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Handling inconsistency in (numerical) preferences using
possibility theory

Loic Adam?, Sebastien Destercke®*

*UMR CNRS 7253 Heudiasyc, Sorbonne Université, Université de Technologie de
Compiegne, 57 avenue de Landshut, Compiegne, CS 60319 - 60203, France

Abstract

In this paper, we address the issues of gathering the preferences of a user when
they may be uncertain, and of handling the possible ensuing inconsistency. We
suggest using possibility theory as a means of modelling this uncertainty and
making inferences despite the possible presence of inconsistencies due to user
errors. While some parts of our approach are general, we specifically apply it
to the case of numerical models and show through synthetic experiments the
potential benefits of our approach.

Keywords: Possibilities, Preference, Inconsistency

1. Introduction

Modelling the preferences of individuals or populations has been a long-
standing topic in fields such as economics, statistics, artificial intelligence, and
operational research. However, the challenges of dealing with uncertainty, in-
consistency, and incomplete knowledge in preference modelling are still actively
discussed, particularly in artificial intelligence [T}, 2.

In this paper, we are interested in the problem of handling uncertainty and
inconsistency when eliciting the preferences of a single user. This type of scenario
is often encountered in multi-criteria decision aid or artificial intelligence, while
other fields such as statistics, machine learning, or economics tend to focus on
learning from populations of individuals rather than a single one. There are
two main approaches for dealing with the uncertainty and inconsistency (with
respect to the chosen preference model) present in the preferential information
of the user:

e The first approach involves using robust, set-based methods, in which we
consider sets of potential models and make inferences from these sets. Each
new piece of preferential information narrows down the set of possible
models, with the updated set representing our uncertainty about the
optimal model. These approaches are similar to the concept of version
space in machine learning, as noted by some authors [3].

*Corresponding author
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When the available information results in a set of possible models, different
inference strategies can be used. One is to only consider those that are
true for all possible models, resulting in so-called robust methods [4] that
may sometimes deliver partial results in the form of multiple recommended
alternatives. Another one is to still make precise inferences in the presence
of uncertainty, usually by adopting a cautious attitude in the form of a
Maximin or a Minimax regret method [5] [ [7]. These approaches consider
worst-case scenarios to gather new preferential information and provide
inference tools (e.g., to choose a recommended alternative) with strong
guarantees. We will focus on this latter approach in our experiments, as
comparing different approaches is easier when making precise inferences
and recommendations.

In this context, inconsistency occurs when none of the models in the selected
family can match the observed preferences of a user. It is an all-or-nothing
binary signal, and common strategies for addressing inconsistency include
removing or modifying some preferential information, either by minimizing
an objective function such as the number of violated preferences [8| [], or
by interacting with the decision maker [I0].

It is worth noting that elicitation approaches using the Minimax regret avoid
inconsistencies by collecting preferential information that is necessarily
consistent with the previous answers and the chosen model class (see for
example [6]). However, this approach relies on very strong assumptions,
and notably that the decision maker and analyst are assumed, respectively,
to make no mistake in their answers or model selection.

The second approach for handling inconsistencies involves finding a model
that minimizes some form of average error. This can be achieved through
optimization techniques such as least squares minimization [11I] or mar-
gin maximization [I2], or by using Bayesian probabilities to maintain a
probability distribution over the possible models and update it as new
information becomes available, and making inferences using the classical
expectation operator [13], 14} [15].

While such approaches are effective in handling inconsistencies, they typ-
ically cannot provide the same level of strong guarantees as set-based
approaches. They only offer statistical or expected guarantees, with the
proviso that the uncertainty model used is correct. This is particularly
constraining for probability models, as they often require a large amount
of data or a strong inductive bias for specification and statistical tools
for validation, which may be difficult to reconcile with learning individual
preferences. For instance, a common assumption is that the probability
of error is proportional to the distance between two alternatives [I5], but
this may not always be evident. For instance, it may be easier to compare
similar alternatives (e.g., those that differ only on two criteria [16]) than
very different ones. Additionally, probabilistic approaches do not clearly
distinguish between situations with and without inconsistencies, as prob-
ability masses must be shared among multiple competing and exclusive
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In this paper, we study a third approach, consisting in using possibility distri-
butions to model uncertain preferential information, and possibility theory [17]
for reasoning with the provided information. The interest of such an approach is
that it can remain consistent with set-based approaches, as sets are a special
instance of possibility distributions, while producing a non-binary quantification
of the inconsistency. It also gives at our disposal various tools for dealing with
such an inconsistency, these tools extending set-theoretic and logical operations
such as conjunction and disjunction rather than expectation-based operators.
Such possibilistic approaches therefore constitute an interesting extension of
the set-based approaches, while offering a view on uncertainty handling that
differs from probabilities (as none of the two theories that are possibility theory
and probability theory subsume the other). In particular, we will consider the
resolution of inconsistencies from an information fusion perspective [I§], as
inconsistency handling is a typical problem of such approaches. Although the
idea of applying possibilistic approaches to the modelling of preferences is not
new [19], our contribution enriches this approach by considering methods issued
from information fusion to deal with inconsistency, and by verifying through
synthetic experiments that these methodological proposals have some empirical
interest.

In Section [2, we describe our general possibilistic setting: how are mod-
elled preferences, how can inconsistency be measured, how can it be dealt with.
Section [3] then deals with possible inconsistencies in the observed preferential in-
formation, and how to handle them. Finally, Section 4] provides some experiments
demonstrating the potential interest of our approach. Note that although we
focus on numerical models associating a numerical value to each alternative, most
parts of this paper can be readily applied to non-numerical models, especially
Sections 2l and Bl

All along the paper, we will illustrate our approach through a simple running
example using weighted averages as models.

2. Possibilistic modelling of preference models

In this section, we describe our general setting and illustrate it on a simple
example.

2.1. Preferences and preference models

We consider that we want to describe the preferences of a user between
various multi-criteria alternatives. The space of alternatives is a Cartesian
product X = Hf\il X; where X is the domain of values that the ith criterion can
take. Such a domain can be discrete or continuous, and describes an aspect of
the alternative. In practical multi-criteria decision problems, only a finite subset
A C X of all possible alternatives is considered.

We also assume that the preferences of the user can be described by some
model w € ), where the set of possible models {2 is chosen by the analyst. Each

1We illustrate this point at the end of Section



model §2 then induces a partial pre—ordeIEI over the set of alternatives. There are
many such possible models, and we refer to the work of Pigozzi et al. [20] for a
nice review.

In this work, we focus on numerical models, where w : * — R is a real-valued
function that maps any alternative x € X to a corresponding value w(x). For
easiness, we also denote by z =, y the fact that w(z) > w(y). However, many
of the ideas presented in this paper also apply to the case where w is not a
numerical model.

Example 1. We suppose that a customer wants to buy a piece of cheese and
wants to be sure she is making the best choice. For simplicity, we consider that
she evaluates the score of a cheese through two criteria: the richness of the
flavour and the price. The available cheeses are presented in Table [1]

It is important to note that no alternatives are objectively worse than any
other (i.e. all are Pareto undominated): American cheese may have no flavour,
but it is the least expensive. On the other hand, truffle Brie is overpriced, but
has the richest flavour. The other cheeses are tradeoffs between the two criteria.

Table 1: Set of alternatives X and their scores, with w = (0.6, 0.4)

Name ‘ Flavour 1/Price ‘ Score
American cheddar 0 10 4
Emmental 4 6 4.8
Edam 5 5 5
Mozzarella 7 3 5.4
Truffle Brie 8 1 5.2

If we consider that the preferences of the user (the customer) are described
by a model w, a weighted sum with parameters (0.6,0.4), we obtain the scores
presented in Table[1l Mozzarella is the preferred alternative for this user, as
Ve € A, w(MO) > w(zx).

2.2. Possibility theory reminder

A possibility distribution 7 over a space € is simply a mapping 7 : Q — [0, 1]
where 7(w) measures how much the elementﬂ w is plausible. A distribution 7
is said consistent if max,cqm(w) = 1, that is, if at least one element is fully
plausible. From a distribution 7, one can then define two measures for any event
or subset A C €, called possibility and necessity measures, defined as:

II(A) = gsclelg m(x), (1)
N(A)=1-T1I(A°) = 1 — sup w(x). (2)
zZA

Since IT and N are dual, working with one of them for every event A is sufficient.
Possibility theory formally extends sets, in the sense that the information given
by specifying a subset F is modelled by the distribution n(z) = 1 if € E,

2A transitive, antisymmetric relation on X x X.
3In our case, a preference model.
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zero otherwise, in which case N(A) = 1 for any A such that E C A, and zero
otherwise. When 7 is consistent, the two bounds [NV (A), II(A)] can be interpreted
as probabilistic bounds, inducing in this case the probabilistic set

P = {PN(4) < P(A) < TI(4), VA C Q}.

Another important notion in possibility theory is the alpha-cut. Given a possi-
bility distribution 7, its alpha-cut m, is the subset

o ={we:n(w) >a} (3)

which includes all the elements of 2 having a possibility degree higher than «.

Given a real-valued function f : €2 — R, other notions used in this paper
are the one of lower and upper expectations E_(f),E.(f) of f induced by a
distribution 7. It corresponds to the lower and upper expected values of this

function over the set P, and can be computed as

[:ggf da, (4)

/0 max f(w) da. (5)

WETo

When the distribution 7 takes a finite number of distinct values 1 = a7 > ... >
ay > apt1 = 0 (as will be our case here), Equations (4| . become:

n

E() = 3o - i) Juln J(w), ©)
Baf) =2 (s = aus) gaax f0) )

In the rest of the paper, we will also consider unnormalized possibility distribu-
tions 7 such that max,cq m(w) < 1, in which case the value

Inc(m) =1- max m(w) (8)

will quantify the inconsistency of the available information.

2.8. Possibilistic preferential information

In the following, we consider elementary pieces of information taking the form
of (E,«), where E C Q is a subset of possible models and « is understood as
the certainty degree that the assertion E is true. It is interpreted as N(E) > a,
to which we can associate a corresponding possibility distribution 7z o) that is
the least informative satisfying N(F) > «. This distribution is:

lifweE,
w) = 9
W(E,a)( ) {1 — o« otherwise. ®)

In particular, @ = 1 corresponds to a set-valued information where we are
certain that w € F, while a = 0 amounts to a void statement corresponding to
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ignorance. Equation @D can be interpreted as an item of information within
possibilistic logic [21], and most reasoning tools used in this paper could be
interpreted through the lens of such a logic EL As illustrates the next example, F
will typically correspond to a subset of possible models resulting from an answer
provided by the user.

Example 2 (Piece of information). Given Ezample|l| and Table|l), assuming
that the user declares TB =, EM with a certainty degree a; = 0.8, we obtain the
following decision frontier:

w(TB) > w(EM) = 8w +w? > 4w! + 6w? = 4w' > 502, (10)

corresponding to the information pictured in Figure

T(E1,a1)
1
0.2
0 1 !
\%/—/
Ey

Figure 1: Preferential information 7(g, «,)(w) of Example

In this paper, we will consider that a set F; is the result of some pairwise
comparison between a pair of alternatives (z,y) € X2, where the user can either
state z = y or y = x. We denote by E,+, and E,, the subsets of {2 resulting
from each possible answer.

In practice, we collect multiple pieces of information (F;,a;), i =1,...,n
during the elicitation process, each of them corresponding to a distribution
T(E;,0:)- Note that those possible answers F; will define a finite partition

21,...02p} of Q where (2; is of the kind N¢;e{E; Ee}¢i, where each element of
the partition correspond to non-empty intersections of elementary answers or
their complements. The distributions m(g, ,,) can then be combined or fused
together in a single distribution by extending classical set operators such as
conjunction (logical AND) and disjunction (logical OR). The use of such operators
also allows for an easier interpretation of the performed operations [23] 24] [18].
In particular, if we have no reasons to think that the pieces of information
T(E;,a;) are unreliableﬂ the most sensible way to combine them is through
conjunction, which in possibility theory is typically done through the use of a
T-norm operator [25]. As our goal here is not to discuss the pros and cons of
the different T-norms, we will focus on the product T-norm, resulting in the

4This should not be confused with the idea of using possibilistic logic to represent pref-
erences [22], in which degrees «; represent intensities of preferences and not uncertainty
quantification.

5We will deal with this situation in Section
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distribution 7~ such that:
n
maw) = [[ 7z .00 @)- (11)
i=1

Example 3 (Fusion of information). Now we consider two pieces of information:
T(E1,a1) determined from the answer of the user in Example|d, and a new one
denoted (g, q,). We suppose the user now declares that MO =, TB with a
certainty degree an = 0.6. We obtain a new decision frontier: w' < 2w?. The
new piece of information is shown on Figure[3 We then apply a T-norm between
the two pieces of information, obtaining:

Tl —a1,1) =02 ifw! <5/9,
m(w) =4 T(1,1) =1 if 5/9 < w! <2/3,
T(1,1 —ag) =04 ifwt>2/3,

which is shown on Figure[3

T(E2,a2)
1

0.4

Es

Figure 2: Preferential information 7(g, q,)(w) of Example

™

0.4
0.2

Ql QQ QB

Figure 3: Fusion mn of two pieces of preferential information of Example [3| and resulting
partition of 2

We can now briefly illustrate the notions of lower and upper expectations,
using our previous example:

Example 4 (Expectation bounds). Let us now consider the possibility distribu-
tion obtained in E:mmple@ as well as the function f(w) = w(MO) = Tw! + 3w?.



score T

10 1

vob— | 0.4

0 1 w1

Figure 4: Overlap of the possibility distribution mn from Example |[3| with the score of the
alternative MO

10 Both the possibility distribution and the function are superimposed on Figure
11 [} We have three distinct values for mn: 1, 0.4 and 0.2. We thus have three
w2 alpha-cuts: m = [5/9,2/3], mo.a = [5/9,1] and mp.2 = [0, 1].

We can now determine the lower expectation:

E, [w(MO)]=(1-04) min w(MO)+(04-0.2) min w(MO)

w€([5/9,2/3] wel5/9,1]
+ (0.2 -0) min w(MO)

wel0,1]
=0.6(7 x 5/9+3 x4/9) +0.2(7 x 5/9 4+ 3 x 4/9) + 0.2(3 x 1)
~4.77.

And for the upper expectation:

Er[w(MO)]=(1-04) max w(MO)+ (04—0.2) max w(MO)

we(5/9,2/3] we[5/9,1]
+ (0.2 -0) max w(MO)

wel0,1]
=0.6(7x2/34+3x1/3)4+0.2(7x1)+0.2(7x1)

=6.2.

1wa  2.4. Errors in set-wise and possibilistic approaches

105 As said in the introduction, set-wise approaches are quite useful and can
106 provide strong guarantees regarding inferences as long as the information provided
107 by the user is correct.

108 However, such hypotheses are often unrealistic in many applications, and it
100 may be desirable to account for possible mistakes (in the user responses or in
200 the analyst choice) through uncertainty modelling. As the next example shows,
201 failure in those hypotheses can lead to unwarranted situations.

202 Example 5 (A single error to ruin everything). We take E:mmple@ with two
203 small but important modifications: we do not consider a possibilist information,
20a  and thus only Ey is considered (equivalent to oy = 1); and the user is either
205 unfocused or unsure and makes the erroneous claim that TB <X EM. We determine
200 that E1 = Erp<gm is now {w € Q: dwt < 5w2}, corresponding to information
207 shown on Figure[5 As we can see, the true model is definitely left out of ;.
20e  Whatever the next answers are, we cannot get to w*.



w* = (0.6,0.4)

E,

Figure 5: Wrong answer leading to a wrong model in Example

As we have already shown elsewhere [26], using possibility theory is an
interesting way to solve this issue, as illustrates the next example.

Example 6 (An error no longer ruins everything). Let us continue with Example
[3, but this time the user is providing a certainty degree oy = 0.7 with her wrong
answer. We obtain a possibilist information shown on Figure [0 such that it
s possible to find w* with further questions, supposing the user stops making
erroneous claims.

T(Ey,a1)

1

0.3

w* = (0.6,0.4)

E,

Figure 6: Possibilistic preferential information in Example I§|

By adding uncertainty to the user opinions, we can weaken the assumption
of a set-based approach and only consider that some models are less plausible
than the others, while remaining consistent with a set-based approach, that is
retrieved when the specified level of certainty « is 1 (in which case some models
are considered impossible). This is in contrast with probabilistic approaches,
where increasing the plausibility of some models necessarily means decreasing
the plausibility of others. For instance, in a probabilistic setting it would be
impossible to have Figure or to increase the degree a;; on Ef without decreasing
the plausibility on F7. Such a modelling is clearly less preferable under our single
user and version space assumptions, where we assume that there is a unique true
model, that should be able to remain fully plausible in theory.

Moreover, as we pointed out in the introduction, using probabilistic ap-
proaches is not desirable in our context: while they may give similar or better
recommendations than possibilistic approaches in terms of pure numerical per-
formances (this is investigated in Section, they cannot be used to reliably
detect some form of inconsistency, which is a problem if we want to repair it,
like in Subsection [3:2} or if we are interested in detecting and analysing this
inconsistency. As Example [7] illustrates, a probabilistic approach will inevitably
generate some conflict (P(()) > 0) even in the case of coherent answers. This
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shows that probabilistic approaches, while potentially showing good numerical
results, are not well tailored for detecting inconsistencies and for analysing them.

Example 7 (Conflict with probabilistic information). We take Ezample [3
where answers were consistent with the subset of models 5/9 < w! < 2/3. We
interpret the different pieces of preferential information as probabilities, with
P(E;) = o and P(ES) =1 — ;. This means that the first piece of information
gives P(w' < 5/9) = 0.2 and P(w! > 5/9) = 0.8, while the second piece of
information gives P(w' < 2/3) = 0.6 and P(w! > 2/3) = 0.4. As such, and
supposing both pieces of information are independent, we obtain the following
distribution:

0.12  for 0 <w! <5/9,

0.48  for5/9 <w!' <2/3,

0.32  for2/3 <w! <1,

0.08 forw!'<5/9 and2/3 > w!,

Pw') =

with the last condition leading to P(()) = 0.08, despite the fact that both answers
were consistent together and with our model space. Therefore, while we could
ignore this conflict and decide to normalise the distribution in order to have

inconsistency.

3. Handling inconsistencies

As said in the previous section, one interest of the possibilistic approach is that
it can model uncertainty in the user replies, and will avoid completely discarding
the good model in case of error. In case where some answers are inconsistent
between them, possibility distributions also quantify inconsistency gradually,
rather than having an all-or-nothing information as set-based approaches do.

There are mainly two reasons for inconsistencies to be observed in the
preferential information collection process and the inferences that ensue:

e Model error that arises when the choice of the space 2 is unable to
account for given preferential information, even when those are all correct.
When such errors happen, a possible strategy is to change or broaden
the model space (e.g., switching from weighted averages to k-monotone
Choquet integrals [27]) so as to reduce inconsistencies;

e User error that comes from the user who committed some errors in the
past when formulating her preferences, hence making the answers jointly
incompatible with any possible model of 2. Note that such errors can have
different origins: the user was unsure of her answers, or maybe changed her
viewpoint during the elicitation process. When this happens, a common
strategy is to remove some answers of the user in some minimal way,
making the remaining ones consistent [§].

Differentiating between the two types of errors without having interactions with
the user or without additional information is in itself a challenging problem,
which is not the main topic of this paper, even if information fusion tools can
provide interesting answers to this question [28]. We therefore assume here that

10



errors originate from the user, and consider possible strategies to deal with such
errors when considering possibility theory and associated information fusion tools.
Concretely, we look at the case where 7 is subnormalized, i.e., Inc(mn) > 0.

We will detail two strategies: not questioning the conjunctive merging and
adapting our inference tools based on Equations and ; or modifying the
way we merge information, thus changing our assumptions about the sources of
information. The first tool is an easy fix but does not provide much information
about the source of inconsistencies, while the second is more involved but provides
some analysis along with the fix. It should also be noted that both strategies
are not incompatible, using for instance the first to have quick inference, and
the second to make a final analysis, as studied in Section

3.1. Inferring despite inconsistencies

Having a positive inconsistency Inc(mn) > 0 implies that E,lrm = (). This
means that if one wants to make inferences over a given function f(w) in
Equations @)—@ without correcting inconsistencies, we need to define minima
and maxima over the empty set. While it is possible to define virtually an infinity
of strategies to account for that, we only present here two classical solutions,
which differences are illustrated on Example

e First way: consider that min,cp f(w) = max,ep f(w) = 0. This simply
amounts to ignoring the inconsistent information. This is to some ex-
tent similar to inference procedures in possibilistic logic in presence of
inconsistency [2I]. One possible advantage of such an approach is that

if 7' C 7, then [E. (f(w)),Ex (f(w))] € [Er(f(w)),Ex(f(w))], keeping a
certain monotonicity with respect to information gain, as more precise
possibility distributions will lead to more precise inferences ;

e Second way: consider that min,¢g f(w)= ming,ecq f(w) and max, g f(w) =
maxyeq f(w). This amounts to transforming conflict into ignorance, and to
have a very conservative view about it. It can also be viewed as normalizing
the possibility distributions by taking 7’ = 7 + Inc(mp).

This way of resolving inconsistencies does not change our hypothesis with respect
to the previously given answers and information (they are not modified), nor
how we combine them (conjunctively). Note that this approach somehow avoids
searching for the sources of inconsistency, and either ignores it or turn it into
ignorance (a different concept than inconsistency). Therefore, such strategies
appear legitimate only when inconsistency and its effects are likely to be limited,
and when there is no need to analyse the details of the conflicting situation.

Example 8 (Inferring despite inconsistencies without modifying preferential
information). Let us take again Example but this time the user is giving two
incorrect preferential information: EM =, TB with oy = 0.8 and TB =, MO
with ay. The fusion of the two pieces of information (using a product T-norm)
is:

T(1,1 —ap) =04 if wt <5/9,
Ta(w) =< T(1 —ai,1 —az) =0.08 if5/9 <w! <2/3,
T(1 —a1,1) = 0.2 if W' > 2/3,

11
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10 === mmmmm e 1

| 0.4

0.2
0 1 @

MO +—

Figure 7: Overlap of the unormalized possibility distribution 7 from Example with the
score of the alternative MO

which is represented on Figure [ along with the score of MO. As we can see,
the preferential information is incoherent, with Inc(mn) = 0.6. We thus need to
define minima and mazima over the empty set to infer.

T has three distinct values: 0.4, 0.2 and 0.08. We thus have four alpha-cuts:
T™n = (Z), T0.4n — [0,5/9], T0.2n — [0,5/9] U [2/3, 1] and 70.08n — [0, 1]. We
define the minimum and the mazimum on the empty set according to the two
solutions presented earlier:

e min,cp fo(MO) = max,cp fw(MO) = 0.
e ming,cq fo(MO) = mingecq fo(MO) =3 (and max,,cq fo(MO) = 7).
We can now compute the lower expectation:

E, [w(MO)] = 0.6 minw(MO) +0.2 min w(MO)
weld we(0,5/9]

+0.12 w(MO) 4 0.08 min w(MO)

min

wel0,5/9]U[2/3,1] wel0,1]

= O.Gmilélw(MO) +02x3+0.12x3+0.08x3
we

=0.6 migw(MO) +1.2.
we

The lower expectation is equal to 1.2 if we take ming,cy = 0 (we ignore the
conflict), or 3 if we take mingecpw(MO) = mingyeqw(MO) = 3 (we transform
the conflict into ignorance).

For the upper expectation:

Eq [w(MO)] = 0.6 maxw(MO) + 0.2 max w(MO)
wep wel0,5/9]

+0.12 max w(MO) + 0.08 max w(MO)
wel0,5/9]U[2/3,1] wel0,1]

=0.6 maé(w(MO) +0.2x47/94+0.12x 74+ 0.08 x 7
we

~ 0.6 maécw(MO) +2.44.
we

The upper expectation is approximatively 2.44 if we take max,cg = 0, or approz-
imatively 6.64 if we take max,cpw(MO) = max,eqw(MO) = 1.

Another way to infer despite inconsistencies would consist in normalizing the
distribution 7~, to come back to a consistent situation. There are a lot of ways
to perform such a normalization [29], yet they may be harder to interpret than
the two solutions we consider here. For this reason, we will not explore them
here, although the second way of handling inconsistency can be seen as a specific
normalization, as already mentioned.

12



3.2. Resolving inconsistencies through information fusion

A second strategy to resolve inconsistencies is to change the way we combine
the different sources of information, so that the inconsistency disappears. Such
an approach does not modify the preferential information we receive, but is a
convenient tool to make or test different hypotheses about them. For instance,
a conjunctive rule resulting in 7 makes the assumption that all sources are
reliable and provide trustworthy information. Clearly, if Inc(mn) > 0, this
assumption cannot be true, and others may be investigated. Wanting the fusion
to be consistent with every piece of initial information is debatable in preference
modelling, where all information are issued from the same user, meaning that
if the model is to be trusted, inconsistency necessarily results from some error
in the user answers. However, it is also reasonable to assume that most of the
user answers are correct. We explore below some fusion operators that are inline
with such a setting.

L-out-of-k. 1t is tempting to use a fusion operator that can resolve inconsistencies
to some extent, but whose result tends to be consistent with most (but not
necessarily all) of the initial information. Since it is also difficult to know which
answer coming from the user is wrong, it is a natural thing to consider operators
that treat sources anonymously (i.e., whose result remains unchanged if the
indices of the information pieces m; are permuted). The assumption that ¢
sources among the k considered are correct corresponds to such an operator.
If S = {m1,..., 7} is the set of the considered items of information, then the
distribution resulting from an ¢/k assumption is:

mow) = Y < N 772’(9)> : (12)

LCS,|L]=t \meL

where N and U are replaced by a T-norm and its dual T-conorm (in our case,
the product T-norm and the probabilistic sum T-conorm). This fusion operator
is an example of a f-quota operator [18], applied to possibility theory. Ideally, a
minimal repair should consist in finding a value £ as close as possible to k. Two
steps are then required to perform such an idea:

1. find the highest £* such that m;- ;, is normalized,
2. compute the resulting distribution - /.

While such operations may seem difficult to achieve in practice, we propose
here an efficient method to achieve the first step, assuming that for each element
Q; of the partition ,...,Qp mentioned in Section [2.3] we do have an associated
vector 7?1 = (’/Tl(Ql'), . ,’/Tk(Qi)).

Algorithm [I| provides an easy way to find £*, and is based on the simple idea
that 7/, will be normalized if there is at least an element 2; such that at least £
possibility degrees have a value one on this element (otherwise, we cannot select
¢ values such that applying a T-norm on these values will result in value one).
Algorithm [] then consists in finding the highest value satisfying this constraint.
It is of linear complexity in the number P of elements, hence is quite fast once
P is fixed.

The strategy consisting in performing an ¢-out-of-k repair then consists of
simply computing 7/, and making inference using this distribution. Since

13



Algorithm 1: Algorithm to find ¢*

Data: Sources S = {ry,..., 7}
Result: Maximal ¢* to reach consistency
0 =k;

for j € {1,...,P} do

if |{7r1( ) mi(Q;) =1,i= k:}| < ¢* then
= () ey = -k}
end

end

T« can be evaluated element-wise, computing it remains affordable as long as
k is not too high, which is typically the case when querying information from
the user.

Example 9 (¢-out-of-k repair). We now suppose that the user gives 4 answers
along with the certainty degrees o = {0.9,0.5,0.7,0.3}, as shown on Figure @
Moreover, answer 4 is wrong because the user was either uncertain or unfo-
cused, leading to some inconsistency being detected, as shown on Figure[9, with
Inc(mn) = 0.3. Our objective is to handle inconsistency, and more specifically to
resolve current inconsistency through information fusion.

0 w* 1 wl

Figure 8: Answers given by the user in Example @, answer 4 being wrong

N

0 w” 1 wl
Figure 9: Preferential information with inconsistency in Example @

Here we will use £-out-of-k repair algorithm. In this case, we can easily
determine the maximal £ to reach consistency, which is £ = 3: consistency is
reached by removing a single answer, either answer 2 or 4. We then compute 34
according to Equation . Given S = {m1,...,ma}, the first step is to determine
all the subsets L C S such that |L| = 3, obtaining L1 = {m1, 72,73}, Lo =
{m, ma, 74}, L3 = {m, 73,74} and Ly = {7, w3, m4}. We then compute the 4
associated possibility distributions mp, through a product T-norm. For example,
e, (W) = Hf’zl mi(w). After that, we compute 73,4 through a probabilistic sum
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T-conorm. Owing to its commutativity and its associativity, computing the T-
conorm can be done iteratively through pairs of distributions. We recall that
combining two distributions w1 and mo through a T-conorm results in:

mu(w) = m(w) + me(w) — 11 (W) - w2 (w).

The final result is shown on Figure[I0, As expected, consistency is restored and
the resulting possibility distribution reaches 1 on two distinct subsets of 2, in
which at least 8 answers are consistent, which is the case for answers 1, 2 and 3
when w! € [0.5,0.65], and answers 1, 3 and 4 when w' € [0.7,0.75]. As indicates
this remark, this approach does not guarantee that the set of most plausible models
will be convex, even when each individual answer points out to a convex set of
most plausible models. However, non-convex sets of most plausible answers will
only happen in case of disagreement, and could be shown to the user for further
nwvestigations.

T3/4
1

0 J* 1 Wl

Figure 10: Preferential information corrected with ¢-out-of-k repair algorithm in Example @

Mazimal Coherent Subsets. Rather than using an intersection operator that
amounts to a logical AND, one can use other logical operators that will try to
deal with conflicting and inconsistent situations, mostly by finding compromises
between conjunctive and disjunctive behaviours. A common approach is for
example to use the notion of maximal coherent subsets (MCS) [23]. In our
context, and given a set S = {my,...,m} of considered items of information, we
define a subset £ C S as a MCS if the result

of their combination is such thaff| Inc(r.) = 0 and Inc(mx) > 0 for any K O L.
A classical way to restore consistency through information fusion, inherited from
ideas in logic [30], is simply to consider all MCS and take the disjunctions of
all the MCS’s conjunctions. Yet such an approach will typically deliver quite
imprecise results in the presence of outliers or errors, mainly because it results in
a combined distribution whose intersection with any of the initial (preferential)
information is non-empty. We thus want to consider only one MCS, containing
at least all the correct answers from the user.

Listing all the MCSs of a set of information is very costly: unlike Algorithm [I]
we have to consider all possible subsets of information, thus at worst 2% subsets.

6A weaker notion would be to require Inc(mxc) < 1 and Inc(rz) = 1, but this would not
restore full consistency, and would not be useful here, as distributions have 2 for support.
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Supposing the number of information stays reasonable, listing all the MCSs
is doable. A strategy would be to consider only the MCSs of size ¢ given by
Algorithm [1} supposing most pieces of information are correct. However, as
we will see in Section [ while this heuristic can be interesting when paired
with the associated average confidence degree, it usually does not give the most
interesting MCS.

Example 10 (MCS repair). Keeping the same setting as Example@ this time
we want to resolve current inconsistency through a MCS, specifically a MCS of
mazximal size.

Ly
1 ......................................................

e

0 U:* 1 !

Figure 11: Preferential information corrected through a MCS in Example

As on the previous example, we have 4 answers, one of them being incorrect,
and we know that £ = 3. Therefore, we first need to determine all the MCSs
L such that |L| = 3. Since it is not possible to have a MCS L with |L] > 3
(otherwise £ would not be 3), it is sufficient to check only for coherent subsets,
i.e. subsets L such that Inc(rz) = 0. L1 = {m1,ma, 73} and L3 = {m, 73,74}
are the only coherent subsets of the specified size. We then need to pick the
MCS that maximizes the average of the associated certainty degrees. We have
op, = % =07, and oz, = w ~ 0.63, indicating L = L.

74 is shown on Figure , As we can see, consistency is restored and unlike
L-out-of-k repair algorithm, we are guaranteed that the set of most plausible
models form a convex set if it is the case for each individual answers, thanks to
the sole use of conjunctive operators.

Compared to the previous approaches of Section modifying the way we
combine information pieces is usually computationally more intensive, but has
the advantage of potentially providing interesting insights to the user or the
analyst. For instance, the number ¢ resulting from Algorithm [1| gives us a lower
bound of the number of errors committed, while the set of answers constituting
a MCS provides an interesting subset of answers that one could submit to the
scrutiny of the user.

4. Experiments

In this section, we perform some synthetic experiment{] to see how our
various approaches perform when inconsistency appears. As such, they provide
proofs of concept that the approaches proposed in this paper have some interest

“https://github.com/LoicAdam/Possibilist_Elicitation_Fusion| and https://github)
com/LoicAdam/Possibilist_Elicitation_Fusion_Random
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when treating uncertain preferential information. Confirming this interest in
applied situations would require a real-world experiment, something that goes
beyond the scope of this paper. Note that our experiments focus on assessing our
inconsistency handling methods, as experiments in some of our previous work [20]
already showed that the possibilistic approach can outperform the set-based
approach in the presence of errors. In order to evaluate our approaches, we will
consider a recommendation problem, where one item should be recommended
based on the available information. In order to do this, we will first introduce
some decision rules used to make such a recommendation (Section [4.1), as well
as the elicitation approaches we will consider in the experiments (Section .

4.1. Decision rules

There are many decision rules when considering uncertain information in the
form of possibility distributions, and we will only recall the ones we use here
(the interested reader in other rules can check [31]).

Given a subset A C X of available alternatives, the goal of the decision rules
considered here is to make a recommendation x* € A.

Mazimin. Given an alternative x and a model w, the function w(z) provides an
evaluation of the quality of z. When w : X — R is real-valued and our knowledge
about it is encoded through a possibility distribution 7, we can use Equation @
to obtain E_(w(x)), and the corresponding Maximin recommendation:

Thm = argmaxE_(w(x)), (13)
TEA

which provides the strongest guarantees about its performance, as we adopt a
pessimistic view.

Example 11. Given the available alternatives of Example[1, we want to deter-
mine the best alternative given the Mazimin decision rule. On Figure[I3is shown
the score of each alternative given w € Q, supposing the score is determined by
a weighted sum of unknown weights and that we have no information on the
set of possible models. For example, MO has a minimal score of 3, reached for
w=(0,1).

score
10 1
]
0 1 W1 /price

Figure 12: Illustration of Maximin approach

We have ED = EM ~ MO = TB > AC, and alternative ED is suggested to
the user according to the Maximin decision rule. Let us note that this alternative
minimizes the loss in the worst-case scenario, but for any model w, there is at
least one alternative that does better than ED.
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Mazimazx. The Maximax rule to recommend an alternative adopts an optimistic
attitude, opposite to the Maximin one. Applying this rule comes down to
consider Equation to obtain E,(w(z)), and the corresponding Maximax
recommendation is:

Fhaar = argmax B (w(2)). (14)

Such an attitude provides fewer guarantees than the Maximin approach, but is
more likely to recommend the best alternative.

Example 12. Given the available alternatives of Example [, we want to deter-
mine the best alternative given the Mazimaz decision rule. On Figure[13is shown
the score of each alternative given w € §, supposing the score is determined by
a weighted sum of unknown weights and that we have no information on the
set of possible models. For example, TB has a mazximal score of 8, reached for

w=(1,0).

score
10
AC
0 1 W1 /price

Figure 13: Illustration of Maximax approach

We have AC ~ TB >~ MO > EM = ED, and alternative AC' is suggested to
the user according to the Maximax decision rule. Let us note that this alternative
mazimizes the gain in the best-case scenario, but can be bad or even the worst
for other scenarios (here AC being the worst alternative whenever the price is
not important).

Minimax regret. While Maximin approaches are known to provide safe rec-
ommendations, in the sense that they try to maximize the gain in worst-case
scenarios, they are often criticized for their too strong conservatism. Regret-based
rules preserve the idea of making safe recommendation with strong guarantees,
while limiting the potential conservatism of Maximin. As recalled in the in-
troduction, they are often used in incremental elicitation procedures, and in
recommendation problems [6]. Let us introduce the main ideas behind Minimax
regret recommendations.

The regret of choosing an alternative x over an alternative y for a specific
model w is defined by:

Ro(z,y) = w(y) — w(x). (15)

It expresses the difference between what we would have obtained by picking y (the
value w(y)), and what we actually obtain by picking « (the value w(z)). Given a
set F of possible models, the value of Equation is no longer well-defined,
and the pairwise maximal regret over F is then defined as:

PMR(z,y, E) = mgng(% Y), (16)
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corresponding to the maximum regret of choosing x over y for any model w € FE.
The maximal regret of choosing z is then defined as:
MR(z, E) = max PMR(z,y, E), (17)
ye
corresponding to the regret of choosing x in the worst case scenario, i.e., against
its worst opponent. Lastly, the minimal maximal regret of a set A of alternatives
given a set F of possible models is defined as:
mMR(F) = min MR(z, E), (18)
TEA
and z* = argmMR/(F) is an alternative that gives the minimal regret in the

worst-case scenario, corresponding to the optimal recommendation (in terms of
regret) if no further information can be collected.

Example 13 (Initial choice). From Example we first compute maxy,cq
Ry (zi, ;) Vi, j € A% In absence of information, the initial set of possible models
is 2, which is only constrained by 0 < w' <1 and ) ,w' =1, i € {1,2}. We com-
pute the pairwise mazimal regrets by optimizing max,ecq (w(x;) —w(z;)) Vi,j €
A2, Since we optimize a linear function over a convex polytope §2, the optimiza-
tion problem is solved easily and exactly using linear programming (LP). We
thus obtain the PMR, as shown in Table[d For example, if the user chooses the
truffle Brie over the Emmental, her mazimal regret is PMR(TB, EM) = 5: for
the model w = (0,1), we have w(TB) = 1 and w(EM) = 6, giving a mazimal
regret of 5.

Table 2: Initial mMR determination of Example

z/y | AC EM ED MO TB || MR

Ac o 4 5 7 (B 8
EM | 3 0 1 3
ED [(4) 1 0o 2 3
MO [(6) 3 2 0 1| 6
™ |[(8) 5 4 2 0| 8
mMR | | 4

The corresponding MR is given in Table[3 We obtain mMR = 4, the best
inatial choice being x* = EM or ED, which are the least regretted in the worst
case scenario when having no information on the preferences of the user.

In a previous paper [20], we extended minimax-regret notions to the pos-
sibilistic setting, in the following way: our extension of PMR, named EPMR,
averages the PMR over the different a-cuts:

n
EPMR(xay77Tk) = Z(ai - ai+1)PMR(‘/E7y7E:Ii)a (19)

i=1

where 1 = a3 > ... > ay, > apy1 = 0 are the distinct values of 7wk If 7k = Ig,,
we obtain the standard PMR of Equation . Note that such an averaging is
standard in possibilistic approaches (see for example [32]).
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If E?} =0, we need to define PMR(x,y,(). There are different options to
do so [33], and we have discussed the main ones in Section
Similarly, our extension of the MR, the EMR, averages the MR, over a-cuts:

EMR(z, %) = P — PMR(z,y, E%), 20
(z, %) ;(a ais1) max PMR(z, y, B}) (20)

corresponding to the average over cuts of the maximal pairwise regret. Again, if

k= Ig,, we obtain the standard MR of Equation .
Finally, we propose to extend the mMR with the mEMR:

mEMR(7*) = mig EMR(z, 7") (21)
xre
which, since EMR(z, 7") reduces to Equation when 7% = I, , also reduces
to Equation in the same case. When looking at Equation , it is clear
that EPMR and EMR can be interpreted as upper expected values of regret,
given our possibilistic knowledge and as long as this latter is normalized.

Example 14. From Example [0, we have 3 different values for the possibility
distribution: 1, 0.3 and 0 (when w & ). We thus have two different alpha cuts,
and we deduce the EPMR for any pair (z,y) as follows:

EPMR(x,y,7) = (1 —0.3)PMR(x,y, E}) + (0.3 — 0) PMR(z,y, E%?)
= 07PMR(£) Y, EEME TB) + 03PMR(‘T> Y, Q),

and the corresponding EMR:
E]MR(.’I?7 7T) = O7MR(.’E, QEME TB) + 03MR(3?, Q)

4.2. Retained elicitation procedures

In the experiments described in the sequel, we decided to use two elicitation
strategies: one where we consider batch, non-incremental elicitation, that are
typical of those cases where we collect information to estimate a possible model;
and another where we consider incremental, optimized elicitation procedures
whose goal is not especially to estimate a precise model, but rather to converge
as quickly as possible to a good solution and recommendation. We now describe
those two procedures.

Batch elicitation. Batch or non-incremental elicitation means that all prefer-
ential information is given at once, in contrast to incremental elicitation where
the requested preferential information in a given step depends on the questions
and answered received in the previous step.

Considering the subset A C X of available alternatives, batch elicitation in
this context amounts to selecting pairs (z,y) such that the user provides an
answer T =, y or y =, «, that is either x is preferred to y with a certainty
degree a, or the reverse. We will explain in Section [£.3] how those answers are
simulated.
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Incremental regret-based strategy. We now recall the Possibility Current
Solution Strategy (PCSS) in order to select questions, extending the Current
Solution Strategy (CSS) one. The CSS strategy was initially proposed as an
efficient way to efficiently converge to a recommendation minimizing regret, and
we refer to [34] for details. Here, we will only recall its possibilistic adaptation,
originally introduced in [26]. The strategy is summarized in Algorithm [2| We
assume that the user provides a unique choice when being presented with a pair,
that is translated as a non-strict preference.

Algorithm 2: PCSS algorithm

Data: Max number of queries Max,, set © of models, set A of
alternatives

Result: z* = argmEMR(7")

k= 07 71'0 = HQ;

while k£ < Max, do

Compute z* = arg mEMR(7%);

Compute y* = arg max,ex EPMR(z*,y, 7%);

User provides answer z* >, y* or * <., y* ;

if User answer is z* =4, y* then

k+1 k
T = ey

else T = 7h mpg e
k=Fk+1;
end

The interest of such an approach is that it retains the nice properties of
the robust and CSS approaches when their assumptions hold (right model
choice and correct answers), in particular the convergence towards the right
recommendation with high guarantees as the regret will decrease after each
iteration (PCSS regret bounds being more conservative than the ones of CSS). In
the case where their assumptions do not hold, PCSS may identify it through the
obtention of unnormalised distributions. We refer to our previous study [26] and
its experiments that shows that the PCSS approach can be efficient to detect
mistakes in the user answers or in the model assumptions.

4.8. Experimental protocol

Our goal here is to show that including uncertainty modelling as well as refined
strategies to handle inconsistency can be helpful when treating preferences, and
more particularly when recommending alternatives from real-valued aggregation
models. To do so, we will compare different situations using the decision rules
and elicitation strategies described in the previous sections.

We want to recommand to a user the alternative she should prefer among
50 multi-criteria alternatives that are Pareto undominated (no alternative is
worse than the others, regardless of the preferences of a user). Each alternative
has 4 criteria with &X; = [0, 1]. Each alternative x is generated randomly with
respect to a uniform distribution, i.e. x; ~ U (0,1)Vi € {1,...,4}. We also add
another constraint on the criteria to ensure that the alternatives are not Pareto
Dominated: for each alternative x, the sum of the criteria is approximatively 2,
i.e. 2?21 x; = 2. We also performed experiments on less and more criteria (i.e.,
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3 and 5), but the conclusions reached during those experiments did not differ
from the ones presented here.

The aggregating function modelling user preferences is a weighed sum
parametrized by a set of weights such that 0 < w’ < 1 and Y7, w! = 1.
A weighed sum is one of the most simple and used aggregating function of prefer-
ences, and we refer to the book of Grabisch et al. [35] for a detailed presentation
of the different aggregating functions. With a weighted sum, each answer of the
user, given as a comparison between two alternatives, can be represented by a
linear constraint refining the space of possible models €. This is also true for
any model that becomes linear in its parameters, such as OWA models [36] or
Choquet integrals [6]. It should also be noted that, in this case, the size of the
partition 2 induced by pairwise choices only increases polynomially with each
question [37, P. 39|, rather than the worst case exponential increase. We also
refer to [33] Sec. 3.4.] for a discussion about computational issues when using
models such as possibility distributions and belief functions.

The weights of each weighted sum are randomly generated according to a
Dirichlet distribution with hyperparameter (1,1,1,1). The Dirichlet distribution
gives us sets of weights that are summing up to one, and this specific hyperpa-
rameter choice guarantees us that the sets of weights are generated uniformlyﬂ
on ().

To find the optimal recommendation, we apply the PCSS algorithm presented
in Algorithm 2] The user has to answer 15 questions. The certainty degrees a;
provided with each answer are generated randomly depending on the scenario,
using either a beta distribution B(a,b) or a uniform one #(0, 1):

e «; ~ B(7,2) in an optimist scenario, where the user is confident of her
choices;

e «; ~U(0,1) in an intermediate scenario.

Let us note that a pessimistic scenario, in which the user is very unconfident of
her choices and makes a lot of errors, is unrealistic, as the user is supposed to
do her best to help us and not be very adversarial.

We model the uncertainty of the user this way: given a certainty degree «y,
the likeliness that the user answers necessarily correctly is «;, and randomly
1 — «;. When the user answers randomly, we consider that the probability of
an incorrect answer is 50%. Overall, the user has a probability a; + w to
answer correctly, and a probability u;“” to answer incorrectly. We also make
sure that at least one answer is incorrect to retain the experiment (otherwise,
no inconsistency is observed). Such a sampling is quite common in possibility
and belief function theory, where this probability corresponds to the so-called
Pignistic probability [38], and is equivalent to the Shapley value in game theory.
Of course, to achieve simulations, any choice of probabilities within the set P
induced by the possibility distribution would also be valid, such as first sampling
a probability /3; of being correct within [a;, 1] for each question, and then having

8When a Dirichlet distribution has (1,...,1) as its hyperparameters, it is equivalent to a
uniform distribution over the open standard (K-1)-simplex. Using a uniform distribution and
dividing the generated weights by their sum is not equivalent, as this latter generation process
will produce models clustered around the gravity centre of the simplex.
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0; chance to answer correctly. In our experiment, modifying such a choice of the
sampling probability within P, the probability set induced by , only marginally
modified the results and did not change the main conclusions. We therefore only
report results for the classical choice of the Pignistic probability.

In the possibilist elicitation without correction, we first need to infer despite
inconsistencies, like presented in Subsection [3.I] using one of the two strate-
gies: either ignoring conflict with min, ¢y f(w) = max,¢cp f(w) = 0, or consider
conflict and transform it into ignorance with min, ¢y f(w) = mingeq f(w) and
max,¢cp f(w) = max,eq f(w). We will make experiment for the two elicitation
regime we mentioned before: the incremental PCSS strategy that aims at opti-
mising the recommendation, and the batch setting. Under these two frameworks,
we then compare multiple elicitation algorithms and fusion methods:

e In the experiments using PCSS, we also consider the classic CSS elicitation
strategy, a robust approach in which the user is supposed to make no
errors. This method is expected to under perform when the user gives
wrong answers, as it did in previous experiments [26]. We also provide
a strategy similar to the PCSS strategy, but using probabilities as a way
to handle uncertainty, meaning that the answer (E;, c;) is translated into
P(E;) = a; and P(Ef) = 1 — ;. Minimax regret and other elements
of the CSS strategy then become simple expectations over the obtained
partition, which is the same as for PCSS (meaning that the possibilistic
and probabilistic approaches have the same complexity). This allows to
compare the PCSS strategy with other common base lines;

e The PCSS strategy, with one of the strategy to infer despite inconsistencies
(ignore conflict or transform confict into ignorance), without any additional
correction, as presented in Algorithm

e Our f-out-of-k repair algorithm (both in the PCSS and batch settings),
presented in Subsection applied to the elicitation result, as presented
in Algorithm [I}

e Different MCS strategies (both in the PCSS and batch settings), presented
in Subsection [3.2] again applied the elicitation result. For three MCS
strategies, a MCS is selected by a heuristic: either 1) a random MCS of
maximal size, not using the provided confidence degrees and that allows
us to measure the usefulness of these confidence degrees; 2) the MCS
whose answers maximize the average confidence & = m Y iemcs Qi Or
3) the MCS among the MCSs of the biggest size, whose answers maximize
the average confidence. We also consider *) the MCS that corrects the
inconsistency the most in order to have an idea of how well we could do
by picking the best MCS (that is in theory unknown to the analyst);

e A simple and naive algorithm to restore consistency by relaxing all the
linear constraints Az < b associated to each answer by the user. In order
to do so, for each answer ¢ we add a variable d; such that A;x — 0; < b;
and we try to find the values of §; such that consistency is restored and
>r 6 is minimal.

Each scenario is then repeated 300 times, to have a reasonable sample size.
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4.4. Number of incorrect answers detected

We first want to see if our f-out-of-k fusion method is able to detect the
number of incorrect answers given by the user, as it is useful information to
know, both for the analyst and the user. We only report results for the PCSS
method and the strategy ignoring inconsistency, as the other settings provide
similar results. It should be reminded that we have no information on whether
an answer given by the user is wrong or not (and thus no a priori information
about the number of wrong answers). Without further information, an analyst
can only rely on the provided answers and their associated certainty degrees: a
high certainty degree means that we are confident that the answer is correct,
while a low certainty simply means that we have no idea whether the information
is correct or not. It should be stressed that a low confidence degree is not
interpreted here as a sign that the given information is likely to be false, as they
are necessity degrees, in which case a low degree indicates that we do not know
whether the given information is true or false. So a number o = 0 here means
that we simply have no idea whether the answer is correct or not. It contrasts
with a probabilistic interpretation of the number P(E;) = 0, in which case one
is sure that I is true. The closest probabilistic statement to our a = 0 would
be P(E;) = 1/2, but with a different semantic.
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Figure 14: Number of errors detected given the real number of errors (optimist scenario)

On Figure [14] is shown the number of errors detected ¢ returned by Algo-
rithm [I] given the real number of errors that and supposing the user is very
confident of her choices (a; ~ B(7,2)). Given this setting, a user usually makes
between 1 and 4 errors, rarely more, out of 15 answers. As we can see, there is
a positive correlation between £* and the real number of errors, hence £* can
be used as a reasonable proxy. The difference between the number returned by
Algorithm [I] and the real number is explained easily: a wrong answer does not
necessarily contradict all the correct answers, meaning that a wrong answer does
not automatically create inconsistencies (think for example of the case where
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the first answer is wrong).

Number of errors detected

o U1 0 ©
(o]
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Real number of errors

Figure 15: Number of errors detected given the real number of errors (uniform scenario)

On Figure [I5] is shown the number of errors detected like on Figure [I4] but
given the user is not necessary confident of her choices (a; ~ 4(0,1)). This time,
the number of incorrect answers is way higher, with 1 to 7 incorrect choices
among 15 answers most of the time. Our fusion method is less effective for
detecting the real number of incorrect answers, but this is in accordance with
the previous results: given that the number of incorrect choices is this time way
higher, our method is less able to detect all incorrect answers. As the number
of mistakes becomes higher, the chance that multiple mistakes are consistent
between them increases, making their detection more difficult.

4.5. Performance of the different methods with PCSS algorithm

In this paper, we focused on the problem of recommending an item using a
numerical model. Using a numerical model is advantageous, as we have a direct
numerical measure of the performance of the different approaches. To obtain
this, we compute over the repeated experiments the average of the real regret
R, (x*,2P") between the alternative recommanded by a method z* and z{P*
the best alternative given the true model w; of an experiment. We denote this
average by:

> Rua,at™). (22)

We only kept the repetitions for which inconsistency was detected (otherwise
all inconsistency handling methods coincide), so 210 repetitions for the optimistic
scenario and 266 for the intermediate scenario. We also determined a confidence
interval over the average T: IC= [T £ tn—1,1-¢ \S/—%] on T, S* being the corrected

standard deviation of the real regrets, n being the number of repetitions kept,
and a = 0.05.
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In order to compare the different methods and determine whether the dif-
ferences are significative, we did some statistical paired difference tests with a
significance level of 5%. As we do not want to assume that the differences are
normally distributed (which is confirmed on most examples by Shapiro-Wilk’s
tests), we use non-parametric paired Wilcoxon signed-rank tests to determine
whether the real regret differences between the two methods are negligible. We
provide the p-value p associated to the tests, and if p < 0.05, we can assume
that the differences are statically significant, especially given our sample size.

On the Figures [16] and [17] are shown confidence intervals on the average real
regret, depending on the method and the confidence of the user. Each figure is
divided into three parts:

e The top part contains inconsistency correction strategies that make no use
of the possibilistic information: the naive algorithm that relax constraints,
a random MCS having maximal size, and the theorical MCS that minimizes
the real regret. The first two give us set-based baselines that a method
integrating confidence degrees should outperform, while the last one helps
us to determine how good our heuristics are for finding MCSs;

e The middle part contains our different fusion repair algorithms (¢-out-of-k
and the MCSs using confidence degrees obtained through heuristics), and
should be compared with PCSS algorithm to determine whether the fusion
strategies give better recommendations or not than simply specifying the
value of min,¢p f(w).

e The bottom part contains the CSS, the probabilist and the PCSS algorithms,
to determine whether simply handling inconsistency through PCSS is
helpful or not, and to compare it with standard approaches.

Naive algorithm —

(minimal regret) MCS * -
(size) MCS 1

(confidence) MCS 2 4 ™ ignore conflict

(size + confidence) MCS 3 4 = — conflict = ignorance

g-out-Of-k e
Possibilist elicitation (PCSS) | -

Probabilist elicitation | +

Classic elicitation (CSS) —
T T \ \

\ \ \
0 5.1072 0.1 015 02 025 03
Real regret

Figure 16: Confidence intervals on real regret for each method in the optimist scenario, the
lower the real regret is, the better the final recommendation is.

A first question is whether the way we handle inconsistency in the incremental
choice of questions (i.e., ignoring conflict or consider conflict as ignorance during
the possibilist elicitation) in Subsection has an impact on the final result
and recommendation. Given the average real regret with the classic elicitation
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Naive algorithm
(minimal regret) MCS * - *
OMCSTY
(confidence) MCS 2 - - ignore conflict
(size + confidence) MCS 3 | - — conflict = ignorance
e
Possibilist elicitation (PCSS) -

Probabilist elicitation | —

Classic elicitation (CSS) - —
T T T 1

T T T
0 5.1072 01 015 02 025 03
Real regret

Figure 17: Confidence intervals on real regret for each method in the intermediate scenario,
the lower the real regret is, the better the final recommendation is

(T = 0.0504 in the strong scenario, 0.125 in the uniform scenario), we can see that
ignoring inconsistency is a rather good strategy during the elicitation process
(reduction of real regret in the strong scenario: 0.0423, p = 1.59¢ — 16. Uniform
scenario: 0.0880, p = 5.79¢ — 24), as it presents a systematic and statistically
significant gain when compared to the set-based approach, as well as with the
probabilistic approach in the uniform scenario, as in this case probabilities are
too uniformly distributed amongst truz and false information). It is on par with
the probabilistic approach in the case of confident users.

On the converse, we can see that transforming the inconsistency into ig-
norance during the elicitation process generally degrades the results in terms
of recommendation (reduction of real regret in the strong scenario: —0.146,
p = 4.647¢ — 32. Uniform scenario: —0.0978, p = 4.449¢ — 23). So, while
this option is quite common in the literature, our results clearly indicate that
confusing inconsistency and ignorance is here a very risky and detrimental choice,
at least when picking the questions to be presented to the user. This is due
to the strong adopted strong bias that can vary between different alternatives
(as each can have different maximal and minimal values). In contrast, ignoring
conflict means that all alternatives are treated in the same way.

A second question is to know whether there is a difference, in terms of
recommendation quality, between merely handling inconsistency through the
redefinition of PMR(z, y, ?), and using more elaborated fusion strategies. Before
going into details, we can see some first elements:

e Restoring consistency naively always gives the worst recommendations,
and all methods are better regardless of the redefinition strategy;

e All fusion methods give better recommendations than the classic elicitation,
except when picking a random MCS of the biggest size in the optimist
scenario, and f-out-of-k fusion method in the intermediate scenario. The
fact that the results are much more robust to the conflict handling strategy
for fusion rules also suggests that changing the conflict strategy has a major
effect at the final inference time and not so much during the elicitation
process;
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Table 3: Difference in real regret between ignoring conflict and information fusion methods, a
positive value meaning the fusion methods have a lower real regret in average

‘ Optimist  Uniform

{-out-of-k -0.00270 -0.0934
p-value 0.0430 4.21e-31
MCS from heuristics | -0.00499 -0.008312
p-value 0.122 0.00483

MCS minimizing T 0.00666 0.0304
p-value 1.78e-08  4.76e-23

e All fusion methods give better recommendations than the ones when only
considering conflict as ignorance. Given this result, we will focus on simply
ignoring conflict in the rest of this subsection.

In addition to the previous figures, Table [3| summarizes the results when consid-
ering as reference method PMR(z,y,®) = 0 (ignoring conflict), and as compared
methods the different fusion strategies. For simplicity, when it comes to MCSs
we only give the results for the MCS of maximal size whose answers minimizes
the average confidence, and the one minimizing the real regret. Given a fusion
strategy and a scenario, we provide two numbers. The first one is the difference
in average in real regret between the fusion strategy and just inferring with
PMR(z,y,0) = 0, computed as % S Ry, (afusion ginfer) " A negative number
means that in average the fusion strategy gives worse recommendations, while
a positive number means that in average the fusion strategy gives better rec-
ommendations. The second number is the p-value, to determine whether the
difference in recommendation quality is statistically significative or not.

We can see that the results are quite mixed: f-out-k fusion method and the
MCS determined by a heuristic in average do not reduce the real regret, and even
worse in average they slightly increase the real regret. However, this behaviour
is in average, and for some instances they do reduce the real regret. Let us
note though that the f-out-of-k fusion strategy perform poorly on the uniform
scenario. Table [3 also shows that the MCS minimizing the real regret reduces
the real regret in average, regardless of the scenario, which is interesting.

4.6. Influence of the decision rule with a batch elicitation

In order to support the results found with the PCSS algorithm, we ran
a simple test in which the questions were not chosen according to the PCSS
algorithm, but completely at random, corresponding to a batch elicitation
(preferential information is given at once, and the questions do not depend on
the previous steps). Moreover, we want to know the influence of the decision rule
on the results. Figures [I8 and [I9]show the performances obtained by the various
approaches for the optimist and the uniform scenarios, respectively. They are
divided in three parts like Figures [16] and with the only difference being in
the bottom part: it only contains the PCSS algorithm with the two strategies to
handle inconsistency (ignore conflict, or transform conflict into ignorance).

We can observe the following results:
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806 o If we focus on the Minimax regret decision rule (mMR), we can see that

807 even in a batch setting, the results observed in Subsection hold;

808 e Maximax decision rule (MM) provides in general recommendations very
800 similar to the Minimax regret, albeit with a slightly higher real regret in
810 average;

811 e Maximin decision rule (Mm) provides the worst recommendations regardless
812 of the method (except for the random MCS of biggest size). However,
813 when corrected by a fusion method, the recommendations become similar
814 to the other decision rules;

815 e Strategies not using the confidence degrees (random biggest MCS or Naive
816 restoration) perform badly, suggesting that the use of possibilistic informa-
817 tion presents an advantage;

818 e Again, using fusion rules, and in particular MCS approaches using confi-
810 dence degrees, gives much more stable as well as performant results across
820 experiments. The performances of the other approaches can indeed vary a
821 lot with respect to the chosen decision rule. This is a strong point of such
822 approaches, as picking a particular decision rule is not always obvious.

Naive algorithm -

(minimal regret) MCS * -

(size) MCS 1
(confidence) MCS 2 - - mMR
. = MM
(size + confidence) MCS 3 - N — Mm
l-out-of-k =

Conflict = Ignorance (max)

-

Ignore conflict (zero) -

T T T T
0 5.1072 0.1 0.15 0.2 0.25 0.3

Real regret

Figure 18: Confidence intervals on real regret for each method in the optimist scenario in a
batch setting with different decision rules

823 4.7. QOwverall result discussion

824 With the previous results, we can try to draw some first general conclusions:
825 e It seems that fusion methods can improve recommendations over inconsis-
826 tency tolerant inference strategies when those latter provide rather bad
827 recommendations to start with. In the other cases, at best the use of
828 information fusion strategies provides no further improvement (with one
820 exception), which seems normal if we start from an already good situation;
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Naive algorithm

(minimal regret) MCS * -

)
(size) MCS 1 ==
(confidence) MCS 2 - mMR
. = MM
(size + confidence) MCS 3 -  —Mm
l-out-of-k

Conflict = Ignorance (max)

Ignore conflict (zero) -

T T T
0 5.1072 0.1 0.15 02 025 0.3
Real regret

Figure 19: Confidence intervals on real regret for each method in the intermediate scenario in
a batch setting with different decision rules

e The raw numerical benefits of using information fusion strategies appear to
be limited for most of the fusion methods, as the increased requirement in
computational power does not seem to be always paid-off by a significant
increase in recommendation quality. It should however be reminded that
those fusion rules also have an analytical interest, in the sense that they
can give us useful information about the potential number of errors, as
shows Figure [I4 However, the true interest of such analytical properties
is hard to assess in purely synthetic experiments, and testing them in
practical scenario is something we would like to pursue in further research;

e The MCS that minimizes the real regret cannot be always be found by
some simple heuristics. However, by sorting the MCSs based on their size
and then their average confidence, a MCS minimizing the real regret is
usually found among the first (mean rank in the optimist scenario: 1.5,
the specific MCS ranked between 1st and 2nd for 90 % of repetitions ;
mean rank in the intermediate scenario: 3.02, the specific MCS ranked
between 1st and 4th for 80 % of repetitions). Therefore, it is worthwhile
to present such sets of answers to the user, so that she can examine those
more closely, and possibly determine the good answers;

e Using the Maximax decision rule instead of the Minimax regret only
slightly impact the quality of recommendations. Maximin decision rule
does impact negatively the quality of the recommendations, especially
when no correction is applied. However, our fusion methods can restore the
quality of the recommendations from Maximin decision rule to acceptable
levels

It should be noted that the generalization of the above remarks, if they appear
intuitively reasonable, should be checked by further synthetic or real-world
experiments. Indeed, we considered a specific incremental elicitation method
that is known to provide good performances in general, and we considered very
simple questions which answers provide very limited information about the
model: this means on the one hand that corrective actions will have a limited
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impact (as the starting point is likely to already show good performances), and
on the other hand that many pieces of information may be consistent with each
others, even in the case of wrong answers.

5. Conclusions

In this paper, we have discussed general ways to integrate uncertainties in
preferential information through possibility theory. We see three main advantages
of using this theory:

e As a representation of uncertainty, it formally extends sets, and is therefore
coherent with robust approaches and their associated properties. It is also
quite relevant when looking at non-statistical problems, which is the case
when looking at a single user;

e A gradual assessment of the inconsistency present in preferential infor-
mation is doable, and can benefit from a very rich literature on how
to deal with such situations. In this paper, we have mainly considered
inconsistency-tolerant inference rules, as well as information fusion ap-
proaches allowing restoration of consistency before making inference. It
is also possible to obtain some interesting analysis of the situation. In
particular, the fact that most fusion rules can be directly associated to
logical operators or clear assumptions about the sources, provide further
readability that should be appreciated by a user;

e Compared to other uncertainty theories extending set-based approaches
such as belief functions or imprecise probabilities [39], the additional com-
putational cost of using possibility theory is limited, as the computational
complexity of the uncertainty representations grows linearly with the
number of collected information items.

To illustrate those aspects, we have concentrated on a weighted average aggrega-
tion function and some selected fusion rules in our empirical experiments. Those
experiments confirm the potential interests of our approaches and allowed us to
identify some of their limitations, i.e., by identifying some situations where they
showed poor performances.

As already mentioned, many aspects of the current proposal, from Section
to Section [3] can easily be extended to situations other than the specific ones we
have considered in our empirical study. This includes, for example:

e Applying inconsistency handling techniques to other models or situations.
For instance, the regret-based approach has also been applied to multi-
objective combinatorial problems [7], more complex numerical models such
as Choquet integrals [6l 40], or even more qualitative models such as Sugeno
Integrals [41];

e Extending the proposed framework to consider other kinds of tasks or
inferences other than recommending a single alternative. Classical tasks
include ranking all alternatives, possibly partially, and sorting them into
ordered categories (see for instance [42, Ch. 7]). One simple starting
point would be considering minimax regret elicitation strategies for such
tasks [6], 43], and simply attach our possibilistic extension into those. It
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would however require specifying how the corresponding inference (either
ranking or assigning a category) can be performed given the final possibility
distribution over models.

Finally, we already mentioned that our framework is very close in spirit to
possibilistic logic, and could in fact be read as an instantiation of it if we restrict
ourselves to Section [2} It would therefore be quite interesting to see how the
handling of inconsistency in such logics [44] can help in our current framework.
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