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We here investigate a modification of the compressible barotropic Euler system with friction, involving a fuzzy nonlocal pressure term in place of the conventional one. This nonlocal term is parameterized by ε > 0 and formally tends to the classical pressure when ε approaches zero. The central challenge is to establish that this system is a reliable approximation of the classical compressible Euler system. We establish the global existence and uniqueness of regular solutions in the neighborhood of the static state with density 1 and null velocity. Our results are demonstrated independently of the parameter ε, which enable us to prove the convergence of solutions to those of the classical Euler system. Another consequence is the rigorous justification of the convergence of the mass equation to various versions of the porous media equation in the asymptotic limit where the friction tends to infinity. Note that our results are demonstrated in the whole space, which necessitates to use the L 1 (R + ; Ḃσ 2,1 (R d )) spaces framework.

Introduction

The phenomena of collective behavior are at the crossroads of various scientific disciplines and are currently the subject of active research. They find their roots in diverse fields such as sociology, biology, and classical physics [START_REF] Cucker | Emergent behavior in flocks[END_REF][START_REF] Oh | A survey of multi-agent formation control[END_REF][START_REF] Toscani | Kinetic models for the trading of goods[END_REF]. At the microscale level, these phenomena are often described by simple Ordinary Differential Equations, as in e.g. the N-body problem. However, when the number of agents or particles becomes prohibitively large, such naive descriptions prove to be ineffective. Consequently, at the macroscale, it becomes suitable to adopt a hydrodynamical approach to model and understand these complex systems [START_REF] Carrillo | Critical thresholds in 1D Euler equations with non-local forces[END_REF][START_REF] Danchin | Regular solutions to the fractional Euler alignment system in the Besov spaces framework[END_REF][START_REF] Mucha | Global-in-time stability of ground states of a pressureless hydrodynamic model of collective behavior[END_REF].

This paper delves into the analysis of a modified version of the classical compressible Euler system, incorporating a nonlocal force designed to induce mass alignment among the constituent elements. This modification consists in replacing the classical pressure term by a non-local fuzzy approximation, which is designed to model the communication of each particle/agent with other particles located in a non-trivial neighborhood.

More precisely, we are concerned with the following class of systems in the whole space R d :

(1.1) ρ t + div (ρu) = 0 ρu t + ρu • ∇u + fρu = -ρ∇K ε * ρ.

Above, ρ = ρ(t, x) ∈ R + and u = u(t, x) ∈ R d denote the density and velocity functions of the studied "matter", respectively. The positive real number f is the friction coefficient and the family of smooth potentials (K ε ) ε>0 is assumed to tend to the Dirac measure at 0, when ε goes to 0. The convolution in the right-hand side of (1.1) is taken with respect to space variables. Hence formally, in the limit, we obtain the following compressible Euler system with friction:

(1.2)

   ρ t + div (ρu) = 0, ρu t + ρu • ∇u + fρu + 1 2 ∇ρ 2 = 0.
Our primary goal is to establish the global well-posedness of System (1.1) supplemented with initial data (ρ 0 , u 0 ) which are perturbations of the constant solution (ρ, u) = (1, 0). Because the nonlocal term ∇K ε * ρ is rather smooth, proving local well-posedness results in the case of sufficiently smooth data bounded away from zero presents no particular difficulty. Indeed, the velocity satisfies a damped Burgers equation with a smooth source term, that can be considered independently of the density equation. In this way however, it is difficult to prove the global existence since, typically, the source term ∇K ε * ρ, albeit smooth, causes a linear growth of L 1 -in-time norms of ∇u. Back to the transport equation, it is thus impossible to get uniform bounds in time for the density, and thus to close the estimates for all positive time. Likewise, getting a control independent of ε in this way is hopeless.

The main difficulty is that our system does not enter in the classical theory of hyperbolic equations. Even for fixed values of parameters f and ε, a nonstandard approach is necessitated. The main points of our analysis (that is also valid for more general pressure functions than P (ρ) = ρ 2 /2) are the following:

• A fundamental challenge arises from the essential requirement of L 1 time integrability for ∇u, that is,

(1.3) ∞ 0 ∇u L ∞ dt < ∞.
This is the key to controlling for all time the transport terms of (1.1), namely u • ∇ρ and u • ∇u. Given the hyperbolic nature of the system, (1.3) can only be achieved thanks to the dissipative term fρu. In the whole space context, there exists no inherent mechanism to induce rapid temporal decay (we shall showcase below that there is no 'spectral' gap for the linearized system). A way to overcome the difficulty is to use the framework of homogeneous Besov spaces of type Ḃs 2,1 (R d ). Here, the factor '1' will enable us to attain the L 1 integrability over time, while the factor '2' reflects the fact that our framework is related to the L 2 space, in keeping with the quasilinear hyperbolic nature of the system.

• In order to achieve global results with some uniformity with respect to ε, the mathematical analysis is subtle. In fact, instead of helping, the smoothing kernel K ε destroys the nice partially dissipative symmetrizable structure of (1.2). The so-called Shizuta-Kawashima condition (first pointed out in [START_REF] Kawashima | Systems of a hyperbolic-parabolic composite type, with applications to the equations of magneto-hydrodynamics[END_REF]) is not satisfied, and the more modern approach of Beauchard-Zuazua [START_REF] Beauchard | Large time asymptotics for partially dissipative hyperbolic systems[END_REF] (revisited in [START_REF] Crin-Barat | Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case[END_REF][START_REF] Danchin | Partially dissipative systems in the critical regularity setting, and strong relaxation limit[END_REF]) cannot be used as is. Compared to (1.2), the difficulty is that the operator ∇K ε provides less dissipation than the full gradient, as may be already observed on the following linearization of (1.1):

(1.4) a t + div u = 0,

u t + u + ∇K ε a = 0.
In Fourier variables, the matrix of the system reads reads

0 iξ iξ T K ε (ξ) 1 , ξ ∈ R d .
The eigenvalues are 1 with multiplicity d -1 (incompressible part of u) and:

λ ± (ξ) = 1 2 1 ± 1 -4|ξ| 2 K ε (ξ) if 4|ξ| 2 K ε (ξ) ≤ 1; λ ± (ξ) = 1 2 1 ± i 4|ξ| 2 K ε (ξ) -1 if 4|ξ| 2 K ε (ξ) ≥ 1.
The Euler situation corresponds to ε = 0, that is K 0 ≡ 1. We then have two distinct regimes: low frequencies with one parabolic mode and d damped modes, and high frequencies with only damped modes.

If ε > 0, then the regime where 4|ξ| 2 K ε (ξ) < 1 is likely to include arbitrarily high frequencies, since the functions K ε that we will consider here have algebraic decay at ∞. Furthermore, for small values of |ξ| 2 K ε (ξ) we have λ -(ξ) ≃ |ξ| 2 K ε (ξ) that is, a degenerate parabolic mode.

A key observation is that in this regime the combination w := u + ∇K ε a (often referred to in this article as the 'damped mode') tends to undergo an exponential dissipation.

• An essential requirement in our study is the establishment of uniform dependence on the parameter ε. This is clearly needed for justifying rigorously the convergence to the Euler system (1.2) in the asymptotics ε → 0.

Leveraging energy-based techniques, we succeed in controlling the essential quantities required for our analysis, uniformly as ε → 0. This enables us to precisely determine the diffusive limit of our system. It is worth noting that our approach and functional framework for solving (1.1) is inspired by the recent paper [START_REF] Crin-Barat | Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case[END_REF]. However, the loss of symmetry caused by the kernel K ε will entail a number of difficulties that will be described in detail in the next section. For older global existence results concerning System (1.2) and the relaxation limit, the reader may consult [START_REF] Coulombel | The strong relaxation limit of the multidimensional isothermal Euler equations[END_REF][START_REF] Junca | Strong relaxation of the isothermal Euler system to the heat equation[END_REF][START_REF] Xu | Diffusive relaxation limit of classical solutions to the damped compressible Euler equations[END_REF][START_REF] Xu | Global classical solutions for partially dissipative hyperbolic system of balance laws[END_REF].

• To recover the optimal information coming from the basic spectral analysis that we performed above for (1.4), it is convenient to localize the system by means of a dyadic decomposition in the Fourier space (the so-called Littlewood-Paley decomposition) then to implement the method that was used in [START_REF] Crin-Barat | Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case[END_REF][START_REF] Crin-Barat | Global existence for partially dissipative hyperbolic systems in the L p framework, and relaxation limit[END_REF] for (1.2). There is one more difficulty: in the process, in order to compensate the loss of symmetry with respect to (a, u), one has somehow to look at K ε a as an 'independent' unknown. This leads us to consider commutators of nonlinear terms with K ε . A central objective lies in the meticulous control of these commutators, uniformly with respect to ε. In this endeavor, we have to extend the techniques delineated in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]Chap. 2] to accommodate more intricate scenarios, wherein paraproduct operator and expansion techniques become indispensable for addressing higher-order terms. Here, the key is to use a Taylor expansion at order two; which necessitates a control of ∇ 2 u L ∞ . This leads us to use a dual level of regularity while, for the classical compressible Euler system, it is enough to control ∇u L ∞ , and thus to use only one level of regularity.

• The last part of our study concerns the relaxation limit f → ∞. A distinctive feature of our functional setting is that it allows to deduce the general case f > 0 from the particular case f = 1 by mere rescaling, provided parameter ε has been suitably modified. Then, the key to proving the strong convergence is to look at w defined above as the beneficial and dissipative component of our system 1 .

Depending on the type of asymptotics we are looking at, we will justify rigorously the transition to porous media type equations, namely:

∂ t r -div (r∇K ε r) = 0 or ∂ t n -div (n∇n) = 0.
It is noteworthy that when ε > 0, the resulting equation corresponds to some degenerate porous media equation, with no parabolic smoothing-out effect.

Derivation from the particle system

In order to have a better understanding of the model presented in the introduction, let us delve into the interactions occurring among particles at the microscopic level. We therefore look at second-order agent models in their general formulation: consider a set of N identical particles, each of which is identified by the index k, ranging from 1 to N. At any time t, particle k occupies the position x k (t) and moves with an instantaneous velocity v k (t).

In our analysis, we make the underlying assumption that communication between these particles solely depends on aggregation-repulsion effects, contingent upon the positions of the agents. Furthermore, we incorporate frictional effects into the model to govern and ensure the system's stability. Consequently, denoting by f the (nonnegative) friction coefficient, the temporal evolution of both position {x k } and velocity {v k } for each particle, where k spans the values from 1 to N, is governed by the following system of equations:

(2.1)

     ẋk = v k vk = -fv k - 1 N l∈{1,••• ,N } ∇K ε (x k -x l ).
Changing the scale from micro to macro setting, jumping over the kinetic formulation, leads to System (1.1) (see details in Appendix). Then, assuming that K ε → δ as ε → 0, we formally obtain ρ ∇K ε * ρ → 1 2 ∇ρ 2 , and thus the Euler system (1.2). A simple example of a family of potentials (K ε ) ε>0 can be built from the characteristic function of the ball, namely we set (for a suitable normalization constant c d ):

K ε (x) := c d ε -d (1 -ε -1 |x|)χ B(0,ε) (x) so that ∇K ε = c d ε -d-1 χ B(0,ε) x |x| •
To better understand the effects modelled by this potential, let us concentrate on the monodimensional case. Then

K ′ ε * ρ(x) = ε -2 |z|≤ε z |z| ρ(x -z) dz = ε -2 |z|≤ε sgn(z)(ρ(x -z) -ρ(x)) dz.
We observe that the force term arising from the integral on the right-hand side of the equation stems from the necessity of maintaining mass balance over the intervals (-ε, 0) and (0, ε).

For multidimensional systems, while the weightings may become somewhat more intricate, the underlying mechanism remains fundamentally unchanged. To gain a visual insight into the impact of this nonlocal term, the reader may pay attention to Fig. The mass contributed by the green balls on the segment (-ε, 0) exerts a comparatively lesser influence compared to that of the red balls located in the segment (0, ε). Consequently, the resultant force is oriented on the left.

The salient points of this analysis are valid in the specific case where the pressure is of the form P (ρ) ∼ ρ 2 . To achieve more general barotropic constitutive relations, one can introduce the density-induced communication protocol of [START_REF] Motsch | A new model for self-organized dynamics and its flocking behavior[END_REF][START_REF] Minakowski | Density-induced consensus protocol[END_REF]. In that case we assume the communication between k-th and l-th agent to be of the form N (K ε * ρ)∇K ε (x kx l ), for some given function N . At the level of the particle system, N (K ε * ρ) measures the mass/number of particles in some vicinity of the agent x k . At the hydrodynamical level, the convolution K ε * ρ describes an average value of the density function ρ in the vicinity of the examined point. Accordingly, the inclusion of the N factor serves to augment or diminish the influence of communication relative to the average density in the given region. In this way, the effects showed at Fig. 2.1 are rescaled in terms of the magnitude of the mass in the considered neighborhood and our model System (1.1) has to be replaced with the following more general one:

(2.2)

ρ t + div (ρu) = 0 u t + u • ∇u + fu + N (K ε * ρ)∇K ε * ρ = 0.
For ε tending to 0, we formally have

(2.3) ρN (K ε * ρ)∇K ε * ρ → ρN (ρ)∇ρ = ∇P (ρ) with P ′ (ρ) = ρN (ρ).
Hence, we get the classical barotropic Euler system (2.4)

ρ t + div (ρu) = 0, u t + u • ∇u + fu + N (ρ)∇ρ = 0.
Note that the classical pressure law P (ρ) = ρ γ (γ ≥ 1) (and thus the isentropic Euler system with friction) may be achieved if taking N (ρ) = ρ γ-2 , up to a multiplicative constant.

Results

Before presenting our main results, some definitions, assumptions and notation are in order. Let us first specify our assumptions on the family (K ε ) ε>0 . Since our approach bases essentially on the Fourier transform, the convergence of K ε to the Dirac measure can be equivalently seen as K ε → 1 locally on R d . Our analysis requires K ε to keep the same order of magnitude inside any annulus {2 j-1 ≤ |ξ| ≤ 2 j+1 } ⊂ R d with j ∈ Z. In fact, we shall assume throughout that

K ε = L ε * L ε with L ε a real valued function such that L ε is nonincreasing with range in [0, 1], satisfies L ε (0) = 1 and, for some κ > 0, (3.1) 
sup ε>0 L ε L 1 + z∇L ε L 1 + (z ⊗ z)∇ 2 L ε L 1 < ∞, κ L ε (ξ) ≤ L ε (2ξ) ≤ κ -1 L ε (ξ) and ξ k ∂ ℓ L ε (ξ) L ε (ξ), 1 ≤ k, ℓ ≤ d, ξ ∈ R d , ε > 0.
The above condition rules out sharp spectral cut-off or Gaussian functions. A simple example of a family (K ε ) ε>0 satisfying (3.1) is to take 

K ε (ξ) = K(εξ) with (3.2) K(ξ) = ( L(ξ)) 2 and L(ξ) = 1 (1 + |ξ| 2 ) m/
→ [0, 1] supported in {1/2 ≤ r ≤ 2} such that k∈Z φ(2 -k r) = 1 for all r > 0.
Setting ϕ(ξ) := φ(|ξ|) for all ξ ∈ R d , one can define a homogeneous Littlewood-Paley decomposition { ∆k } k∈Z over the space R d in the following way:

∆k u := ϕ(2 -k D)u = F -1 (ϕ2 -k •)F u) with iD := (∂ x 1 , ..., ∂ x d ) for u ∈ S ′ (R d ).
Homogeneous Besov 'norms' are defined as follows for all s ∈ R and 1 ≤ p, q ≤ ∞:

u Ḃs p,q (R d ) := 2 sk ∆k u L p (R d ) ℓ q (Z) .
Actually, as P Ḃs p,q = 0 for any polynomial on R d , in the general tempered distribution setting • Ḃs p,q is just a semi-norm. To get around the problem, we proceed as in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], adopting the following definition:

Ḃs p,q (R d ) := u ∈ S ′ h (R d ) : u Ḃs p,q < ∞ , where S ′ h (R d ) is the set of tempered distributions such that for all θ ∈ C ∞ c (R d ) we have (3.3) lim λ→∞ θ(λD)u = 0 in L ∞ (R d ).
Next, in accordance with our preceding spectral analysis of the linear system (1.4), we introduce the following notation where the value of the small positive absolute constant ν 0 will be specified later in the paper:

z ℓ Ḃσ 2,1 := 2 j Lε(2 j )<ν 0 2 jσ ∆j z L 2 and z h Ḃσ 2,1 := 2 j Lε(2 j )≥ν 0 2 jσ ∆j z L 2 , (3.4) 
z ℓ := 2 j Lε(2 j )<ν 0 ∆j z and z h := 2 j Lε(2 j )≥ν 0 ∆j z. (3.5)
Note that this decomposition of frequencies does not quite correspond to what will be sometimes called, improperly, in the paper low and high frequencies. As said before, the fact that 2 j L ε (2 j ) < ν 0 does not exclude large values of 2 j .

Let us finally introduce the functional spaces that will be used for solving (1.1): for all σ ∈ R and kernel K ε = L ε ⋆ L ε satisfying (3.1), the space E σ Kε stands for the set of all pairs (a, u)

∈ C b (R + ; Ḃσ-1 2,1 ∩ Ḃσ 2,1
) such that, in addition:

(3.6) (∇u, ∇L ε ⋆ a) ∈ C b (R + ; B σ 2,1 ), (u, ∇u) ∈ L 1 (R + ; Ḃσ 2,1 )
and

t 0 (K ε a, ∇K ε * a) ℓ Ḃσ+1 2,1 + ∇L ε * a h Ḃσ 2,1 dτ < ∞.
The version of E σ Kε corresponding to the case where K ε * is the identity operator will be considered for solving the Euler system (1.2). We shall denote it by just E σ .

We are now ready to state our main global existence result for System (1.1): Theorem 3.1. Assume that d ≥ 2 and consider initial data ρ 0 = 1 + a 0 and u 0 such that

u 0 ∈ Ḃ d 2 2,1 ∩ Ḃ d 2 +2 2,1 , a 0 ∈ Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 and ∇ 2 L ε a 0 ∈ Ḃ d 2 2,1 .
There exists an absolute positive constant α 0 such that if

(3.7) u 0 Ḃ d 2 +1 2,1 ∩ Ḃ d 2 +2 2,1 + a 0 Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 + ∇ 2 L ε a 0 Ḃ d 2 2,1 ≤ α 0 ,
then System (1.1) with f = 1 supplemented with initial data (ρ 0 , u 0 ) admits a unique global classical solution (ρ, u) such that (a, u) with a := ρ -1 belongs to the space

E d 2 +1
Kε defined in (3.6). Furthermore, there exists a constant C independent of ε such that for all t ∈ R + ,

(3.8) (a, ∇a, ∇ 2 L ε a)(t) Ḃ d 2 2,1 + (u, ∇u)(t) Ḃ d 2 +1 2,1 + t 0 (u, ∇u) Ḃ d 2 +1 2,1 + (K ε a, ∇K ε a) ℓ Ḃ d 2 +2 2,1 + ∇L ε a h Ḃ d 2 +1 2,1 dτ ≤ C (a 0 , ∇a 0 , ∇ 2 L ε a 0 ) Ḃ d 2 2,1 + (u 0 , ∇u 0 ) Ḃ d 2 +1 2,1

•

In addition, setting w = u + ∇K ε a, we have

(3.9) (u, w)(t) Ḃ d 2 2,1 + t 0 w Ḃ d 2 2,1 dτ + t 0 u 2 Ḃ d 2 2,1 dτ 1/2 ≤ C (a 0 , ∇a 0 , ∇ 2 L ε a 0 ) Ḃ d 2 2,1 + (u 0 , ∇u 0 , ∇ 2 u 0 ) Ḃ d 2 2,1
• Several important remarks are in order:

-The above statement is valid for any ε > 0, with constants α 0 and C independent of ε.

We stated only the case f = 1 for simplicity. However, whenever the family (L ε ) ε>0 is given by

L ε = ε -d L(ε -1 •), then the rescaling (3.10) ρ(t, x) = ρ(ft, fx) and u(t, x) = u(ft, fx)
transforms the case (f, ε) into the case (1, εf). Hence, one may deduce from the above theorem a global well-posedness result that is valid for any ε > 0 and f > 0 (see the beginning of Section 6). -The integrability property of the damped mode w is the key to proving strong convergence results in the asymptotics f → ∞. -Our approach is appropriate for dealing with the multi-dimensional case. In the onedimensional case, the above result is still valid but the proof has to be slightly modified and it is very likely that stronger results may be obtained by different techniques (see a similar problem in [START_REF] Carrillo | On the pressureless damped Euler-Poisson equations with quadratic confinement: critical thresholds and large-time behavior[END_REF]). -A global existence result in the spirit of Theorem 3.1 can be established in the more general setting of System (2.2) (see Subsection 7.2). Let us quickly outline the proof of Theorem 3.1. The core consists in establishing a priori estimates in the functional framework given above for the following linearization of (1.1):

(3.11) a t + div u + v • ∇a + b div u = f, u t + u + v • ∇u + ∇K ε * a = g,
where the given pair (b, v) satisfies

(3.12) b t + div ((1 + b)v) = 0.
We consider this linear system with variable coefficients since just looking at (1.4) with source terms cannot prevent a loss of derivatives. Here, we shall actually extend our analysis to the more general situation of (1 + c)∇K ε * a in the second line of (3.11) and to a whole range of regularity exponents. The first extension is motivated by our wish to be able to consider more general pressure laws (see (2.3)) and the second one, to have a ready-to-use result for proving stability estimates (and thus uniqueness) and the convergence from (1.1) to (1.2) by the same stroke. Now, to get optimal a priori estimates for (3.11), we adapt the method of [START_REF] Crin-Barat | Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case[END_REF]. This consists in, first, localizing (3.11) by means of a Littlewood-Paley decomposition then:

-proving estimates for the (degenerate) parabolic mode a and the damped mode w = u + ∇K ε a rather than for (a, u), in the regime of frequencies ξ such that |ξ| L ε (ξ) ≤ ν 0 ; -considering a Lyapunov functional depending on the coefficient b that encodes the information on a, u, ∇u, ∇L ε a for frequencies such that |ξ| L ε (ξ) ≥ ν 0 . As for the Euler equation in [START_REF] Crin-Barat | Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case[END_REF], the dependence of this functional on b and c is designed to exactly compensate the loss of derivative coming from b div u and c∇K ε * a. This could be seen as a symmetrization of (3.11) after spectral localization by means of a Littlewood-Paley decomposition. Since, for proving global existence, we will have to take eventually b = a and v = u, checking at every step of the proof that only norms of (b, v) that can be controlled in terms of the norms coming into play in Theorem 3.1 is fundamental.

The other steps of the proof are more standard: having at hand estimates for (3.11) Kε . These will enable us to prove the uniqueness part of the statement. As for the existence part, we first smooth out the data and prove the existence of a sequence of local-in-time solutions (a (n) , u (n) ) n∈N with high Sobolev regularity. Combining our estimates in

E d 2 +1
Kε with a continuation criterion, we then succeed in proving that these smooth solutions are actually global, and that (a

(n) , u (n) ) n∈N is bounded in E d 2
Kε . Combining with functional analysis arguments allow to conclude to convergence, up to subsequence, to a solution of (1.1) with the desired properties.

Our second aim is to justify that (1.1) is indeed an approximation of (1.2). More precisely, we show that the solution of (1.1) constructed above converges strongly and for all time for ε → 0, to the unique solution of (1.2). This is achieved in the following theorem that essentially follows from a variation on stability estimates in E d 2

Kε . Theorem 3.2. Assume, in addition to (3.1)

, that L ε = ε -d L(ε -1 •) for a single function L. Consider initial data (ρ 0 = 1 + a 0 , u 0 ) with (a 0 , u 0 ) in Ḃ d 2 2,1 ∩ Ḃ d 2 +2
2,1 . There exists a universal constant α 0 such that if

(3.13) (a 0 , u 0 ) Ḃ d 2 2,1 ∩ Ḃ d 2 +2 2,1 ≤ α 0 ,
then, for all ε > 0, System (1.1) has a unique global solution

(ρ ε = 1 + a ε , u ε ) with (a ε , u ε ) in E d 2 +1 Kε
and System (1.2) has a unique global solution

(ρ = 1 + a, u) with (a, u) in E d 2 +1 . Furthermore, a ε → a in L ∞ loc (R + ; Ḃ d 2 +α 2,1 ), α ∈ [0, 1) and u ε → u in L ∞ loc (R + ; Ḃ d 2 +β
2,1 ), β ∈ [0, 2). The above convergence holds uniformly on R + if:

either η → |η| -1 ( L(η) -1) is bounded;

-or a 0 ∈ Ḃ d 2 -1 2,1 .
In this case, we have a ε and a in

C b (R + ; Ḃ d 2 -1 2,1
). In the last part of the paper, we shall investigate the high friction limit f → ∞ for (1.1). Our goal is to showcase the convergence of the (suitably rescaled) density toward a solution of either the well-known porous media equation (3.14) ∂ t ndiv (n∇n) = 0 or of the following regularization of it:

(3.15) ∂ t r -div (r∇K ε * r) = 0.
These two equations can be guessed after performing the following diffusive change of variables in (1.1):

(3.16) ρ(t, x) = ρ(f -1 t, x) and u(t, x) = f -1 ǔ(f -1 t, x).

We get ρt + div (ρǔ) = 0,

f -2 ǔt + ǔ • ∇ǔ + ǔ + ∇K ε * ρ = 0.
Hence, it can be expected that ǔ + ∇K ε * ρ goes to 0 when f tends to ∞. Reverting to the mass equation and assuming that ρ → r, one can conclude that r satisfies (3.15). In the same way, if both f → ∞ and ε → 0, then we will prove that ρ → n with n satisfying (3.14).

The rest of the paper is organized as follows. In Section 4, we establish a priori estimates for the linear System (3.11). To accommodate the general pressure case (2.2), we actually replace the term ∇K ε * a with (1+c)∇K ε * a for some given function c. At first reading however, setting c ≡ 0 is advisable, as it corresponds to Theorems 3.1 and 3.2, (see Subsection 7.2 for the general case). The principal outcome, as presented in Theorem 4.1, furnishes a comprehensive estimate crucial for subsequent developments. Section 5 is dedicated to proving the existence of solutions. We outline the main steps of the construction procedure, followed by the proof of uniqueness, and ultimately, the convergence to the classical Euler system under the condition ε → 0. All these aspects rely on the estimates established in Theorem 4.1. In Section 6, we delve into relaxation results, as presented in (3.14)- (3.16). We explore two types of relaxation, yielding modifications and classical versions of the porous equation. Subsection 7.1 is devoted to the study of various commutators, essential for our analysis. Subsequently, in Subsection 7.2, we examine the general case of pressure, emphasizing the distinctions from the original scenario. Lastly, we provide motivation for transitioning from the particle system (2.1) to the hydrodynamical equations under consideration (1.2) and (2.4).

Study of a suitable linearized system

This part is devoted to proving a priori estimates for the following linear system:

(4.1)      a t + v • ∇a + (1 + b) div u = f, u t + u + v • ∇u + (1 + c)∇K ε a = g, a| t=0 = a 0 , u| t=0 = u 0 .
Note that the system (3.11) presented before corresponds to the special case c = 0. The reason for presenting here this more general class of systems is motivated by our desire to consider (1.1) with more general pressure laws (see Section 7.2). To short the notation from now we write K ε a instead of K ε * a.

Throughout this section, we assume that the (given) triple (b, c, v) satisfies the relation (3.12) and the smallness condition

2 (4.2) max b L ∞ (0,T ×R d ) , c L ∞ (0,T ×R d ) ≤ 1/4. Theorem 4.1. Let σ be in the range (1 -d/2, 1 + d/2].
Assume that a 0 and u 0 are such that

(4.3) u 0 ∈ Ḃσ 2,1 ∩ Ḃσ+1 2,1 , a 0 ∈ Ḃσ-1 2,1 ∩ Ḃσ 2,1
and L ε ∇a 0 ∈ Ḃσ 2,1 , and that the source terms f and g verify

(4.4) g ∈ L 1 (0, T ; Ḃσ 2,1 ∩ Ḃσ+1 2,1 ), f ∈ L 1 (0, T ; Ḃσ-1 2,1 ∩ Ḃσ 2,1 ) and L ε ⋆ ∇f ∈ L 1 (0, T ; Ḃσ 2,1
). Finally, let us assume that the triple (b, c, v) satisfies (3.12) and (4.2) and has enough regularity. Consider a smooth enough solution (a, u) of (3.11) on [0, T ] × R d , and set

X σ a,u (t) := (a, ∇a, ∇ 2 L ε a)(t) Ḃσ-1 2,1 + (u, ∇u)(t) Ḃσ 2,1
and

H σ a,u (t) := (u, ∇u) Ḃσ 2,1 + (∇K ε a, ∇ 2 K ε a) ℓ Ḃσ 2,1 + ∇L ε a h Ḃσ 2,1
.

There exists a constant C independent of ε and of T such that for all t ∈ [0, T ), there holds:

(4.5) X σ a,u (t) + t 0 H σ a,u dτ ≤ C X σ a,u (0) + t 0 X σ f,g dτ + t 0 ∇v Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 X σ a,u dτ + t 0 b, ∇b Ḃ d 2 2,1 u, ∇u Ḃσ 2,1 dτ + t 0 b, ∇v, ∇L ε b Ḃσ 2,1 ∇u L ∞ + ∇v Ḃσ 2,1 ∇L ε a L ∞ dτ + t 0 c Ḃ d 2 2,1 ∇L ε a h Ḃσ 2,1 + ∇K ε a ℓ Ḃσ 2,1 + ∇ 2 K ε a ℓ Ḃσ 2,1 + ∇c Ḃ d 2 2,1 + c t +div ((1+c)v) L ∞ ∇L ε a Ḃσ 2,1 + ∇c Ḃ d 2 2,1 L ε a Ḃσ 2,1 + c Ḃσ 2,1 ∇L ε a h L ∞ + ∇K ε a ℓ L ∞ + ∇ 2 K ε a ℓ L ∞ + ∇c Ḃσ 2,1 ∇L ε a L ∞ dτ ,
and the terms involving the L ∞ norm of ∇u or ∇L ε a and so on, are not needed if σ ≤ d/2.

If, in addition, u 0 belongs to Ḃσ-1 2,1 and g, to L 1 (0, T ; Ḃσ-1 2,1 ) then we also have

(4.6) (u, w)(t) Ḃσ-1 2,1 + t 0 w Ḃσ-1 2,1 dτ X σ a,u (0) + u 0 ℓ Ḃσ-1 2,1 + t 0 g ℓ Ḃσ-1 2,1 + X σ f,g dτ + t 0 ∇v Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 u ℓ Ḃσ-1 2,1 + X σ a,u dτ + t 0 c Ḃ d 2 2,1 K ε a Ḃσ 2,1 dτ + last 5 lines of (4.5),
where the 'damped mode' w is defined by

(4.7) w = u + ∇K ε a.
Proof. In all that follows, {c j } j∈Z will denote a nonnegative sequence with sum equal to 1, and we use the notation

z j := ∆j z, j ∈ Z, z ∈ S ′ (R d ).
4.1. First step: Low frequencies estimates. The first step consists in estimating the 'low frequencies' of a at level of regularity σ -1, then of w at level σ, where w has been defined in (4.7). Estimates for u and w at level σ -1 (that is, Inequality (4.6)) are extra informations that can be obtained afterward.

As a start, we look at the evolution of (a, w), namely,

(4.8) a t -∆K ε a + v • ∇a = -div w -b div u, w t + w + v • ∇w = [v, ∇K ε ] • ∇a -∇K ε div (w -∇K ε a) -∇K ε (b div u) -c∇K ε a.
Up to lower order terms, this is a diagonalization of System (3.11): a may be seen as a (degenerate) parabolic mode, while w is a damped mode. Now, to prove estimates in Besov spaces for a and w, the unavoidable first step is to localize (4.8) by means of ∆j . We have:

(4.9)

       a j,t -∆K ε a j + v • ∇a j = [v, ∆j ] • ∇a -∆j div w + b div u , w j,t + w j + v • ∇w j = [v, ∆j ] • ∇w + ∆j [v, ∇K ε ] • ∇a -∆j ∇K ε div (w -∇K ε a) -∆j ∇K ε (b div u) -∆j (c∇K ε a).
Estimate of a. Taking the L 2 scalar product of the first equation of (4.9) with a j and integrating by parts in the second and third terms on the left yields:

(4.10) 1 2 d dt a j 2 L 2 + ∇L ε a j 2 L 2 = 1 2 R d (div v)a 2 j dx + R d ([v, ∆j ] • ∇a) a j dx - R d ∆j div w + b div u a j dx.
Provided -d/2 < σ -1 < d/2 + 1, combining Hölder inequality, embedding (7.3) and the commutator estimate (7.4) ensures that

1 2 R d (div v)a 2 j dx + R d ([v, ∆j ] • ∇a) a j dx ≤ Cc j 2 -j(σ-1) ∇v Ḃ d 2 2,1 a Ḃσ-1 2,1 a j L 2 .
Furthermore, for -d/2 < σ -1 ≤ d/2, Cauchy-Schwarz inequality, the product law (7.1) and the definition of the space Ḃσ-1 2,1 guarantee that

R d ∆j (b div u) a j dx ≤ Cc j 2 -j(σ-1) b Ḃ d 2 2,1 div u Ḃσ-1 2,1 a j L 2 .
Now, owing to the spectral localization given by ∆j , Bernstein inequality and (3.1), we have

(4.11) ∇L ε a j 2 L 2 ≈ 2 2j L 2 ε (2 j ) a j 2 L 2 ≈ ∆K ε a j L 2 a j L 2 .
Hence after 'simplification by a j L 2 ' in (4.10), integration on [0, t] and use of (4.11), we get for some absolute constant κ 0 ,

a j (t) L 2 + κ t 0 K ε ∆a j L 2 dτ ≤ a 0,j L 2 + t 0 div w j L 2 dτ +C2 -j(σ-1) t 0 c j ∇v Ḃ d 2 2,1 a Ḃσ-1 2,1 + div u Ḃσ-1 2,1 b Ḃ d 2 2,1 dτ.
Then, multiplying by 2 j(σ-1) and summing up on all j's such that 2 j L ε (2 j ) < ν 0 gives (4.12) a(t) ℓ

Ḃσ-1

2,1 + κ 0 t 0 K ε ∆a ℓ Ḃσ-1 2,1 dτ ≤ a 0 ℓ Ḃσ-1 2,1 + t 0 div w ℓ Ḃσ-1 2,1 dτ + C t 0 ∇v Ḃ d 2 2,1 a Ḃσ-1 2,1 + div u Ḃσ-1 2,1 b Ḃ d 2 2,1
dτ.

Estimate of w at regularity level σ. Let us take the L 2 scalar product of the second equation of (4.9) with w j . Handling the terms containing to v as previously, simplifying by w j L 2 and integrating, we get for σ ∈ (-d/2, 1 + d/2],

w j (t) L 2 + t 0 w j L 2 dτ ≤ w 0,j L 2 + C2 -jσ t 0 c j ∇v Ḃ d 2 2,1 w Ḃσ 2,1 dτ + t 0 ∇K ε div (w j -∇K ε a j ) L 2 + ∆j [v, ∇K ε ] • ∇a L 2 + ∆j ∇K ε (b div u) L 2 dτ + t 0 ∆j (c∇K ε a) L 2 dτ.
Hence, multiplying by 2 jσ and summing on all j's such that 2 j L ε (2 j ) < ν 0 ,

(4.13) w(t) ℓ Ḃσ 2,1 + t 0 w ℓ Ḃσ 2,1 dτ ≤ w 0 ℓ Ḃσ 2,1 + t 0 ∇K ε div (w -∇K ε a) ℓ Ḃσ 2,1 dτ +C t 0 ∇v Ḃ d 2 2,1 w Ḃσ 2,1 dτ + t 0 [v, ∇K ε ]•∇a ℓ Ḃσ 2,1 + ∇K ε (b div u) ℓ Ḃσ 2,1 + c∇K ε a ℓ Ḃσ 2,1
dτ.

Looking at (3.4), we see that

(4.14) ∇K ε div (w -∇K ε a) ℓ Ḃσ 2,1 ≤ Cν 2 0 w -∇K ε a ℓ Ḃσ 2,1
.

For the last term of (4.13), using (7.1) and the low frequency cut-off yields

(4.15) ∇K ε (b div u) ℓ Ḃσ 2,1 ≤ Cν 2 0 b div u ℓ Ḃσ-1 2,1 ≤ Cν 2 0 b Ḃ d 2 2,1 div u Ḃσ-1 2,1 . To handle the commutator term, we use K ε = L 2 ε . This enables us to write that: [v, ∇K ε ] • ∇a = [v, ∇L ε ] • ∇L ε a + ∇L ε [v, L ε ] • ∇a.
Therefore, thanks to Inequalities (7.5) and (7.6) 

with c = v k (for k = 1, • • • , d) and h = ∇L ε a or ∇a, respectively, we have [v, ∇K ε ] • ∇a ℓ Ḃσ 2,1 [v, ∇L ε ] • ∇L ε a ℓ Ḃσ 2,1 + ∇L ε [v, L ε ] • ∇a ℓ Ḃσ 2,1 [v, ∇L ε ] • ∇L ε a Ḃσ 2,1 + ν 0 [v, L ε ] • ∇a Ḃσ 2,1 ∇v Ḃ d 2 2,1 ∇L ε a Ḃσ 2,1 + ∇v Ḃσ 2,1 ∇L ε a L ∞ + ν 0 ∇v Ḃ d 2 2,1
a Ḃσ 2,1 , and the second term in the right-hand side is not needed if σ ≤ d/2.

Finally, we have

c∇K ε a ℓ Ḃσ 2,1 c Ḃ d 2 2,1 ∇K ε a Ḃσ 2,1 + c Ḃσ 2,1 ∇K ε a L ∞ and the second term in the right-hand side is not needed if σ ≤ d/2.
In the end, reverting to (4.13) yields

(4.16) w(t) ℓ Ḃσ 2,1 + t 0 w ℓ Ḃσ 2,1 dτ ≤ w 0 ℓ Ḃσ 2,1 + ν 2 0 t 0 w -∇K ε a ℓ Ḃσ 2,1 dτ + C t 0 ν 2 0 b Ḃ d 2 2,1 u Ḃσ 2,1 + c Ḃ d 2 2,1 ∇K ε a Ḃσ 2,1 + c Ḃσ 2,1 ∇K ε a L ∞ + ∇v Ḃ d 2 2,1 (w, a, ∇L ε a) Ḃσ 2,1 + ∇L ε a L ∞ v Ḃσ+1 2,1 dτ,
where the terms with

L ∞ norms of ∇K ε a or ∇L ε a are absent if σ ≤ d/2.
Putting this inequality together with (4.12) allows to absorb all the linear terms in the right-hand side provided that ν 0 is chosen small enough. We get

(4.17) a(t) ℓ Ḃσ-1 2,1 + w(t) ℓ Ḃσ 2,1 + 1 2 t 0 (K ε ∇a, w) ℓ Ḃσ 2,1 dτ a 0 ℓ Ḃσ-1 2,1 + w 0 ℓ Ḃσ 2,1 + t 0 b Ḃ d 2 2,1 u Ḃσ 2,1 + c Ḃ d 2 2,1 ∇K ε a Ḃσ 2,1 + c Ḃσ 2,1 ∇K ε a L ∞ + ∇v Ḃ d 2 2,1 (a, ∇a, ∇ 2 L ε a) Ḃσ-1 2,1 + w Ḃσ 2,1 + ∇L ε a L ∞ v Ḃσ+1 2,1
dτ.

Again, the terms with

L ∞ norms of ∇K ε a or ∇L ε a are not needed if σ ≤ d/2.
Estimate of w at regularity level σ -1. Note that we also have

∇K ε div (w -∇K ε a) ℓ Ḃσ-1 2,1 ≤ C ν 2 0 w ℓ Ḃσ-1 2,1 + c ∇K ε a ℓ Ḃσ 2,1
• Hence, arguing as for proving (4.16) but using this time that

∇K ε (b div u) ℓ Ḃσ-1 2,1 ≤ ν 0 b div u ℓ Ḃσ-1 2,1 ≤ Cν 0 b Ḃ d 2 2,1 u Ḃσ 2,1 ,
we get if ν 0 is small enough:

(4.18) w(t) ℓ Ḃσ-1 2,1 + 1 2 t 0 w ℓ Ḃσ-1 2,1 dτ ≤ w 0 ℓ Ḃσ-1 2,1 + ν 0 t 0 ∇K ε a ℓ Ḃσ 2,1 dτ + C t 0 ν 2 0 b Ḃ d 2 2,1 u Ḃσ 2,1 + ∇v Ḃ d 2 2,1 w, a, ∇L ε a Ḃσ-1 2,1 dτ + C t 0 c Ḃ d 2 2,1 ∇K ε a Ḃσ-1 2,1 dτ.
Note that for all σ ′ ∈ R, we may write

(4.19) w -u ℓ Ḃσ ′ 2,1 ≤ C ∇K ε a ℓ Ḃσ ′ 2,1 ≤ Cν 2 0 a Ḃσ ′ -1 2,1
.

This allows to replace w ℓ in the left-hand side of (4.17) and w ℓ Ḃσ-1

2,1 by u ℓ Ḃσ-1 2,1
in the first term of the left-hand side of (4.18), and thus to complete the proof of the low frequency parts of (4.5) and (4.6).

Remark 1. If c = F (K ε a) for some smooth function F vanishing at 0, the last term of (4.18) lacks time integrability. However, one can apply (4.17) with σ -1 instead of (4.18) to bound u and ∇K ε a in L 1 (R + ; Ḃσ-1 2,1 ). We deduce a bound for L ε a in L 2 (R + ; Ḃσ-1 2,1 )). 4.2. Second step: High frequencies estimates. We adapt the approach of [START_REF] Crin-Barat | Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case[END_REF] for the dissipative Euler system, and introduce the following "Lyapunov" and "dissipation rate" functionals

L 2 j := (a j , L ε a j , u j ) 2 L 2 -2 R d a j div u j dx + 2 R d (1+c)|∇L ε a j | 2 dx (4.20) + R d |∇Pu j | 2 dx + 2 R d (1+b)(div u j ) 2 dx, (4.21) H 2 j := u j 2 L 2 + ∇Pu j 2 L 2 + R d (1+c)|∇L ε a j | 2 dx + R d (1+b)(div u j ) 2 dx.
Note that, owing to (4.2) and Young inequality, we have

(4.22) L j ≈ (∇L ε a j , ∇u j ) L 2 ≈ H j if 2 j L ε (2 j ) ≥ ν 0 , and 
L j ≈ (a j , u j , ∇u j ) L 2 , H j 2 j L ε (2 j )L j if 2 j L ε (2 j ) ≤ ν 0 .
Hence, if multiplying H j and L j by 2 jσ and summing up on those j's such that 2 j L ε (2 j ) ≥ ν 0 , one gets the parts of X σ a,u and H σ a,u corresponding to the high frequencies. We shall implement an energy method so has to compute the time derivatives of all the terms that constitute L 2 j . To proceed, the first step is of course to localize (3.11) by means of ∆j . However, in order to avoid loss of derivatives, one needs to be very careful how one writes the terms with nonconstant coefficients after localization. The idea is to obtain for (a j , u j ) a system with the same structure as (3.11), up to 'manageable' commutator terms. Having this in mind, a suitable way of writing the localized system is

(4.23) a j,t + v • ∇a j + ∆j (1 + b)div u = [v, ∆j ] • ∇a, u j,t + v • ∇u j + u j + ∆j ((1 + c)∇K ε a) = [v, ∆j ] • ∇u.
Let us first look at the time derivative of (a j , u j ) 2 L 2 . Taking the L 2 scalar product of (4.23) with (a j , u j ), and integrating by parts in the convection terms gives:

(4.24) 1 2 d dt (a j , u j ) 2 L 2 + u j 2 L 2 + R d (Id -K ε )a j div u j dx + R d u j • ∆j (c∇K ε a) dx + R d a j ∆j (b div u) dx = R d ([v, ∆j ] • ∇a a j + ([v, ∆j ] • ∇u) • u j ) dx + 1 2 R d (a 2 j + |u j | 2 )div v dx.
To eliminate the third term of the left-hand side, we need to look at

L ε a j 2 L 2 . We have L ε a j,t + v • ∇L ε a j + L ε ∆j (1 + b)div u = [v, L ε ∆j ] • ∇a. Hence, 1 2 d dt L ε a j 2 L 2 + R d L ε a j L ε div u j dx + R d L ε a j L ε ∆j (b div u) dx = 1 2 R d (L ε a j ) 2 div v dx + R d [v, L ε ∆j ] • ∇a L ε a j dx.
Remembering L 2 ε = K ε and t L ε = L ε , and adding up this relation to (4.24) gives

(4.25) 1 2 d dt (a j , L ε a j , u j ) 2 L 2 + u j 2 L 2 + R d a j div u j dx = I 1 j ,
where

I 1 j = - R d a j ∆j (b div u) dx - R d L ε a j L ε ∆j (b div u) dx + R d [v, ∆j ] • ∇a a j + R d ([v, ∆j ] • ∇u) • u j dx + R d [v, L ε ∆j ] • ∇a L ε a j dx + 1 2 R d a 2 j + (L ε a j ) 2 + |u j | 2 div v dx + R d ∆j (c∇K ε a) • u j dx.
Next, to show the third term of H 2 j , one can compute the time derivative of (a j |div u j ) L 2 . To do this, it is better to rewrite the equation for a j as follows:

a j,t + v • ∇a j + (1 + b)div u j = [v, ∆j ] • ∇a + [b, ∆j ]div u.
Then, using the fact that

R d a j div (v • ∇u j ) + div u j v • ∇a j dx = R d a j Tr(∇v • ∇u j ) -div v div u j dx,
and that

R d a j div ∆j (c∇K ε a) dx = R d a j div ∆j [c, L ε ]∇L ε a dx + R d ∇L ε a j • [c, ∆j ]∇L ε a dx - R d c|∇L ε a j | 2 dx, we get (4.26) d dt R d a j div u j dx+ R d a j div u j dx+ R d (1+b)(div u j ) 2 dx- R d (1+c)|∇L ε a j | 2 dx = I 2 j ,
where

I 2 j = R d a j div v div u j -Tr(∇v • ∇u j ) dx + R d a j div ∆j [L ε , c]∇L ε a dx + R d ∇L ε a j • [ ∆j , c]∇L ε a dx + R d a j div [v, ∆j ] • ∇u + div u j ([v, ∆j ]∇a + [b, ∆j ]div u) dx.
So, subtracting (4.26) from (4.25) eventually yields

(4.27) 1 2 d dt (a j , L ε a j , u j ) 2 L 2 -2 R d a j div u j dx + u j 2 L 2 + R d (1+c)|∇L ε a j | 2 dx - R d (1+b)(divu j ) 2 dx = I 1 j -I 2 j .
Next, to handle the term with ∇Pu j 2 L 2 , we apply ∆j P to the velocity equation and get Pu j,t + Pu j + v • ∇Pu j = [v, ∆j P]• ∇u -P ∆j (c∇K ε a), which immediately implies after taking the scalar product with Pu j and integrating by parts in the convection term:

(4.28) 1 2 d dt ∇Pu j 2 L 2 + ∇Pu j 2 L 2 = I 3 j := 1 2 R d div v |∇Pu j | 2 dx - R d Tr(∇Pu j •DPu j •Dv) dx+ R d ∇Pu j •(∇[v, ∆j P]• ∇u) dx- R d ∇Pu j •∇P ∆j (c∇K ε a) dx.

Let us finally compute the time derivative of

√ 1+c ∇L ε a j 2 L 2 + √ 1+b div u j 2 L 2 .
First, taking the L 2 scalar product of the following relation

∇L ε a j,t + ∇L ε ∆j ((1+b) div u) + ∇L ε ∆j (v • ∇a) = 0
with (1 + c)∇L ε a j , and using the fact that

R d (1+c)∇L ε ∆j (v • ∇a) • ∇L ε a j dx = R d (1+c)[∇L ε ∆j , v • ∇]a • ∇L ε a j dx - 1 2 R d |∇L ε a j | 2 div (1+c)v dx, we find that (4.29) 1 2 d dt R d (1+c)|∇L ε a j | 2 dx - R d c t + div (1+c)v |∇L ε a j | 2 dx + R d (1+c)∇L ε ∆j ((1+b)div u) • ∇L ε a j dx + R d (1+c)[∇L ε ∆j , v • ∇]a) • ∇L ε a j dx = 0. Next, because div u j,t + div u j + div ((1 + c)∇K ε a j ) + div (v • ∇u j ) = div [v, ∆j ] • ∇u + div [c, ∆j ] • ∇K ε a,
we discover that (4.30) 1 2

d dt R d (1 + b)(div u j ) 2 dx - R d b t (div u j ) 2 dx + R d (1 + b)(div u j ) 2 dx + R d ((1 + b)div u j )div ((1+c)∇K ε a j ) dx + R d (1 + b)div u j div (v • ∇u j ) dx = R d (1 + b)div u j div [v, ∆j ] • ∇u dx.
Due to (3.12), we have

R d (1+b)(div u j )div (v • ∇u j ) dx - 1 2 R d b t (div u j ) 2 dx = R d (1 + b)div u j Tr(Dv • Du j ) dx.
Hence adding up (4.29) and (4.30) leads to

(4.31) 1 2 d dt R d |∇L ε a j | 2 + (1 + b)(div u j ) 2 dx + R d (1 + b)(div u j ) 2 dx = 6 i=0 R i j with R 0 j := R d (1+b)div u j div [c, ∆j ]∇K ε a dx, R 1 j := R d (1+c)∇L ε [b, ∆j ]div u • ∇L ε a j dx, R 2 j := - R d (1+c)[∇L ε ∆j , v • ∇a] • ∇L ε a j dx, R 3 j := - R d (1 + b)div u j Tr(Dv • Du j ) dx, R 4 j := R d (1 + b) div u j div [v, ∆j ] • ∇u dx R 5 j := R d (1 + b) div u j div [L ε , c]∇L ε a j dx. and R 6 j := 1 2 R d c t + div (1+c)v |∇L ε a j | 2 dx.
To get (4.31), the key point is the following cancellation property between the third term of (4.29) and the fourth term of (4.30):

R d ((1+b)div u j )div ((1+c)∇K ε a j ) dx = -R 5 j - R d ((1+c)∇L ε ((1 + b)div u j ) • ∇L ε a j ) dx = -R 5 j -R 1 j - R d (1+c)∇L ε ∆j ((1 + b)div u) • ∇L ε a j ) dx.
So finally, adding (4.28) and twice (4.31) to (4.27), we discover that (4.32) 1 2

d dt L 2 j + H 2 j = I 1 j -I 2 j + I 3 j + 2 5 i=0 R i j .
Now, it is just a matter of bounding all the terms of the right-hand side. The most tricky part is to estimate the commutator terms in I 1 j , R 1 j and R 2 j . For expository purpose, we admit these estimates, the reader being referred to Subsection 7.1 for the proof.

Estimating I 1 j . From Hölder inequality, we have

I 1 j ≤ a j L 2 ∆j (b div u) L 2 + L ε a j L 2 L ε ∆j (b div u) L 2 + [ ∆j , v] • ∇a L 2 a j L 2 + u j L 2 ∆j (c∇K ε a) L 2 + [v, ∆j ] • ∇u L 2 u j L 2 + [L ε ∆j , v] • ∇a L 2 L ε a j L 2 + 1 2 ( a j 2 L 2 + L ε a j 2 L 2 + u j 2 L 2 ) div v L ∞ .
The terms with b div u may be bounded thanks to the product laws (7.1) and (7.2) with f = b and g = div u, and the commutators, by means of (7.4) and (7.15).

In the end, we get (4.33)

I 1 j ≤ Cc j 2 -jσ ∇v Ḃ d 2 2,1 (a, u) Ḃσ 2,1 + b Ḃ d 2 2,1 div u Ḃσ 2,1 + c Ḃ d 2 2,1 ∇K ε a Ḃσ 2,1 + c Ḃσ 2,1 ∇K ε a L ∞ + div u L ∞ b Ḃσ 2,1 (a j , u j ) L 2 ,
and the last two terms are not needed if σ ≤ d/2.

Estimating I 2 j . From Hölder inequality, we infer that

I 2 j ≤ a j L 2 ∇u j L 2 ∇v L ∞ + div [v, ∆j ] • ∇u L 2 + div ∆j [L ε , c]∇L ε a L 2 + ∇L ε a j L 2 [ ∆j , c]∇L ε a L 2 + div u j L 2 [v, ∆j ]∇a L 2 + [b, ∆j ]div u L 2 •
The last two terms may be bounded by means of (7.4). For the one with div [v, ∆j ] • ∇u, we use the decomposition

∂ k [v, ∆j ] • ∇u = ∂ k v • ∇u j -∆j (∂ k v • ∇u) + [v, ∆j ]∇∂ k u.
The L 2 norm of the last term of the right-hand side may be bounded according to (7.4). The L 2 norm of the first one is obviously bounded by ∇v L ∞ ∇u j L 2 . To bound the second term, one can take advantage of the product laws (7.1) and (7.2) with f = ∂ k v and g = ∇u.

Finally, thanks to (7.6), we have

div ∆j [L ε , c]∇L ε a L 2 c j 2 -jσ div [L ε , c]∇L ε a Ḃσ 2,1 c j 2 -jσ [L ε , c]∇L ε a Ḃσ+1 2,1 c j 2 -jσ ∇c Ḃ d 2 2,1 L ε a Ḃσ+1 2,1 + ∇c Ḃσ 2,1 ∇L ε a L ∞
and, by virtue of (7.4),

[ ∆j , c]∇L ε a L 2 c j 2 -jσ ∇c Ḃ d 2 2,1 L ε a Ḃσ 2,1 .
This leads to (4.34)

I 2 j c j 2 -jσ div u j L 2 ∇v Ḃ d 2 2,1 a Ḃσ 2,1 + ∇b Ḃ d 2 2,1 u Ḃσ 2,1 + a j L 2 ∇v Ḃ d 2 2,1 ∇u Ḃσ 2,1 + ∇v Ḃσ 2,1 ∇u L ∞ + ∇c Ḃ d 2 2,1 L ε a Ḃσ+1 2,1 + ∇c Ḃσ 2,1 ∇L ε a L ∞ + ∇L ε a j L 2 ∇c Ḃ d 2 2,1
L ε a Ḃσ 2,1 • and the terms with L ∞ norms are not needed if σ ≤ d/2.

Estimating I 3 j . We start with the obvious inequality:

I 3 j ≤ C ∇Pu j L 2 ∇v L ∞ ∇Pu j L 2 + ∇[v, ∆j P] • ∇u L 2 + ∇P ∆j (c∇K ε a) L 2 and write that ∂ k [v, ∆j P] • ∇u = ∂ k v • ∇Pu j -∆j P(∂ k v • ∇u) + [v, ∆j P]∇∂ k u.
The commutator with v may be bounded as the similar term in I 2 j . As for the last term of I 3 j , we observe that, since P∇ = 0, we have

∇P(c∇K ε a) = [∇P, c]∇K ε a.
Hence this term may be handled by (7.5) with the constant operator P instead of L ε . We end up with (4.35)

I 3 j ≤ Cc j 2 -jσ ∇v Ḃ d 2 2,1 ∇u Ḃσ 2,1 + ∇v Ḃσ 2,1 ∇u L ∞ + c Ḃ d 2 +1 2,1 ∇K ε a Ḃσ 2,1 + c Ḃσ+1 2,1 ∇K ε a L ∞ ∇Pu j L 2 ,
and the terms with the L ∞ norm are not needed if σ ≤ d/2.

Estimating R 0 j . To bound this term, it suffices to apply Hölder inequality then to use (7.18) with L 0 (that is, the identity operator), b = c and z = ∇K ε a. We get

(4.36) R 0 j ≤ Cc j 2 -jσ div u j L 2 ∇c Ḃ d 2 2,1 ∇K ε a Ḃσ 2,1 + ∇c Ḃσ 2,1 ∇K ε a L ∞ and the last term is not needed if σ ≤ d/2.
Estimating R 1 j . Remembering that c L ∞ is small and applying Inequality (7.18) to z = div u, we readily get

(4.37) R 1 j ≤ Cc j 2 -jσ ∇L ε a j L 2 ∇b Ḃ d 2 2,1 div u Ḃσ 2,1 + div u L ∞ ∇L ε b Ḃσ 2,1
and the last term is not needed if σ ≤ d/2.

Estimating R 2 j . Because we strive for bounds that are independent of ε, we have to assume that ∇ 2 v ∈ L 1 (R + ; L ∞ ), that is one more space derivative than for the classical compressible Euler system. Now, leveraging Inequality (7.21), we readily get

(4.38) R 2 j ≤ Cc j 2 -jσ ∇L ε a j L 2 a Ḃσ 2,1 v Ḃ d 2 +2 2,1 + v Ḃ d 2 +1 2,1 ∇L ε a Ḃσ 2,1 • Estimating R 3 j . Under assumption (4.2), it is obvious that (4.39) R 3 j ∇v L ∞ ∇u j 2 L 2 c j 2 -jσ ∇u j L 2 ∇u Ḃσ 2,1 ∇v Ḃ d 2 2,1
.

Estimating R 4 j . With the summation convention on repeated indices, we have

div [v m , ∆j ]∂ m u = ∂ k v m ∂ m u k j -∆j (∂ k v m ∂ m u k ) + [v m , ∆j ]∂ m div u.
So, using (7.4) as well as product laws (7.1) and (7.2), we get

(4.40) R 4 j ≤ Cc j 2 -jσ div u j L 2 ∇v Ḃ d 2 2,1 ∇u Ḃσ 2,1 + ∇u L ∞ ∇v Ḃσ 2,1 ,
and the second term may be omitted if σ ≤ d/2.

Estimating R 5 j . By Hölder inequality and Condition (4.2), we have

R 5 j div u j L 2 div [L ε , c]∇L ε a j L 2 .
We observe that

div [L ε , c]∇L ε a j = L ε ∇c • ∇L ε a j -∇c • L ε ∇L ε a j + [L ε , c]∆L ε a j .
On the one hand, due to (3.1), it is obvious that

L ε (∇c • ∇L ε a j ) L 2 + ∇c • L ε ∇L ε a j L 2 ∇c L ∞ ∇L ε a j L 2 .
On the other hand, (7.19) and Bernstein inequality guarantee that

[L ε , c]∆L ε a j L 2 ∇c L ∞ ∇L ε a j L 2 . Hence (4.41) R 5 j ≤ Cc j 2 -jσ div u j L 2 ∇c L ∞ ∇L ε a Ḃσ 2,1 .
Estimating R 6 j . Finally, we have 

R 6 j ≤ 1 2 c t +div ((1+c)v) L ∞ ∇L ε a j 2 L 2 ≤ c j 2 2 -jσ c t +div ((1+c)v) L ∞ ∇L ε a j L 2 ∇L ε a Ḃσ 2,
d dt L 2 j + κ 0 min(1, 2 2j K ε (2 j ))L 2 j ≤ Cc j 2 -jσ L j v Ḃ d 2 +1 2,1 (a, ∇L ε a, u, ∇u) Ḃσ 2,1 + (b, ∇b) Ḃ d 2 2,1 div u Ḃσ 2,1 + ∇b Ḃ d 2 2,1 u Ḃσ 2,1 + v Ḃ d 2 +2 2,1 a Ḃσ 2,1 + ∇u L ∞ (b, ∇L ε b, ∇v) Ḃσ 2,1 ∇c Ḃ d 2 2,1 + c t +div ((1+c)v) L ∞ ∇L ε a Ḃσ 2,1 + ∇c Ḃ d 2 2,1 L ε a Ḃσ 2,1 + c L ∞ ∇K ε a Ḃσ 2,1 + c Ḃσ 2,1 ∇K ε a L ∞ + ∇c Ḃσ 2,1 ∇L ε a L ∞ )
, where κ 0 only depends on c, and the terms involving

L ∞ norms of L ε a or u are not needed if σ ≤ d/2.
Then, simplifying by L j and integrating on [0, t] yields

L j (t) + κ 0 min(1, 2 2j K ε (2 j )) t 0 L j dτ ≤ L j (0) + C2 -jσ t 0 c j v Ḃ d 2 +1 2,1 (a, ∇L ε a, u, ∇u) Ḃσ 2,1 + b, ∇b Ḃ d 2 2,1 div u Ḃσ 2,1 + ∇b Ḃ d 2 2,1 u Ḃσ 2,1 + v Ḃ d 2 +2 2,1 a Ḃσ 2,1 + ∇u L ∞ (b, ∇L ε b, ∇v) Ḃσ 2,1 dτ + C2 -jσ t 0 c j ∇c Ḃ d 2 2,1 + c t +div ((1+c)v) L ∞ ∇L ε a Ḃσ 2,1 + ∇c Ḃ d 2 2,1 L ε a Ḃσ 2,1 dτ + C2 -jσ t 0 c j c L ∞ ∇K ε a Ḃσ 2,1 + c Ḃσ 2,1 ∇K ε a L ∞ + ∇c Ḃσ 2,1 ∇L ε a L ∞ dτ.
Multiplying by 2 jσ , summing up on all j ∈ Z and using again (4.22), we conclude that

(4.43) (a, u, ∇u)(t) Ḃσ 2,1 + ∇L ε a(t) h Ḃσ 2,1 + t 0 (∇ 2 K ε u, ∇ 3 K ε u) ℓ Ḃσ 2,1 + (u, ∇u) h Ḃσ 2,1 dτ 
+ t 0 ∇ 2 K ε a ℓ Ḃσ 2,1 + ∇L ε a h Ḃσ 2,1 dτ (a 0 , u 0 , ∇u 0 ) Ḃσ 2,1 + ∇L ε a 0 h Ḃσ 2,1 + t 0 v Ḃ d 2 +1 2,1 (a, ∇L ε a, u, ∇u) Ḃσ 2,1 + b, ∇b Ḃ d 2 2,1 div u Ḃσ 2,1 + ∇b Ḃ d 2 2,1 u Ḃσ 2,1 + ∇v Ḃ d 2 +1 2,1 a Ḃσ 2,1 + ∇u L ∞ (b, ∇L ε b, ∇v) Ḃσ 2,1 dτ + t 0 ∇c Ḃ d 2 2,1 + c t +div ((1+c)v) L ∞ ∇L ε a Ḃσ 2,1 + ∇c Ḃ d 2 2,1 L ε a Ḃσ 2,1 dτ + t 0 c L ∞ ∇K ε a Ḃσ 2,1 + c Ḃσ 2,1 ∇K ε a L ∞ + ∇c Ḃσ 2,1 ∇L ε a L ∞ dτ.
where the terms with L ∞ norms of ∇L ε a or u are not needed if σ ≤ d/2.

Let us finally exhibit the L 1 -in-time control for ∇u ℓ since 'low' frequencies need not to be low !). We write that

∂ k (∂ k u) + ∂ k u + v • ∇∂ k u = -∂ k v • ∇u -∂ k ((1+c)∇K ε a).
So, localizing this equation by means of ∆j then repeating essentially the same arguments as before (here we only need the most basic commutator estimate (7.4)), we arrive at

(4.44) ∇u(t) ℓ Ḃσ 2,1 + t 0 ∇u ℓ Ḃσ 2,1 dτ ≤ ∇u 0 ℓ Ḃσ 2,1 + t 0 ∇((1+c)∇K ε a) ℓ Ḃσ 2,1 dτ 
+ C t 0 ∇v Ḃ d 2 2,1 ∇u Ḃσ 2,1 dτ + C t 0 ∇u L ∞ ∇v Ḃσ 2,1 dτ,
where, as usual, the last term is not needed if σ ≤ d/2.

Note that ∇ 2 K ε a ℓ Ḃσ 2,1
can be controlled from (4.43). To handle the term ∇(c∇K ε a), we use the decomposition (recall notation (3.5)):

∂ k (c ∂ m K ε a) = ∂ k c ∂ m K ε a + c∂ k ∂ m K ε a ℓ + [c, ∂ k L ε ]∂ m L ε a h + ∂ k L ε (c ∂ m L ε a h ).
Taking advantage of (7.1), (7.2) and (7.5), and using the low frequency cut-off in the last term, we get (with the usual convention if σ ≤ d/2):

∂ k c ∂ m K ε a Ḃσ 2,1 ∂ k c Ḃ d 2 2,1 ∂ m K ε a Ḃσ 2,1 + ∂ k c Ḃσ 2,1 ∂ m K ε a L ∞ , c∂ k ∂ m K ε a ℓ Ḃσ 2,1 c Ḃ d 2 2,1 ∂ k ∂ m K ε a ℓ Ḃσ 2,1 + c Ḃσ 2,1 ∂ k ∂ m K ε a ℓ L ∞ , [c, ∂ k L ε ]∂ m L ε a h Ḃσ 2,1 ∇c Ḃ d 2 2,1 ∂ m L ε a h Ḃσ 2,1 + ∇c Ḃσ 2,1 ∂ m L ε a h L ∞ , ∂ k L ε (c ∂ m L ε a h ) ℓ Ḃσ 2,1 ν 0 c Ḃ d 2 2,1 ∂ m L ε a h Ḃσ 2,1 + c Ḃσ 2,1 ∂ m L ε a h L ∞ •
Hence we have

∂ k (c ∂ m K ε a) ℓ Ḃσ 2,1 ∇c Ḃ d 2 2,1 ∇L ε a Ḃσ 2,1 + ∇c Ḃσ 2,1 ∇L ε a L ∞ + c Ḃσ 2,1 ∇ 2 K ε a ℓ L ∞ + ∇L ε a h L ∞ + c Ḃ d 2 2,1 ∇ 2 K ε a ℓ Ḃσ 2,1 + ∇L ε a h Ḃσ 2,1
• Hence, putting (4.17), (4.43) and (4.44) together gives (4.5).

Let us finally consider the case where, in addition u 0 is in Ḃσ-1 2,1 . The starting point is (4.18). Since the term with ∇K ε a in the right-hand side is controlled by (4.43) and because

w -u ℓ Ḃσ-1 2,1 ≤ C ∇K ε a ℓ Ḃσ-1 2,1 ≤ C a ℓ Ḃσ-1 2,1
, we have the low frequency part of (4.6). The high frequency part just stems from the fact that one can bound u h Ḃσ-1 , and thus by means of (4.5). In the end, we get (4.6).

Proving well-posedness and convergence to Euler

This section is devoted to proving Theorems 3.1 and 3.2. In the first subsection, we prove the existence part of Theorem 3.1 then, in second subsection, the uniqueness part. The end of the section is devoted to establishing the convergence of the solutions to (1.1) to those of (1.2) for ε tending to 0. 5.1. Existence. Before proving the existence part of Theorem 3.1, let us quickly explain why the results of the previous section allow to close the estimates for all time and uniformly with respect to ε in the desired functional space for any initial data satisfying (3.13).

To this end, we consider a smooth solution (ρ, u) of (1.1) on [0, T )×R d such that a := ρ-1 satisfies |a| ≤ 1/4. Then, applying Inequality (4.5) to the system satisfied by (a, u) (that is, to (3.11) with b = a, c = 0 and v = u) with σ = d/2 + 1 we get some absolute constant C such that for all t ∈ [0, T ),

X d 2 +1 a,u (t) + t 0 H d 2 +1 a,u dτ ≤ C X d 2 +1 a,u (0) + t 0 ∇u Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 X d 2 +1
a,u dτ • Note indeed that the 2nd and 3rd lines of (4.5) then reduce to just ∇u

Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 X d 2 +1 a,u . Now, it is obvious that ∇u Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 ≤ H d 2 +1
a,u .

Hence, we conclude by bootstrap that the smallness condition

2C 2 X d 2 +1 a,u (0) < 1 implies that (5.1) X d 2 +1 a,u (t) + 1 2 t 0 H d 2 +1 a,u dτ ≤ CX d 2 +1
a,u (0) for all t ∈ [0, T ).

Let us next move to the rigorous proof of existence of a solution for (1.1) under the assumptions of Theorem 3.1. For technical reasons, we will have assume that, in addition to (3.1), the kernel K ε is such that ∇K ε :

L 2 → H 1 . This is clearly achieved if ∇ 2 K ε is in L 1 loc (R d ) (since we already have y 2 ∇K ε ∈ L 1 (R d ))
, and we note that there exists M ε ≥ 0 such that for all s ∈ R,

(5.2) ∇K ε L(H s ;H s+1 ) ≤ M ε .
Step 

u ∈ C([0, T * ); H s+1 ) ∩ C 1 ([0, T * ); H s ).
Furthermore, by combining an energy method and classical commutator estimates in Sobolev spaces, we have

(5.4) u(t) H s+1 ≤ u 0 H s+1 + t 0 f H s+1 + C t 0 ∇u L ∞ u H s+1 dτ for all t ∈ [0, T * ), whence, remembering the Sobolev embedding H s ֒→ L ∞ (for s > d/2), sup τ ∈[0,t] u(τ ) H s+1 ≤ u 0 H s+1 + t 0 f H s+1 + Ct sup τ ∈[0,t] u(τ ) 2 H s+1 for all t ∈ [0, T * ).
This guarantees that there exists some constant c depending only on s and d, such that

T * ≥ sup t ≥ 0, t u 0 H s+1 + t 0 f H s+1 dτ ≤ c •
Step 2. Local existence for (1.1) supplemented with smooth data. Fix some R 0 > 0 and data (a 0 , u 0 ) ∈ H s × H s+1 with s > d/2, such that

a 0 H s + u 0 H s+1 ≤ R 0 .
Our goal it to prove that there exists some T > 0 such that (1.1) has a solution

(5.5) (a, u) ∈ C([0, T ]; H s × H s+1 ) ∩ C 1 ([0, T ]; H s-1 × H s ).
To do so, we consider the map Ψ : a -→ a where a is the solution to the transport equation

a t + div ((1 + a)u) = 0
and the transport field u is the solution in C([0, T ); H s+1 ) ∩ C 1 ([0, T ); H s ) to the damped Burgers equation

u t + u + u • ∇u = -∇K ε a.
Owing to (5.2), the existence of u with the required regularity on some maximal time interval [0, T * ) is guaranteed by the previous step. Then, the existence of a ∈ C([0, T * ); H s ) ∩ C([0, T * ); H s-1 ) follows from the standard theory of transport equations in Sobolev spaces.

We claim that one can find some T ∈ (0, T * ) such that Ψ maps the closed ball B(0, R) of C([0, T ); H s ) to itself, with R = 2R 0 + 1. Indeed, combining an energy method and Gronwall lemma, it is easy to show that

a(t) H s ≤ e C t 0 u H s+1 dτ a 0 H s + e C t 0 u H s+1 dτ -1, t ∈ [0, T * )
and, owing to (5.4) and (5.2),

u(t) H s+1 ≤ e C t 0 u H s+1 dτ u 0 H s+1 + M ε t 0 a H s dτ , t ∈ [0, T * ).
If T is taken small enough then we have

C T 0 u H s+1 dτ ≤ log 2,
and thus, if a L ∞ (0,T ;H s ≤ R,

sup t∈[0,T ] a(t) H s ≤ 2R 0 + 1 = R and sup t∈[0,T ] u(t) H s+1 ≤ 2R 0 + 2RM ε T.
Hence, to ensure our claim, it suffices to choose T such that

2RM ε T ≤ 1 and CT R ≤ log 2.
Next, since a t = -div ((1 + a)u), we readily have a t ∈ C([0, T ]; H s-1 ) and

sup t∈[0,T ] a t (t) H s ≤ C(1 + sup t∈[0,T ] a(t) H s ) sup t∈[0,T ] u(t) H s ≤ CR(1 + R).
Hence (Ψ( a)) t remains in a bounded set of C([0, T ]; H s-1 ). Remembering that the embedding of H s (R d ) in H s-1 (R d ) is locally compact, Schauder theorem guarantees that Ψ admits a fixed point a in L ∞ (0, T ; H s ). Back to the equation of u, we deduce that u is in C([0, T ]; H s+1 ) then, using once more the equation of a, that a is in C([0, T ]; H s ). Finally, computing the time derivative of a and u from the equation, we conclude to (5.5).

Step 3. A continuation criterion. Let T * be the lifespan of the solution (a, u) constructed in the previous step. On the one hand, applying (5.4) with f = -∇K ε a, we see that

(5.6) u(t) H s+1 ≤ u 0 H s+1 + M ε t 0 a H s + C t 0 ∇u L ∞ u H s+1 dτ for all t ∈ [0, T * ).
On the other hand, using the standard estimates in Sobolev spaces for the transport equation and the product law

a div u H s a L ∞ div u H s + a H s div u L ∞ ,
we get for all t ∈ [0, T * ),

(5.7)

a(t) H s ≤ a 0 H s + C t 0 u H s+1 (1 + a L ∞ ) dτ + C t 0 ∇u L ∞ a H s dτ.
Putting (5.6) and (5.7) together, then using Gronwall lemma yields for all t ∈ [0, T * ),

a(t) H s + u(t) H s+1 ≤ a 0 H s + u 0 H s+1 e (C+Mε) t 0 1+ a L ∞ + ∇u L ∞ dτ ,
whence the following blow-up criterion:

(5.8)

T * < ∞ =⇒ T * 0 a L ∞ + ∇u L ∞ dt = ∞.
Step 4. Global existence for System (1.1) with data in Sobolev spaces. Fix a pair (a 0 , u 0 ) satisfying the smallness assumption of Theorem 3.1, and consider a sequence (a

(n) 0 , u (n) 
0 ) n∈N of smooth initial data such that (5.9) (a

(n) 0 , u (n) 0 ) → (a 0 , u 0 ) in Ḃd/2 2,1 ∩ Ḃd/2+1 2,1 (R d ) and (∇ 2 K ε a (n) 0 , ∇ 2 u (n) 0 → (∇ 2 K ε a 0 , ∇ 2 u 0 ) in Ḃd/2 2,1 (R d ). One can for instance set a (n) 0 := ( Ṡn -Ṡ-n )a 0 and u (n) 0 := ( Ṡn -Ṡ-n )u 0 so that (3.7) is satisfied by (a (n) 0 , u (n) 0 ) for all n ∈ N.
The previous steps guarantee that (1.1) supplemented with initial data (a

(n) 0 , u (n) 0 ) has a unique maximal solution (a (n) , u (n) ) in, say, C([0, T (n) ); H d 2 +3 × H d 2 +4 ) ∩ C 1 ([0, T (n) ); H d 2 +2 × H d 2 +3 )).
We thus have enough regularity to apply the estimates of Theorem 4. n) and c = 0. Following the proof of (5.1), we conclude that if α 0 in (3.7) is small enough, then we have

1 with σ = d/2 + 1, a = b = a (n) , u = v = u (
sup t∈[0,T (n) ) X d 2 +1 a (n) ,u (n) (t) + 1 2 T (n) 0 H d 2 +1 a (n) ,u (n) (τ ) dτ ≤ Cα 0 for all t ∈ [0, T (n) ).
This implies that both a (n) (t) and ∇u (n) (t) remain in a bounded set of L ∞ . Hence the blow-up criterion (5.8) ensures that

T (n) = ∞.
Note also that the second estimate of Theorem 4.1 provides a uniform control on u (n) and

w (n) in L ∞ (R + ; Ḃ d 2 2,1
).

Step 5. Passing to the limit. In the previous step, we constructed a sequence of smooth global solutions of (1.1) pertaining to smooth data, that is bounded in the space

E d 2 +1
Kε , and thus in

F d 2 +1 Kε := (b, v) ∈ L ∞ (R + ; Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 ) × L ∞ (R + ; Ḃ d 2 2,1 ∩ Ḃ d 2 +2 2,1 ), ∇ 2 K ε ∈ L ∞ (R + ; Ḃ d 2 2,1 )
• This latter space being the dual of some separable Banach space, one may deduce that there exists (a, u) in F 

(a (n) , u (n) ) ⇀ (a, u) weak * in F d 2 +1
Kε . Furthermore, as u

(n) t = -u (n) -u (n) • ∇u (n) -∇K ε a (n) , the sequence (u (n) ) n∈N is bounded in L ∞ (R + ; Ḃ d 2 2
,1 ) (use product laws (7.1) and (7.2)) and, similarly, (a

(n) ) n∈N is bounded in L ∞ (R + ; Ḃ d 2 2,1
). Using the fact that both sequences are, in particular, bounded in

L ∞ (R + ; Ḃ d 2 2,1 ∩ Ḃ d 2 +1
2,1 ) and that the embedding from

Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 to Ḃ d 2 2,1
is locally compact, one discovers that for all θ ∈ C ∞ c (R d ), we have (again, up to extraction),

(θa (n) , θu (n) ) → (θa, θu) strongly in C b (R + ; Ḃ d 2 2,1
). This allows to pass to the limit in (1.1) in the sense of distributions, fingers in the nose.

Furthermore, for all fixed t ∈ R + , the sequence (∇u (n) 

(t)) n∈N is bounded in Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1
hence must converge to some function z(t) weakly * in

Ḃ d 2 2,1 ∩ Ḃ d 2 +2
2,1 . Combining with the above property of strong convergence, we deduce that we must have z(t) = ∇u(t). Then, using the properties of lower semi-continuity of the weak limit and Fatou lemma, one can write

R + ∇u Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 dt ≤ R + lim inf ∇u (n) Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 dt ≤ lim inf R + ∇u (n) Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 dt ≤ Cα 0 .
Similar arguments may be employed to show that all the other L 1 -in-time properties of the space

E d 2 +1
Kε are satisfied by (a, u). Finally, the time continuity for u with values in

Ḃ d 2 2,1 ∩ Ḃ d 2 +2 2,1
stems from the properties of the transport equation and of the fact that (remember (5.2)):

u t + u + u • ∇u = -∇K ε a ∈ L ∞ (R + ; Ḃ d 2 2,1 ∩ Ḃ d 2 +2
2,1 ).

Similarly,

a t + u • ∇a = -(1 + a)div u ∈ L 1 (R + ; Ḃ d 2 2,1 ∩ Ḃ d 2 +1
2,1 ),

and thus a ∈ C b (R + ; Ḃ d 2 2,1 ∩ Ḃ d 2 +1
2,1 ). This completes the proof of existence in Theorem 3.1.

5.2.

Uniqueness. This part is devoted to proving the uniqueness part of Theorem 3.1. We consider two solutions (ρ

1 = 1 + a 1 , u 1 ) and (ρ 2 = 1 + a 2 , u 2 ) of (1.1) with (a i , u i ) for i = 1, 2 in the space E d 2 +1
Kε . Then, we observe that δa := ρ 2ρ 1 and δu := u 2u 1 satisfy

∂ t δa + u 1 • ∇δa + div δu + a 1 div δu = f := -δu • ∇a 2 -δadiv u 2 , ∂ t δu + u 1 • ∇δu + δu + ∇K ε δa = g := -δu • ∇u 2 .
Hence (δa, δu) satisfies a linear system of type (3.11) with v = u 1 and b = a 1 and source terms (f, g). Now, uniqueness on a finite interval [0, T ] will stem from Inequality (4.5) provided we have proved beforehand that (δa, δu) has the regularity required in Theorem 4.1 in the case σ = d/2. After careful inspection of what is already known on (a 1 , u 1 ) and (a 2 , u 2 ), we see that it suffices to check that

δa ∈ L ∞ (0, T ; Ḃ d 2 -1 2,1 ) and δu ∈ L ∞ (0, T ; Ḃ d 2 2,1
).

These two properties may be justified from the density and velocity equations and product laws in Besov spaces (that is, (7.1)) which guarantee that

∂ t a i ∈ L 1 (0, T ; Ḃ d 2 -1 2,1 ) and ∂ t u i + u i ∈ L 1 (0, T ; Ḃ d 2 2,1 ), i = 1, 2.
Hence, using the short notation δX := X δa,δu , we have:

(5.10) δX(t)

+ t 0 δH dτ δX(0) + t 0 a 1 , ∇a 1 , ∇u 1 , ∇ 2 u 1 Ḃ d 2 2,1
δX dτ

+ t 0 f, ∇f, ∇ 2 L ε f Ḃ d 2 -1 2,1 dτ + t 0 g, ∇g Ḃ d 2 2,1
dτ.

Thanks to (7.1), we readily have

f Ḃ d 2 -1 2,1 δu B d 2 2,1 a 2 Ḃ d 2 2,1 + δa B d 2 -1 2,1 div u 2 Ḃ d 2 2,1 , f Ḃ d 2 2,1 δu B d 2 2,1 ∇a 2 Ḃ d 2 2,1 + δa B d 2 2,1 div u 2 Ḃ d 2 2,1 , g Ḃ d 2 2,1 δu B d 2 2,1 ∇u 2 Ḃ d 2 2,1 , ∇g Ḃ d 2 2,1 ∇δu B d 2 2,1 ∇u 2 Ḃ d 2 2,1 + δu B d 2 2,1 ∇ 2 u 2 Ḃ d 2 2,1
.

Bounding ∇L ε f in Ḃ d 2 2
,1 is a bit more tricky. To achieve it, we use the decompositions:

∇L ε (δu • ∇a 2 ) = [∇L ε , δu] • ∇a 2 + δu • ∇ 2 L ε a 2 , ∇L ε (δadiv u 2 ) = [∇L ε , div u 2 ]δa + div u 2 ∇L ε δa.
Hence, taking advantage of (7.1) and of (7.5), we have

∇L ε (δu • ∇a 2 ) Ḃ d 2 2,1 ∇δu Ḃ d 2 2,1 ∇a 2 Ḃ d 2 2,1 + δu Ḃ d 2 2,1 ∇ 2 L ε a 2 Ḃ d 2 2,1 , ∇L ε (δadiv u 2 ) Ḃ d 2 2,1 δa Ḃ d 2 2,1 ∇div u 2 Ḃ d 2 2,1 + div u 2 Ḃ d 2 2,1 ∇L ε δa Ḃ d 2 2,1
.

Plugging all the above inequalities in (5.10) yields

δX(t) + t 0 δH dτ δX(0) + t 0 a 1 , ∇a 1 , ∇u 1 , ∇ 2 u 1 , a 2 , ∇a 2 , ∇ 2 L ε a 2 , ∇u 2 , ∇ 2 u 2 Ḃ d 2 2,1 δX dτ.
Since the prefactor of δX in the right-hand side is indeed locally integrable on time, Gronwall lemma ensures δX ≡ 0 that is, uniqueness, if the initial data of the two solutions are the same ones, and, more generally, stability with respect to the data.

Convergence to Euler.

Justifying it is an easy adaptation of the proof of uniqueness that has been presented just above. Indeed, consider initial data (ρ 0 = 1 + a 0 , u 0 ) such that the smallness condition (3.13) is satisfied. Then, even if it means a slight change in α 0 , Condition (3.7) is satisfied for all small enough ε > 0. Consequently, on the one hand, Theorem 3.1 provides us with a unique global solution (ρ ε = 1 + a ε , u ε ) satisfying the properties described therein. On the other hand, by following faithfully the proof of estimates for (3.11) (formally replacing the convolution by K ε with the identity operator everywhere) then adapting the proof of existence accordingly, one gets a global solution (ρ = 1 + a, u) for Euler system (1.2) such that 3 (a, u) belongs to the space E d 2 +1 defined in (3.6). To prove the convergence of (a ε , u ε ) to (a, u), let us look at the system satisfied by δa := aa ε and δu := uu ε :

∂ t δa + u • ∇δa + div δu + adiv δu = f := -δu • ∇a ε -δadiv u ε , ∂ t δu + u • ∇δu + δu + ∇K ε δa = g := -δu • ∇u ε + ∇(K ε -Id)a.
Compared to the proof of uniqueness, only the last term of g is new. All the other terms may be bounded as above after replacing a 1 and u 1 (resp. a 2 and u 2 ) by a and u (resp. a ε and u ε ). However, as we strive for a global-in-time result of convergence, putting all the terms 3 The global well-posedness result of [START_REF] Crin-Barat | Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case[END_REF] only deasls with regularity

Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 .
concerning a or a ε as prefactor of δX is not suitable : we need to be a little more precise, so we write that

δX(t) + t 0 δH dτ δX(0) + t 0 ∇u, ∇ 2 u, ∇ 2 L ε a ε , ∇u ε , ∇ 2 u ε Ḃ d 2 2,1 δX dτ + t 0 a, ∇a, a ε , ∇a ε Ḃ d 2 2,1 δu, ∇δu Ḃ d 2 2,1 dτ + t 0 ∇(K ε -Id)a Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 dτ. Since δu, ∇δu Ḃ d 2 2,1
is a part of δH and

sup t∈R + (a, ∇a, a ε , ∇a ε )(t) Ḃ d 2 2,1
is small, the last but one term in the right-hand side may be absorbed by the left-hand side. Furthermore, the map t → (∇u,

∇ 2 u, ∇ 2 L ε a ε , ∇u ε , ∇ 2 u ε )(t) Ḃ d 2 2,1
is integrable on R + and is also small. Hence, applying Gronwall lemma yields for all t ∈ R + , δX(t)

+ t 0 δH dτ δX(0) + t 0 ∇(K ε -Id)a Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 dτ.
Finally, the properties of the solution (a, u) ensure in particular that

∇a ∈ L 2 (R + ; Ḃ d 2 2,1 ) and ∇ 2 a ∈ L 1 (R + ; Ḃ d 2 2,1 ). 
Hence, by virtue of Lebesgue's dominated convergence theorem, we have

∞ 0 ∇(K ε -Id)a Ḃ d 2 +1 2,1
dτ → 0 and

t 0 ∇(K ε -Id)a Ḃ d 2 2,1 dτ → 0, for all t ∈ R + .
From this, we conclude, among other, that for ε → 0

(a ε -a) → 0 in L ∞ loc (R + ; Ḃ d 2 -1 2,1 ) and (u ε -u) → 0 in L ∞ loc (R + ; Ḃ d 2 2,1 ).
Interpolating with the uniform bounds that are satisfied by (a ε , u ε ) and (a, u), one can upgrade the convergence to e.g.

a ε → a in L ∞ loc (R + ; Ḃ d 2 +α 2,1 ), α ∈ [0, 1) and u ε → u in L ∞ loc (R + ; Ḃ d 2 +β 2,1 ), β ∈ [0, 2).
In order to have uniform-in-time convergence, one can assume in addition that

a 0 ∈ Ḃ d 2 -1 2,1 . Then, we have ∇a ∈ L 1 (R + ; Ḃ d 2 2,1 ) and thus ∇(K ε -Id)a → 0 in L 1 (R + ; Ḃ d 2 2,1
) as ε → 0. To have a global result, another possibility is to assume that in addition to (3.1), we have

K ε = ε -d K(ε -1 ) with K such that η → |η| -1 ( K(η) -1) is bounded. Indeed, one can write F (∇(K ε -Id))(ξ) = i K(εξ) -1 ε|ξ| εξ|ξ| a(ξ),
and thus

∇(K ε -Id) = O(ε) in L 1 (R + ; Ḃ d 2 2,1 ).
This completes the proof of Theorem 3.2.

6. On the high friction limit

In the introductory part of the paper, we pointed out that, after performing the diffusive rescaling (3.16), the density formally tends to the solution of different avatars of the porous media equation. In this section, we aim at justifying rigorously this heuristics, getting in the small data case, strong and global-in-time results of convergence.

As a preliminary step, let us present the results that can be deduced from Theorem 3.1. Fix some data (ρ 0 = 1 + a 0 , u 0 ) satisfying the regularity requirements therein, and denote by ( ρ 0 = 1 + a 0 , u 0 ) the data corresponding to the rescaling (3.10). If ( a 0 , u 0 ) fulfills (3.7) with εf instead of ε, then Theorem 3.1 gives us a unique global solution (1 + a, u) satisfying (3.8) and (3.9) (with εf). We have the following scaling properties for z(x) = z(f -1 x) :

z Ḃ d 2 +σ 2,1 = f -σ z Ḃ d 2 +σ 2,1 and L fε z(x) = (L ε z)(f -1 x).
Hence, reverting to the original variables, we deduce that provided

(6.1) (a 0 , f -1 ∇a 0 , f -2 ∇ 2 L ε a 0 ) Ḃ d 2 2,1 + f -1 (u 0 , f -1 ∇u 0 ) Ḃ d 2 +1 2,1 ≤ α 0 ,
System (1.1) has a unique global solution (ρ = 1 + a, u) such that (6.2)

X(t) + t 0 H dτ ≤ CX(0)
with

X(t) := (a, f -1 ∇a, f -2 ∇ 2 L ε a)(t) Ḃ d 2 2,1 + f -1 (u, f -1 ∇u)(t) Ḃ d 2 +1 2,1 and 
H(t) := (u, f -1 ∇u) Ḃ d 2 +1 2,1 + f -1 ∇ 2 K ε a ℓ Ḃ d 2 2,1 + f -2 ∇ 2 K ε a ℓ Ḃ d 2 +1 2,1 + (a, f -1 ∇L ε a) h Ḃ d 2 +1 2,1 . Furthermore, if, in addition, u 0 belongs to Ḃ d 2 2,1 , then the damped mode w := u + f -1 ∇K ε a satisfies (6.3) u(t) Ḃ d 2 2,1 + w(t) Ḃ d 2 2,1 + f t 0 w Ḃ d 2 2,1 dτ ≤ C u 0 ℓ Ḃ d 2 2,1 + X(0) •
Based on these uniform estimates, it will be rather easy to justify the high friction asymptotics pointed out in the introduction, after performing the diffusive rescaling (3.16).

6.1. High relaxation limit for fixed ε. In this section, we justify the convergence of (ρ, ǔ) (obtained from (ρ, u) and (3.16)) to (r, -∇K ε r), with r satisfying (3.15) supplemented with initial data ρ 0 . Our main result reads as follows:

Theorem 6.1. Fix some ε > 0 and data (ρ 0 = 1 + a 0 , u 0 ) such that a 0 and u 0 are in

Ḃ d 2 2,1 ∩ Ḃ d 2 +2
2,1 . There exists an absolute constant α 0 such that, if (6.4)

a 0 Ḃ d 2 2,1 ≤ α 0
then, for all large enough f, System (1.1) admits a unique global solution (ρ f = 1 + a f , u f ) satisfying (6.2) and (6.3), and Equation (3.15) supplemented with initial data ρ 0 has a unique

global solution r = 1 + r with r ∈ C b (R + ; Ḃ d 2 2,1 ) and ∇ 2 K ε r ∈ L 1 (R + ; Ḃ d 2 2,1 ). Furthermore, if (ρ f , ǔf ) is defined from (ρ f , u f ) by (3.16), then we have ǔf + ∇K ε r L 1 (R + ; Ḃ d 2 2,1 ) + ρf -r L ∞ (R + ; Ḃ d 2 -1 2,1 ) + ∇ 2 K ε (ρ f -r) L 1 (R + ; Ḃ d 2 -1 2,1 ) → 0 as f → ∞ with convergence rate f -1 .
Proof. Since a 0 and u 0 are in

Ḃ d 2 2,1 ∩ Ḃ d 2 +2 2,1
and Hypothesis (6.4) holds, we are guaranteed that the smallness condition (6.1) is satisfied for large enough f. Hence, as explained at the beginning of Section 6, there exists a unique global solution (ρ f , u f ) of (1.1) with the desired properties.

Next, in terms of r := r -1, Equation (3.15) reads (6.5)

∂ t r -∇K ε r • ∇ r -∆K ε r = r∆K ε r, r| t=0 = a 0 .
This may be seen as a degenerate convection diffusion equation. We claim that there exists an absolute constant c 0 such that for all t ≥ 0, we have

(6.6) r(t) Ḃ d 2 2,1 + c 0 t 0 ∇ 2 K ε r Ḃ d 2 2,1 ≤ r 0 Ḃ d 2 2,1 + C t 0 ∇ 2 K ε r Ḃ d 2 2,1 r Ḃ d 2 2,1 dτ. 
Indeed, localizing (6.5) by means of ∆j gives

∂ t r j -∇K ε r • ∇ r j -∆K ε r j = ∆j ( r∆K ε r) -[∇K ε r, ∆j ] • ∇ r.
Hence, taking the L 2 scalar product with r j and integrating by parts in the second and third term of the left-hand side: 1 2

d dt r j 2 L 2 + 1 2 R d | r j | 2 ∆K ε r dx + R d ∇ r j • ∇K ε r j dx = R d r j ∆j ( r∆K ε r) dx - R d r j [∇K ε r, ∆j ] • ∇ r dx.
So, using the usual integration procedure and (4.11), we get a universal positive constant κ 0 such that

r j (t) L 2 + κ 0 t 0 ∇ 2 K ε r j L 2 dτ ≤ r j,0 L 2 + t 0 ∆j ( r∆K ε r) L 2 dτ + t 0 [∇K ε r, ∆j ] • ∇ r L 2 dτ + 1 2 t 0 ∆K ε r L ∞ r j L 2 dτ.
Taking advantage of (7.1), (7.3) and (7.4), we discover that ∆j ( r∆K ε r)

L 2 + [∇K ε r, ∆j ] • ∇ r L 2 + ∆K ε r L ∞ r j L 2 ≤ Cc j 2 -j d 2 ∇ 2 K ε r Ḃ d 2 2,1 r Ḃ d 2 2,1 
, which after multiplication by 2 j d 2 and summation on j ∈ Z completes the proof of (6.6). Having this inequality at our disposal and assuming that α 0 in (6.4) is small enough, one can use the fixed point theorem (e.g. adapting the proof for the incompressible Navier-Stokes equations given in [1, Chap. 5]) to solve (6.5) globally in time. We get a unique solution r

in C b (R + ; Ḃ d 2 2,1 ) such that r(t) Ḃ d 2 2,1 + κ 0 t 0 ∇ 2 K ε r Ḃ d 2 2,1 ≤ 2 a 0 Ḃ d 2 2,1 , t ∈ R + .
Let us drop index f for better readability. In order to prove the last part of the theorem, we observe that

∂ t ρ -div (ρ∇K ε ρ) = -div (ρ w) with w := ǔ + ∇K ε ρ.
The key to the proof is that (6.3) after rescaling implies that (6.7)

t 0 w Ḃ d 2 2,1 dτ ≤ Cf -1 u 0 ℓ Ḃ d 2 2,1 + α 0 , t > 0.
The difference δr := ρr satisfies:

∂ t δr -div (ρ∇K ε δr) = -div (δr∇K ε r) -div (ρ w).
Putting ǎ := ρ -1 and remembering that r = 1 + r, the above equation may be rewritten:

(6.8) ∂ t δr + ∇K ε r • ∇δr -∆K ε δr = div (ǎ∇K ε δr) -δr∆K ε r -div ((1 + ǎ) w).
Localizing (6.8) by means of Littlewood-Paley decomposition, then arguing as for proving (6.6) (with regularity index d/2 -1 instead of d/2), we get for all t > 0, (6.9) δr(t

) Ḃ d 2 -1 2,1 + κ 0 t 0 ∇ 2 K ε δr Ḃ d 2 -1 2,1 t 0 ∇ 2 K ε r Ḃ d 2 2,1 δr Ḃ d 2 -1 2,1 dτ + div (ǎ∇K ε δr) L 1 (R + ; Ḃ d 2 -1 2,1 )
+ δr∆K ε r

L 1 (R + ; Ḃ d 2 -1 2,1 )
+ div ((1 + ǎ) w)

L 1 (R + ; Ḃ d 2 -1 2,1 )
.

According to the product law (7.1), and to (6.2), we have: div (ǎ∇K ε δr)

L 1 (R + ; Ḃ d 2 -1 2,1 ) ǎ L ∞ (R + ; Ḃ d 2 2,1 )
∇K ε δr

L 1 (R + ; Ḃ d 2 2,1 ) α 0 ∇ 2 K ε δr L 1 (R + ; Ḃ d 2 -1 2,1 )
, so this term may be absorbed by the left-hand side of (6.9).

For the next term, we have:

δr∆K ε r L 1 (R + ; Ḃ d 2 -1 2,1 )
δr

L ∞ (R + ; Ḃ d 2 -1 2,1 ) ∆K ε r L 1 (R + ; Ḃ d 2 2,1 ) α 0 δr L ∞ (R + ; Ḃ d 2 -1 2,1 )
.

Hence, remembering (6.7), Inequality (6.9) implies that δr

L ∞ (R + ; Ḃ d 2 -1 2,1 ) + ∇ 2 K ε δr L 1 (R + ; Ḃ d 2 -1 2,1 ) ≤ Cf -1 u 0 ℓ Ḃ d 2 2,1 + α 0 •
Since ǔ = w -∇K ε ρ, the above inequality and (6.7) imply that ǔ tends to the limit 'velocity'

z := -∇K ε r with convergence rate f -1 in L 1 (R + ; Ḃ d 2 
2,1 ).

6.2.

Convergence of the relaxed system to the porous media equation. In this part, we want to justify the limit of solutions of Equation (3.15) to those of the porous media equation (3.14), when ε goes to 0. Our main result is stated below: Theorem 6.2. Consider initial data r ε,0 and n 0 such that r ε,0 := r ε,0 -1 and n 0 := n 0 -1 are in Ḃd/2 2,1 (R d ). There exists an absolute constant α 0 such that if

max r ε,0 Ḃd/2 2,1
, n 0 Ḃd/2 

(R + ; Ḃ d 2 2,1 ) ∩ L 1 (R + ; Ḃ d 2 +2
2,1 ), and we have

(6.10) r ε , n L ∞ (R + ; Ḃ d 2 2,1 ) + ∇ 2 K ε r ε , ∇ 2 n L 1 (R + ; Ḃ d 2 2,1 ) ≤ C r ε,0 , n 0 Ḃ d 2 2,1
.

If, furthermore, r ε,0 tends to n 0 in Ḃ d 2 2,1 , then we have 4 :

(6.11) r ε → n in L ∞ (R + ; Ḃ d 2 2,1
). 4 Unless stronger assumptions are made on K ε , we do not have any rate of convergence.

Proof. The existence of r ε with the desired properties follows from Theorem 6.1. Next, as for (3.15), since n 0 := n 0 -1 is small in Ḃ d 2 2,1 , it is easy to see by variations on the fixed point theorem that there exists a unique solution n to (3.14) satisfying the properties mentioned in the above statement. Let us prove the convergence of r ε to n. Set δn := nr ε . We have:

∂ t δn -div (n∇K ε δn) = div (δn∇K ε r ε ) + div (n(Id -K ε )∇n).
We rewrite this expression in the form of a degenerate convection diffusion equation as follows:

∂ t δn -∇δn • ∇K ε r ε -∆K ε δn = ∇ n • ∇K ε δn + n∆K ε δn + δn∆K ε r ε + div ((1 + n)(Id -K ε )∇n).
Hence, arguing as in the proof of Theorem 6.1, we get (6.12) δn(t

) Ḃ d 2 2,1 + κ 0 t 0 ∇ 2 K ε δn Ḃ d 2 2,1 dτ ≤ δn 0 Ḃ d 2 2,1 + t 0 ∇ 2 K ε r ε Ḃ d 2 2,1 δn Ḃ d 2 2,1 dτ + t 0 ∇ n • ∇K ε δn Ḃ d 2 2,1 dτ + t 0 n∆K ε δn Ḃ d 2 2,1 dτ + t 0 δn∆K ε r ε Ḃ d 2 2,1 dτ + t 0 (1 + n)(Id -K ε )∆ n Ḃ d 2 2,1 dτ + t 0 ∇ n • (Id -K ε )∇ n Ḃ d 2 2,1 dτ.
From product law (7.1), we have:

∇ n • ∇K ε δn Ḃ d 2 2,1 ∇ n Ḃ d 2 2,1 ∇K ε δn Ḃ d 2 2,1 , n∆K ε δn Ḃ d 2 2,1 n Ḃ d 2 2,1 ∆K ε δn Ḃ d 2 2,1 , δn∆K ε r ε Ḃ d 2 2,1 δn Ḃ d 2 2,1 ∆K ε r ε Ḃ d 2 2,1 , (1 + n)(Id -K ε )∆ n Ḃ d 2 2,1 1 + n Ḃ d 2 2,1 (Id -K ε )∆ n Ḃ d 2 2,1 , ∇ n • (Id -K ε )∇ n Ḃ d 2 2,1 ∇ n Ḃ d 2 2,1 (Id -K ε )∇ n Ḃ d 2 2,1 .
As we work with small solutions, the second, fourth and fifth terms of the right-hand side above may be absorbed by the left-hand side of (6.12). Next, by interpolation, we have

∇ n Ḃ d 2 2,1 ∇K ε δn Ḃ d 2 2,1 n 1/2 Ḃ d 2 2,1 K ε δn 1/2 Ḃ d 2 2,1 ∆ n 1/2 Ḃ d 2 2,1 ∆K ε δn 1/2 Ḃ d 2 2,1 n Ḃ d 2 2,1 ∆K ε δn Ḃ d 2 2,1 + ∆ n Ḃ d 2 2,1 δn Ḃ d 2 2,1
.

Hence the corresponding term may also be absorbed with the left-hand side of (6.12).

Finally, in light of Lebesgue's dominated convergence theorem, since

∆ n ∈ L 1 (R + ; Ḃ d 2 2,1 ) and ∇ n ∈ L 2 (R + ; Ḃ d 2 2,1 ), we have lim ε→0 (Id -K ε )∆ n L 1 (R + ; Ḃ d 2 2,1 )
= 0 and lim

ε→0 (Id -K ε )∇ n L 2 (R + ; Ḃ d 2 2,1 ) = 0.
Plugging all this information in (6.12) completes the proof of (6.11). when both f → ∞ and ε → 0 may be deduced from Theorems 6.1 and 6.2. Let (ρ f,ε , u f,ε ) be the solution of (1.1) and (ρ f,ε , ǔf,ε ) be the corresponding rescaled solution (see (3.16)). Let r ε be the solution of (6.5) with data ρ 0 = 1 + a 0 and, finally, n the solution to (3.14) with the same data (for simplicity). We have

ρf,ε -n = (ρ f,ε -r ε ) + (r ε -n).
Hence, in light of Theorems 6.1 and 6.2, one may conclude to the following result: Theorem 6.3. Take a 0 and u 0 as in Theorem 6.1. Let n be the solution to (3.14) with data 1 + a 0 . Let (ρ f,ε , ǔf,ε ) be the solution of (1.1) after rescaling (3.16). Then 

ρf,ε -n → 0 in L ∞ (R + ; Ḃ d 2 -1 2,1 + Ḃ d 2 2,
f g Ḃσ 2,1 ≤ C f Ḃ d 2 2,1 g Ḃσ 2,1 , -d/2 < σ ≤ d/2, (7.1) f g Ḃσ 2,1 ≤ C f L ∞ g Ḃσ 2,1 + g L ∞ f Ḃσ 2,1 , σ > 0. (7.2)
The latter inequality is often combined with the embedding

(7.3) Ḃ d 2 2,1 ֒→ L ∞ .
In the rest of this part, we focus on the commutators estimates that we used for handling the terms v • ∇a, v • ∇u, b div u and c∇K ε a in System (4.1).

The following commutator estimate belongs to the mathematical folklore (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]Chap. 2]): where (c j ) j∈Z denotes a nonnegative sequence with sum equal to 1.

Lemma 7.1. Let -d/2 < σ ≤ 1 + d/2. Then, for v ∈ Ḃd/2+1
The next commutator estimate is connected to the operator L ε satisfying (3.1).

Lemma 7.2. Let σ > -d/2. There exists a constant C independent of ε such that we have:

(7.5) [c, ∂ k L ε ]h Ḃσ 2,1 ≤ C c Ḃ d 2 +1 2,1 h Ḃσ 2,1 + h L ∞ c Ḃσ+1 2,1 , k ∈ {1, • • • , d}.
Moreover, if -d/2 < σ ≤ d/2, then the second term is not needed.

We also have

(7.6) [c, L ε ]h Ḃσ 2,1 ≤ C c Ḃ d 2 +1 2,1 h Ḃσ-1 2,1 + h L ∞ c Ḃσ 2,1 ,
and the second term is not needed for -d/2 < σ ≤ d/2 + 1.

Proof. One can take advantage of the following (simplified) Bony decomposition:

(7.7) f g = T f g + T ′ g f with T f g := j Ṡj-1 f ∆j g and T ′ g f := j Ṡj+2 g ∆j f.
Now, using the paraproduct operators T and T ′ , we have the decomposition:

(7.8) [c, ∂ k L ε ]h = [T c , ∂ k L ε ]h + T ′ ∂ k Lεh c -∂ k L ε T ′ h c.
The last two terms may be bounded according to continuity results for the paraproduct (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]Chap. 2]): if σ > -d/2, then we have (using (3.1)) (7.9)

T ′ ∂ k Lεh c Ḃσ 2,1 ∂ k L ε h Ḃσ-1 2,1 c Ḃd/2+1 2,1 h Ḃσ 2,1 c Ḃd/2+1 2,1
and, if σ > 0 (7.10)

∂ k L ε T ′ h c Ḃσ 2,1 T ′ h c Ḃσ+1 2,1 h L ∞ c Ḃσ+1 2,1 .
Note that for -d/2 < σ ≤ d/2, then we have (7.11)

∂ k L ε T ′ h c Ḃσ 2,1 T ′ h c Ḃσ+1 2,1 h Ḃσ 2,1 c Ḃd/2+1 2,1
.

For the first term in the right-hand side of (7.8) we write that, by definition of paraproduct,

[T c , ∂ k L ε ]h = j [ Ṡj-1 c, ∂ k L ε ] ∆j h.
Now, from the mean value formula, we gather

[ Ṡj-1 c, ∂ k L ε ] ∆j h(x) = 1 0 R d ∇ Ṡj-1 c(y + τ (x -y)) • (x -y) ∂ k L ε (x -y) ∆j h(y) dy.
Hence, for all j ∈ Z,

[ Ṡj-1 c, ∂ k L ε ] ∆j h L 2 ≤ z∂ k L ε L 1 ∇ Ṡj-1 c L ∞ ∆j h L 2 .
From this, Condition (3.1) and Lemma 2.23 in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], we deduce that

(7.12) [T c , ∂ k L ε ]h Ḃσ 2,1 ∇c L ∞ h Ḃσ 2,1
and, in light of (7.3), we conclude to (7.5) Proving (7.6) is similar : we start from the decomposition

[c, L ε ]h = [T c , L ε ]h + T ′ Lεh c -L ε T ′ h c
. The last two terms may be bounded by means of standard continuity results for the paraproduct operator. To handle the first one, we introduce the function L ε,j ′ := F -1 ( L ε ϕ(2 -j ′ •)) and write that

[ Ṡj-1 c, L ε ] ∆j h(x) = j ′ ∼j [ Ṡj-1 c, ∆j ′ L ε ] ∆j h(x) = j ′ ∼j 1 0 R d ∇ Ṡj-1 c((y + τ (x -y))) • (x -y) L ε,j ′ (x -y) ∆j h(y) dy.
Hence, for all j ∈ Z,

(7.13) [ Ṡj-1 c, L ε ] ∆j h L 2 ≤ j ′ ∼j zL ε,j ′ L 1 ∇ Ṡj-1 c L ∞ ∆j h L 2 .
Since we have

F (zL ε,j ′ )(ξ) = i2 -j ′ L ε (ξ)∇ϕ(2 -j ′ ξ) + ψ(2 -j ′ ξ) ξ • ∇ L ε (ξ) with ψ(η) := |η| -2 ηϕ(η),
we get from convolution inequalities and (3.1) that

(7.14) sup ε,j ′ 2 j ′ zL ε,j ′ L 1 < ∞. So we have 2 jσ [ Ṡj-1 c, L ε ] ∆j h L 2 ≤ C ∇c L ∞ 2 j(σ-1) ∆j h L 2 ,
and it is now easy to complete the proof of (7.6).

Lemma 7.3. Assume that σ > -d/2. Then we have

(7.15) [L ε ∆j , c]h L 2 ≤ Cc j 2 -jσ c Ḃ d 2 +1 2,1 h Ḃσ-1 2,1 + c Ḃσ 2,1 h L ∞
and the second term is not needed if σ ≤ d/2 + 1.

Proof. For conciseness, we only treat the case σ ≤ d/2 + 1 (the easy adaptations for σ > d/2 + 1 are left to the reader). One can mimic the proof of (7.4) proposed in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]: using Bony's decomposition (7.7), we write that (7.16) [

L ε ∆j , c]h = [L ε ∆j , T c ]h + L ε ∆j T ′ h c -T ′ h L ε ∆j c.
For the last term, we have

T ′ h L ε ∆j c = |j ′ -j|≤1 Ṡj+2 h ∆j ′ L ε ∆j c.
Hence, since σ -1d/2 ≤ 0, we have, thanks to Bernstein inequality, the definition of Besov space Ḃσ-1-

d 2 ∞,1 and embedding Ḃσ-1 2,1 ֒→ Ḃσ-1-d 2 ∞,∞ , T ′ h L ε ∆j c L 2 Ṡj+2 h L ∞ ∆j c L 2 2 -j(σ-1-d 2 ) h Ḃσ-1-d 2 ∞,1 ∆j c L 2 2 -jσ h Ḃσ-1 2,1 2 j(1+d/2) ∆j c L 2 .
The last but one term of (7.16) may be bounded thanks to the fact that

T ′ : Ḃσ-1 2,1 × Ḃ d 2 +1 2,1 → Ḃσ 2,1 , -d/2 < σ ≤ d/2 + 1.
For bounding the first term, one can write that both Ṡj ′ -1 c h j ′ and h j ′ are localized in an annulus of size 2 j ′ . Hence, by definition of the paraproduct, we have

[L ε ∆j , T c ]h = j ′ ∼j [L ε ∆j , Ṡj ′ -1 c]h j ′ .
The mean value formula ensures that for all x ∈ R d , we have

[L ε ∆j , Ṡj ′ -1 c]h j ′ (x) = R d 1 0 L ε,j (x -y) ∇ Ṡj ′ -1 c(x + τ (y -x)) • (y -x) h j ′ (y) dτ dy, whence [L ε ∆j , T c ]h L 2 ≤ j ′ ∼j zL ε,j L 1 ∇ Ṡj ′ -1 c L ∞ h j ′ L 2 .
Hence, owing to (7.14) 

(7.17) [L ε ∆j , T c ]h L 2 ≤ Cc j 2 -jσ ∇c L ∞ h Ḃσ 2,
[b, ∆j ]z L 2 ≤ Cc j 2 -jσ ∇b Ḃ d 2 2,1 z Ḃσ 2,1 + z L ∞ ∇L ε b Ḃσ 2,1 , j ∈ Z.
Furthermore, the second term is not needed if -d/2 < σ ≤ d/2.

Proof. We start with the decomposition

∇L ε [b, ∆j ]z = L ε [b, ∆j ]∇z + L ε [∇b, ∆j ]z = L ε [b, ∆j ]∇z + L ε (∇b z j ) -∆j L ε (∇b z) = R 11 j + R 12 j + R 13 j + R 14 j + R 15 j with R 11 j := L ε [b, ∆j ]∇z, R 12 j := L ε (∇b z j ), R 13 j := -∆j L ε T ′ ∇b z, R 14 j := -T z L ε ∆j ∇b and R 15 j := [T z , L ε ∆j ]∇b. Since 0 ≤ L ε ≤ 1, the commutator estimate (7.4) ensures that R 11 j L 2 ≤ [b, ∆j ]∇z L 2 ≤ Cc j 2 -jσ ∇b Ḃ d 2 2,1 z Ḃσ 2,1 .
Next, owing to (7.3),

R 12 j L 2 ≤ ∇b z j L 2 ≤ ∇b L ∞ z j L 2 ≤ Cc j 2 -jσ ∇b Ḃ d 2 2,1 z Ḃσ 2,1
and, because

T ′ : Ḃ d 2 2,1 × Ḃσ 2,1 → Ḃσ 2,1 for σ > -d/2, we have R 13 j L 2 ≤ c j 2 -jσ T ′ ∇b z Ḃσ 2,1 ≤ Cc j 2 -jσ ∇b Ḃ d 2 2,1 z Ḃσ 2,1 . Next, since R 14 j = |j ′ -j|≤1 Ṡj ′ -1 z L ε ∆j ′ ∇b j , we have R 14 j L 2 ≤ C z L ∞ L ε ∇b j L 2 ≤ Cc j 2 -jσ z L ∞ L ε ∇b Ḃσ 2,1 . Note that if σ ≤ d/2, then we also have for |j ′ -j| ≤ 1, Ṡj ′ -1 z L ∞ 2 -j(σ-d/2) z Ḃσ-d/2 ∞,1 2 -jσ z Ḃσ 2,1 so that R 14 j L 2 ≤ Cc j 2 -jσ ∇b Ḃ d 2 2,1 z Ḃσ 2,1 .
The term R 15 j may be treated by a small variation of (7.17). We get

R 15 j L 2 ≤ Cc j 2 -jσ ∇b Ḃ d 2 2,1 ∇z B σ-1-d 2 ∞,1 .
In the end, remembering the embedding

B σ-1 2,1 ֒→ B σ-1-d 2 ∞,1
, we obtain (7.18).

An alternative proof of (7.18). Inequality (7.18) can be alternatively demonstrated by means of an integral representation. In contrast to employing the para-decomposition, our approach necessitates the explicit elucidation of the paramount terms that engender limitations on the regularity. This particular scenario demands a more intricate analysis, wherein we focus on a three-dimensional space and impose constraints on the regularity with

σ = 5/2. Note that ∇L ε [b, ∆j ]div u = L ε [∇b, ∆j ]div u + L ε [b, ∆j ]∇div u.
The second part can be easily treated by the commutator rule (7.4)

2 (d/2+1)j L ε [b, ∆j ]∇div u L 2 c j ∇b L ∞ div u Ḃd/2+1 2,1 with j c j = 1.
The first part can be seen as follows

L ε [∇b, ∆j ]div u = L ε ∇b ∆j div u -L ε ∆j (∇b div u).
Above, the first term is bounded by

2 (d/2+1)j L ε ∇b ∆j div u L 2 ∇b L ∞ 2 (d/2+1)j ∇u j L 2 .
Since ( ∆j ∇b)div u is of a good form and

2 (d/2+1)j L ε ( ∆j ∇b)div u L 2 2 (d/2+1)j ∆j ∇b L 2 div u L ∞ ,
the most difficult term we consider in the following form

L ε ∆j (∇b div u) -L ε ( ∆j ∇b)div u.
Let L j ε = ∆j L ε , then we restate the above term

R d L j ε (z)∇b(x -z)(div u(x -z) -div u(x))dz = R d L j ε (z)∇b(x -z) ∇ 2 u(x)z + 1 0 (∇ 2 u(x -tz) -∇ 2 u(x))z dt dz = K 1 + K 2 .
Let fix d = 3. In order to get the general case, it is required to apply the induction method to get the bound for arbitrary dimension. First, we find the bound for

2 5/2j K 1 L 2 ≤ 2 5/2j R 3 zL j ε (z)∇b(x -z)dz L 2 ∇ 2 u L ∞ ≤ C2 5/2j b j L 2 ∇ 2 u Ḃ3/2 2,1
.

Note that by definition

R 3 zL j ε (z)∇b(x -z)dz = R 3 zL ε (z)∇ ∆j b(x -z)dz,
hence by (3.1)

R 3 zL j ε (z)∇b(x -z)dz L 2 ξ∂ ξ L(ξ) bj L 2 b j L 2 .
The term K 2 still needs to be restated. So (we use the transform (t, s) → (ts, s))

K 2 = R 3 zL j ε (z)∇b(x -z) 1 0 1 0 ∇ 3 u(x -tsz)tz dsdtdz = R 3 z 2 L j ε (z)∇b(x -z)[∇ 3 u(x) + 1 0 (∇ 3 u(x -sz) -∇ 3 u(x)) ds]dz = K 21 + K 22 .
And then

2 5/2j R 3 z 2 L j ε (z)∇b(x -z)dz∇ 3 u(x) L 2 ≤ 2 5/2j R 3 z 2 L j ε (z)∇b(x -z)dz L 6 ∇ 3 u L 3 ≤ C2 5/2j 2 -j L ε b j L 6 ∇ 3 u L 3 ≤ C2 5/2j L ε b j L 2 ∇ 3 u B 1/2 2,1 . 
Note the above case requires the highest regularity in both terms.

Term K 22 requires some more care. In an direct way we get

2 5/2j R 3 z 2 L j ε (z)∇b(x -z) 1 0 (∇ 3 u(x -sz) -∇ 3 u(x)) dsdz L 2 ≤ 2 5/2j R 3 z 2 L j ε (z)∇b(x -z) 1 0 (∇ 3 u(x -sz) -∇ 3 u(x)) (s|z|) 1/2 s 1+1/2 |z| 1/2 |z|ds s|z| dz L 2 ≤ C2 5/2j z 2+1/2 L j ε L 1 ∇b L ∞ sup z∈R 3 ∞ 0 ∇ 3 u(x -hê z ) -∇ 3 u(x) 2 h 1/2 dh h ≤ C ∇b L ∞ ∇ 3 u B 1/2 2,1
.

By the assumption (3.1) we easily deduce that 2 5/2j z 5/2 L j ε L 1 ≤ uniformly bounded inj and ε. The right-hand side is independent of j. The ℓ 1 summability is required. So we proved the existence of a map from B

1/2 2,1 (R 3 ) → B 5/2 2,∞ (R 3
), but it is not enough. Fortunately we can use interpolation. Note that 1/2 can be replaced by any α close to 1/2, a bit bigger and a bit smaller, then we get the map T : Ḃα

2,1 (R 3 ) → Ḃα 2,∞ (R 3 ), so then T : Ḃ1/2 2,1 (R 3 ) = ( Ḃ1/2-σ 2,1 (R 3 ); Ḃ1/2+σ 2,1 (R 3 )) 1/2,1 → ( Ḃ1/2-σ 2,∞ (R 3 ); Ḃ1/2+σ 2,∞ (R 3 )) 1/2,1 = Ḃ1/2 2,1 (R 3
) with the suitable desired estimates. We are done. This approach takes more space, but in some special cases can deliver faster answers concerning the limitation on the required regularity.

Lemma 7.5. There exists a constant C independent of j ∈ Z and ε > 0 such that the following inequality holds:

(7.19) [L ε , c] ∆j z L 2 ≤ C2 -j ∇c L ∞ ∆j z L 2 .
Proof. It is based on the decomposition

(7.20) [L ε , c] ∆j z = [L ε , Ṡj-1 c] ∆j z + L ε (Id -Ṡj-1 )c ∆j z -(Id -Ṡj-1 )c L ε ∆j z,
and on the fact that, in light of the properties of localization of ∆j and Ṡj-1 , we have

[L ε , Ṡj-1 c] ∆j z = j ′ ∼j [L ε ∆j ′ , Ṡj-1 c] ∆j z.
Hence, (7.13) and (7.14) guarantee that

L ε , Ṡj-1 c] ∆j z L 2 ≤ 2 -j ∇ Ṡj-1 c L ∞ ∆j z L 2 and, since (Id -Ṡj-1 )c L ∞ ≤ C2 -j ∇c L ∞ ,
the other two terms of (7.20) also satisfy the desired inequality.

Lemma 7.6. We have for σ

∈ (-d/2 -1, d/2 + 1], (7.21) ∇L ε ∆j (v • ∇a) -v • ∇(∇L ε ∆j a) L 2 ≤ Cc j 2 -jσ a Ḃσ 2,1 v Ḃ d 2 +2 2,1 + v Ḃ d 2 +1 2,1 ∇L ε a Ḃσ 2,1 •
Proof. Using again Bony's decomposition (7.7) and the fact that Ṡj ′ -1 v • ∇a j ′ is localized in an annulus of size 2 j ′ , we may write

∇L ε ∆j (v • ∇a) = ∇L ε ∆j T ′ ∇a • v + ∇L ε ∆j T v • ∇a = ∇L ε ∆j T ′ ∇a • v + ∇L ε ∆j j ′ ∼j Ṡj ′ -1 v • ∇a j ′ = R 21 j + R 22 j + R 23 j + R 24 j + v • ∇(∇L ε a j ) with R 21 j := ∇L ε T ′ ∇a • v, R 22 j := ∇L ε ∆j j ′ ∼j ( Ṡj ′ -1 -Ṡj-1 )v • ∇a j ′ , R 23 j := j ′ ∼j
[∇L ε ∆j , Ṡj-1 v] • ∇a j ′ and R 24 j := ( Ṡj-1 -Id)v • (∇(∇L ε a j )).

For R 21 j , we use that T ′ : Ḃσ-1 .

Next, by Bernstein inequality and the fact that 0 ≤ L ε ≤ 1, we have ∇a Ḃσ-1 2,1 .

R 22 j L 2 2 j j ′′ ∼j ′ ∼j 2 -2j ′′ -j ′ (σ-1) 2 2j ′′ v j ′′ L ∞ 2 j ′ (σ-1) ∇a j ′ L 2 2 -jσ v Ḃ2 ∞,∞ j ′ ∼j 2 j ′ (σ-
To bound R 24 j , we use the fact that ( Ṡj-1 -Id)v L ∞ 2 -j v Ḃ1 ∞,∞ .

Hence, combining with the embedding Ḃ d 2 +1

2,1 ֒→ Ḃ1 ∞,∞ and Bernstein inequality, (7.24)

R 24 j L 2 ≤ C v Ḃ d 2 +1 2,1 ∇L ε a j L 2 .
To handle R 23 j , we have to go to the second order in the Taylor expansion. Using again the notation L ε,j = F -1 ( L ε ϕ(2 -j •)), we write that for all k ∈ {1, • • • , d}, we have, with the summation convention, (1τ )D 2 Ṡj-1 v ℓ (x + τ (yx))(yx, yx) dτ ∂ k L ε,j (xy) ∂ ℓ a j ′ (y) dy.

[∂ k L ε ∆j , Ṡj-1 v ℓ ]∂ ℓ a j ′ = R 231 jj ′ k + R 232
First, by using Hölder inequality, we have

R 231 jj ′ k L 2 ≤ ∇ Ṡj-1 v ℓ L ∞ z∂ k L ε,j ⋆ ∂ ℓ a j ′ L 2 .
Denoting h j := F -1 (ϕ(2 -j •)), we have the identity

z∂ z k (L ε ⋆ h j ) = ∂ z k L ε ⋆ (zh j ) -L ε ⋆ ∂ z k (zh j )
and thus

z∂ k L ε,j ⋆ ∂ ℓ a j ′ = (zh j ) ⋆ L ε ∂ k ∂ ℓ a j ′ -∂ k (zh j ) ⋆ ∂ ℓ L ε a j ′ .
Since zh j L 1 = 2 -j zh 0 L 1 and ∂ k (zh j ) L 1 = ∂ k (zh 0 L 1 , we deduce (using once Bernstein inequality) that (7.25) R 231

jj ′ k L 2 ∇v L ∞ L ε ∇a j ′ L 2 .
For the other term, we have

R 232 jj ′ k L 2 ∇ 2 v L ∞ (z ⊗ z)∇L ε,j L 1 ∇a j L 2 ,
and one can show that

(z ⊗ z)∇L ε,j L 1 2 -j (z ⊗ z)∇ 2 L ε L 1 .
Indeed, if we set ϕ(ξ) = -iξ|ξ| -2 ϕ(ξ) and h 0 := F -1 ϕ, then h 0 = div h 0 , and thus h j = 2 -j div h j for all j ∈ Z. Consequently, we have (z ⊗ z)∇L ε,j = 2 -j (z ⊗ z)(∆L ε ⋆ h j ). Hence (7.26) R 232

jj ′ k L 2 ∇ 2 v L ∞ a j ′ L 2 .
Putting (7.25) and (7.26) together yields (7.27)

R 23 j L 2 ≤ C j ′ ∼j ∇v L ∞ L ε ∇a j ′ L 2 + ∇ 2 v L ∞ a j ′ L 2 .
Hence, one can conclude from (7.22), (7.23), (7.24) and (7.27) that (7.21) holds true. We plan to use Inequality (4.5) with σ = d/2 + 1. Note that, at some point, we will have to bound the L ∞ norm of c t + div ((1 + c)v) with c = F (K ε a). To do this, we observe from the first equation of (2.2) that

∂ t (K ε (a)) + div (1+K ε a)u = R ε := K ε a div u + j [u j , ∂ j K ε ]a + (Id -K ε )div u, whence ∂ t (F (K ε a)) + div (1+F (K ε a))u = 1+F (K ε a) -(1+K ε a)F ′ (K ε a) div u + F ′ (K ε a)R ε .
Under condition (4.2) with b = a and thanks to hypothesis (7.28), it is obvious that

1+F (K ε a) -(1+K ε a)F ′ (K ε a) div u L ∞ div u L ∞ a L ∞ .
Next, using first order Taylor formula, we readily get

j [u j , ∂ j K ε ]a L ∞ ≤ z∇K ε L 1 ∇u L ∞ a L ∞ .
Hence, keeping Assumption (3.1) in mind and assuming e.g. that |a| ≤ 1/4, we conclude that X dτ

+ t 0 F (K ε a) Ḃ d 2 2,1 ∇L ε a h Ḃ d 2 +1 2,1 + ∇K ε a ℓ Ḃ d 2 +1 2,1 + ∇ 2 K ε a ℓ Ḃ d 2 +1 2,1 + F (K ε a) Ḃ d 2 +1 2,1 ∇L ε a h Ḃ d 2 2,1 + ∇K ε a ℓ Ḃ d 2 2,1 + ∇ 2 K ε a ℓ Ḃ d 2 2,1 + F (K ε a) Ḃ d 2 +1 2,1 (L ε a, ∇L ε a) Ḃ d 2 +1 2,1 + F (K ε a) Ḃ d 2 +2 2,1 ∇L ε a Ḃ d 2 2,1
dτ.

Since F (0) = 0, the right-hand side may be simplified thanks to the following composition inequality that is valid whenever z L ∞ is small enough and s > 0:

F (z) Ḃs 2,1
z Ḃs 2,1 . In the end, after a few simplifications, we discover that X(t) + X dτ

+ t 0 K ε a Ḃ d 2 2,1 ∇L ε a h Ḃ d 2 +1 2,1 + ∇K ε a ℓ Ḃ d 2 +1 2,1 + ∇ 2 K ε a ℓ Ḃ d 2 +1 2,1 + K ε a Ḃ d 2 +1 2,1 L ε a Ḃ d 2 +1 2,1 + ∇K ε a ℓ Ḃ d 2 +1 2,1 + K ε a Ḃ d 2 +1 2,1 ∇L ε a Ḃ d 2 +1 2,1 + K ε a Ḃ d 2 +2 2,1 ∇L ε a Ḃ d 2 2,1
dτ.

We observe that all the products in the integrals of the right-hand side may be bounded by HX except, maybe,

K ε a ℓ Ḃ d 2 +1 2,1 L ε a ℓ Ḃ d 2 +1 2,1
and

K ε a ℓ Ḃ d 2 +1 2,1 ∇L ε a ℓ Ḃ d 2 +1 2,1
.

However, by Cauchy-Schwarz inequality in the Fourier space and the fact that K ε = L ε * L ε , we notice that

K ε a ℓ Ḃ d 2 +1 2,1 ≤ L ε a ℓ Ḃ d 2 +1 2,1 ≤ a ℓ Ḃ d 2 2,1 ∇ 2 K ε a ℓ Ḃ d 2 2,1 ≤ √ XH ∇L ε a ℓ Ḃ d 2 +1 2,1 ≤ a ℓ Ḃ d 2 +1 2,1 ∇ 2 K ε a ℓ Ḃ d 2 +1 2,1 ≤ √ XH.
Hence, we conclude that for some universal constant C ≥ 1, we have for all t ≥ 0 X(t) + Granted with the above a priori estimate, remembering Remark 1 and mimicking the proof of Theorem (3.1), one ends up with the following global uniform well-posedness result for System (2.2).

Theorem 7.1. Let N be any smooth function defined on some neighborhood of 1 and such that N (1) = N ′ (1) = 1. Assume that d ≥ 2 and take initial data ρ 0 = 1 + a 0 and u 0 such that

u 0 ∈ Ḃ d 2 2,1 ∩ Ḃ d 2 +2 2,1 , a 0 ∈ Ḃ d 2 -1 2,1 ∩ Ḃ d 2 +1 2,1
and

∇ 2 L ε a 0 ∈ Ḃ d 2 2,1 .
There exists an absolute positive constant α 0 such that if

u 0 Ḃ d 2 +1 2,1 ∩ Ḃ d 2 +2 2,1 + a 0 Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1 + ∇ 2 L ε a 0 Ḃ d 2 2,1 ≤ α 0 ,
then System (2.2) with f = 1 supplemented with initial data (ρ 0 , u 0 ) admits a unique global classical solution (ρ, u) such that (a, u) with a := ρ -1 belongs to the space

E d 2 +1
Kε defined in (3.6). Furthermore, a ∈ C(R + ; Ḃ d 2 -1 2,1 ) and Inequality (3.8) is satisfied. In this general pressure setting, it is also possible to prove convergence to the compressible Euler System (2.4) and asymptotic results when the friction coefficient f tends to ∞, in the spirit of Theorems 3.2, 6.1, 6.2 and 6.3. The details are left to the reader. 7.3. From the micro to the macro scale. In this part we aim at sketching the connection between (2.1) and (1.1). In case the number N of particles is large in (2.1), it is customary to treat the distribution of particles in terms of measures. By performing the so-called mean field limit, we are led to the following kinetic equation: (7.30)

f t + v • ∇ x f + div v (F (f )f ) = 0
where, for some suitable kernel K ε ,

F (f )(t, x, v) = fv + R d
∇K ε (xy)f (t, y, w) dy.

Note that the solution to (2.1) may be seen as a measure solution to (7.30). Indeed, the weak formulation of (7.30) reads, for all test function φ ∈ D(R d × [0, T )),

T 0 R d R d f (∂ t + v • ∇ x + F (f )∇ v )φ dx dv dt = - R d R d
f 0 (x, v)φ(0, x, v) dx dv.

Hence, if we set

f := k δ x k (t) ⊗ δ v k (t) ,
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 3 Convergence of System (1.1) to the porous media equation. The convergence of the density, solution of System (1.1) to the solution of the porous media equation(3.14) 
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 257 The general pressure case. Here we explain how to close the estimates for all time in the general pressure case, that is for System (2.2). Denoting a := ρ -1, this corresponds to System (4.1) with v = u, b = a and c = F (K ε a) with F (z) := N (1 + z) -1. We assume that .28) F (0) = 0 and F ′ (0) = 1.

( 7 . 2 +1a,u and H := H d 2 2 2

 7222 29) ∂ t (K ε (a)) + div (1+K ε a)u L ∞ ∇u L ∞ . Now, denoting X := X d +1a,u , using (7.29) and observing that in the case v = u and b = a all the terms in lines two and three are of type ∇u Ḃ d

  2C 2 X(0) < 1, we get the following global-in-time and uniform in ε control:

•

  For m > d, one can show from the standard properties of Fourier transform that (3.1) is indeed satisfied.Let us next introduce the Littlewood-Paley decomposition on which on entire analysis is based. Fix a smooth function φ : R +

  1. Solving Burgers equation with friction and smooth data. Here we consider (5.3) u t + u • ∇u + u = f supplemented with initial velocity u 0 ∈ H s+1 and source term f ∈ C(R + ; H s+1 ) with s > d/2.

	The classical theory of symmetric hyperbolic systems (see e.g. [1, Chap. 4] guarantees
	that (5.3) admits a unique maximal solution

  1 ) as f → ∞ and ε → 0. Commutator estimates. As a first, we recall two product laws in Besov spaces that we used repeatedly in the paper (the reader may refer to [1, Chap. 2] for more details):

	7. Appendix
	7.1.

  [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] , which, combined with (7.3), completes the proof of the lemma.

	Lemma 7.4. Let σ ∈ (-d/2, d/2 + 1]. Let z be in that ∇b ∈ Ḃd/2 2,1 and ∇L ε b ∈ Ḃσ 2,1 . Then,	Ḃd/2 2,1 ∩ Ḃσ 2,1 and b be a scalar function such
	(7.18)	∇L ε

  for -d/2 -1 < σ ≤ d/2 + 1 and that ∇L ε : Ḃσ+1 2,1 → Ḃσ 2,1 uniformly with respect to ε to get (7.22) R 21 j L 2 ≤ Cc j 2 -jσ ∇a Ḃσ-1

	2,1 ×	Ḃ d 2 +2 2,1	→ Ḃσ+1 2,1 2,1	v Ḃ d 2 +2 2,1

  1) ∇a j ′ L 2 • Cc j 2 -jσ v Ḃ d

	Hence we have, owing to embedding	Ḃ d 2 +2 2,1 ֒→ Ḃ2 ∞,∞ ,
	(7.23)	R 22 j L 2 ≤ 2 +2 2,1

Here we can draw an analogy with our use in[START_REF] Danchin | Compressible Navier-Stokes system : large solutions and incompressible limit[END_REF] of the effective viscous flux for viscous compressible flows, so as to justify the convergence to the inhomogeneous incompressible Navier-Stokes equations.

We assumed (4.2) for simplicity. A similar result holds if 0 < r ≤ 1 + b, 1 + c < R for any real numbers r and R: it is just a matter of adapting the definition of the Lyapunov functional in (4.20) below, accordingly.

The second assumption can be achieved after renormalization.
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Next, let us explain how (1.1) can be obtained from (7.30). The idea is to assume that we are in the mono-kinetic regime, namely

for some nonnegative function ρ(t, x) and vector-field u(t, x). In other words, all the particles at point x at time t have the same velocity u(t, x), and their density is ρ(t, x). Then, first integrating over the v-coordinate the equation (7.30) we obtain the simple continuity law (7.32)

Second, multiplying (7.30) by v and integrating over v gives:

Taking into account the ansatz (7.31) we obtain then

After a suitable rescaling of the constant parameters, using (7.32) to (7.33) we obtain the original system (1.1).