonas, Staphylococcus, and Shuttleworthia were
predicted to contribute to metabolism of a diverse set of metabolites
such as orthophosphate, adenosine, L-lysine, succinate,
methylmalonate, and imidazole-4 acetate (Fig. 3E). Overall, our com-
prehensive analysis ofmicrobiome-metabolome relationships indicated
that displacement of LD with NLD potentially induced various shifts in
the amino acid metabolism that can be mostly explained by six most
abundant genera detected in our dataset.

3.4. Lipid and xenobiotic metabolites were highly associated with genital
inflammation

Since inflammation is a critical component of tumour progression,
we investigated the link between cervicovaginalmetabolomes and gen-
ital inflammation. Genital inflammation scoring strategywas previously
reported [6,9,31,32]. Briefly, expression levels of seven cytokines (IL-1α,
IL-1β, IL-8, MIP-1β, CCL20, RANTES, and TNFα) were evaluated in CVLs
and the patients were assigned a cumulative score based on whether
the level of each cytokinewas in the upper quartile. Patients that scored
five to seven were considered to have high genital inflammation,
whereas one tofivewas assigned low genital inflammation and patients
with a score of 0were categorized as no inflammation.We overlaid gen-
ital inflammation scores on metabolomes and visualized on PCA as
shown in Fig. 4A. Based on distances visualized on PCA, samples showed
a gradation based on the genital inflammation category. Patients in the
high genital inflammation category formed a cluster significantly dis-
tant from the none and low genital inflammation groups on both PC1
(Mann-Whitney U test, p values 0.0004 and 0.0143, respectively) and
Fig. 1.HPV infection, dysplasia, and invasive cervical carcinoma (ICC) divergently impacted the
cervicovaginal metabolome profile in ICC patients compared to Ctrl HPV (−), Ctrl HPV (+), LS
group was significantly different than Ctrl HPV (−) group on PC2 axis. Boxplots represent med
represent 95% confidence intervals of the cluster centroids. Mann-WhitneyU test p values repre
ICC patients had significantly greater number ofmetabolites in comparison to patients in the Ctr
ICC and Ctrl HPV (−) groups. ns = not significant. The trend analysis showed that the trend w
visualized on a Venn diagram. Majority of the metabolites were detected in the all groups.
participants in other groups. Supplementary Table 2 contains the list of metabolites that ar
groups visualized by Cytoscape metabolic network analysis. The node size is proportional to
enriched and depleted metabolites, respectively. In comparison to all other patient grou
carbohydrate, and xenobiotic metabolism. Amino acids and their metabolites were depleted i
group compared to Ctrl HPV (−).
PC2 (p b .0001 and p= .0016, respectively). Based onMANOVA results,
genital inflammation led to significant grouping on PCA (Wilk's Lambda
p b .001). The difference between the low and no genital inflammation
groups on PC2 was also significant (Mann-Whitney U test, p = .0228).
Additionally, as indicated in Fig. 4A, the samples with high genital in-
flammation were mainly ICC patients (6/10). When we performed cor-
relation analysis, 32% (187/575) of the metabolites significantly
correlated with genital inflammation scores with Spearman's rho
greater than the critical value (0.23 for n = 78, and bootstrapped p b

.05). About 29% (168/575) and 3% (19/575) of the metabolites showed
positive and negative correlation with genital inflammation, respec-
tively (Fig. 4B). Metabolites that positively correlated with genital in-
flammation were mainly from lipids (n = 99) followed by
amino acids (n = 23), nucleotides (n = 14) and xenobiotics (n = 11).
Lipids that positively correlated (ρ N 0.68, p b .05) with genital inflam-
mation were sphingolipids, plasmalogens, phosphatidylcholines,
phospatidylethanolamines and long-chain-poly-unsaturated fatty
acids (Fig. 4B, Supplementary Table 4), which are essential components
of host and bacterial cellularmembranes. The relative concentrations of
the metabolites from these five lipid sub-families were significantly
higher in the ICC group compared to other groups as shown in Fig. 4C.
These data strengthen the link between genital inflammation, cancer,
and lipids. The correlation between genital inflammation and lipids
was stronger (ρ N 0. 74 for the first 20 highest ranked correlations)
than the correlation between other metabolites and genital inflamma-
tion (Supplementary Table 4). Most metabolites that negatively corre-
lated with genital inflammation were xenobiotics (n = 11), amino
acids (n = 4), and nucleotides (n = 2).

Since genital inflammation is linked to vaginal microbial community
composition, we investigated the relationship between the metabolites
that correlated with genital inflammation and Lactobacillus abundance.
Fig. 5A illustrates Spearman's rho coefficients between the metabolites
and genital inflammation versus metabolites and Lactobacillus abun-
dance. Many of the lipids that highly correlated with genital inflamma-
tion did not correlate with Lactobacillus abundance. However, one of the
sphingomyelins, linoleate, glycochenodeoxycholate and deoxycarnitine
were negatively correlated with Lactobacillus abundance. Glutathione
synthesis intermediate, 2-hydroxybutyrate, branched chain amino
acid metabolism product, alpha-hydroxy-isovalerate, and L-isoleucine
metabolism product, 2-hydroxy-3-methyl-valerate moderately and
positively correlated with genital inflammation and negatively corre-
lated with Lactobacillus abundance. These amino acid metabolites
were significantly higher in the ICC group compared to other groups
(Welch's two-sided t-test, q b 0.05, Fig. 5B). Metabolites that discrimi-
nated ICC from the Ctrl HPV (−), eicosenoate, 3-hydroxybutyrate, and
oleate/vaccinate highly correlated with genital inflammation (Fig. 5A).
Metabolites that positively correlated with Lactobacillus abundance
and genital inflammation included amino acids/products such as argi-
nine and betaine, a polyamine, N(1)-acetylspermine, and lipids mainly
involved in carnitine metabolism such as decanoylcarnitine,
hexanoylcarnitine, and acetylcarnitine. The levels of these metabolites
were depleted in the Ctrl HPV (+), LSIL, and HSIL groups compared to
Ctrl HPV (−) and ICC groups as shown in Fig. 5C and E. There were
only a few metabolites that negatively correlated with genital
cervicovaginal metabolic profile. A) Principal component analysis (PCA) showed a distinct
IL, and HSIL patient groups. The difference was significant on both PC1 and PC2 axes. HSIL
ian, first and third quartile, minimum andmaximum values in the dataset. Shaded ellipses
sented as *p b .05, **p b .01, ***p b .001. B) Number ofmetabolites detected in each group.
l HPV (+), LSIL, andHSIL groups. However, therewas no significant difference between the
as polynomial (p= .01). C) Number of unique and shared metabolites among the groups
ICC group had the greatest number of metabolites that were not detected in any of the
e different in each group. D) Enrichment and depletions of metabolites among patient
the magnitude of differences observed among the groups. Red and blue nodes represent
ps, ICC patients had an enrichment of metabolites that belong to lipid, amino acid,
n Ctrl HPV (+), LSIL, and HSIL groups. Dipeptides were significantly depleted in the HSIL
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inflammation but positively correlated with Lactobacillus abundance.
These metabolites included nucleotides adenosine and cytosine and xe-
nobiotics such as 2-keto-3-deoxy-gluconate and 1,2,3-benzenetriol. The
relative levels of these nucleotides or xenobiotics were lower in the ICC
group compared to other groups and the difference in cytosine levels
betweenCtrl HPV (−) and ICC group and 2-keto-3-deoxy-gluconate be-
tween HSIL and ICC were statistically significant (Welch's two-sided t-
test, q b 0.05) (Fig. 5D).

We also observedmany biogenic amines (cadaverine, putrescine, ty-
ramine, tryptamine, and agmatine) negatively correlated with Lactoba-
cillus abundance as predicted but did not correlate with genital
inflammation. In general, levels of the biogenic amines did not signifi-
cantly differ among the groups (See Supplementary Fig. 3). Additionally,
lactate levels strongly and positively correlated with Lactobacillus abun-
dance. Interestingly, non-Lactobacillus dominated HSIL group had sig-
nificantly lower levels of lactate compared to Ctrl HPV (−) and ICC
groups. A major Gardnerella associated metabolite, hippurate, did not
correlate with either genital inflammation or Lactobacillus abundance.
A metabolite that was mainly predicted to be modulated by Sneathia
was NAD+ based on MIMOSA analysis. Additionally, NAD+ levels pos-
itively correlated with Lactobacillus abundance. Interestingly, NAD+
levels were significantly lower in HSIL compared to Ctrl HPV (−). To
better understand the associations independent from cancer, we per-
formed the correlation analysis by excluding all ICC samples. As
shown in Supplementary Fig. 4, we observed the same trend between
metabolites that were associated with inflammation and Lactobacillus
when the ICC sampleswere excluded. However, we observedminor dif-
ferences in correlation coefficients of keymetabolites, for example, ρ for
lactate and Lactobacillus abundance was greater (ρ = 0.65 versus ρ =
0.69) whereas ρ for alpha-hydroxy-isovalerate and Lactobacillus abun-
dance was slightly smaller (ρ = −0.59 versus ρ = −0.58) when the
ICC samples were excluded.

3.5. Metabolomes formed three distinct clusters mainly driven by cervical
cancer, vaginal pH and microbial communities

Metabolites detected in theCVLs can be impacted bymanybiological
variables including viruses, microbial communities, host-derived fac-
tors, and outcomes of host-microbe interactions including genital in-
flammation and vaginal pH. We performed unsupervised hierarchical
clustering using all identified metabolites to reveal whether any of
these covariates drive the similarities between the metabolomes.
Based on Euclidean distances among the metabolomes, samples were
assembled into three clusters as shown in Fig. 6A. Cluster 1 (n = 4)
composed of only ICC patients, whereas Clusters 2 (n=29) and Cluster
3 (n=45)were not dominated by any particular participant group. The
participant group composition of Cluster 1 was significantly different
than Cluster 2 (Chi-Square test, p = .002) or Cluster 3 (chi-square
test, p b .0001) (Fig. 6B). As ICC explained only Cluster 1, we evaluated
other factors that might be defining Cluster 2 and 3. The genital inflam-
mation score was greater in Cluster 1 compared to Clusters 2 and 3 as
shown in Fig. 6C, which did not distinguish Cluster 2 from Cluster 3.
Next, we evaluated Lactobacillus dominance. As in depicted in Fig. 6D,
clusters had significantly different vaginal microbiota composition.
Cluster 1 was solely dominated by NLD microbiota, whereas Cluster 2
was mainly consisted of participants with LD microbiota. Similar to
Cluster 1, Cluster 3 mainly consisted of patients with NLD microbiota
as well. Cluster 2 was dominated by Lactobacillus crispatus and Lactoba-
cillus iners. On the other hand, Cluster 3 was dominated by
Fig. 2.Multiple metabolites from diverse pathways robustly discriminated healthy, dysplasia, a
analysis was 0.8 to include only good (0.8 ≤ AUC b 0.9) and excellent (AUC ≥ 0.9) biosignatu
acid, lipid, nucleotide, and xenobiotic metabolism products were indicators of absence of
metabolism products in LSIL discriminated Ctrl HPV (−) from LSIL. C) ROC comparing Ctrl HPV
from HSIL. D) ROC analysis performed between ICC and Ctrl HPV (−) groups revealed metab
strong discriminators of ICC. Those lipids were associated with cancer related inflammation. S
Table 4 contains the q values of Welch's t-test for group comparisons listed in this figure.
polymicrobial communities followed by L. iners. Since vaginal pH and
microbial composition are linked [6], as expected, vaginal pH of the pa-
tients in each cluster differed significantly as well. Individuals in Cluster
1, that was dominated bymultiple non-Lactobacillus genera, had signif-
icantly higher vaginal pH compared to the individuals in Clusters 2 and
3. Cluster 2 was composed of participants with significantly lower vag-
inal pH (Fig. 6E) in accordance with Lactobacillus dominance, when
compared to Cluster 1 (Mann-Whitney U test, p = .002) or Cluster 3
(Mann-Whitney U test, p = .046). Consistent with our previous obser-
vations, Lactobacillus dominance and vaginal pH better explained the
clustering than the other variables. In summary, these results indicate
that cancer, vaginal microbiota, and genital inflammation are robust
drivers of cervicovaginal metabolomes.

4. Discussion

The metabolomic profiling offers a unique understanding of the
complex interactions between the host andmicrobes in carcinogenesis.
In addition, dysregulation of metabolism is an emerging hallmark of
cancer [33]. A number of studies conducted on humans have shown a
distinct metabolic fingerprint of cervical cancer in plasma [15], tumour
tissues [16], faeces [17], and urine [34]. However, the impacts of HPV in-
fection, cervical dysplasia and cancer on the metabolic profiles of the
cervicovaginal microenvironment, a unique ecosystem where host epi-
thelial and immune cells directly interact with viruses, bacteria and
other environmental factors, have not been previously addressed. Un-
questionably, metabolic fingerprinting of cervicovaginal lavages more
accurately reflects the interactions between host and the microorgan-
ismswithin the localmicroenvironment. Additionally,metabolicfinger-
printing can provide insights into the interplay between persistent HPV
infection, cervical neoplasm, and other features of the cervicovaginal
microenvironment (i.e., genital inflammation, vaginal microbiome and
vaginal pH) in the development of cervical dysplasia and progression
to ICC. Here, we evaluated these metabolic interactions and characteris-
tics of the cervicovaginal microenvironment (vaginal pH, vaginal
microbiome, genital inflammation) in Ctrl HPV (−), Ctrl HPV (+),
LSIL, HSIL, and newly diagnosed ICC patient groups. We show that
unique metabolic profiles, impacted by genital inflammation, vaginal
pH, and the vaginal microbiome, predict patient groups and reflect pro-
found differences in the host and microbe co-metabolism during HPV
infection, cervical dysplasia, and ICC.

Cervical cancer, dysplasia, and HPV infection exhibited divergent ef-
fects on the cervicovaginal metabolomes. A depletion of amino acidme-
tabolites in HPV-positive and cervical dysplasia groups (LSIL and HSIL),
and depletion of dipeptides in theHSIL groupwas replaced in ICC by en-
richment of xenobiotics and lipids from plasmalogens, sphingomyelins,
phosphatidylcholines, and long chain polyunsaturated fatty acids. Ob-
servation of xenobiotics, mainly anti-inflammatory and analgesic
drugs such as ibuprofen, acetaminophen, nafloxin, and their metabo-
lites in the CVLs of ICC patients indicated a possible translocation of
these drugs from blood to the cervix and vagina. A higher abundance
of lipid metabolites in ICC patients compared to healthy individuals
can be explained by an increase in cell proliferation and cell membrane
synthesis through activation of oncogenic pathways in the tumour mi-
croenvironment [35]. Hence, enrichment of lipids in the cervicovaginal
microenvironment relevant to nutrient acquisition validated one of
the emerging hallmarks of cancer metabolism [33].

Using a well-characterized and robust biomarker discovery analysis
(ROC) [36], we identified three lipid molecules, 3-hydroxybutyrate,
nd ICC patient groups. The cut-off value for the Receiver Operating Characteristics (ROC)
res. A) ROC analysis comparing Ctrl HPV (−) to Ctrl HPV (+). ROC showed that amino
HPV infection. B) ROC comparing Ctrl HPV (−) to LSIL. Depletions in the amino acid
(−) to HSIL. Phosphoethanolamine and glutamine were discriminators of Ctrl HPV (−)
olites from different lipid classes with N0.9 area under the curve (AUC) values serve as
upplementary Table 3 contains the median levels of the metabolites and Supplementary



Fig. 3. Vaginal microbiota composition profoundly impacted amino acid and nucleotide metabolisms. A) Principal component analysis of metabolomes visualized based on Lactobacillus
dominance. Lactobacillus dominant (LD) and non-Lactobacillus dominant (NLD) metabolomes were significantly different on PC2. Boxplots represent median, first and third quartile,
minimum and maximum values in the dataset. Shaded ellipses represent 95% confidence intervals of the cluster centroids. Mann-Whitney U test p values represented as *p b .05, **p b

.01, ***p b .001. B) Metabolic enrichments and depletions in NLD vs LD visualized on Cytoscape networks. Metabolomes of patients that had NLD vaginal microbial communities had
enrichments in lipid and amino acid metabolism. Dipeptides were depleted in patients with NLD communities. Some metabolites from polyamines were enriched whereas some were
depleted in patients with NLD communities. C) Prediction of vaginal microbiota or host origins of the metabolites. PICRUSt predicted metagenomes annotated with AMON explained
60% of the detected metabolites in cervicovaginal lavages in all groups. D) The six most abundant genera within the data set were predicted to contribute 14–23% of the metabolites
that were detected. The microbially produced metabolites mainly belonged to amino acid and nucleotide metabolism. E) Well-predicted (FDR b 0.1) metabolites based on MIMOSA
analysis and relative contribution of microbial phylotypes to the production or depletion of metabolites. The six most dominant genera within our dataset explained the observed
concentrations of many amino acids and their metabolic end-products.
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eicosenoate, and oleate/vaccenate with excellent discrimination capac-
ity (AUC N 0.9) of ICC patients from healthy participants. A ketone body,
3-hydroxybutyrate, was elevated in ovarian cancer and was associated
with invasion and migration of cancer cells [37,38]. Additionally, 3-
hydroxybutyrate augments tumour growth in-vitro epithelial cell
models [39]. A systematic review of 23 metabolome studies in ovarian
cancer highlighted abnormally high levels of lipids including, oleate/
vaccenate and eicosenoate in the serum [40], an observation consistent
with the metabolic profiles we observed in the CVLs of ICC patients. In
addition, elevated levels of oleic acid have been previously observed in
cervical cancer biopsies [41] and oleic acid has been shown to promote
cervical cancer cell growth in-vitro [42], thus validating our findings.
Interestingly, these markers are not only specific to cancer, but also
linked to inflammation and obesity, two comorbidities related to cancer
[43]. Genital inflammation and high BMI are also characteristics of our
patients although BMI did not significantly differ among the patient
groups.

ROC analysis also revealed that metabolites frommultiple metabolic
pathways were significantly depleted in HPV positive and cervical dys-
plasia groups. Interestingly, we observed unique discriminators that
distinguished the Ctrl HPV (−) group from the Ctrl HPV (+), LSIL or
HSIL groups. Depletion of metabolites from taurine, glutamine and ly-
sine metabolism, key amino acids that are involved in cellular growth
[44], in HPV-positive women and cervical dysplasia patients indicates



Fig. 4. Levels of genital inflammation highly correlated with metabolite profiles and patient groups. A) Principal component analysis (PCA) demonstrated a gradual separation of
metabolomes based on presence or intensity of genital inflammation. Metabolomes of patient with high genital inflammation (inflammation score of 5–7) formed a separate cluster
from patients without (inflammation score = 0) or low genital inflammation (inflammation score of 1–4) on PC1 and PC2. Majority of the high genital inflammation samples
belonged to ICC patients. Boxplots represent median, first and third quartile, minimum and maximum values in the dataset. Shaded ellipses represent 95% confidence intervals of the
cluster centroids. Mann-Whitney U test p values represented as *p b .05, **p b .01, ***p b .001. B) Number of metabolites positively and negatively correlated with genital
inflammation. Spearman's rho correlation coefficient greater than the critical value (0.23 for n = 78) with a bootstrapped p b .05 were considered significant. Metabolites from lipid
metabolism positively correlated with genital inflammation whereas xenobiotics negatively correlated with the genital inflammation. Lipids that correlated with genital inflammation
belonged to sphingomyelins, plasmalogens, phosphatidylcholines (PC), long-chain-polyunsaturated fatty acids, and phosp hatidylethanolamines (PE). Supplementary Table 5 includes
the list of Spearman's correlation coefficients reflecting the strength of correlation between genital inflammation and metabolites. C) Relative levels of plasmalogens, sphingomyelins,
phosphatidylcholines, phosphatidylethanolamines, and long-chain polyunsaturated fatty acid metabolites were greater in the ICC group compared to the others. Boxplots represent
median, first and third quartile, minimum and maximum values in the dataset. Welch's t-test p values represented as *p b .05, **p b .01, ***p b .001.
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disruption of healthy cellmetabolism as a functional consequence of po-
tential HPV-mediated dysbiosis. Glutamine, a critical amino acid for tu-
mour cell growth [33], and phosphoethanolamine, a well-established
anti-tumour agent [45], were found to be strong discriminators of
healthy patients vs. the HSIL patients. The impact of HPV on metabolite
depletions serves as anexample of changes in cervicovaginalmicroenvi-
ronment due to virus and host interactions.

Vaginal dysbiosis has emerged as a key risk factor in reproductive
health [46], inflammation [47] and HPV acquisition, persistence, and
cervical carcinogenesis [48]. However, the biological mechanisms and
host-microbe interactions that drive persistence and carcinogenesis
have not been elucidated. Thus, we integrated microbiome and metab-
olome data sets using the state-of-the-art bioinformatic tools (MIMOSA
and AMON) to reveal a functional impact of microbiomes on metabolic
fingerprints. Using a predicted relativemetabolic turnovermodel on our
measured communitymetabolome,we provide unique insights into the
microbial contribution to observed metabolomes beyond correlations
between microbial genera and metabolites. Our analysis based on mi-
crobial genomes indicated that differences in non-Lactobacillus domi-
nated (NLD) communities compared to Lactobacillus-dominated (LD)
communities specifically affect the flux of dipeptides, amino acid and
nucleotide metabolites, which was consistent with a previous report
that employed the samemodelling technique onmetabolomes in bacte-
rial vaginosis (BV) [29]. Our NLD communities were enriched in multi-
ple microbial genera including Gardnerella, Prevotella, Streptococcus and
Atopobium, that were typically found in BV patients [13,49–51]. A de-
crease in the abundance of vaginal Lactobacillus species in BV patients
was previously associatedwith an increase in the biogenic amine levels,
amino acid degradation products and depletion of dipeptides
[12,13,51,52]. Hence our findings agree with the observation that mi-
crobial diversity in the vaginal milieu alters amino acid metabolism.
Our study design excluded symptomatic BV patients, however we
observed severalmetabolic signatures of BV in our dataset. For example,
deoxycarnitine [12] and alpha-hydroxyisovalerate [52], previously
identified as signatures of BV, were negatively correlated with Lactoba-
cillus abundance. Interestingly, other acylcarnitines that are known pro-
inflammatory cytokine inducers [53] were significantly associated with
genital inflammation and Lactobacillus abundance. We also observed
BV-associated Gardnerella was the main contributor to hippurate me-
tabolism.Hippurate degradation is not only used as a test forGardnerella
identification [54], but also used in pathogen detection. Another impor-
tant metabolic signature of BV is presence of biogenic amines. Three out
of ten polyamines were significantly enriched in the NLD metabolomes
and five BV-associated biogenic amines (cadaverine, putrescine, tyra-
mine, tryptamine, and agmatine) [13,55] negatively correlated with
Lactobacillus abundance, however their levels were not significantly dif-
ferent between LD and NLD communities. Notably, none of these bio-
genic amines were positively or negatively associated with genital
inflammation. Arginine and its polyamine product N(1)-acetylspermine
are indicative of rapidly proliferating cells [56] and positively correlated
with Lactobacillus abundance and genital inflammation. Previously, ar-
gininemetabolismwas previously highlighted as an emerging hallmark
of cancer [33]. Interestingly, N(1)-acetylspermine levels are increased in
severely inflamed sites in colorectal cancer patients [57], indicating a
potential role of this polyamine in severe inflammation in accordance
with our genital inflammation findings. However, other BV-associated
biogenic amines did not correlate with genital inflammation. Metabo-
lites that are precursors of biogenic amines including choline and beta-
ine have anti-inflammatory properties [58,59]. Betaine enhances
survival and provides protection to Lactobacillus species facing osmotic
stress [60]. Future comparative studies that incorporate microbiomes
to metabolomes in symptomatic and asymptomatic BV patients will
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further enhance the understanding of the role ofmicrobes andmicrobe-
host interactions in the context of vaginal dysbiosis and BV.

Our analysis using awell-characterized predictionmodel (MIMOSA)
also revealed that Lactobacillus species are the key contributors to the
metabolism of glycochenodeoxycholate (GCDC) in our dataset. GCDC,
a key metabolic product of host-microbe co-metabolism [61], can in-
hibit several pathogens that are also observed in vaginal dysbiosis and
BV [62]. Similar to other bile acids, GCDC induces inflammatory and
toxic responses and exhibits carcinogenic effects on host epithelial
cells [63]. Our observation of negative correlation with Lactobacillus
abundance and positive correlation with genital inflammation further
strengthened the link between GCDC, inflammation, and Lactobacillus
abundance. As such, future studies are needed to investigate the role
of GCDC in maintaining Lactobacillus-mediated homeostasis, as well as
pathogen exclusion in the lower reproductive tract.

It is important to note that the microbiome-based data integration
was limited only to the metabolites and genomes available in the
KEGG database. Overall, differences in the vaginal microbial communi-
ties in cervical dysplasia and ICC were reflected upon metabolomes.
Microbe-microbe andhost-microbe interactions throughmetabolic net-
works can shape the local tumour environment [64], hence dysbiotic
vaginalmicrobiome-mediatedmetabolomehas the potential to become
a hallmark of cervical cancer. Additionally, themetabolites produced by
the cancer microenvironment itself, including lipids, can enhance the



Fig. 6. Metabolome profiles were driven by the features of the cervicovaginal microenvironment – HPV infection, cancer, non-Lactobacillus dominated microbiota, and genital
inflammation. A) Hierarchical clustering (HCA) dendrogram constructed using top-down approach presented with patient characteristics including HPV status, genital inflammation
score, vaginal pH, and microbial community based on Lactobacillus abundance. HCA analysis revealed three main clusters. B) Distribution of patient groups in the clusters. Cluster 1
only contained ICC patients whereas Cluster 2 and 3 contained patients from all the groups. The patient group composition of Cluster 1 was significantly different than Cluster 2 based
on chi-square test. C) Genital inflammation scores among the clusters. Genital inflammation score of Cluster 1 was significantly higher than the scores of Clusters 2 and 3. Boxplot
plots demonstrate median, 25th and 75th quartiles. D) Percentage of samples belonging to patients with Lactobacillus dominant and non-Lactobacillus dominant microbiota. Cluster 1
and 3 were dominated by non-Lactobacillus dominated communities whereas Cluster 2 had greater number of samples that were Lactobacillus dominated. Based on chi-square test,
Cluster 2 was significantly different than Cluster 1 and Cluster 3. E) Vaginal pH measurements among the clusters. Cluster 1 and 3 had samples from patients with higher vaginal pH
compared to Cluster 2 patients. * p b .5, **p b .01, ***p b .001, ****p b .0001.
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crosstalk between microbiota and the host, and therefore the pro-
carcinogenic activities of the microbiota.

Genital inflammation, another key feature of the cervicovaginal mi-
croenvironment, co-shaped themetabolic profiles alongwith themicro-
bial composition in our dataset. Notably, the lipids that discriminated
the ICC group from the healthy group showed a strong positive correla-
tion to genital inflammation. However, our additional analysis (Supple-
mentary Fig. 4) excluding ICC patients showed that lipids remained
associated with genital inflammation independent from cancer. An
increase in lipid metabolites from plasmalogens and long chain polyun-
saturated fatty acids in ICC, not only indicate abnormality in cellularme-
tabolism, but also highlight the significance of lipids in cancer
development, due to their roles as precursors of pro-inflammatory cyto-
kines, inducers of abnormal gene expression and ability to dysregulate
cytokine production [65]. Interestingly, phosphatidylcholines, another
group of lipids that positively correlated with genital inflammation, are
typically known for their anti-inflammatory properties [66], but also
contribute to cellular proliferation and programmed cell death [67].
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Adenosine and cytosine, nucleotides, that were well-predicted with
MIMOSA analysis, negatively correlated with genital inflammation and
positively correlated with Lactobacillus abundance. These well-
recognized anti-inflammatory molecules [68] were also well-predicted
to bemodulated by the vaginal microbiome in our dataset. For instance,
adenosine, an anti-inflammatory agent, has therapeutic potential be-
cause it inhibits phagocytosis, adhesion, and production of reactive ox-
ygen species [69]. Additionally, animal and in vitro cell models
demonstrated anti-inflammatory effects of adenosine through its im-
pact on macrophages [70] and mast cells [71]. Taken together these
studies indicate that the potent anti-inflammatory function of
microbially modulated adenosine could be a molecule associated with
genital tract health.

A key metabolite that strongly correlated with Lactobacillus abun-
dance was lactate. When the correlation analysis was performed with-
out the ICC patients included, the correlation between lactate and
Lactobacillus was stronger and there was a trend towards negative cor-
relationwith genital inflammation (Supplementary Fig. 4). Lactic acid is
the main end-product of Lactobacillus-mediated fermentation [72], and
is a criticalmetabolite tomaintain low vaginal pH (b4.5) and homeosta-
sis in the vaginal microenvironment [73]. Higher levels of lactate and
lower vaginal pH observed in Lactobacillus dominated communities
compared to non-Lactobacillus-dominated communities are in agree-
mentwith other studies relating thismolecule to vaginal health and ho-
meostasis [12,73,74]. In a murine model, lactate was shown to inhibit
the pro-inflammatory response of macrophages [75], hence our data
highlight a potential anti-inflammatory role of lactate in the lower re-
productive tract. Additionally, lactic acid can induce secretion of anti-
inflammatory IL-10, reduce the production of proinflammatory IL-12
in dendritic cells, and diminish the cytotoxicity of natural killer cells
[76]. On the other hand, lactate is also one of the main cellular respira-
tion products of cancer cells, previously established as a biomarker of
cervical cancer tumours [77] and is associated with angiogenesis and
immunotolerance [76]. Therefore, the dual role of lactate in health and
disease, its origin, and relationship to genital inflammation in the con-
text of gynaecologic cancer warrants further investigation.

Metabolic profiling of the cervicovaginal microenvironment offers
three important benefits to cervical cancer research. First, it provides a
snapshot of metabolic communications between the host, microbiome,
and HPV. Correspondingly, metabolic profiling is the first step to under-
stand host-microbiota interplay in modulating the hallmarks of cancer
in the context of HPV. Second, CVL collection is non-invasive method
that may provide more biological insights into the mechanisms of
viral persistence and disease progression. Finally, the limitations and
challenges in murine and non-human primate models are avoided
since thesemodels do not faithfully recapitulate the composition of vag-
inalmicrobiota in humans [78]. A limitation of our study is the relatively
small sample size and future studieswith larger sample sizes are needed
to validate and extend our findings. However, the results presented
herein generate additional questions on virus-host epithelia and im-
mune system interactions that can be addressed by metabolic profiling
in future clinical studies. In addition, studies employing physiologically
relevant 3-dimensional human FRTmodels [78–81] could reveal biolog-
ical mechanisms into how these microbes are dysregulating host me-
tabolism and contributing to the hallmarks of cancer.

Multiple features of the cervicovaginal microenvironment, genital
inflammation, vaginal pH, and vaginal microbiota composition
explained differences in the metabolic profiles of the participant
groups across cervical carcinogenesis. Our observations on genital
inflammation- and microbiota-associated metabolic signatures connect
themicrobiome to inflammation, dysplasia, and cancer. Collectively, our
analysis revealed that cancer had the greatest impact on metabolic pro-
files and genital inflammation, and vaginal microbiota had a secondary
impact that explainedmetabolic profiles of healthy HPV-negative, HPV-
positive individuals, and cervical dysplasia patients. Our analysis clearly
demonstrated that metabolic fingerprinting of the cervicovaginal
microenvironment is an excellent approach to discriminate between in-
dividuals with HPV infection, cervical dysplasia and ICC, which may fa-
cilitate future discoveries of new therapeutic and prevention avenues
for patients. This integrative analysis of the cervicovaginal metabolome,
microbiome and immunoproteome revealed multiple emerging hall-
marks of cancer in cervical carcinogenesis, including abnormalities in
nitrogen and energy metabolism, increased cellular proliferation due
to changes in amino acid and carbohydrate fluxes, and dysbiotic micro-
biota and host-microbe co-metabolism [33,82]. In conclusion, the
complex virus-host-microbe interplay within the cervicovaginal micro-
environment lead to unique metabolic fingerprints that may be
exploited for future development of diagnostics, preventatives or thera-
peutics to positively impact women's health outcomes.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.04.028.
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