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Abstract

In this paper, we address the issues of gathering the preferences of a user when
they may be uncertain, and of handling the possible ensuing inconsistency. We
suggest using possibility theory as a means of modelling this uncertainty and
making inferences despite the possible presence of inconsistencies due to user
errors. While some parts of our approach are general, we specifically apply it
to the case of numerical models and show through synthetic experiments the
potential benefits of our approach.
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1. Introduction1

Modelling the preferences of individuals or populations has been a long-2

standing topic in fields such as economics, statistics, artificial intelligence, and3

operational research. However, the challenges of dealing with uncertainty, in-4

consistency, and incomplete knowledge in preference modelling are still actively5

discussed, particularly in artificial intelligence [1, 2].6

In this paper, we are interested in the problem of handling uncertainty and7

inconsistency when eliciting the preferences of a single user. This type of scenario8

is often encountered in multi-criteria decision aid or artificial intelligence, while9

other fields such as statistics, machine learning, or economics tend to focus on10

learning from populations of individuals rather than a single one. There are11

two main approaches for dealing with the uncertainty and inconsistency (with12

respect to the chosen preference model) present in the preferential information13

of the user:14

• The first approach involves using robust, set-based methods, in which we15

consider sets of potential models and make inferences from these sets. Each16

new piece of preferential information narrows down the set of possible17

models, with the updated set representing our uncertainty about the18

optimal model. These approaches are similar to the concept of version19

space in machine learning, as noted by some authors [3].20
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When the available information results in a set of possible models, different21

inference strategies can be used. One is to only consider those that are22

true for all possible models, resulting in so-called robust methods [4] that23

may sometimes deliver partial results in the form of multiple recommended24

alternatives. Another one is to still make precise inferences in the presence25

of uncertainty, usually by adopting a cautious attitude in the form of a26

Maximin or a Minimax regret method [5, 6, 7]. These approaches consider27

worst-case scenarios to gather new preferential information and provide28

inference tools (e.g., to choose a recommended alternative) with strong29

guarantees. We will focus on this latter approach in our experiments, as30

comparing different approaches is easier when making precise inferences31

and recommendations.32

In this context, inconsistency occurs when none of the models in the selected33

family can match the observed preferences of a user. It is an all-or-nothing34

binary signal, and common strategies for addressing inconsistency include35

removing or modifying some preferential information, either by minimizing36

an objective function such as the number of violated preferences [8, 9], or37

by interacting with the decision maker [10].38

It is worth noting that elicitation approaches using the Minimax regret avoid39

inconsistencies by collecting preferential information that is necessarily40

consistent with the previous answers and the chosen model class (see for41

example [6]). However, this approach relies on very strong assumptions,42

and notably that the decision maker and analyst are assumed, respectively,43

to make no mistake in their answers or model selection.44

• The second approach for handling inconsistencies involves finding a model45

that minimizes some form of average error. This can be achieved through46

optimization techniques such as least squares minimization [11] or mar-47

gin maximization [12], or by using Bayesian probabilities to maintain a48

probability distribution over the possible models and update it as new49

information becomes available, and making inferences using the classical50

expectation operator [13, 14, 15].51

While such approaches are effective in handling inconsistencies, they typ-52

ically cannot provide the same level of strong guarantees as set-based53

approaches. They only offer statistical or expected guarantees, with the54

proviso that the uncertainty model used is correct. This is particularly55

constraining for probability models, as they often require a large amount56

of data or a strong inductive bias for specification and statistical tools57

for validation, which may be difficult to reconcile with learning individual58

preferences. For instance, a common assumption is that the probability59

of error is proportional to the distance between two alternatives [15], but60

this may not always be evident. For instance, it may be easier to compare61

similar alternatives (e.g., those that differ only on two criteria [16]) than62

very different ones. Additionally, probabilistic approaches do not clearly63

distinguish between situations with and without inconsistencies, as prob-64

ability masses must be shared among multiple competing and exclusive65
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hypotheses1.66

In this paper, we study a third approach, consisting in using possibility distri-67

butions to model uncertain preferential information, and possibility theory [17]68

for reasoning with the provided information. The interest of such an approach is69

that it can remain consistent with set-based approaches, as sets are a special70

instance of possibility distributions, while producing a non-binary quantification71

of the inconsistency. It also gives at our disposal various tools for dealing with72

such an inconsistency, these tools extending set-theoretic and logical operations73

such as conjunction and disjunction rather than expectation-based operators.74

Such possibilistic approaches therefore constitute an interesting extension of75

the set-based approaches, while offering a view on uncertainty handling that76

differs from probabilities (as none of the two theories that are possibility theory77

and probability theory subsume the other). In particular, we will consider the78

resolution of inconsistencies from an information fusion perspective [18], as79

inconsistency handling is a typical problem of such approaches. Although the80

idea of applying possibilistic approaches to the modelling of preferences is not81

new [19], our contribution enriches this approach by considering methods issued82

from information fusion to deal with inconsistency, and by verifying through83

synthetic experiments that these methodological proposals have some empirical84

interest.85

In Section 2, we describe our general possibilistic setting: how are mod-86

elled preferences, how can inconsistency be measured, how can it be dealt with.87

Section 3 then deals with possible inconsistencies in the observed preferential in-88

formation, and how to handle them. Finally, Section 4 provides some experiments89

demonstrating the potential interest of our approach. Note that although we90

focus on numerical models associating a numerical value to each alternative, most91

parts of this paper can be readily applied to non-numerical models, especially92

Sections 2 and 3.93

All along the paper, we will illustrate our approach through a simple running94

example using weighted averages as models.95

2. Possibilistic modelling of preference models96

In this section, we describe our general setting and illustrate it on a simple97

example.98

2.1. Preferences and preference models99

We consider that we want to describe the preferences of a user between100

various multi-criteria alternatives. The space of alternatives is a Cartesian101

product X =
∏M

i=1 Xi where Xi is the domain of values that the ith criterion can102

take. Such a domain can be discrete or continuous, and describes an aspect of103

the alternative. In practical multi-criteria decision problems, only a finite subset104

A ⊂ X of all possible alternatives is considered.105

We also assume that the preferences of the user can be described by some106

model ω ∈ Ω, where the set of possible models Ω is chosen by the analyst. Each107

1We illustrate this point at the end of Section 2
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model Ω then induces a partial pre-order2 over the set of alternatives. There are108

many such possible models, and we refer to the work of Pigozzi et al. [20] for a109

nice review.110

In this work, we focus on numerical models, where ω : x → R is a real-valued111

function that maps any alternative x ∈ X to a corresponding value ω(x). For112

easiness, we also denote by x ⪰ω y the fact that ω(x) ≥ ω(y). However, many113

of the ideas presented in this paper also apply to the case where ω is not a114

numerical model.115

Example 1. We suppose that a customer wants to buy a piece of cheese and116

wants to be sure she is making the best choice. For simplicity, we consider that117

she evaluates the score of a cheese through two criteria: the richness of the118

flavour and the price. The available cheeses are presented in Table 1.119

It is important to note that no alternatives are objectively worse than any120

other (i.e. all are Pareto undominated): American cheese may have no flavour,121

but it is the least expensive. On the other hand, truffle Brie is overpriced, but122

has the richest flavour. The other cheeses are tradeoffs between the two criteria.123

Table 1: Set of alternatives X and their scores, with ω = (0.6, 0.4)

Name Flavour 1/Price Score

American cheddar 0 10 4
Emmental 4 6 4.8

Edam 5 5 5
Mozzarella 7 3 5.4
Truffle Brie 8 1 5.2

If we consider that the preferences of the user (the customer) are described124

by a model ω, a weighted sum with parameters (0.6, 0.4), we obtain the scores125

presented in Table 1. Mozzarella is the preferred alternative for this user, as126

∀x ∈ A, ω(MO) ≥ ω(x).127

2.2. Possibility theory reminder128

A possibility distribution π over a space Ω is simply a mapping π : Ω → [0, 1]129

where π(ω) measures how much the element3 ω is plausible. A distribution π130

is said consistent if maxω∈Ω π(ω) = 1, that is, if at least one element is fully131

plausible. From a distribution π, one can then define two measures for any event132

or subset A ⊆ Ω, called possibility and necessity measures, defined as:133

Π(A) = sup
x∈A

π(x), (1)

134

N(A) = 1−Π(Ac) = 1− sup
x ̸∈A

π(x). (2)

Since Π and N are dual, working with one of them for every event A is sufficient.
Possibility theory formally extends sets, in the sense that the information given
by specifying a subset E is modelled by the distribution π(x) = 1 if x ∈ E,

2A transitive, antisymmetric relation on X× X.
3In our case, a preference model.

4



zero otherwise, in which case N(A) = 1 for any A such that E ⊆ A, and zero
otherwise. When π is consistent, the two bounds [N(A),Π(A)] can be interpreted
as probabilistic bounds, inducing in this case the probabilistic set

P = {P |N(A) ≤ P (A) ≤ Π(A), ∀A ⊆ Ω}.

Another important notion in possibility theory is the alpha-cut. Given a possi-135

bility distribution π, its alpha-cut πα is the subset136

πα = {ω ∈ Ω : π(ω) ≥ α} (3)

which includes all the elements of Ω having a possibility degree higher than α.137

Given a real-valued function f : Ω → R, other notions used in this paper138

are the one of lower and upper expectations Eπ(f),Eπ(f) of f induced by a139

distribution π. It corresponds to the lower and upper expected values of this140

function over the set P, and can be computed as141

Eπ(f) =

∫ 1

0

min
ω∈πα

f(ω) dα, (4)

142

Eπ(f) =

∫ 1

0

max
ω∈πα

f(ω) dα. (5)

When the distribution π takes a finite number of distinct values 1 = α1 > . . . >143

αn > αn+1 = 0 (as will be our case here), Equations (4)-(5) become:144

Eπ(f) =

n∑
i=1

(αi − αi+1) min
ω∈παi

f(ω), (6)

145

Eπ(f) =

n∑
i=1

(αi − αi+1) max
ω∈παi

f(ω). (7)

In the rest of the paper, we will also consider unnormalized possibility distribu-146

tions π such that maxω∈Ω π(ω) < 1, in which case the value147

Inc(π) = 1−max
ω∈Ω

π(ω) (8)

will quantify the inconsistency of the available information.148

2.3. Possibilistic preferential information149

In the following, we consider elementary pieces of information taking the form150

of (E,α), where E ⊆ Ω is a subset of possible models and α is understood as151

the certainty degree that the assertion E is true. It is interpreted as N(E) ≥ α,152

to which we can associate a corresponding possibility distribution π(E,α) that is153

the least informative satisfying N(E) ≥ α. This distribution is:154

π(E,α)(ω) =

{
1 if ω ∈ E,

1− α otherwise.
(9)

In particular, α = 1 corresponds to a set-valued information where we are155

certain that ω ∈ E, while α = 0 amounts to a void statement corresponding to156
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ignorance. Equation (9) can be interpreted as an item of information within157

possibilistic logic [21], and most reasoning tools used in this paper could be158

interpreted through the lens of such a logic 4. As illustrates the next example, E159

will typically correspond to a subset of possible models resulting from an answer160

provided by the user.161

Example 2 (Piece of information). Given Example 1 and Table 1, assuming162

that the user declares TB ⪰ω EM with a certainty degree α1 = 0.8, we obtain the163

following decision frontier:164

ω(TB) ≥ ω(EM) ⇒ 8ω1 + ω2 ≥ 4ω1 + 6ω2 ⇒ 4ω1 ≥ 5ω2, (10)

corresponding to the information pictured in Figure 1

π(E1,α1)

1

0.2

ω10 1

4ω1 = 5ω2

E1

Figure 1: Preferential information π(E1,α1)(ω) of Example 2

165

In this paper, we will consider that a set Ei is the result of some pairwise166

comparison between a pair of alternatives (x, y) ∈ X2, where the user can either167

state x ⪰ y or y ⪰ x. We denote by Ex⪰y and Ey⪰x the subsets of Ω resulting168

from each possible answer.169

In practice, we collect multiple pieces of information (Ei, αi), i = 1, . . . , n170

during the elicitation process, each of them corresponding to a distribution171

π(Ei,αi). Note that those possible answers Ei will define a finite partition172

{Ω1, . . . ΩP } of Ω where Ωi is of the kind ∩ϕi∈{Ei,Ec
i }ϕi, where each element of173

the partition correspond to non-empty intersections of elementary answers or174

their complements. The distributions π(Ei,αi) can then be combined or fused175

together in a single distribution by extending classical set operators such as176

conjunction (logical AND) and disjunction (logical OR). The use of such operators177

also allows for an easier interpretation of the performed operations [23, 24, 18].178

In particular, if we have no reasons to think that the pieces of information179

π(Ei,αi) are unreliable5, the most sensible way to combine them is through180

conjunction, which in possibility theory is typically done through the use of a181

T-norm operator [25]. As our goal here is not to discuss the pros and cons of182

the different T-norms, we will focus on the product T-norm, resulting in the183

4This should not be confused with the idea of using possibilistic logic to represent pref-
erences [22], in which degrees αi represent intensities of preferences and not uncertainty
quantification.

5We will deal with this situation in Section 3.
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distribution π∩ such that:184

π∩(ω) =

n∏
i=1

π(Ei,αi)(ω). (11)

Example 3 (Fusion of information). Now we consider two pieces of information:
π(E1,α1) determined from the answer of the user in Example 2, and a new one
denoted π(E2,α2). We suppose the user now declares that MO ⪰ω TB with a
certainty degree α2 = 0.6. We obtain a new decision frontier: ω1 ≤ 2ω2. The
new piece of information is shown on Figure 2. We then apply a T-norm between
the two pieces of information, obtaining:

π∩(ω) =


T(1− α1, 1) = 0.2 if ω1 < 5/9,

T(1, 1) = 1 if 5/9 ≤ ω1 ≤ 2/3,

T(1, 1− α2) = 0.4 if ω1 > 2/3,

which is shown on Figure 3.

π(E2,α2)

1

0.4

ω10 1

ω1 = 2ω2

E2

Figure 2: Preferential information π(E2,α2)(ω) of Example 3

185

π∩
1

0.2
0.4

ω10 1

Ω1 Ω2 Ω3

Figure 3: Fusion π∩ of two pieces of preferential information of Example 3 and resulting
partition of Ω

We can now briefly illustrate the notions of lower and upper expectations,186

using our previous example:187

Example 4 (Expectation bounds). Let us now consider the possibility distribu-188

tion obtained in Example 3, as well as the function f(ω) = ω(MO) = 7ω1 + 3ω2.189
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π∩
1

0.4
0.2

score
10

ω10 1

MO

Figure 4: Overlap of the possibility distribution π∩ from Example 3 with the score of the
alternative MO

Both the possibility distribution and the function are superimposed on Figure190

4. We have three distinct values for π∩: 1, 0.4 and 0.2. We thus have three191

alpha-cuts: π1 = [5/9, 2/3], π0.4 = [5/9, 1] and π0.2 = [0, 1].192

We can now determine the lower expectation:

Eπ∩
[ω(MO)] = (1− 0.4) min

ω∈[5/9,2/3]
ω(MO) + (0.4− 0.2) min

ω∈[5/9,1]
ω(MO)

+ (0.2− 0) min
ω∈[0,1]

ω(MO)

= 0.6(7× 5/9 + 3× 4/9) + 0.2(7× 5/9 + 3× 4/9) + 0.2(3× 1)

≈ 4.77.

And for the upper expectation:

Eπ∩ [ω(MO)] = (1− 0.4) max
ω∈[5/9,2/3]

ω(MO) + (0.4− 0.2) max
ω∈[5/9,1]

ω(MO)

+ (0.2− 0) max
ω∈[0,1]

ω(MO)

= 0.6(7× 2/3 + 3× 1/3) + 0.2(7× 1) + 0.2(7× 1)

= 6.2.

193

2.4. Errors in set-wise and possibilistic approaches194

As said in the introduction, set-wise approaches are quite useful and can195

provide strong guarantees regarding inferences as long as the information provided196

by the user is correct.197

However, such hypotheses are often unrealistic in many applications, and it198

may be desirable to account for possible mistakes (in the user responses or in199

the analyst choice) through uncertainty modelling. As the next example shows,200

failure in those hypotheses can lead to unwarranted situations.201

Example 5 (A single error to ruin everything). We take Example 2 with two202

small but important modifications: we do not consider a possibilist information,203

and thus only E1 is considered (equivalent to α1 = 1); and the user is either204

unfocused or unsure and makes the erroneous claim that TB ⪯ EM. We determine205

that E1 = ETB⪯EM is now {ω ∈ Ω : 4ω1 ≤ 5ω2}, corresponding to information206

shown on Figure 5. As we can see, the true model is definitely left out of E1.207

Whatever the next answers are, we cannot get to ω∗.208
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ω10 1

4ω1 = 5ω2

E1

ω∗ = (0.6, 0.4)

Figure 5: Wrong answer leading to a wrong model in Example 5

As we have already shown elsewhere [26], using possibility theory is an209

interesting way to solve this issue, as illustrates the next example.210

Example 6 (An error no longer ruins everything). Let us continue with Example211

5, but this time the user is providing a certainty degree α1 = 0.7 with her wrong212

answer. We obtain a possibilist information shown on Figure 6 such that it213

is possible to find ω∗ with further questions, supposing the user stops making214

erroneous claims.215

π(E1,α1)

1

0.3

ω10 1

4ω1 = 5ω2

E1

ω∗ = (0.6, 0.4)

Figure 6: Possibilistic preferential information in Example 6

By adding uncertainty to the user opinions, we can weaken the assumption216

of a set-based approach and only consider that some models are less plausible217

than the others, while remaining consistent with a set-based approach, that is218

retrieved when the specified level of certainty α is 1 (in which case some models219

are considered impossible). This is in contrast with probabilistic approaches,220

where increasing the plausibility of some models necessarily means decreasing221

the plausibility of others. For instance, in a probabilistic setting it would be222

impossible to have Figure 1, or to increase the degree α1 on Ec
1 without decreasing223

the plausibility on E1. Such a modelling is clearly less preferable under our single224

user and version space assumptions, where we assume that there is a unique true225

model, that should be able to remain fully plausible in theory.226

Moreover, as we pointed out in the introduction, using probabilistic ap-227

proaches is not desirable in our context: while they may give similar or better228

recommendations than possibilistic approaches in terms of pure numerical per-229

formances (this is investigated in Section 4.5), they cannot be used to reliably230

detect some form of inconsistency, which is a problem if we want to repair it,231

like in Subsection 3.2, or if we are interested in detecting and analysing this232

inconsistency. As Example 7 illustrates, a probabilistic approach will inevitably233

generate some conflict (P (∅) > 0) even in the case of coherent answers. This234
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shows that probabilistic approaches, while potentially showing good numerical235

results, are not well tailored for detecting inconsistencies and for analysing them.236

Example 7 (Conflict with probabilistic information). We take Example 3,
where answers were consistent with the subset of models 5/9 ≤ ω1 ≤ 2/3. We
interpret the different pieces of preferential information as probabilities, with
P (Ei) = αi and P (Ec

i ) = 1− αi. This means that the first piece of information
gives P (ω1 < 5/9) = 0.2 and P (ω1 ≥ 5/9) = 0.8, while the second piece of
information gives P (ω1 ≤ 2/3) = 0.6 and P (ω1 > 2/3) = 0.4. As such, and
supposing both pieces of information are independent, we obtain the following
distribution:

P (ω1) =


0.12 for 0 ≤ ω1 < 5/9,

0.48 for 5/9 ≤ ω1 ≤ 2/3,

0.32 for 2/3 < ω1 ≤ 1,

0.08 for ω1 < 5/9 and 2/3 > ω1,

with the last condition leading to P (∅) = 0.08, despite the fact that both answers237

were consistent together and with our model space. Therefore, while we could238

ignore this conflict and decide to normalise the distribution in order to have239

a probability distribution, probability theory cannot be used to reliably detect240

inconsistency.241

3. Handling inconsistencies242

As said in the previous section, one interest of the possibilistic approach is that243

it can model uncertainty in the user replies, and will avoid completely discarding244

the good model in case of error. In case where some answers are inconsistent245

between them, possibility distributions also quantify inconsistency gradually,246

rather than having an all-or-nothing information as set-based approaches do.247

There are mainly two reasons for inconsistencies to be observed in the248

preferential information collection process and the inferences that ensue:249

• Model error that arises when the choice of the space Ω is unable to250

account for given preferential information, even when those are all correct.251

When such errors happen, a possible strategy is to change or broaden252

the model space (e.g., switching from weighted averages to k-monotone253

Choquet integrals [27]) so as to reduce inconsistencies;254

• User error that comes from the user who committed some errors in the255

past when formulating her preferences, hence making the answers jointly256

incompatible with any possible model of Ω. Note that such errors can have257

different origins: the user was unsure of her answers, or maybe changed her258

viewpoint during the elicitation process. When this happens, a common259

strategy is to remove some answers of the user in some minimal way,260

making the remaining ones consistent [8].261

Differentiating between the two types of errors without having interactions with262

the user or without additional information is in itself a challenging problem,263

which is not the main topic of this paper, even if information fusion tools can264

provide interesting answers to this question [28]. We therefore assume here that265
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errors originate from the user, and consider possible strategies to deal with such266

errors when considering possibility theory and associated information fusion tools.267

Concretely, we look at the case where π∩ is subnormalized, i.e., Inc(π∩) > 0.268

We will detail two strategies: not questioning the conjunctive merging and269

adapting our inference tools based on Equations (4) and (5) ; or modifying the270

way we merge information, thus changing our assumptions about the sources of271

information. The first tool is an easy fix but does not provide much information272

about the source of inconsistencies, while the second is more involved but provides273

some analysis along with the fix. It should also be noted that both strategies274

are not incompatible, using for instance the first to have quick inference, and275

the second to make a final analysis, as studied in Section 4.5.276

3.1. Inferring despite inconsistencies277

Having a positive inconsistency Inc(π∩) > 0 implies that E1
π∩

= ∅. This278

means that if one wants to make inferences over a given function f(ω) in279

Equations (6)-(7) without correcting inconsistencies, we need to define minima280

and maxima over the empty set. While it is possible to define virtually an infinity281

of strategies to account for that, we only present here two classical solutions,282

which differences are illustrated on Example 8:283

• First way: consider that minω∈∅ f(ω) = maxω∈∅ f(ω) = 0. This simply284

amounts to ignoring the inconsistent information. This is to some ex-285

tent similar to inference procedures in possibilistic logic in presence of286

inconsistency [21]. One possible advantage of such an approach is that287

if π′ ⊆ π, then [Eπ′(f(ω)),Eπ′(f(ω))] ⊆ [Eπ(f(ω)),Eπ(f(ω))], keeping a288

certain monotonicity with respect to information gain, as more precise289

possibility distributions will lead to more precise inferences ;290

• Second way: consider that minω∈∅ f(ω)= minω∈Ω f(ω) and maxω∈∅ f(ω) =291

maxω∈Ω f(ω). This amounts to transforming conflict into ignorance, and to292

have a very conservative view about it. It can also be viewed as normalizing293

the possibility distributions by taking π′ = π + Inc(π∩).294

This way of resolving inconsistencies does not change our hypothesis with respect295

to the previously given answers and information (they are not modified), nor296

how we combine them (conjunctively). Note that this approach somehow avoids297

searching for the sources of inconsistency, and either ignores it or turn it into298

ignorance (a different concept than inconsistency). Therefore, such strategies299

appear legitimate only when inconsistency and its effects are likely to be limited,300

and when there is no need to analyse the details of the conflicting situation.301

Example 8 (Inferring despite inconsistencies without modifying preferential
information). Let us take again Example 4, but this time the user is giving two
incorrect preferential information: EM ⪰ω TB with α1 = 0.8 and TB ⪰ω MO
with α2. The fusion of the two pieces of information (using a product T-norm)
is:

π∩(ω) =


T(1, 1− α2) = 0.4 if ω1 < 5/9,

T(1− α1, 1− α2) = 0.08 if 5/9 ≤ ω1 ≤ 2/3,

T(1− α1, 1) = 0.2 if ω1 > 2/3,
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π∩
1

0.4
0.2

score
10

ω10 1

MO

Figure 7: Overlap of the unormalized possibility distribution π∩ from Example 8 with the
score of the alternative MO

which is represented on Figure 7 along with the score of MO. As we can see,302

the preferential information is incoherent, with Inc(π∩) = 0.6. We thus need to303

define minima and maxima over the empty set to infer.304

π∩ has three distinct values: 0.4, 0.2 and 0.08. We thus have four alpha-cuts:305

π1∩ = ∅, π0.4∩ = [0, 5/9], π0.2∩ = [0, 5/9] ∪ [2/3, 1] and π0.08∩ = [0, 1]. We306

define the minimum and the maximum on the empty set according to the two307

solutions presented earlier:308

• minω∈∅ fω(MO) = maxω∈∅ fω(MO) = 0.309

• minω∈∅ fω(MO) = minω∈Ω fω(MO) = 3 (and maxω∈∅ fω(MO) = 7).310

We can now compute the lower expectation:

Eπ∩
[ω(MO)] = 0.6min

ω∈∅
ω(MO) + 0.2 min

ω∈[0,5/9]
ω(MO)

+ 0.12 min
ω∈[0,5/9]∪[2/3,1]

ω(MO) + 0.08 min
ω∈[0,1]

ω(MO)

= 0.6min
ω∈∅

ω(MO) + 0.2× 3 + 0.12× 3 + 0.08× 3

= 0.6min
ω∈∅

ω(MO) + 1.2.

The lower expectation is equal to 1.2 if we take minω∈∅ = 0 (we ignore the311

conflict), or 3 if we take minω∈∅ ω(MO) = minω∈Ω ω(MO) = 3 (we transform312

the conflict into ignorance).313

For the upper expectation:

Eπ∩ [ω(MO)] = 0.6max
ω∈∅

ω(MO) + 0.2 max
ω∈[0,5/9]

ω(MO)

+ 0.12 max
ω∈[0,5/9]∪[2/3,1]

ω(MO) + 0.08 max
ω∈[0,1]

ω(MO)

= 0.6max
ω∈∅

ω(MO) + 0.2× 47/9 + 0.12× 7 + 0.08× 7

≈ 0.6max
ω∈∅

ω(MO) + 2.44.

The upper expectation is approximatively 2.44 if we take maxω∈∅ = 0, or approx-314

imatively 6.64 if we take maxω∈∅ ω(MO) = maxω∈Ω ω(MO) = 7.315

Another way to infer despite inconsistencies would consist in normalizing the316

distribution π∩, to come back to a consistent situation. There are a lot of ways317

to perform such a normalization [29], yet they may be harder to interpret than318

the two solutions we consider here. For this reason, we will not explore them319

here, although the second way of handling inconsistency can be seen as a specific320

normalization, as already mentioned.321
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3.2. Resolving inconsistencies through information fusion322

A second strategy to resolve inconsistencies is to change the way we combine323

the different sources of information, so that the inconsistency disappears. Such324

an approach does not modify the preferential information we receive, but is a325

convenient tool to make or test different hypotheses about them. For instance,326

a conjunctive rule resulting in π∩ makes the assumption that all sources are327

reliable and provide trustworthy information. Clearly, if Inc(π∩) > 0, this328

assumption cannot be true, and others may be investigated. Wanting the fusion329

to be consistent with every piece of initial information is debatable in preference330

modelling, where all information are issued from the same user, meaning that331

if the model is to be trusted, inconsistency necessarily results from some error332

in the user answers. However, it is also reasonable to assume that most of the333

user answers are correct. We explore below some fusion operators that are inline334

with such a setting.335

ℓ-out-of-k. It is tempting to use a fusion operator that can resolve inconsistencies336

to some extent, but whose result tends to be consistent with most (but not337

necessarily all) of the initial information. Since it is also difficult to know which338

answer coming from the user is wrong, it is a natural thing to consider operators339

that treat sources anonymously (i.e., whose result remains unchanged if the340

indices of the information pieces πi are permuted). The assumption that ℓ341

sources among the k considered are correct corresponds to such an operator.342

If S = {π1, . . . , πk} is the set of the considered items of information, then the343

distribution resulting from an ℓ/k assumption is:344

πℓ/k(ω) =
⋃

L⊆S,|L|=ℓ

( ⋂
πi∈L

πi(Ω)

)
, (12)

where ∩ and ∪ are replaced by a T-norm and its dual T-conorm (in our case,345

the product T-norm and the probabilistic sum T-conorm). This fusion operator346

is an example of a ℓ-quota operator [18], applied to possibility theory. Ideally, a347

minimal repair should consist in finding a value ℓ as close as possible to k. Two348

steps are then required to perform such an idea:349

1. find the highest ℓ∗ such that πℓ∗/k is normalized,350

2. compute the resulting distribution πℓ∗/k.351

While such operations may seem difficult to achieve in practice, we propose352

here an efficient method to achieve the first step, assuming that for each element353

Ωi of the partition Ω1, . . . ,ΩP mentioned in Section 2.3 we do have an associated354

vector π⃗i = (π1(Ωi), . . . , πk(Ωi)).355

Algorithm 1 provides an easy way to find ℓ∗, and is based on the simple idea356

that πℓ/k will be normalized if there is at least an element Ωi such that at least ℓ357

possibility degrees have a value one on this element (otherwise, we cannot select358

ℓ values such that applying a T-norm on these values will result in value one).359

Algorithm 1 then consists in finding the highest value satisfying this constraint.360

It is of linear complexity in the number P of elements, hence is quite fast once361

P is fixed.362

The strategy consisting in performing an ℓ-out-of-k repair then consists of363

simply computing πℓ∗/k and making inference using this distribution. Since364
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Algorithm 1: Algorithm to find ℓ∗

Data: Sources S = {π1, . . . , πk}
Result: Maximal ℓ∗ to reach consistency
ℓ∗ = k;
for j ∈ {1, . . . , P} do

if |{πi(Ωj) : πi(Ωj) = 1, i = 1, . . . , k}| < ℓ∗ then
ℓ∗ = |{πi(Ωj) : πi(Ωj) = 1, i = 1, . . . , k}|

end
end

πℓ∗/k can be evaluated element-wise, computing it remains affordable as long as365

k is not too high, which is typically the case when querying information from366

the user.367

Example 9 (ℓ-out-of-k repair). We now suppose that the user gives 4 answers368

along with the certainty degrees α = {0.9, 0.5, 0.7, 0.3}, as shown on Figure 8.369

Moreover, answer 4 is wrong because the user was either uncertain or unfo-370

cused, leading to some inconsistency being detected, as shown on Figure 9, with371

Inc(π∩) = 0.3. Our objective is to handle inconsistency, and more specifically to372

resolve current inconsistency through information fusion.373

ω10 1ω∗

1

2

3

4

Figure 8: Answers given by the user in Example 9, answer 4 being wrong

π∩
1

ω10 1ω∗

Figure 9: Preferential information with inconsistency in Example 9

Here we will use ℓ-out-of-k repair algorithm. In this case, we can easily
determine the maximal ℓ to reach consistency, which is ℓ = 3: consistency is
reached by removing a single answer, either answer 2 or 4. We then compute π3/4

according to Equation (12). Given S = {π1, ..., π4}, the first step is to determine
all the subsets L ⊆ S such that |L| = 3, obtaining L1 = {π1, π2, π3},L2 =
{π1, π2, π4},L3 = {π1, π3, π4} and L4 = {π2, π3, π4}. We then compute the 4
associated possibility distributions πLi

through a product T-norm. For example,
πL1

(ω) =
∏3

i=1 πi(ω). After that, we compute π3/4 through a probabilistic sum
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T-conorm. Owing to its commutativity and its associativity, computing the T-
conorm can be done iteratively through pairs of distributions. We recall that
combining two distributions π1 and π2 through a T-conorm results in:

π∪(ω) = π1(ω) + π2(ω)− π1(ω) · π2(ω).

The final result is shown on Figure 10. As expected, consistency is restored and374

the resulting possibility distribution reaches 1 on two distinct subsets of Ω, in375

which at least 3 answers are consistent, which is the case for answers 1, 2 and 3376

when ω1 ∈ [0.5, 0.65], and answers 1, 3 and 4 when ω1 ∈ [0.7, 0.75]. As indicates377

this remark, this approach does not guarantee that the set of most plausible models378

will be convex, even when each individual answer points out to a convex set of379

most plausible models. However, non-convex sets of most plausible answers will380

only happen in case of disagreement, and could be shown to the user for further381

investigations.382

π3/4

1

ω10 1ω∗

Figure 10: Preferential information corrected with ℓ-out-of-k repair algorithm in Example 9

Maximal Coherent Subsets. Rather than using an intersection operator that
amounts to a logical AND, one can use other logical operators that will try to
deal with conflicting and inconsistent situations, mostly by finding compromises
between conjunctive and disjunctive behaviours. A common approach is for
example to use the notion of maximal coherent subsets (MCS) [23]. In our
context, and given a set S = {π1, . . . , πk} of considered items of information, we
define a subset L ⊆ S as a MCS if the result

πL =
⋂

πi∈L
πi

of their combination is such that6 Inc(πL) = 0 and Inc(πK) > 0 for any K ⊃ L.383

A classical way to restore consistency through information fusion, inherited from384

ideas in logic [30], is simply to consider all MCS and take the disjunctions of385

all the MCS’s conjunctions. Yet such an approach will typically deliver quite386

imprecise results in the presence of outliers or errors, mainly because it results in387

a combined distribution whose intersection with any of the initial (preferential)388

information is non-empty. We thus want to consider only one MCS, containing389

at least all the correct answers from the user.390

Listing all the MCSs of a set of information is very costly: unlike Algorithm 1,391

we have to consider all possible subsets of information, thus at worst 2K subsets.392

6A weaker notion would be to require Inc(πK) < 1 and Inc(πL) = 1, but this would not
restore full consistency, and would not be useful here, as distributions have Ω for support.
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Supposing the number of information stays reasonable, listing all the MCSs393

is doable. A strategy would be to consider only the MCSs of size ℓ given by394

Algorithm 1, supposing most pieces of information are correct. However, as395

we will see in Section 4, while this heuristic can be interesting when paired396

with the associated average confidence degree, it usually does not give the most397

interesting MCS.398

Example 10 (MCS repair). Keeping the same setting as Example 9, this time399

we want to resolve current inconsistency through a MCS, specifically a MCS of400

maximal size.401

πL̂
1

ω10 1ω∗

Figure 11: Preferential information corrected through a MCS in Example 10

As on the previous example, we have 4 answers, one of them being incorrect,402

and we know that ℓ = 3. Therefore, we first need to determine all the MCSs403

L such that |L| = 3. Since it is not possible to have a MCS L with |L| > 3404

(otherwise ℓ would not be 3), it is sufficient to check only for coherent subsets,405

i.e. subsets L such that Inc(πL) = 0. L1 = {π1, π2, π3} and L3 = {π1, π3, π4}406

are the only coherent subsets of the specified size. We then need to pick the407

MCS that maximizes the average of the associated certainty degrees. We have408

αL1 = α1+α2+α3

3 = 0.7, and αL3 = α1+α3+α4

3 ≈ 0.63, indicating L̂ = L1.409

πL̂ is shown on Figure 11. As we can see, consistency is restored and unlike410

ℓ-out-of-k repair algorithm, we are guaranteed that the set of most plausible411

models form a convex set if it is the case for each individual answers, thanks to412

the sole use of conjunctive operators.413

Compared to the previous approaches of Section 3.1, modifying the way we414

combine information pieces is usually computationally more intensive, but has415

the advantage of potentially providing interesting insights to the user or the416

analyst. For instance, the number ℓ resulting from Algorithm 1 gives us a lower417

bound of the number of errors committed, while the set of answers constituting418

a MCS provides an interesting subset of answers that one could submit to the419

scrutiny of the user.420

4. Experiments421

In this section, we perform some synthetic experiments7 to see how our422

various approaches perform when inconsistency appears. As such, they provide423

proofs of concept that the approaches proposed in this paper have some interest424

7https://github.com/LoicAdam/Possibilist_Elicitation_Fusion and https://github.
com/LoicAdam/Possibilist_Elicitation_Fusion_Random
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when treating uncertain preferential information. Confirming this interest in425

applied situations would require a real-world experiment, something that goes426

beyond the scope of this paper. Note that our experiments focus on assessing our427

inconsistency handling methods, as experiments in some of our previous work [26]428

already showed that the possibilistic approach can outperform the set-based429

approach in the presence of errors. In order to evaluate our approaches, we will430

consider a recommendation problem, where one item should be recommended431

based on the available information. In order to do this, we will first introduce432

some decision rules used to make such a recommendation (Section 4.1), as well433

as the elicitation approaches we will consider in the experiments (Section 4.2).434

4.1. Decision rules435

There are many decision rules when considering uncertain information in the436

form of possibility distributions, and we will only recall the ones we use here437

(the interested reader in other rules can check [31]).438

Given a subset A ⊆ X of available alternatives, the goal of the decision rules439

considered here is to make a recommendation x∗ ∈ A.440

Maximin. Given an alternative x and a model ω, the function ω(x) provides an441

evaluation of the quality of x. When ω : X → R is real-valued and our knowledge442

about it is encoded through a possibility distribution π, we can use Equation (6)443

to obtain Eπ(ω(x)), and the corresponding Maximin recommendation:444

x∗
Mm = argmax

x∈A
Eπ(ω(x)), (13)

which provides the strongest guarantees about its performance, as we adopt a445

pessimistic view.446

Example 11. Given the available alternatives of Example 1, we want to deter-447

mine the best alternative given the Maximin decision rule. On Figure 12 is shown448

the score of each alternative given ω ∈ Ω, supposing the score is determined by449

a weighted sum of unknown weights and that we have no information on the450

set of possible models. For example, MO has a minimal score of 3, reached for451

ω = (0, 1).452

score

ω1/price1

10

0

AC

EM
ED

MO

TB

Figure 12: Illustration of Maximin approach

We have ED ≻ EM ≻ MO ≻ TB ≻ AC, and alternative ED is suggested to453

the user according to the Maximin decision rule. Let us note that this alternative454

minimizes the loss in the worst-case scenario, but for any model ω, there is at455

least one alternative that does better than ED.456
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Maximax. The Maximax rule to recommend an alternative adopts an optimistic457

attitude, opposite to the Maximin one. Applying this rule comes down to458

consider Equation (7) to obtain Eπ(ω(x)), and the corresponding Maximax459

recommendation is:460

x∗
MM = argmax

x∈A
Eπ(ω(x)). (14)

Such an attitude provides fewer guarantees than the Maximin approach, but is461

more likely to recommend the best alternative.462

Example 12. Given the available alternatives of Example 1, we want to deter-463

mine the best alternative given the Maximax decision rule. On Figure 13 is shown464

the score of each alternative given ω ∈ Ω, supposing the score is determined by465

a weighted sum of unknown weights and that we have no information on the466

set of possible models. For example, TB has a maximal score of 8, reached for467

ω = (1, 0).468

score

ω1/price1

10

0

AC

EM
ED

MO
TB

Figure 13: Illustration of Maximax approach

We have AC ≻ TB ≻ MO ≻ EM ≻ ED, and alternative AC is suggested to469

the user according to the Maximax decision rule. Let us note that this alternative470

maximizes the gain in the best-case scenario, but can be bad or even the worst471

for other scenarios (here AC being the worst alternative whenever the price is472

not important).473

Minimax regret. While Maximin approaches are known to provide safe rec-474

ommendations, in the sense that they try to maximize the gain in worst-case475

scenarios, they are often criticized for their too strong conservatism. Regret-based476

rules preserve the idea of making safe recommendation with strong guarantees,477

while limiting the potential conservatism of Maximin. As recalled in the in-478

troduction, they are often used in incremental elicitation procedures, and in479

recommendation problems [6]. Let us introduce the main ideas behind Minimax480

regret recommendations.481

The regret of choosing an alternative x over an alternative y for a specific482

model ω is defined by:483

Rω(x, y) = ω(y)− ω(x). (15)
It expresses the difference between what we would have obtained by picking y (the484

value ω(y)), and what we actually obtain by picking x (the value ω(x)). Given a485

set E of possible models, the value of Equation (15) is no longer well-defined,486

and the pairwise maximal regret over E is then defined as:487

PMR(x, y, E) = max
ω∈E

Rω(x, y), (16)
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corresponding to the maximum regret of choosing x over y for any model ω ∈ E.488

The maximal regret of choosing x is then defined as:489

MR(x,E) = max
y∈A

PMR(x, y, E), (17)

corresponding to the regret of choosing x in the worst case scenario, i.e., against490

its worst opponent. Lastly, the minimal maximal regret of a set A of alternatives491

given a set E of possible models is defined as:492

mMR(E) = min
x∈A

MR(x,E), (18)

and x∗ = argmMR(E) is an alternative that gives the minimal regret in the493

worst-case scenario, corresponding to the optimal recommendation (in terms of494

regret) if no further information can be collected.495

Example 13 (Initial choice). From Example 1, we first compute maxω∈Ω496

Rω(xi, xj) ∀i, j ∈ A2. In absence of information, the initial set of possible models497

is Ω, which is only constrained by 0 ≤ ωi ≤ 1 and
∑

i ω
i = 1, i ∈ {1, 2}. We com-498

pute the pairwise maximal regrets by optimizing maxω∈Ω (ω(xi)− ω(xj)) ∀i, j ∈499

A2. Since we optimize a linear function over a convex polytope Ω, the optimiza-500

tion problem is solved easily and exactly using linear programming (LP). We501

thus obtain the PMR, as shown in Table 2. For example, if the user chooses the502

truffle Brie over the Emmental, her maximal regret is PMR(TB,EM) = 5: for503

the model ω = (0, 1), we have ω(TB) = 1 and ω(EM) = 6, giving a maximal504

regret of 5.505

Table 2: Initial mMR determination of Example 13

x/y AC EM ED MO TB MR

AC 0 4 5 7 8 8
EM 3 0 1 3 4 4
ED 4 1 0 2 3 4
MO 6 3 2 0 1 6
TB 8 5 4 2 0 8

mMR 4

The corresponding MR is given in Table 2. We obtain mMR = 4, the best506

initial choice being x∗ = EM or ED, which are the least regretted in the worst507

case scenario when having no information on the preferences of the user.508

In a previous paper [26], we extended minimax-regret notions to the pos-509

sibilistic setting, in the following way: our extension of PMR, named EPMR,510

averages the PMR over the different α-cuts:511

EPMR(x, y, πk) =

n∑
i=1

(αi − αi+1)PMR(x, y, Eαi

πk), (19)

where 1 = α1 > . . . > αn > αn+1 = 0 are the distinct values of πk. If πk = IEk
,512

we obtain the standard PMR of Equation (16). Note that such an averaging is513

standard in possibilistic approaches (see for example [32]).514
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If Eα1

πk = ∅, we need to define PMR(x, y, ∅). There are different options to515

do so [33], and we have discussed the main ones in Section 3.516

Similarly, our extension of the MR, the EMR, averages the MR over α-cuts:517

EMR(x, πk) =

n∑
i=1

(αi − αi+1)max
y∈A

PMR(x, y, Eαi

πk), (20)

corresponding to the average over cuts of the maximal pairwise regret. Again, if518

πk = IEk
, we obtain the standard MR of Equation (17).519

Finally, we propose to extend the mMR with the mEMR:520

mEMR(πk) = min
x∈A

EMR(x, πk) (21)

which, since EMR(x, πk) reduces to Equation (17) when πk = IEk
, also reduces521

to Equation (18) in the same case. When looking at Equation (7), it is clear522

that EPMR and EMR can be interpreted as upper expected values of regret,523

given our possibilistic knowledge and as long as this latter is normalized.524

Example 14. From Example 6, we have 3 different values for the possibility
distribution: 1, 0.3 and 0 (when ω ̸∈ Ω). We thus have two different alpha cuts,
and we deduce the EPMR for any pair (x, y) as follows:

EPMR(x, y, π) = (1− 0.3)PMR(x, y, E1
π) + (0.3− 0)PMR(x, y, E0.3

π )

= 0.7PMR(x, y, EEM⪰TB) + 0.3PMR(x, y,Ω),

and the corresponding EMR:

EMR(x, π) = 0.7MR(x,ΩEM⪰TB) + 0.3MR(x,Ω).

4.2. Retained elicitation procedures525

In the experiments described in the sequel, we decided to use two elicitation526

strategies: one where we consider batch, non-incremental elicitation, that are527

typical of those cases where we collect information to estimate a possible model;528

and another where we consider incremental, optimized elicitation procedures529

whose goal is not especially to estimate a precise model, but rather to converge530

as quickly as possible to a good solution and recommendation. We now describe531

those two procedures.532

Batch elicitation. Batch or non-incremental elicitation means that all prefer-533

ential information is given at once, in contrast to incremental elicitation where534

the requested preferential information in a given step depends on the questions535

and answered received in the previous step.536

Considering the subset A ⊆ X of available alternatives, batch elicitation in537

this context amounts to selecting pairs (x, y) such that the user provides an538

answer x ⪰α y or y ⪰α x, that is either x is preferred to y with a certainty539

degree α, or the reverse. We will explain in Section 4.3 how those answers are540

simulated.541
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Incremental regret-based strategy. We now recall the Possibility Current542

Solution Strategy (PCSS) in order to select questions, extending the Current543

Solution Strategy (CSS) one. The CSS strategy was initially proposed as an544

efficient way to efficiently converge to a recommendation minimizing regret, and545

we refer to [34] for details. Here, we will only recall its possibilistic adaptation,546

originally introduced in [26]. The strategy is summarized in Algorithm 2. We547

assume that the user provides a unique choice when being presented with a pair,548

that is translated as a non-strict preference.549

Algorithm 2: PCSS algorithm
Data: Max number of queries Maxq, set Ω of models, set A of

alternatives
Result: x∗ = argmEMR(πk)
k = 0, π0 = IΩ;
while k ≤ Maxq do

Compute x∗ = argmEMR(πk);
Compute y∗ = argmaxy∈X EPMR(x∗, y, πk);
User provides answer x∗ ⪰αk

y∗ or x∗ ⪯αk
y∗ ;

if User answer is x∗ ⪰αk
y∗ then

πk+1 = πk · πx∗⪰αk
y∗

else πk+1 = πk · πx∗⪯αk
y∗ ;

k = k + 1;
end

The interest of such an approach is that it retains the nice properties of550

the robust and CSS approaches when their assumptions hold (right model551

choice and correct answers), in particular the convergence towards the right552

recommendation with high guarantees as the regret will decrease after each553

iteration (PCSS regret bounds being more conservative than the ones of CSS). In554

the case where their assumptions do not hold, PCSS may identify it through the555

obtention of unnormalised distributions. We refer to our previous study [26] and556

its experiments that shows that the PCSS approach can be efficient to detect557

mistakes in the user answers or in the model assumptions.558

4.3. Experimental protocol559

Our goal here is to show that including uncertainty modelling as well as refined560

strategies to handle inconsistency can be helpful when treating preferences, and561

more particularly when recommending alternatives from real-valued aggregation562

models. To do so, we will compare different situations using the decision rules563

and elicitation strategies described in the previous sections.564

We want to recommand to a user the alternative she should prefer among565

50 multi-criteria alternatives that are Pareto undominated (no alternative is566

worse than the others, regardless of the preferences of a user). Each alternative567

has 4 criteria with Xi = [0, 1]. Each alternative x is generated randomly with568

respect to a uniform distribution, i.e. xi ∼ U(0, 1)∀i ∈ {1, ..., 4}. We also add569

another constraint on the criteria to ensure that the alternatives are not Pareto570

Dominated: for each alternative x, the sum of the criteria is approximatively 2,571

i.e.
∑4

i=1 xi ≈ 2. We also performed experiments on less and more criteria (i.e.,572
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3 and 5), but the conclusions reached during those experiments did not differ573

from the ones presented here.574

The aggregating function modelling user preferences is a weighed sum575

parametrized by a set of weights such that 0 ≤ ωi ≤ 1 and
∑4

i=1 ω
i = 1.576

A weighed sum is one of the most simple and used aggregating function of prefer-577

ences, and we refer to the book of Grabisch et al. [35] for a detailed presentation578

of the different aggregating functions. With a weighted sum, each answer of the579

user, given as a comparison between two alternatives, can be represented by a580

linear constraint refining the space of possible models Ω. This is also true for581

any model that becomes linear in its parameters, such as OWA models [36] or582

Choquet integrals [6]. It should also be noted that, in this case, the size of the583

partition Ω induced by pairwise choices only increases polynomially with each584

question [37, P. 39], rather than the worst case exponential increase. We also585

refer to [33, Sec. 3.4.] for a discussion about computational issues when using586

models such as possibility distributions and belief functions.587

The weights of each weighted sum are randomly generated according to a588

Dirichlet distribution with hyperparameter (1, 1, 1, 1). The Dirichlet distribution589

gives us sets of weights that are summing up to one, and this specific hyperpa-590

rameter choice guarantees us that the sets of weights are generated uniformly8
591

on Ω.592

To find the optimal recommendation, we apply the PCSS algorithm presented593

in Algorithm 2. The user has to answer 15 questions. The certainty degrees αi594

provided with each answer are generated randomly depending on the scenario,595

using either a beta distribution B(a, b) or a uniform one U(0, 1):596

• αi ∼ B(7, 2) in an optimist scenario, where the user is confident of her597

choices;598

• αi ∼ U(0, 1) in an intermediate scenario.599

Let us note that a pessimistic scenario, in which the user is very unconfident of600

her choices and makes a lot of errors, is unrealistic, as the user is supposed to601

do her best to help us and not be very adversarial.602

We model the uncertainty of the user this way: given a certainty degree αi,603

the likeliness that the user answers necessarily correctly is αi, and randomly604

1 − αi. When the user answers randomly, we consider that the probability of605

an incorrect answer is 50%. Overall, the user has a probability αi +
(1−αi)

2 to606

answer correctly, and a probability (1−αi)
2 to answer incorrectly. We also make607

sure that at least one answer is incorrect to retain the experiment (otherwise,608

no inconsistency is observed). Such a sampling is quite common in possibility609

and belief function theory, where this probability corresponds to the so-called610

Pignistic probability [38], and is equivalent to the Shapley value in game theory.611

Of course, to achieve simulations, any choice of probabilities within the set P612

induced by the possibility distribution would also be valid, such as first sampling613

a probability βi of being correct within [αi, 1] for each question, and then having614

8When a Dirichlet distribution has (1, . . . , 1) as its hyperparameters, it is equivalent to a
uniform distribution over the open standard (K-1)-simplex. Using a uniform distribution and
dividing the generated weights by their sum is not equivalent, as this latter generation process
will produce models clustered around the gravity centre of the simplex.
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βi chance to answer correctly. In our experiment, modifying such a choice of the615

sampling probability within P , the probability set induced by π, only marginally616

modified the results and did not change the main conclusions. We therefore only617

report results for the classical choice of the Pignistic probability.618

In the possibilist elicitation without correction, we first need to infer despite619

inconsistencies, like presented in Subsection 3.1, using one of the two strate-620

gies: either ignoring conflict with minω∈∅ f(ω) = maxω∈∅ f(ω) = 0, or consider621

conflict and transform it into ignorance with minω∈∅ f(ω) = minω∈Ω f(ω) and622

maxω∈∅ f(ω) = maxω∈Ω f(ω). We will make experiment for the two elicitation623

regime we mentioned before: the incremental PCSS strategy that aims at opti-624

mising the recommendation, and the batch setting. Under these two frameworks,625

we then compare multiple elicitation algorithms and fusion methods:626

• In the experiments using PCSS, we also consider the classic CSS elicitation627

strategy, a robust approach in which the user is supposed to make no628

errors. This method is expected to under perform when the user gives629

wrong answers, as it did in previous experiments [26]. We also provide630

a strategy similar to the PCSS strategy, but using probabilities as a way631

to handle uncertainty, meaning that the answer (Ei, αi) is translated into632

P (Ei) = αi and P (Ec
i ) = 1 − αi. Minimax regret and other elements633

of the CSS strategy then become simple expectations over the obtained634

partition, which is the same as for PCSS (meaning that the possibilistic635

and probabilistic approaches have the same complexity). This allows to636

compare the PCSS strategy with other common base lines;637

• The PCSS strategy, with one of the strategy to infer despite inconsistencies638

(ignore conflict or transform confict into ignorance), without any additional639

correction, as presented in Algorithm 2;640

• Our ℓ-out-of-k repair algorithm (both in the PCSS and batch settings),641

presented in Subsection 3.2, applied to the elicitation result, as presented642

in Algorithm 1;643

• Different MCS strategies (both in the PCSS and batch settings), presented644

in Subsection 3.2, again applied the elicitation result. For three MCS645

strategies, a MCS is selected by a heuristic: either 1) a random MCS of646

maximal size, not using the provided confidence degrees and that allows647

us to measure the usefulness of these confidence degrees; 2) the MCS648

whose answers maximize the average confidence α = 1
|MCS|

∑
i∈MCS αi; or649

3) the MCS among the MCSs of the biggest size, whose answers maximize650

the average confidence. We also consider *) the MCS that corrects the651

inconsistency the most in order to have an idea of how well we could do652

by picking the best MCS (that is in theory unknown to the analyst);653

• A simple and naive algorithm to restore consistency by relaxing all the654

linear constraints Ax < b associated to each answer by the user. In order655

to do so, for each answer i we add a variable δi such that Aix − δi < bi656

and we try to find the values of δi such that consistency is restored and657 ∑n
i=1 δi is minimal.658

Each scenario is then repeated 300 times, to have a reasonable sample size.659
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4.4. Number of incorrect answers detected660

We first want to see if our ℓ-out-of-k fusion method is able to detect the661

number of incorrect answers given by the user, as it is useful information to662

know, both for the analyst and the user. We only report results for the PCSS663

method and the strategy ignoring inconsistency, as the other settings provide664

similar results. It should be reminded that we have no information on whether665

an answer given by the user is wrong or not (and thus no a priori information666

about the number of wrong answers). Without further information, an analyst667

can only rely on the provided answers and their associated certainty degrees: a668

high certainty degree means that we are confident that the answer is correct,669

while a low certainty simply means that we have no idea whether the information670

is correct or not. It should be stressed that a low confidence degree is not671

interpreted here as a sign that the given information is likely to be false, as they672

are necessity degrees, in which case a low degree indicates that we do not know673

whether the given information is true or false. So a number α = 0 here means674

that we simply have no idea whether the answer is correct or not. It contrasts675

with a probabilistic interpretation of the number P (Ei) = 0, in which case one676

is sure that Ec
i is true. The closest probabilistic statement to our α = 0 would677

be P (Ei) = 1/2, but with a different semantic.678

Figure 14: Number of errors detected given the real number of errors (optimist scenario)

On Figure 14 is shown the number of errors detected ℓ returned by Algo-679

rithm 1, given the real number of errors that and supposing the user is very680

confident of her choices (αi ∼ B(7, 2)). Given this setting, a user usually makes681

between 1 and 4 errors, rarely more, out of 15 answers. As we can see, there is682

a positive correlation between ℓ∗ and the real number of errors, hence ℓ∗ can683

be used as a reasonable proxy. The difference between the number returned by684

Algorithm 1 and the real number is explained easily: a wrong answer does not685

necessarily contradict all the correct answers, meaning that a wrong answer does686

not automatically create inconsistencies (think for example of the case where687
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the first answer is wrong).688

Figure 15: Number of errors detected given the real number of errors (uniform scenario)

On Figure 15 is shown the number of errors detected like on Figure 14, but689

given the user is not necessary confident of her choices (αi ∼ U(0, 1)). This time,690

the number of incorrect answers is way higher, with 1 to 7 incorrect choices691

among 15 answers most of the time. Our fusion method is less effective for692

detecting the real number of incorrect answers, but this is in accordance with693

the previous results: given that the number of incorrect choices is this time way694

higher, our method is less able to detect all incorrect answers. As the number695

of mistakes becomes higher, the chance that multiple mistakes are consistent696

between them increases, making their detection more difficult.697

4.5. Performance of the different methods with PCSS algorithm698

In this paper, we focused on the problem of recommending an item using a699

numerical model. Using a numerical model is advantageous, as we have a direct700

numerical measure of the performance of the different approaches. To obtain701

this, we compute over the repeated experiments the average of the real regret702

Rωi(x
∗, xopt

i ) between the alternative recommanded by a method x∗ and xopt
i703

the best alternative given the true model ωi of an experiment. We denote this704

average by:705

x =
1

n

n∑
i=1

Rωi
(x∗, xopt

i ). (22)

We only kept the repetitions for which inconsistency was detected (otherwise706

all inconsistency handling methods coincide), so 210 repetitions for the optimistic707

scenario and 266 for the intermediate scenario. We also determined a confidence708

interval over the average x: IC= [x± tn−1,1−α
2

S∗
√
n
] on x, S∗ being the corrected709

standard deviation of the real regrets, n being the number of repetitions kept,710

and α = 0.05.711
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In order to compare the different methods and determine whether the dif-712

ferences are significative, we did some statistical paired difference tests with a713

significance level of 5%. As we do not want to assume that the differences are714

normally distributed (which is confirmed on most examples by Shapiro-Wilk’s715

tests), we use non-parametric paired Wilcoxon signed-rank tests to determine716

whether the real regret differences between the two methods are negligible. We717

provide the p-value p associated to the tests, and if p < 0.05, we can assume718

that the differences are statically significant, especially given our sample size.719

On the Figures 16 and 17 are shown confidence intervals on the average real720

regret, depending on the method and the confidence of the user. Each figure is721

divided into three parts:722

• The top part contains inconsistency correction strategies that make no use723

of the possibilistic information: the naive algorithm that relax constraints,724

a random MCS having maximal size, and the theorical MCS that minimizes725

the real regret. The first two give us set-based baselines that a method726

integrating confidence degrees should outperform, while the last one helps727

us to determine how good our heuristics are for finding MCSs;728

• The middle part contains our different fusion repair algorithms (ℓ-out-of-k729

and the MCSs using confidence degrees obtained through heuristics), and730

should be compared with PCSS algorithm to determine whether the fusion731

strategies give better recommendations or not than simply specifying the732

value of minω∈∅ f(ω).733

• The bottom part contains the CSS, the probabilist and the PCSS algorithms,734

to determine whether simply handling inconsistency through PCSS is735

helpful or not, and to compare it with standard approaches.736

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

Classic elicitation (CSS)

Probabilist elicitation

Possibilist elicitation (PCSS)

ℓ-out-of-k

(size + confidence) MCS 3

(confidence) MCS 2

(size) MCS 1

(minimal regret) MCS *

Naive algorithm

Real regret

ignore conflict
conflict = ignorance

Figure 16: Confidence intervals on real regret for each method in the optimist scenario, the
lower the real regret is, the better the final recommendation is.

A first question is whether the way we handle inconsistency in the incremental737

choice of questions (i.e., ignoring conflict or consider conflict as ignorance during738

the possibilist elicitation) in Subsection 3.1 has an impact on the final result739

and recommendation. Given the average real regret with the classic elicitation740
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Figure 17: Confidence intervals on real regret for each method in the intermediate scenario,
the lower the real regret is, the better the final recommendation is

(x = 0.0504 in the strong scenario, 0.125 in the uniform scenario), we can see that741

ignoring inconsistency is a rather good strategy during the elicitation process742

(reduction of real regret in the strong scenario: 0.0423, p = 1.59e− 16. Uniform743

scenario: 0.0880, p = 5.79e− 24), as it presents a systematic and statistically744

significant gain when compared to the set-based approach, as well as with the745

probabilistic approach in the uniform scenario, as in this case probabilities are746

too uniformly distributed amongst truz and false information). It is on par with747

the probabilistic approach in the case of confident users.748

On the converse, we can see that transforming the inconsistency into ig-749

norance during the elicitation process generally degrades the results in terms750

of recommendation (reduction of real regret in the strong scenario: −0.146,751

p = 4.647e − 32. Uniform scenario: −0.0978, p = 4.449e − 23). So, while752

this option is quite common in the literature, our results clearly indicate that753

confusing inconsistency and ignorance is here a very risky and detrimental choice,754

at least when picking the questions to be presented to the user. This is due755

to the strong adopted strong bias that can vary between different alternatives756

(as each can have different maximal and minimal values). In contrast, ignoring757

conflict means that all alternatives are treated in the same way.758

A second question is to know whether there is a difference, in terms of759

recommendation quality, between merely handling inconsistency through the760

redefinition of PMR(x, y, ∅), and using more elaborated fusion strategies. Before761

going into details, we can see some first elements:762

• Restoring consistency naively always gives the worst recommendations,763

and all methods are better regardless of the redefinition strategy;764

• All fusion methods give better recommendations than the classic elicitation,765

except when picking a random MCS of the biggest size in the optimist766

scenario, and ℓ-out-of-k fusion method in the intermediate scenario. The767

fact that the results are much more robust to the conflict handling strategy768

for fusion rules also suggests that changing the conflict strategy has a major769

effect at the final inference time and not so much during the elicitation770

process;771
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Table 3: Difference in real regret between ignoring conflict and information fusion methods, a
positive value meaning the fusion methods have a lower real regret in average

Optimist Uniform

ℓ-out-of-k -0.00270 -0.0934
p-value 0.0430 4.21e-31

MCS from heuristics -0.00499 -0.008312
p-value 0.122 0.00483

MCS minimizing x 0.00666 0.0304
p-value 1.78e-08 4.76e-23

• All fusion methods give better recommendations than the ones when only772

considering conflict as ignorance. Given this result, we will focus on simply773

ignoring conflict in the rest of this subsection.774

In addition to the previous figures, Table 3 summarizes the results when consid-775

ering as reference method PMR(x, y, ∅) = 0 (ignoring conflict), and as compared776

methods the different fusion strategies. For simplicity, when it comes to MCSs777

we only give the results for the MCS of maximal size whose answers minimizes778

the average confidence, and the one minimizing the real regret. Given a fusion779

strategy and a scenario, we provide two numbers. The first one is the difference780

in average in real regret between the fusion strategy and just inferring with781

PMR(x, y, ∅) = 0, computed as 1
n

∑n
i=1 Rωi

(xfusion
i , xinfer

i ). A negative number782

means that in average the fusion strategy gives worse recommendations, while783

a positive number means that in average the fusion strategy gives better rec-784

ommendations. The second number is the p-value, to determine whether the785

difference in recommendation quality is statistically significative or not.786

We can see that the results are quite mixed: ℓ-out-k fusion method and the787

MCS determined by a heuristic in average do not reduce the real regret, and even788

worse in average they slightly increase the real regret. However, this behaviour789

is in average, and for some instances they do reduce the real regret. Let us790

note though that the ℓ-out-of-k fusion strategy perform poorly on the uniform791

scenario. Table 3 also shows that the MCS minimizing the real regret reduces792

the real regret in average, regardless of the scenario, which is interesting.793

4.6. Influence of the decision rule with a batch elicitation794

In order to support the results found with the PCSS algorithm, we ran795

a simple test in which the questions were not chosen according to the PCSS796

algorithm, but completely at random, corresponding to a batch elicitation797

(preferential information is given at once, and the questions do not depend on798

the previous steps). Moreover, we want to know the influence of the decision rule799

on the results. Figures 18 and 19 show the performances obtained by the various800

approaches for the optimist and the uniform scenarios, respectively. They are801

divided in three parts like Figures 16 and 17, with the only difference being in802

the bottom part: it only contains the PCSS algorithm with the two strategies to803

handle inconsistency (ignore conflict, or transform conflict into ignorance).804

We can observe the following results:805
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• If we focus on the Minimax regret decision rule (mMR), we can see that806

even in a batch setting, the results observed in Subsection 4.5 hold;807

• Maximax decision rule (MM) provides in general recommendations very808

similar to the Minimax regret, albeit with a slightly higher real regret in809

average;810

• Maximin decision rule (Mm) provides the worst recommendations regardless811

of the method (except for the random MCS of biggest size). However,812

when corrected by a fusion method, the recommendations become similar813

to the other decision rules;814

• Strategies not using the confidence degrees (random biggest MCS or Naive815

restoration) perform badly, suggesting that the use of possibilistic informa-816

tion presents an advantage;817

• Again, using fusion rules, and in particular MCS approaches using confi-818

dence degrees, gives much more stable as well as performant results across819

experiments. The performances of the other approaches can indeed vary a820

lot with respect to the chosen decision rule. This is a strong point of such821

approaches, as picking a particular decision rule is not always obvious.822

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
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(confidence) MCS 2

(size) MCS 1

(minimal regret) MCS *

Naive algorithm

Real regret

mMR
MM
Mm

Figure 18: Confidence intervals on real regret for each method in the optimist scenario in a
batch setting with different decision rules

4.7. Overall result discussion823

With the previous results, we can try to draw some first general conclusions:824

• It seems that fusion methods can improve recommendations over inconsis-825

tency tolerant inference strategies when those latter provide rather bad826

recommendations to start with. In the other cases, at best the use of827

information fusion strategies provides no further improvement (with one828

exception), which seems normal if we start from an already good situation;829
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Figure 19: Confidence intervals on real regret for each method in the intermediate scenario in
a batch setting with different decision rules

• The raw numerical benefits of using information fusion strategies appear to830

be limited for most of the fusion methods, as the increased requirement in831

computational power does not seem to be always paid-off by a significant832

increase in recommendation quality. It should however be reminded that833

those fusion rules also have an analytical interest, in the sense that they834

can give us useful information about the potential number of errors, as835

shows Figure 14. However, the true interest of such analytical properties836

is hard to assess in purely synthetic experiments, and testing them in837

practical scenario is something we would like to pursue in further research;838

• The MCS that minimizes the real regret cannot be always be found by839

some simple heuristics. However, by sorting the MCSs based on their size840

and then their average confidence, a MCS minimizing the real regret is841

usually found among the first (mean rank in the optimist scenario: 1.5,842

the specific MCS ranked between 1st and 2nd for 90 % of repetitions ;843

mean rank in the intermediate scenario: 3.02, the specific MCS ranked844

between 1st and 4th for 80 % of repetitions). Therefore, it is worthwhile845

to present such sets of answers to the user, so that she can examine those846

more closely, and possibly determine the good answers;847

• Using the Maximax decision rule instead of the Minimax regret only848

slightly impact the quality of recommendations. Maximin decision rule849

does impact negatively the quality of the recommendations, especially850

when no correction is applied. However, our fusion methods can restore the851

quality of the recommendations from Maximin decision rule to acceptable852

levels853

It should be noted that the generalization of the above remarks, if they appear854

intuitively reasonable, should be checked by further synthetic or real-world855

experiments. Indeed, we considered a specific incremental elicitation method856

that is known to provide good performances in general, and we considered very857

simple questions which answers provide very limited information about the858

model: this means on the one hand that corrective actions will have a limited859
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impact (as the starting point is likely to already show good performances), and860

on the other hand that many pieces of information may be consistent with each861

others, even in the case of wrong answers.862

5. Conclusions863

In this paper, we have discussed general ways to integrate uncertainties in864

preferential information through possibility theory. We see three main advantages865

of using this theory:866

• As a representation of uncertainty, it formally extends sets, and is therefore867

coherent with robust approaches and their associated properties. It is also868

quite relevant when looking at non-statistical problems, which is the case869

when looking at a single user;870

• A gradual assessment of the inconsistency present in preferential infor-871

mation is doable, and can benefit from a very rich literature on how872

to deal with such situations. In this paper, we have mainly considered873

inconsistency-tolerant inference rules, as well as information fusion ap-874

proaches allowing restoration of consistency before making inference. It875

is also possible to obtain some interesting analysis of the situation. In876

particular, the fact that most fusion rules can be directly associated to877

logical operators or clear assumptions about the sources, provide further878

readability that should be appreciated by a user;879

• Compared to other uncertainty theories extending set-based approaches880

such as belief functions or imprecise probabilities [39], the additional com-881

putational cost of using possibility theory is limited, as the computational882

complexity of the uncertainty representations grows linearly with the883

number of collected information items.884

To illustrate those aspects, we have concentrated on a weighted average aggrega-885

tion function and some selected fusion rules in our empirical experiments. Those886

experiments confirm the potential interests of our approaches and allowed us to887

identify some of their limitations, i.e., by identifying some situations where they888

showed poor performances.889

As already mentioned, many aspects of the current proposal, from Section 2890

to Section 3, can easily be extended to situations other than the specific ones we891

have considered in our empirical study. This includes, for example:892

• Applying inconsistency handling techniques to other models or situations.893

For instance, the regret-based approach has also been applied to multi-894

objective combinatorial problems [7], more complex numerical models such895

as Choquet integrals [6, 40], or even more qualitative models such as Sugeno896

Integrals [41];897

• Extending the proposed framework to consider other kinds of tasks or898

inferences other than recommending a single alternative. Classical tasks899

include ranking all alternatives, possibly partially, and sorting them into900

ordered categories (see for instance [42, Ch. 7]). One simple starting901

point would be considering minimax regret elicitation strategies for such902

tasks [6, 43], and simply attach our possibilistic extension into those. It903
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would however require specifying how the corresponding inference (either904

ranking or assigning a category) can be performed given the final possibility905

distribution over models.906

Finally, we already mentioned that our framework is very close in spirit to907

possibilistic logic, and could in fact be read as an instantiation of it if we restrict908

ourselves to Section 2. It would therefore be quite interesting to see how the909

handling of inconsistency in such logics [44] can help in our current framework.910
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