
HAL Id: hal-04335754
https://hal.science/hal-04335754v1

Submitted on 11 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MicroNiche: an R package for assessing microbial niche
breadth and overlap from amplicon sequencing data

D R Finn, J Yu, Z E Ilhan, V M C Fernandes, C R Penton, R
Krajmalnik-Brown, F Garcia-Pichel, T M Vogel

To cite this version:
D R Finn, J Yu, Z E Ilhan, V M C Fernandes, C R Penton, et al.. MicroNiche: an R package for
assessing microbial niche breadth and overlap from amplicon sequencing data. FEMS Microbiology
Ecology, 2020, 96 (8), �10.1093/femsec/fiaa131�. �hal-04335754�

https://hal.science/hal-04335754v1
https://hal.archives-ouvertes.fr


FEMS Microbiology Ecology, 96, 2020, fiaa131

doi: 10.1093/femsec/fiaa131
Advance Access Publication Date: 26 June 2020
Research Article

RESEARCH ARTICLE

MicroNiche: an R package for assessing microbial
niche breadth and overlap from amplicon sequencing
data
D. R. Finn1,2,*, J. Yu3,4, Z. E. Ilhan4,5, V. M. C. Fernandes3,4, C. R. Penton3,6,
R. Krajmalnik-Brown4,5, F. Garcia-Pichel4 and T. M. Vogel2

1School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia,
2Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully
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One sentence summary: Mathematical indices to quantify niche properties were successfully adapted and applied to microbial taxa, and have been
made publicly available as the R package ’MicroNiche’.
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ABSTRACT

Niche is a fundamental concept in ecology. It integrates the sum of biotic and abiotic environmental requirements that
determines a taxon’s distribution. Microbiologists currently lack quantitative approaches to address niche-related
hypotheses. We tested four approaches for the quantification of niche breadth and overlap of taxa in amplicon sequencing
datasets, with the goal of determining generalists, specialists and environmental-dependent distributions of community
members. We applied these indices to in silico training datasets first, and then to real human gut and desert biological soil
crust (biocrust) case studies, assessing the agreement of the indices with previous findings. Implementation of each
approach successfully identified a priori conditions within in silico training data, and we found that by including a limit of
quantification based on species rank, one could identify taxa falsely classified as specialists because of their low, sparse
counts. Analysis of the human gut study offered quantitative support for Bacilli, Gammaproteobacteria and Fusobacteria
specialists enriched after bariatric surgery. We could quantitatively characterise differential niche distributions of
cyanobacterial taxa with respect to precipitation gradients in biocrusts. We conclude that these approaches, made publicly
available as an R package (MicroNiche), represent useful tools to assess microbial environment-taxon and taxon-taxon
relationships in a quantitative manner.

Keywords: niche theory; community ecology; proportional similarity index

INTRODUCTION

The niche is a fundamental concept with a long history of use
in ecology (Leibold 1995). It was conceived as an integrating

descriptor of an organism’s place in a food web and the resources
it depended upon (Elton 1927). It soon became associated with
the principle of competitive exclusion and the notion that two
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distinct species cannot coexist if they occupy the same niche,
since one species would always be driven to extinction in that
system (Volterra 1926; Gause 1932). In time, the definition of
a niche was formalised to be an area (or volume) in multi-
dimensional space formed by the relationship between a species
and two (or more) environmental properties (Hutchinson 1957).
By considering the niche as inherently dependent on the envi-
ronment, the niche of two species that compete for the same
resources cannot completely overlap in space (MacArthur 1958).
In microbiology, the term niche is typically used to explain how
environmental properties and species interactions determine
the abundance and/or activity of a microorganism (Zhou and
Ning 2017). Ultimately, the niche concept provides a framework
for biologists to explain relationships between a species and
its environment, species–species interactions, or both simulta-
neously. In search of a more quantitative approach, eventually
ecologists devised means to measure a species’ niche. The niche
breadth (BN) proposed by Levins (1968) is perhaps the first widely
used example. It is a measurement of proportional similarity of
resource use (p) of the ith resource given a variety of available
resource states (R). If a species utilises all resources equally, BN

is 1 and this species is considered a generalist with a broad, non-
discriminatory niche (MacArthur 1972). By contrast, if a species’
BN approaches 1/R, it is considered a specialist with a narrow,
discriminatory niche:

Levins′ BN = 1
R

∑
i=1

p2
i (1)

A limitation to Levins’ BN is the required assumption that all
resources are equally abundant. This led to a refinement by Hurl-
bert (1978) to measure BN whereby resource availability (r) of the
ith resource could differ:

Hurlbert′s BN = 1∑
i=1

p2
i

ri

(2)

Feinsinger, Spears and Poole (1981) later simplified the con-
cept by gauging a proportional similarity (PS) of resource use
when resource availability differed as:

PS = 1 − 0.5
∑

i=1
|pi − ri | (3)

Unlike in Levins’ BN, that ranges from 1/R to 1, in the indices
of Equations (2) and (3), a negative relationship between r and p
approaches 0 and a positive relationship approaches 1. Levins’
niche overlap (LO) is a pairwise comparison of the proportional
use of resource r by species i and species j:

LOi, j =
∑

i, j=1 (pir ) (pjr )∑
i=1

(
p2

ir

) (4)

An LOi, j of 1 indicates complete overlap between i and j, and
as mentioned above, should never occur if i and j occupy the
same niche.

With the routine adoption of Next-Generation Sequencing
of amplicon marker genes and microbial taxon assignment
pipelines, a challenge for the contemporary microbiologist lies
in the appropriate application of statistics to test hypotheses.

Many, if not all, of these amplicon-comparison studies are pred-
icated on the notion that the environment dictates what micro-
bial taxa can exist under a set of conditions, and that the pres-
ence and activity of specific taxa has consequences for the sys-
tem as a whole. Examples include microbial surveys relevant for
environmental geochemistry and biogeography (Martiny et al.
2006, Fierer et al. 2013), global climate change (Garcia-Pichel et al.
2013), human, animal or plant health (Penton et al. 2014, Ilhan
et al. 2017), biological restoration (Velasco Ayuso et al. 2016) or
industrial applications (Jung and Regan 2007). While microbi-
ologists are familiar with the concept of niche, particularly the
importance of the environment in shaping microbial communi-
ties (de Wit and Bouvier 2006), high-throughput metrics to quan-
tify and compare niches of microbial taxa are currently lack-
ing. The capacity to measure the relationship between two taxa
and an environmental property, for example pH, and to defini-
tively compare and state whether pH exerts a greater control
over the distribution of one of the two taxa would be a use-
ful metric. Equations (1)–(4) are proportional similarity indices
which belong to the same family of indices as the Simpson
index used to measure alpha diversity in microbial communi-
ties (Feinsinger, Spears and Poole 1981). We proposed to test the
suitability of the above indices to measure the niche of microbial
taxa in amplicon-sequencing datasets, whereby pi and pj were
considered as the proportional abundance of taxa i and j, and ri

considered as the proportional value of any given environmen-
tal variable. R was considered as the sum of environments across
which the niche was being measured. To do so, we first devised
an in silico training dataset that included known generalists and
specialists to test if our approach could correctly identify their
niche on the basis of their BN and PS values. Secondly, we tested
if we could correctly apply these indices to real-life case studies
of known outcome to confirm known relationships between the
environment and a given taxon or between taxa pairs.

MATERIALS AND METHODS

The in silico training dataset

Initially, an in silico training dataset was designed to mimic
typical datasets derived from microbial amplicon sequencing
studies. Specifically, data were discrete counts of observed taxa
within each sample. The training dataset was generated in, and
all statistics mentioned throughout this manuscript were per-
formed in, the R computing language, version 3.5.2 (R Core Team
2013). Figure 1(A) is a visual representation of the six taxon
distributions and four environments considered in the in silico
training dataset. The six distributions (D1 to D6) consist of 10
individual taxa (S1 to S10) per distribution. Each Environment
consists of 10 independent samples. The first distribution (D1)
represents true generalists that have roughly equal counts gen-
erated from random normal distributions across the four envi-
ronments. The second distribution (D2) are taxa present in all
environments yet decrease in a slow, linear fashion from Envi-
ronments One to Four. This follows an inverse relationship with
a mock environmental gradient that increases from Environ-
ments One to Four, shown below the six distributions in Fig. 1(A).
The third distribution (D3) represent specialists that decrease
exponentially across the environments, that are high in Environ-
ment One, approximately half as abundant in Environment Two
and mostly absent from Three and Four. These abundances also
reflect an inverse relationship with the environmental gradient.
The fourth distribution (D4) are true specialists present only in
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Finn et al. 3

Figure 1. (A) Graphical representation of the in silico training dataset. Taxon distributions (D1 through D6) are rows and Environments (one through four) are columns.
A total of ten independent taxa were generated per distribution, and ten independent samples were included per environment. The size of the normal distributions

within each distribution/environment reflects the size of the random normally distributed counts generated for each distribution/environment. A mock environmental
gradient was generated to increase from Environment One to Four. (B) A representation of taxon abundance of D1 generalists and D2 linear decreasing distributions in
the ten samples that comprise Environment Four.

Environment One, which has the lowest values of the environ-
mental gradient. The fifth distribution (D5) represent specialists
that have no relationship with the environmental gradient via
being equally abundant in both Environments Two and Four. Fur-
thermore, D3 and D5 represent taxa that only partially overlap in
their distributions across the four environments, while D4 and
D5 do not overlap. Finally, the sixth distribution (D6) represent
sparse counts of taxa that have no relationship with the envi-
ronmental gradient or with any of the four environments. Taxa
that fall into this category represent the long tail of sparse taxa
frequently observed in microbial amplicon sequencing data. Fig-
ure 1(B) conceptualises a comparison of a taxon’s abundance
between the first and second distributions in Environment Four,
where the mean abundance of the randomly generated taxon in
D1 is greater than D2 in the ten samples that make up Environ-
ment Four. The in silico training dataset is available within the
MicroNiche R package.

Index validation

Equations (1)–(3) were coded as functions within R and applied to
the in silico training dataset as described (Levins 1968; Hurlbert
1978; Feinsinger, Spears and Poole 1981). To support hypothe-
sis testing of taxon BN and PS results (i.e. identify generalists
and specialists) null model testing was incorporated into R func-
tions for Levins’ and Hurlbert’s BN, and PS. Briefly, a BN and PS
index was generated for 999 randomly generated taxon distri-
butions dependent on the sum of environments in which gener-
alists/specialists are being tested (i.e. the R parameter of Equa-
tion (1). A P value was derived based on the mean and 3 stan-
dard deviations of the null model as described (Benjamini and

Hochberg 1995) to calculate the probability that each taxon’s
BN/PS differed from the mean. Taxa p values were Benjamin–
Hochberg adjusted to account for false discovery rate (Benjamini
and Hochberg 1995). Equation (4) was also coded as an R function
and applied as described (Ludwig and Reynolds 1988). Values for
LOi, j × LOj, i were plotted as heatmaps with the ‘gplots’ package
in R (Warnes et al. 2019).

Finally, a limit of quantification (LOQ) was employed to iden-
tify taxa yielding Type I Errors (i.e. falsely being identified as gen-
eralists/specialists) due to low counts and sparse, random dis-
tribution across samples. The LOQ was defined as taxa below
a ‘decision boundary’ calculated from the distribution of taxa
within the dataset and a 95% certainty that these taxa will fall
within a null distribution where mean taxon abundance is 0
(Eurachem Working Group 2012). Simply put, it is not certain that
taxa below the LOQ have an abundance greater than zero. The
standard deviation of the null distribution was calculated from
the lognormal rank distribution of taxa within the dataset (Lud-
wig and Reynolds 1988), specifically expressed as:

S(R) = S0e−a2 R2
(5)

where the log abundance of taxon S at rank R is dependent
on the modal S, S0 and exponential decrease in abundance is
dependent on a and rank R. The coefficient a is defined as:

a =
√

InS0

Sm

/
R2 (6)
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Where the parameters are as above, and Sm is the lowest
taxon abundance of S. Determination of the LOQ was incorpo-
rated into each of the above functions. All functions are available
within the MicroNiche R package. A step-by-step guide for instal-
lation, reproduction of these functions, null model testing and
the calculation of the LOQ is available within the MicroNiche
vignette (github.com/DamienFinn/MicroNiche Vignette). The
MicroNiche R package can be downloaded and installed via the
Comprehensive R Archive Network (CRAN).

Case studies

The first case study considered the effect of two different
bariatric surgeries on the composition of the human gut micro-
biome (Ilhan et al. 2017). Sequence data is available through
the National Centre for Biotechnology Information Short Read
Archive (SRA) as Bioproject PRJNA321731. Briefly, this study
involved 54 individuals in four categorical groups: (1) a control,
non-obese group, (2) an obese control group before Roux-en-
Y gastric bypass surgery (Pre-RYGB), (3) post Roux-en-Y gastric
bypass surgery (RYGB) and (4) post laparoscopic adjustable gas-
tric banding (LAGB). Data was obtained from amplicon sequenc-
ing of the V4-V6 region of the prokaryote universal 16S rRNA
gene performed on the Illumina MiSeq platform with paired-
end sequencing of 300 bp. The second case study considered
the effect of precipitation on the composition of cyanobacte-
ria in arid soil biocrusts (Fernandes et al. 2018). Sequence data
is available through the SRA as Bioproject PRJNA394792. The
subset of data from this study analysed here involved 40 sam-
ples from two separate grasslands in New Mexico, USA, termed
“Black Grama” and “Blue Grama” sites. A total of two envi-
ronmental conditions were compared at each location, a con-
trol with 100% precipitation and an artificial drought condition
with 33% precipitation. Precipitation for each site was measured
between the years 1999–2017 and 2002–2017 for Black and Blue
Grama sites, respectively. Total precipitation across all years was
used as the environmental property for niche breadth calcula-
tions to capture historical effects of taxon enrichment under
varying precipitation. Amplicon sequencing of the V4 region
of the 16S rRNA gene was performed on the Illumina MiSeq
platform with paired-end sequencing of 150 bp. Both ampli-
con sequencing datasets were re-analysed from raw-data using
Vsearch and Uchime in the Qiime2 pipeline (Bolyen et al. 2019)
to denoise, de novo cluster at 99% identity and remove chimeras
with base parameters. The Silva132 16S rRNA gene database was
used to annotate operational taxonomic units (OTUs) at the 99%
identity level (Quast et al. 2013). Prior to analysis, the bariatric
surgery and biocrust datasets were rarefied to 11 000 and 36
000 sequences per sample, respectively, with the Vegan package
in R (Oksanen et al. 2013). The use of rarefaction to normalise
sequence depth prior to niche breadth analyses is emphati-
cally recommended to improve the accuracy of taxa compar-
isons between samples and reduce the occurrence of Type I spe-
cialist taxa Errors. Niche breadth and overlap indices of OTUs
were measured with the MicroNiche R package, with a particular
focus on Classes previously identified as being enriched under
RYGB treatment (Ilhan et al. 2017) or cyanobacterial taxa differ-
entially affected under precipitation conditions (Fernandes et al.
2018). Here, all MicroNiche functions were applied to OTU data
after taxon assignment as discrete counts from Qiime2 outputs.
However, please note that these functions can be readily applied
to individual OTUs that have not been grouped by taxon assign-
ment. While the use of these functions on amplicon sequence

variants (ASVs) as specific markers of individual taxa (Calla-
han, McMurdie and Holmes 2017) was not tested here, concep-
tually this would be entirely feasible, although the stringency of
the LOQ may need to be manually optimised as increased vari-
ance in ASV abundance may push the LOQ high enough to mis-
classify certain taxa as Type I Errors. Optimisation of the LOQ
in MicroNiche functions is discussed within the Vignette, and
can be performed if users consider the LOQ to be unjustifiably
stringent. For more detail regarding the format of data required
for the MicroNiche functions, including access to the training
dataset as an example of what exactly is required and step-by-
step guidance on applying the various functions, please refer
to the Vignette companion piece. For this study, Levins’ BN and
LO were applied to the bariatric surgery dataset to test whether
specific taxa were enriched post-bariatric surgery, and Hurl-
bert’s BN and PS applied to the biocrust dataset to test whether
precipitation affected the distribution of specific cyanobacte-
rial taxa. Finally, Hurlbert’s BN and PS results for unweighted
versus weighted OTUs were compared. Unweighted cyanobac-
terial OTUs were considered as relative abundances (%). For the
weighted data, cyanobacterial OTUs were weighted by total 16S
rRNA gene copies per cm−2 of biocrust, as determined by quan-
titative polymerase chain reaction of the prokaryote community
(Fernandes et al. 2018).

RESULTS

Index validation

Each of the three niche breadth indices were applied to the
taxa within the in silico training dataset. These included D1

generalists equally abundant across the four environments, D2

that decreased linearly across the four environments, D3 that
decreased exponentially across the four environments, D4 that
were present in only one environment, D5 that were equally
present in Environments Two and Four and had no relation-
ship with a mock environmental gradient, and finally D6 that
were sparse and had no relationship with either the four envi-
ronments or the environmental gradient. Figure 1 (Supporting
Information) shows the taxon rank distribution of the in silico
training dataset. Figure 2 shows results of null model testing of
Levins’ BN, Hurlbert’s BN and PS on the in silico training dataset.
Table 1 summarises the results and Benjamin–Hochberg P val-
ues for the three indices applied to the six taxa distributions.
Levins’ BN successfully identified D1 as generalists (BN = 0.99,
P = 0.045). This group represents cosmopolitan microbial taxa
that are evenly distributed across all environments. Levins’ BN

identified D3, D4 and D5 as specialists (BN 0.25–0.52, P = 0–0.013).
These groups represent microbial taxa that are not evenly dis-
tributed across many environments, and that are proportionally
more abundant in specific environments. As can be visualised
with the null models in Fig. 2, these values either fall below the
fifth (specialists) or above the 95th (generalists) quantiles high-
lighted as red lines of the Levins’ BN null model in Fig. 2.

Hurlbert’s BN and PS only identified D3 and D4 as including
taxa that had a relationship with the environmental gradient
(BN = 0.1–0.17 and PS = 0.1–0.29, P < 0.001). These groups not
only represent microbial taxa that are most abundant in spe-
cific environments, but also are most abundant when the mock
environmental gradient is relatively low. In both cases, the low
BN and PS values approaching 0 indicate a negative relation-
ship between these groups and the environmental property (i.e.
taxon abundance of D3 increases as the property decreases). The
linearly decreasing D2 did not have a negative relationship with
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Finn et al. 5

Figure 2. Null model distributions generated from applying Levins’ BN, Hurlbert’s BN and PS to the in silico training dataset. Null distributions were calculated from
999 randomly generated taxon distributions. Red dotted lines indicate the fifth and 95th quantiles. Specialists are taxa with Levins’ BN below the fifth quantile, while

generalists are taxa with Levins’ BN above the 95th quantile (marked beneath the Levins BN null model). Taxa that are high when an environmental property is low
have a Hurlbert’s BN or Proportional Similarity value below the fifth quantile of those particular null models. Conversely, taxa that are high when an environmental
property is high have a Hurlbert’s BN or Proportional Similarity value above the 95th quantile of those null models. Both of these cut-off points are also marked for

Hurlbert’s BN and Proportional Similarity null models.
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Table 1. Validating the three niche breadth indices against the in silico training dataset. Taxa below the LOQ are labelled as Y, while those not
below are N. n per taxa = 10. Significant P values are highlighted as: P < 0.05 (∗); P = 0.001 (∗∗); P < 0.001(∗∗∗).

Dist. Levins’ BN BH p val. Hurlbert’s BN BH p val. PS BH p val. Below LOQ

D1 0.99 ± 0.001 0.045 ± 0∗ 0.73 ± 0.005 0.33 ± 0.01 0.79 ± 0.003 0.436 ± 0 N
D2 0.83 ± 0 0.608 ± 0 0.44 ± 0 0.08 ± 0 0.57 ± 0 0.303 ± 0 N
D3 0.42 ± 0.003 0.003 ± 0∗∗ 0.17 ± 0.001 0 ± 0∗∗∗ 0.29 ± 0.004 0 ± 0∗∗∗ N
D4 0.25 ± 0.002 0 ± 0∗∗∗ 0.1 ± 0 0 ± 0∗∗∗ 0.1 ± 0.004 0 ± 0∗∗∗ N
D5 0.52 ± 0.01 0.013 ± 0.003∗ 0.49 ± 0.01 0.23 ± 0.03 0.59 ± 0.01 0.359 ± 0.04 N
D6 0.75 ± 0.149 0.228 ± 0.19 0.66 ± 0.135 0.53 ± 0.33 0.7 ± 0.089 0.7 ± 0.316 Y

the environmental gradient (BN = 0.44 and PS = 0.57, P > 0.05).
As with Levins’ BN, the null models and highlighted quantiles for
Hurlbert’s BN and PS (Fig. 2) offer useful aids to visualise where
these values fall in relation to the null distribution.

The LOQ was successful in identifying D6 as being the sparse,
relatively low count taxa. This group represents the long tail
of sparse, low count taxa often seen in microbial amplicon
sequencing datasets. By being below the LOQ, these taxa could
be identified as Type I Errors in that, depending on the individual
taxon, they inappropriately gave positive results for one or more
of the three indices.

Figure 3 is a heatmap of niche overlap measured via LO, with
LOi, j on the y axis and LOj, i on the x axis. The generalists present
in all four environments, D1, overlapped with all other groups
and had LO values approaching 1. Again, this group represents
cosmopolitan microbial taxa that are equally present across all
environments, and therefore will overlap with all other taxa. The
linearly decreasing D2, which were also present in all environ-
ments, overlapped with all other groups but less so than D1. D3

and D5, which represented largely non-overlapping specialists,
had poor overlap values with each other approaching 0.3. D4 and
D5 had overlap values of 0–0.03, as D4 was present in only one
environment, in which D5 was absent. Overlap values for D6 var-
ied considerably from 0.1 to 0.57. In order to assist in identifying
group D6 as Type I Errors in LO analyses, MicroNiche applies an
asterisk to the names of taxa below the LOQ when plotting user
data (please refer to the MicroNiche Vignette). To aid in inter-
pretation of how LO is determined and why LOi, j values are not
necessarily equal to LOj, i values, a conceptual diagram that com-
pares overlap between two generalists and a generalist and spe-
cialist is provided as Figure 2 (Supporting Information).

Bariatric surgery case study

The purpose of the bariatric surgery case study was to confirm
that Levins’ BN and LO could identify Bacilli, Gammaproteobacteria
and Fusobacteria as specialists enriched under RYGB treatment
(Ilhan et al. 2017). Figure 4(A) is a stacked bar chart comparing
distributions of prokaryote Classes across gut microbiomes of
Control, Pre-RYGB, RYGB and LAGB individuals. Together, Bac-
teroidia and Clostridia dominated all gut microbiomes, regard-
less of treatment (71.5–97%). Enriched under the RYGB treat-
ment were: Bacilli (0.6–8% in RYGB versus 0–1.4% in non-RYGB),
Fusobacteria (0–11% in RYGB versus 0–0.3% in non-RYGB) and
Gammaproteobacteria (0.5–13% in RYGB versus 0–0.5% in non-
RYGB). Interestingly, while Bacteroidia and Clostridia appeared to
be generalists with consistently high LO values across Classes
(Fig. 4(B)), their abundances varied sufficiently to lower their
Levins’ BN below the threshold to be classified as generalists (P
> 0.05, Table 2). Bacilli, Fusobacteria and Gammaproteobacteria were
all classified as strong specialists (P < 0.001, Table 2). Figure 4(B)

Table 2. Levins’ BN results for each Class in the bariatric surgery case
study. Significant P values are highlighted as: P < 0.05 (∗); P = 0.001
(∗∗); P < 0.001(∗∗∗).

Taxa Levins’ BN BH p val. Below LOQ

Actinobacteria 0.629 0.240 Y
Coriobacteriia 0.762 0.810 Y
Bacteroidia 0.838 0.644 N
Flavobacteriia 0.424 0.001∗∗ Y
Melainabacteria 0.498 0.007∗∗ Y
Bacilli 0.334 0.000∗∗∗ N
Clostridia 0.923 0.276 N
Erysipelotrichia 0.897 0.353 N
Negativicutes 0.864 0.509 N
Fusobacteriia 0.258 0.000∗∗∗ N
Alphaproteobacteria 0.488 0.006∗∗ Y
Betaproteobacteria 0.925 0.276 N
Deltaproteobacteria 0.858 0.519 N
Gammaproteobacteria 0.416 0.000∗∗∗ N
Saccharibacteria 0.667 0.353 Y
Synergistia 0.254 0.000∗∗∗ Y
Mollicutes 0.744 0.703 Y
Verrucomicrobiae 0.896 0.353 N
Unassigned 0.874 0.471 Y

also demonstrated strong overlap of Bacilli and Gammaproteobac-
teria, although Fusobacteria, highly enriched in only two individ-
uals, did not particularly overlap with any other Classes. Sev-
eral other Classes had BN values low enough to be specialists
(Flavobacteria, Melainabacteria, Alphaproteobacteria and Synergis-
tia), however, all of these groups were below the LOQ and, thus,
the calculated Levins’ BN should be interpreted with caution.
Table 1 (Supporting Information) shows results of Levins’ BN

applied to this dataset at the Genus level to identify potential
specialists within Bacilli and Gammaproteobacteria. These genus-
level specialists had Levins’ BN < 0.56 and BH P < 0.05. Spe-
cialist Bacilli included: Uncultured Carnobacteriaceae, Enterococ-
cus, Lactobacillus and Streptococcus. Specialist Gammaproteobacte-
ria included: Enterobacter, Escherichia-Shigella, Klebsiella, Uncul-
tured Enterobacteriaceae and Haemophilus. Figure 3 (Supporting
Information) is a collection of box plots showing that all of these
genera are specifically enriched in the RYGB treatment.

Biocrust case study

The biocrust case study sought to validate the use of Hurlbert’s
BN and PS in quantitatively demonstrating that precipitation
exerts a greater effect on the abundance of Microcoleus steen-
strupii than M. vaginatus (Fernandes et al. 2018). Figure 5(A) is a
stacked bar chart of unweighted cyanobacterial OTUs as relative
abundance (%) across the biocrust samples. Imposed drought

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/article/96/8/fiaa131/5863182 by IN
R

A-JO
U

Y-J.M
. user on 11 D

ecem
ber 2023



Finn et al. 7

Figure 3. Heatmap of Levins’ Overlap performed on the in silico training dataset. The scale bar shows LO values between 0 and 1. D1 generalists have relatively high

LO1,2 values than other non-uniform distributions. D1 generalists have varying LO2,1 values dependent on how abundant taxa within distributions D2 through D6 are
in the four environments. Lowest values are between D4 and D5 that do not overlap in any of the four environments.

conditions had a greater effect on the Black Grama biocrusts,
with the relative abundance of cyanobacteria dropping from
41.8–71.3% in controls to 1.4–66.8% in imposed drought condi-
tions. Biocrusts in the Blue Grama site showed little variation,
from 10.6–36.3% in controls to 15–41.9% in imposed drought
conditions. As relative proportions of the cyanobacterial pop-
ulation, M. vaginatus dominated all biocrusts and differed little
between Black Grama control and drought (24–95% and 14–91%,
respectively) conditions. M. vaginatus also dominated the Blue
Grama biocrusts under drought conditions (53–98% and 85–95%
for control and drought, respectively). M. steenstrupii decreased
in all biocrusts under drought conditions, from 0.4–7% to 0–4.5%
in Black Grama control and drought, respectively, and from 0.3–
11% to 0.1–2.5% in Blue Grama control and drought, respectively.
Figure 5(B) is a stacked bar chart of weighted cyanobacterial

OTUs as 16S rRNA gene copies cm−2 of biocrust. The negative
effect of Black Grama drought on all cyanobacteria is more
evident here. M. vaginatus populations differed markedly from
being stable in the control at 1.9 × 104–4.5 × 105, to unstable
under drought at 100–3.9 × 105 16S rRNA gene copies cm−2.
The M. vaginatus-dominated Blue Grama biocrusts were more
resilient to imposed drought conditions. Here, M. vaginatus
populations were 8.9 × 104–1 × 106 and 1.1 × 105–7.2 × 105 16S
rRNA gene copies cm−2 under control and drought, respectively.
As above, M. steenstrupii was more affected by drought. Popu-
lations under control conditions were 1.1 × 103–3.1 × 104 and
3.1 × 103–1.8 × 104 16S rRNA gene copies cm−2 in Black and
Blue Grama, respectively. Populations under drought conditions
were 0–2.3 × 103 and 582–5.3 × 103 16S rRNA gene copies
cm−2, respectively. These results are essentially identical to
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Figure 4. (A) Stacked bar chart of Class relative abundances across individuals in the bariatric surgery case study. Minor Classes that make up less than 5% of the
population are grouped as Other. Bacteroidia and Clostridia are fairly dominant, cosmopolitan members across four treatments whereas Bacilli and Gammaproteobacteria

are enriched under the RYGB treatment. (B) Heatmap of Levins’ Overlap performed on the bariatric surgery case study. The scale bar shows LO values between 0 and
1. Taxa below the LOQ are noted with an asterisk. Bacteroidia and Clostridia have high LO1,2 values reflective of their cosmopolitan nature across treatments. Bacilli

and Gammaproteobacteria have relatively high LO1,2 and LO2,1 values as they are both enriched under RYGB treatment.

Figure 5. (A) Stacked bar chart of unweighted Cyanobacteria relative abundances across samples in the desert biocrust case study. Both Black and Blue Grama sites,

under Control and Drought conditions, are dominated by Microcoleus vaginatus, while M. steenstrupii is enriched in Control relative to Drought. (B) Stacked bar chart of
Cyanobacteria weighted by total 16S rRNA gene copies cm−2 of biocrust x 106 across samples in the biocrust case study. Weighting the relative abundances emphasises
the detrimental effect of Drought on non-M. vaginatus Cyanobacteria at the Black Grama site. Minor OTUs that make up less than 5% of the total Cyanobacterial
population are grouped as Other.

those reported by Fernandes et al. (2018) other than for the
actual names of the taxonomic assignments. Fernandes used
a specialised taxonomic database to improve the assignment
of cyanobacterial taxa over that provided by the Silva database.
For our work, the actual nomenclature of taxa is irrelevant, and
automated Silva-based assignments were considered sufficient.

For the unweighted data, numerous Cyanobacterial taxa
were sufficiently abundant in the total prokaryote community
to pass the LOQ including: M. vaginatus, M. steenstrupii, Wilmottia
murrayi, Mastigocladopsis repens, unknown Coleofasciculaceae,
uncultured Oscillatoriales and several uncultured ‘Oxyphotobac-
teria’ (which is equivalent to Cyanobacteria (Garcia-Pichel et al.
2019)). All Cyanobacteria were above the LOQ when weighted
data was considered. The distribution of M. vaginatus was found
to be independent of precipitation for both Hurlbert’s BN and
Feinsinger’s PS when unweighted and weighted data were

considered. Conversely, M. steenstrupii was shown to be depen-
dent on precipitation. This relationship was stronger when
weighted data was considered (Table 3, BN = 0.976, p = 0.002
versus BN = 0.925, p = 0.016 for weighted and unweighted data,
respectively). These conclusions fully match the conclusions
of the original study. The weighted analysis also found the
Silva-unassignable cyanobacterium (likely a Leptolyngbya sp.) to
be dependent on precipitation, while the unweighted analysis
did not. Interestingly, an unknown Chroococcidiopsaceae that was
below the LOQ and found to be dependent on precipitation
in the unweighted analysis was not found to be dependent
on precipitation in the weighted analysis. These refinements
were not addressed in the original analysis. Feinsinger’s PS was
generally more stringent than Hurlbert’s BN, and the PS index
did not find that M. steenstrupii was associated with increasing
precipitation for either weighted or unweighted data.
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Finn et al. 9

Table 3. Hurlbert’s BN and Feinsinger’s PS results for major Cyanobacterial taxa in the BSC case study. Each index was measured with unweighted
and weighted OTU counts, and compared. Significant Benjamin–Hochberg adjusted p values are highlighted as: p < 0.05 (∗); p = 0.001 (∗∗); p <

0.001(∗∗∗).

Unweighted Weighted

BN BH p val. Below LOQ BN BH p val. Below LOQ

Chroococcidiopsis SAG-2023 0.358 0.039∗ Y 0.282 0.004∗∗ N
Chroococcidiopsaceae 0.885 0.040∗ Y 0.826 0.090 N
Wilmottia murrayi 0.585 0.868 N 0.540 0.541 N
Coleofasciculaceae 0.612 0.967 N 0.654 0.829 N
Mastigocladopsis repens 0.483 0.334 N 0.520 0.449 N
Scytonema hofmanni 0.474 0.300 Y 0.536 0.525 N
Uncultured Nostocales 0.510 0.480 N 0.521 0.449 N
Microcoleus vaginatus 0.787 0.245 N 0.664 0.776 N
uncultured Oscillatoriales 0.557 0.742 N 0.651 0.843 N
Microcoleus steenstrupii 0.925 0.016∗ N 0.976 0.002∗∗ N
Oxyphotobacteria.Incertae.Sedis 0.535 0.627 N 0.566 0.680 N
Oxyphotobacteria 0.493 0.388 N 0.285 0.004∗∗ N
uncultured Sericytochromatia 0.522 0.548 Y 0.320 0.010∗ N

PS BH p val Below LOQ PS BH p val Below LOQ
Chroococcidiopsis.SAG.2023 0.560 0.503 Y 0.474 0.147 N
Chroococcidiopsaceae 0.889 0.204 Y 0.814 0.492 N
Wilmottia murrayi 0.580 0.621 N 0.570 0.485 N
Coleofasciculaceae 0.622 0.864 N 0.644 0.853 N
Mastigocladopsis repens 0.516 0.273 N 0.527 0.284 N
Scytonema hofmanni 0.491 0.185 Y 0.562 0.440 N
Uncultured Nostocales 0.519 0.281 N 0.525 0.276 N
Microcoleus vaginatus 0.834 0.468 N 0.751 0.820 N
uncultured Oscillatoriales 0.571 0.562 N 0.639 0.823 N
Microcoleus steenstrupii 0.888 0.204 N 0.934 0.094 N
Oxyphotobacteria.Incertae.Sedis 0.554 0.480 N 0.586 0.573 N
Oxyphotobacteria 0.622 0.864 N 0.495 0.169 N
uncultured Sericytochromatia 0.606 0.785 Y 0.512 0.227 N

DISCUSSION

Levins’ BN for measuring niche breadth

The capacity to measure niche indices of microbial taxa is
of value to test hypotheses regarding environment-taxon and
taxon-taxon ecological relationships. While amplicon sequenc-
ing has its limitations in identifying a causative, physiological
mechanism of how the environment determines the abundance
of a taxon, it can demonstrate relationships between a taxon and
its environment. This can be used to infer the underlying phys-
iological mechanism defining a taxon’s niche and could provide
support for more detailed analyses in the future on a taxon of
interest to demonstrate such a physiological mechanism. Here,
we report the application of four different niche indices (Equa-
tions (1)–(4)) that address differing niche-related hypotheses.

Levins’ BN successfully identified generalist and specialist
taxa from the in silico training dataset (Table 1) and special-
ists in the bariatric surgery case study (Table 2). The identifica-
tion of taxa as either generalists or specialists can be used to
infer their respective physiology (MacArthur 1972). Generalists,
with their non-discriminatory niches, are equally proportional
across vastly different environments (Levins’ BN approaching 1)
and must employ one or more functional traits that enables
their colonisation and persistence within those environments.
Conversely, specialists do discriminate between environments
(Levins’ BN approaching 1/R) and, therefore, must either be dis-
persal limited (Stegen et al. 2013) or restricted by environmental
properties or competition between taxa (MacArthur 1958). The

strong specialist Levins’ BN results for Bacilli, Gammaproteobacte-
ria and Fusobacteria was in agreement with previous work (Ilhan
et al. 2017). Ilhan et al. (2017) identified these groups as being
uniquely enriched after RYGB surgery. A more detailed look into
specialists within these Classes enriched in the RYGB treatment,
not performed in the original study, identified opportunistic Lac-
tobacillus, Streptococcus, Enterobacter, Escherichia and Klebsiella as
the specialist genera responsible for results observed at the level
of Class. This surgery was found to be most effective at reducing
body mass index (kg m−2) post-bariatric surgery, and the enrich-
ment of Bacilli, Gammaproteobacteria and Fusobacteria were linked
to changes in short chain fatty acids, amino acids and sugars
in faecal profiles of RYGB patients. The classification of these
Classes (and Genera) as specialists provides strong quantitative
support that physiological changes post-RYGB surgery drasti-
cally alter the gut environment in a manner not seen in con-
trols, pre-RYGB or post LAGB surgery. These changes are exten-
sive and include increased intestinal transit, altered bile acid
metabolism, increased localised pH and bypassing of the stom-
ach that can act as a filter for removing ingested microorgan-
isms (le Roux et al. 2006). These changes are evidently necessary
to support the activity and persistence of these specialists.

Levins’ Overlap for comparing taxa co-occurrence

The LO is useful for identifying relationships between taxa. The
strength of this approach does not lie in classifying a taxon as
either a generalist or specialist, but rather in comparing taxa
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pairs that compete for a shared resource more (or less) effec-
tively within certain environments (MacArthur 1958) or a taxon
that lacks a functional trait necessary to colonise and persist
in certain environments (Hutchinson 1957). In environmental
microbial ecology, an example would be methane oxidising bac-
teria of the genera Methylocaldum and Methylococcus that prefer-
entially compete for methane in disturbed soil environments,
whereas Methylobacter and Methylomonas preferentially compete
for methane in undisturbed soil environments (Ho et al. 2013).
The low LO values between D3 × D5 and D4 × D5 (Fig. 3) in con-
junction with their significant, low Levins’ BN (Table 1) can be
used to infer that these are specialists that may compete for a
shared resource, but if so, this competition separates their pop-
ulations in space. Alternatively, these groups may not have the
physiological capacity to colonise and persist in the same envi-
ronments. The high LO1,2 values of D1 support their nature as
generalists that must occupy different niches than the special-
ist groups. The non-symmetrical LO2,1 values of D1 generalists is
not necessarily intuitive, and Figure 2 (Supporting Information)
aims to clarify this. As can be seen in Fig. 3, the D2 linear decreas-
ing group has the second highest LO2,1 values with D1. All other
distributions, many of which are missing taxa in certain envi-
ronments or are random, sparse counts, have relatively low LO2,1

values with D1. Thus, while the D1 generalists overlap all other
distributions because of their consistently high, cosmopolitan
presence (yielding high LO1,2 values) the other distributions vary
in how well they overlap with D1, following a gradient of D2 > D5

> D3 > D4 > D6 (yielding variable LO2,1 values dependent on the
taxon being compared to D1).

In the bariatric surgery case study, Bacteroidia, Clostridia, Neg-
ativicutes and Betaproteobacteria all had high LO1,2 scores across
other Classes reflective of their cosmopolitan nature across
treatments (Fig. 4(A)). In the examples in Figure 2 (Support-
ing Information), these Classes are reflective of the generalist
‘Taxon 1’ that has consistently high LO1,2 values regardless of
being compared to another generalist or a specialist. None of
these were classified as ‘true’ generalists, with Levins’ BN val-
ues of 0.838–0.925 barely falling short of the significance thresh-
old imposed by the null model distribution. As relative abun-
dances/proportions of populations are non-Euclidean, there is
the potential for certain technical ‘quirks’ of the mathematics—
substantial increases of specialists in RYGB treatments results in
unequal proportions of Bacteroidia across the four environments.
This may be why Bacteroidia are not sufficiently equal across the
four environments to meet the significance threshold. This did
not pose a problem with the in silico training dataset (Table 1),
however, where the generalist D1 populations were all substan-
tially larger than others. Thus, as with all significance testing
and p value assignment, care should be exercised in interpre-
tation of the relevance of a p value. By pairing the Levins’ BN

values with the visual LO heatmaps, it is possible to demon-
strate that the niche of Bacteroidia clearly overlaps well with
the majority of other Classes. In terms of specialists, Fusobac-
teria did not particularly overlap with any other Class. This is
reflective of its highly scattered distribution of enrichment in
two RYGB individuals. Interestingly, Bacilli and Gammaproteobac-
teria demonstrated relatively high overlap with each other. Con-
sequently, we can speculate that these two Classes must have
(different? ) trait(s) that explain their persistence in individ-
uals post RYGB surgery as direct competitors cannot overlap
strongly.

Measuring how the environment determines niche
with Hurlbert’s BN and PS

The two indices (Equations (2) and (3)) are of value to asso-
ciate the importance of an environmental property in dictating a
taxon’s niche. Hurlbert’s BN and PS were both successful in iden-
tifying a relationship between non-linear specialist D3 and D4

groups with the gradient (p < 0.001) (Table 1). The values of Hurl-
bert’s BN and PS approaching 0 indicated that the abundance of
D3 and D4 was greatest when the environmental property was
relatively low. Conversely, values approaching 1 would have indi-
cated that the abundance of D3 and D4 were greatest when the
environmental property was relatively high. That these indices
could not identify the linearly decreasing D2 as having a relation-
ship with the environmental gradient was surprising. Indeed,
the abundance of D2 was almost perfectly linearly correlated
with the mock environmental gradient (R2 = 0.99, p < 0.001 as
determined by linear regression). An interesting finding of this
study was therefore that Hurlbert’s BN and PS are perhaps bet-
ter suited for testing a relationship between an environmental
property and taxa that have a non-linear relationship, and that
linear methods (e.g. regression or Pearson coefficients) could be
used in conjunction with Hurlbert’s BN and PS.

In the biocrust case study, community composition dif-
fered between Black and Blue Grama sites (Fig. 5(A) and (B)
as unweighted and weighted stacked bar charts, respectively).
The larger, more diverse population of Cyanobacteria in the
Black Grama control biocrust has been described as a result of
being a mature, late-succession stage biocrust relative to the
Blue Grama control (Couradeau et al. 2016). Fernandes et al.
described highly contrasting responses of these two biocrusts
to drought, with M. vaginatus dominated Blue Grama biocrust
minorly affected by drought relative to Black Grama biocrust
where a greater diversity of cyanobacterial taxa, such as Scy-
tonema spp. and those in the M. steenstrupii complex, were
established. Hurlbert’s BN supported this conclusion strongly—
M. vaginatus was not affected by precipitation while M. steen-
strupii’s distribution was strongly dependent on increasing pre-
cipitation (Table 3). Furthermore, by measuring and compar-
ing Hurlbert’s BN between many taxa, we see that the distri-
bution of four taxa (M. repens, Uncultured Nostocales, W. mur-
rayi and S. hofmanni) are almost completely independent of pre-
cipitation (Weighted Hurlbert’s BN of 0.52–0.54), even moreso
than M. vaginatus (Weighted Hurlbert’s BN of 0.664). Thus, we
can hypothesise that M. vaginatus and several other cyanobac-
terial taxa, and not M. steenstrupii, are equipped with one or
more functional traits that enable resistance to adverse effects
of drought, although further experimental work in culture would
be required to demonstrate this.

Fernandes et al. also found Scytonema to be affected by precip-
itation while we did not. The results here may differ as Fernan-
des et al. assigned cyanobacterial taxa from a curated Cyanobac-
teria database whereas the Silva132 database may have been
unsuccessful in identifying specific Scytonema OTUs. Of further
note was a discrepancy between Hurlbert’s BN and PS outcomes
for M. steenstrupii—while BN found a positive relationship with
precipitation, PS did not. The PS was, in general, more strin-
gent than BN. Additionally, while the unadjusted p values for
unweighted and weighted M. steenstrupii were below 0.05 (data
not shown) the Benjamin–Hochberg adjusted P values were
greater than 0.05. Thus, by increasing the higher stringency of
PS results further by adjusting for false discovery rate we would
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draw the conclusion that M. steenstrupii is unaffected by precip-
itation. As mentioned above, this emphasises the need for cau-
tion when interpreting p values (Colquhoun 2014).

Finally, the relationship between M. steenstrupii and precip-
itation was stronger when considering weighted abundance
as 16S rRNA gene copies cm−2 of biocrust as opposed to rel-
ative abundance (%). The weighted data also identified novel
cyanobacteria as being dependent on precipitation, whilst
simultaneously not predicting a relationship between an uncul-
tured Chroococcidiopsaceae (below the LOQ) and precipitation.
This is because the weighted abundances more accurately
reflect the detrimental effect of drought across the community
and on specific taxa, such as M. steenstrupii. When only consider-
ing relative abundance (%), an increase in the abundance of one
taxon may be due to the absence of another taxon rather than a
true increase in OTU abundance. This point is made poignantly
by the Oxyphotobacteria in Black Grama Drought sample 5–the
absence of many taxa give the impression that Oxyphotobacte-
ria abundance is ‘high’ at 80% in Fig. 5(A), whereas in reality the
Cyanobacterial population is almost non-existent in this sample
(Fig. 5(B)). In macroecology, the benefits of weighting the relative
abundance of a taxon within a sample by the sum of individu-
als in that sample is well described (Griffin-Nolan et al. 2018).
The results here certainly support the application of weighted
OTU analyses in microbial ecology, particularly when investigat-
ing how the environment determines the abundance of taxa.

Some considerations for niche-based studies

The case studies to validate the four niche metrics were chosen
as they had qualitatively demonstrated niche-differentiation at
the taxonomic level of Class (bariatric surgery case study) and
level of Species (biocrust case study). These can be consid-
ered as high and low taxonomic rank. An important consider-
ation for niche-based studies is the potential underlying phys-
iological traits that dictate a taxon’s niche, and at what level
of taxonomic rank these traits are likely evident. For example,
Cyanobacteria derive the majority of their carbon from photo-
synthesis (Garcia-Pichel et al. 2019) while methanogenic Archaea
are obligate anaerobes that perform the final step of fermenta-
tion, the reduction of carbon dioxide to methane (Garcia, Patel
and Ollivier 2000). If one were to sample microbial communi-
ties in a water column from the surface to the anaerobic sed-
iment, one could reasonably expect to find more Cyanobacte-
ria at the surface and more methanogens in the anaerobic sedi-
ment, which could be considered their respective niches. There-
fore, at this scale, niche differentiation can be observed at the
high taxonomic rank of phylum. However, other, more specific
physiological traits may only be evident at the species or OTU
level. For example, the biocrust study analysed here demon-
strated drought resistance in M. vaginatus and not M. steenstrupii,
at low taxonomic rank. Similarly, certain (micro)niches may only
become evident depending on the sampling scale, for exam-
ple relationships between specific taxa and gradients of oxy-
gen or water potential in soil aggregates. Such a relationship
will not be seen when applying the niche indices to sequencing
data derived from DNA extracted from bulk soil. Ultimately the
usefulness of applying the four metrics to demonstrate niche-
differentiation will depend on the user’s hypothesis and experi-
mental design.

A further consideration to note is that calculating niche
indices based on amplicon sequencing data is dependent on
certain traits being linked to an OTU. This suggests that test-
ing niche-related hypotheses with OTU data is likely to be more

successful when physiological traits necessary for that niche
are encoded in the organism’s chromosome. Mobile genetic
elements that convey unique niches, for example Escherichia
coli strain-specific antibiotic resistance plasmids (de Been et al.
2014), that are inconsistently linked to the gene being surveyed
(e.g. 16S rRNA gene), will not yield appropriate niche metrics.

CONCLUSION

The concept of a taxon’s niche is a useful mechanism to describe
the relationship between a taxon and its environment and
between a taxon and other taxa within a community. Presented
here is a thorough investigation of several niche-related indices
in measuring various metrics of microbial taxa from amplicon
sequencing data. These indices are applicable to testing distinct
niche-related hypotheses, including: (a) whether a taxon can be
considered a generalist or specialist; (b) the extent by which the
niches of two taxa overlap and (c) the role of an environmental
property in determining the spatial distribution of a taxon. The
case studies analysed here were chosen as previous work had
demonstrated niche-differentiation between taxa. The applica-
tion of the four indices to these case studies confirmed their util-
ity in quantitatively comparing niche between microbial taxa
and drawing biologically-relevant conclusions. The incorpora-
tion of an LOQ to identify taxa being incorrectly identified as spe-
cialists (based on a priori assumptions) was entirely novel to this
work, not utilised in macroecological studies, and was a con-
sequence of the nature of microbial amplicon sequencing data.
Null models were also incorporated to support hypothesis test-
ing (i.e. deriving a P value). We have made these indices avail-
able as the R package MicroNiche. It was concluded that these
niche metrics hold value for investigating the ecology of micro-
bial taxa, however, the interpretation of p values derived from
these indices should always be considered with caution and in
conjunction with other methodologies testing microbial physi-
ology (i.e. in pure cultures or laboratory enrichments) to support
biologically-relevant conclusions.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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